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The need to use partial functions arises frequently in formal descriptions of com�

puter systems� However� most proof assistants are based on logics of total func�

tions� One way to address this mismatch is to invent and mechanize a new logic�

Another is to develop practical workarounds in existing settings� In this paper we

take the latter course� we survey and compare methods used to support partiality

in a mechanization of a higher order logic featuring only total functions� The tech�

niques we discuss are generally applicable and are illustrated by relatively large

examples�
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�� INTRODUCTION

In any setting where there are operations acting on el�
ements� the following fundamental consideration arises�
how should an operation treat an element that lies out�
side of its domain� This is known as partiality� In many
cases� matters can be arranged such that the question
simply does not arise� but in many others partiality
must be addressed� The problem of partiality has re�
ceived a great deal of attention in the �elds of logic and
formal methods� in fact� there is a deep mismatch be�
tween modelling problems in formal methods and the
tools used to solve such problems� since the tools are
often based on logics of total functions� while the mod�
elling problems often demand treatment of partiality�
One way to repair this mismatch is to bring partiality
into the logic� as can be seen in e�g� ��� 	
� there are
a range of possibilities� Unfortunately� few have been
mechanized� and none have yet proved to be clearly bet�
ter than the others� On the other hand� tools based on
total logics have prospered and are beginning to be used
in realistic industrial applications� see e�g� ��
� Hence�
in this paper� we will argue for staying in a logic of to�
tal functions and using various �tricks of the trade to
model partiality�
To start� we �rst provide a sketchy survey of these

tricks before moving on to examine some approaches
in more detail� We will relate various approaches by
describing� in a not completely serious way� what they
mean for a familiar function� a shoe shop� Customers
come in to the shop� ask for shoes� and either go away
with shoes� or go away empty handed �when� e�g�� shoes
in the requested size are not available��

Total� A total function corresponds to a shoe shop that
always has exactly the desired shoes for each cus�
tomer�

Since such perfection can rarely� if ever� be achieved�
a shoe shop should naturally be modelled with a par�
tial function� In the following we �rst survey some ap�
proaches that use total functions in order to represent
partial functions�

Conditional� The function is applied only if the argu�
ment x meets a predicate P� Thus the usual way
of using a functions value f�x� is in the conditional
style� P�x� ��Q�f�x���

You phone the store to see if the shoes are in�

Relational� Explicitly use the set�theoretic graph of a
function� i�e� the relation representing the function�
�In many interesting cases� such a relation can be
de�ned inductively��

You have to look through the storeroom yourself for
your shoes�

Underspeci�cation� When a function is de�ned� one
neglects to give values for some arguments� The
function still has values at those arguments� but
only the existence of the values is guaranteed� the
user will be unable to prove much about them�

You get a pair of shoes but can�t be sure they�re
going to �t�

Lifting� A tag is attached to each result of the func�
tion� saying whether the input was in the domain
of the function or not�

You either get your shoes �and know you got them�
or you don�t get your shoes �and know you didn�t
get them��
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Default value� Each invocation of the function must
provide a dummy value to return at unde�ned ar�
guments�

When you ask for a pair of shoes� you must hand
the clerk a pair of shoes� You get some shoes back�
but if they didn�t have the requested shoes� you get
the shoes you handed in�

Dependent types� In this� the conditional approach
has �roughly� been integrated into the type system
of the logic ��� �� �
� Types can capture the domain
of functions precisely� so that partial functions can
often be modelled as total functions on a dependent
type�

A heavyset Swede at the door of the shop allows
entry only if you promise to ask for shoes they have
in stock�

Instead of using these workarounds it is also possible
to provide a tailored logic which explicitly supports par�
tial functions� We can distinguish between two di�erent
approaches here�

Logical solutions� These lift concerns about partial�
ity up to the level of the logical rules� Examples
are LPT ��
 or PF ��
�

You ask for a pair of shoes and you get something
from the clerk� It might not be shoes�

Domain theory� Functions over complete partial or�
ders �so�called domains� are used to represent the
computable subset of partial functions� This ap�
proach is due to Scott and is called LCF �Logic of
Computable Functions� ��
�

You ask for a pair of shoes and the clerk goes to
search for them� If this search terminates� you get
your shoes� Otherwise� you do not know if either
the search ends in an in�nite loop or the requested
shoes are not in stock�

In this paper� we will not discuss a new approach
in order to extend the list above� instead� we will sur�
vey and compare the techniques available in an existing
logic� the higher�order logic instantiation of the generic
theorem prover Isabelle ���
� Isabelle�HOL mechanizes
a logic similar to Churchs formulation of Higher Order
Logic and is conceptually close to Gordons HOL sys�
tem ���
� �In the sequel HOL is short for Isabelle�HOL��
In HOL� all terms are typed and a function of type
� � � can only be applied to a term of type �� All
functions are total� an function of type � � � is de�
�ned for every element of type �� Since HOL is a logic of
total functions� most of the known workarounds for par�
tiality apply� We will examine some of these� however�
there is another arrow in our quiver� Isabelle�HOL has
a semantic embedding of Scotts LCF� called HOLCF�
due to Regensburger ��	� ��
� When partiality problems
become particularly di�cult� one can move smoothly

to the extension and use the machinery that HOLCF
makes available� Arguing about formalizations that
contain both the total functions of HOL and the par�
tial functions of HOLCF often requires extra work� e�g�
proofs of continuity� we will explain a methodology de�
veloped for supporting this mixture of di�erent types of
function�
The approaches are illustrated by examples� some

quite substantial� like an uni�cation algorithm� oper�
ational semantics of an imperative language and mod�
elling of �nite and in�nite sequences� Di�erent exam�
ples are used for di�erent approaches to partiality in
order to clarify in what applications which approach is
of most use�

���� Overview

The structure of the paper is given by several packages
that are incorporated into Isabelle�HOL� Each pack�
age is used to illustrate one �or more� techniques used
to treat partiality� We �rst examine how TFL� a pack�
age for the de�nition of total recursive functions can
be adjusted to handle underspeci�cation without loss
of reasoning power �Section 	�� In the same section
we examine a larger example� a uni�cation algorithm�
where another standard method� lifting� is used to ad�
vantage� Then we move on to illustrate how inductive
de�nitions can be used in place of partial functions� by
examining a recent formalization of programming lan�
guage semantics by Nipkow �Section ��� In Section � we
discuss HOLCF and examine its use in solving a trou�
blesome modelling question� Although this modelling
problem has a solution using purely total functions� the
HOLCF solution is much simpler� We discuss a few of
the advantages and disadvantages of using HOLCF and
discuss our approach to formalizations featuring a mix
of total and partial functions�

���� Notation and Basic De�nitions

The HOL logic o�ers the standard connectives and
quanti�ers� The following provides a short introduc�
tion to HOLs surface syntax�

Formulae The syntax is standard� except that there
are two implications ��� and ��� and two equal�
ities �� and � � which stem from object and meta�
logic� respectively� The distinction can be ignored
while reading this paper� In parsing logical ex�
pressions� earlier members of the following list of
in�xes �denoting� in order� conjunction� disjunc�
tion� implication� and equality� have stronger bind�
ing power than later members� �� �� � � ���� �
All in�xes associate to the right� Suc denotes the
successor function on the natural numbers� The
Hilbert Choice operator �x�P�x� is used to imple�
ment underspeci�cation� its behaviour is charac�
terized by the following version of the Axiom of
Choice�

The Computer Journal� Vol� ��� No� ��� ����



Treating Partiality in a Logic of Total Functions �

�P x� P�x� �� P��x�P�x��

Types follow the syntax for ML types� except that the
Isabelle function arrow is written as ��

Theories introduce constants with the keyword
consts and non�recursive de�nitions with defs�
Further constructs are explained as we encounter
them�

�� GENERAL RECURSION

TFL ���
 is a package for de�ning total recursive func�
tions described via ML�style pattern matching and for
reasoning about them via recursion induction� The sys�
tem is portable and has been instantiated to Gordons
HOL ���
 and also to Isabelle�HOL� The interface to
the system is that the user supplies recursion equations
along with a termination relation and TFL will then de�
�ne the function corresponding to the recursion equa�
tions and automatically derive a principle of recursion
induction� For example� the following description de�
�nes the greatest common denominator algorithm �we
will ignore termination relations throughout this pa�
per��

function �termination relation�
gcd���y� � y
gcd�Suc x� �� � Suc x
gcd�Suc x� Suc y� �
if �y�x� then gcd�x�y�Suc y�

else gcd�Suc x� y�x�

A proof of the pattern completeness theorem for this
function

�x� ��y� x � ���y�� �
��y� x � �Suc y� ��� �
�y z� x � �Suc y� Suc z�

is also carried out in this process� �The pattern com�
pleteness theorem shows that the patterns used in the
de�nition of gcd are exhaustive and non�overlapping��
As a consequence the following induction theorem is au�
tomatically derived for gcd�

�P� ��y� P ���y�� �
��x� P �Suc x���� �
��x y� �	�y�x� �� P �Suc x�y�x�� �

�y�x �� P �x�y�Suc y��
�� P �Suc x�Suc y��

�� �v w� P �v�w��

Although the intent of TFL is to provide a nice envi�
ronment for reasoning about total functions� partiality
has been a recurrent subject in its development�


 partial functions are used in the statement and
proof of the recursion theorem that TFL is based
on�


 TFL has recently been extended to accept partial
descriptions of functions� and


 interesting examples of partial functions de�ned
through lifting have been de�ned and reasoned
about�

We will discuss these in turn�

���� Wellfounded recursion

TFL bases itself on the notion of wellfoundedness �de�
noted WF�� A general induction theorem applies to re�
lations enjoying this property� Also� the following re�
cursion theorem can be proven �see ���
 for details���

�f � WFREC R M� �� WF�R�
�� �x� f�x� � M �fjR�x� x�

The proof of this theorem� as usual in proofs of recursion
theorems� constructs a function by taking the union of a
set of partial functions�making this work out properly
in a logic of total functions takes a little bit of care� Also
in the statement of the recursion theorem we �nd a use
of underspeci�cation to describe function restriction� a
ternary operator that restricts a function to a certain
set of values�

�fjR�y� � �x� if R x y then f x else �z�True�

In this de�nition� the expression �z�True uses the Hilbert
choice operator to denote an arbitrary element of the
range of f� Thus� we are using partiality �underspeci�
�cation� to de�ne a total function �more precisely� one
in which no underspeci�cation occurs�� when TFL pro�
cesses a de�nition� it traverses the recursion equations
looking for recursive calls� If it can be established that
the argument to each recursive call becomes smaller in
a wellfounded relation� then the function is total� But
what does this mean when all functions are already to�
tal� Merely� as already mentioned� that no underspeci��
cation occurs� This means that the recursion equations�
as initially given by the user� can be validly used�

���� Underspeci�cation and induction

Now we discuss how TFL deals with function descrip�
tions which are missing some patterns� Suppose we give
the following ML�style description to the system�

function �termination relation�
�nth���h��t� � h� �
�nth�Suc n�h��t� � nth�n�t��

This de�nition is a partial description of a function�
it neglects to say what values nth has when the list
argument is empty� However� we would still like to be
able to derive an induction theorem for this function�
and to do that we need full coverage of the domain�

�WFREC is a recursion operator� M �roughly� represents the
body of the function� from which recursive occurrences have been
��abstracted�
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i�e�� we must prove the pattern completeness theorem�
In TFL� this is handled by underspecifying nth and also
automatically generating the full set of patterns so that
the induction theorem can still be derived� We get the
following rules �an echo of the input� with the di�erence
that the input is a term and the output a theorem��

�nth���h��t� � h� �
�nth�Suc n�h��t� � nth�n�t��

Notice that only the rules given by the user are re�
turned� The values of the function for the unspeci�ed
clauses are derivable �and are equal to �z�True�� but are
not easily accessible� the user would have to burrow un�
der the level of abstraction provided by TFL and that
would be painful� What is more noteworthy is that TFL
is able to return the following customized induction the�
orem� which contains the full cases�

�P� P����
� �
��n� P�Suc n��
�� �
��h t� P��� h��t�� �
��n h t� P�n�t� �� P �Suc n� h��t��
�� �v w� P�v�w��

This is only possible because TFL contains an adaptation
of a standard pattern matching algorithm ���
� which
generates the complete set of patterns for the type the
function is being de�ned over� as well as returning a
nested case expression �its usual functionality�� With
this induction theorem� proofs of inductive properties
of nth are easy� for example the following theorem�

�n l� n�length l �� mem �nth�n�l�� l

where mem denotes membership of an element in a list�
Notice the condition in this theorem� it restricts the
domain of nth so that the only base cases considered in
the induction are those in the initally given recursion
equations� To summarize� underspeci�cation for recur�
sively de�ned functions requires extra steps to be taken
so that handy induction theorems can still be automat�
ically derived� Even then� properties of underspeci�ed
functions must be restricted so that underspeci�ed por�
tions of the domain of the function are ruled out� We
will return to this point at the end of the next section�

Default Values and Lifting

Now we show how the lifting approach is used in a rel�
atively large example� a uni�cation algorithm ���� ��
�
This illustrates a computer science model of partiality�
failure� When two terms are not uni�able� the algo�
rithm is required to fail� Thus� when uni�cation is used
in another function �e�g�� a type inference algorithm��
failure �partiality� of type inference arises directly from
failure �partiality� in uni�cation� To begin the formal�
ization we de�ne a simple type of terms�

datatype ���uterm � Var���
j Const���
j Comb�� uterm��� uterm�

The type of substitutions is represented by lists of pairs
�v�t� where v has type � and t has type �� uterm�� Thus
the uni�cation algorithm will have the �naive� type

���uterm � ���uterm � �� � � uterm�list

Now we de�ne the substitution function �in�x �j� by
primitive recursion� It is implemented in terms of the
well�known assoc function� the partiality of which is per�
fectly accomodated by a default value� when assoc is
called by the substitution operation �j and cannot �nd
a replacement� the default value d is used instead�

assoc v d �
 � d
assoc v d ��a�b��al� � if v�a then b

else assoc v d al
�Var v �j s� � assoc v �Var v� s
�Const c �j s� � Const c
�Comb M N �j s� � Comb �M �j s� �N �j s�

Composition of substitutions �in�x ��� and the occurs
check �in�x � � are also de�ned by primitive recur�
sion� but we omit their de�nitions� Now we come to
uni�cation� First� we de�ne a type of answers� either
the algorithm fails or it returns a substitution�

datatype ���subst � Fail j Subst �� list�

Thus the algorithm has the following lifted type�

���uterm � ���uterm � �� � � uterm�subst

and is given to TFL in the form shown in Fig� ��
The proof of termination of Unify is a di�cult exercise

in its own right� and we omit it� After the termination
proof� one can prove the following correctness statement
by induction �we also omit the de�nition of what an
MGUni�er is��

��� Unify �P�Q� � Subst � �� MGUni�er � P Q�

An important point that this example brings out is
that the success or failure of the algorithm is explicit
in the returned value� In contrast to a function de�ned
by underspeci�cation� one can use Unifywithout know�
ing what inputs it is de�ned on� There may be a use�
ful methodological point here� so we repeat it� knowl�
edge of the domain of the function �required to prove
properties about underspeci�ed functions� is replaced
by knowledge of the result of calling the function �lift�
ing�� As invocations of a function are found further and
further from its de�nition� one would like to be able to
forget about its domain� Thus the lifting approach may
scale up better� However� we also note that use of the
properties of Unify can be a bit clumsy to deal with
because of the �pipe�tting that must be done to handle
success and failure� This is an instance of employing a
monad ���
�

�� INDUCTIVE DEFINITIONS

The graph of an n�ary function� total or partial� is eas�
ily represented as an �n � ���ary relation� Hence par�
tial functions can be speci�ed and reasoned about in
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function �termination relation�
�Unify�Const m� Const n� � if �m�n� then Subst�
 else Fail� �
�Unify�Const m� Comb M N� � Fail� �
�Unify�Const m� Var v� � Subst��v�Const m�
� �
�Unify�Var v� M� � if �Var v � M� then Fail else Subst��v�M�
� �
�Unify�Comb M N� Const x� � Fail� �
�Unify�Comb M N� Var v� � if �Var v � Comb M N� then Fail else Subst��v�Comb M N�
� �
�Unify�Comb M� N�� Comb M� N�� �

�case Unify�M��M��
of Fail � Fail
j Subst��� � �case Unify�N� �j �� N� �j ��

of Fail � Fail
j Subst � � Subst �� �� ������

FIGURE �� A uni�cation algorithm as input to TFL

terms of their graphs� Reasoning about such relations
is natural and powerful if one uses inductive de�nitions
and the induction proof principle� In HOL the keyword
inductive together with a set of rules de�nes the least
relation closed under the rules� HOL automatically de�
rives the corresponding induction principles� called rule
induction in ��
�
We will demonstrate this approach by the inductive

de�nition of the operational semantics of the simple
imperative programming language IMP with WHILE�
loops� taken from Nipkow ���
� Clearly� a total function
can never capture the semantics of in�nitely looping
programs in this language�

���� Syntax of IMP

Datatypes in HOL resemble those in functional pro�
gramming languages and allow a direct representation
of the abstract syntax of the commands of IMP�

datatype com � SKIP
j 	
�	 loc aexp �in�xl�
j 	�	 com com �in�xl�
j Cond bexp com com �	IF THEN ELSE 	�
j While bexp com �	WHILE DO 	�

The annotations in brackets de�ne the concrete syntax��

For simplicity we identify the syntax of arithmetic ex�
pressions �aexp� and boolean expressions �bexp� with
their semantics� The central semantic concept is that
of a state� i�e� a mapping from locations to values� We
formalize both locations loc and values val as unspeci�
�ed types and de�ne state� aexp and bexp as function
spaces�

types state � loc � val
aexp � state � val
bexp � state � bool

�We have omitted the priority of binding

���� Operational Semantics of IMP

We consider a natural semantics for IMP� expressing
the evaluation of commands as a relation between a
command� an initial state� and a �nal state� In HOL
we declare a constant evalc as a set of such triples

consts evalc �� �com � state � state�set

n and add some syntactic sugar for better readability�

translations �c�s� �� t � �c�s�t��evalc

This means we read and write �c�s� �� t instead of
�c�s�t��evalc� The relation evalc is de�ned inductively
by a set of inference rules� which are represented by
implications in HOL� Fig� 	 displays the de�nition� The
assignment command is de�ned in terms of an auxiliary
function on states�

consts assign �� state � val � loc � state �	 � � 
	�
defs s�m�x
 � ��y� if y�x then m else s y�

where the su�x �	 � � 
	� in the de�nition introduces
a speci�c in�x syntax for the command�

Reasoning about inductive de�nitions� In ���
 a
number of other semantics of IMP are de�ned in HOL�
an operational transition semantics and a denotational
�xpoint semantics� for example� All these semantics are
shown to be equivalent� The proofs make heavy use of
rule induction and convincingly show the power of this
proof principle� For further details we refer to ���
�

���� Discussion

Tackling partiality by inductive de�nitions is particu�
larly interesting� because many notions of mathematics
are de�ned inductively� so that inductive de�nitions and
proofs are natural and familiar principles for the reader
of general mathematics textbooks� Of course� one has
to distinguish between the inductive de�nition princi�
ple as such� which is often used to de�ne arbitrary sets
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inductive evalc
�SKIP�s� �� s

�x 
� a�s� �� s�a�s��x

�c��s�� �� s� �
�c��s�� �� s� �� �c��c�� s�� �� s�

b s � �c��s� �� t �� �IF b THEN c� ELSE c�� s� �� t
	b s � �c��s� �� t �� �IF b THEN c� ELSE c�� s� �� t

	b s �� �WHILE b DO c� s� �� s
b s � �c�s� �� s� �
�WHILE b DO c� s�� �� s� �� �WHILE b DO c� s� �� s�

FIGURE �� Operational semantics� evalc as inductive de�nition in HOL

in mathematics� and its applications to the de�nition of
partial functions� In the latter case it has to be guar�
anteed that the relation is indeed a �partial� function�
i�e� that there is at most one y in relation to every x�
For the former case� there are many examples in math�
ematics� e�g� the Borel hierarchy of subsets of the real
numbers� can be described inductively�

�� PARTIAL FUNCTIONS IN HOLCF

The collections of techniques we have seen so far avoid
partiality or code around it somehow� but sometimes it
is necessary to have real partial functions� The HOL
extension HOLCF formalizes domain theory �	�
� our
theory for partial functions� HOLCF can� of course�
be used to model semantics of sequential programming
languages � the original motivation for developing do�
main theory� It has also been used to formalize FO�
CUS �	�
� a speci�cation and veri�cation methodology
for distributed� reactive systems� In FOCUS the sys�
tem requirements are described in HOL� and re�nement
steps end up with a system described in HOLCF as a
set of computable partial functions�
In ��� we provide a brief introduction to HOLCF� In

��	� we discuss the following interesting point� Some�
times� it is easier to model mathematical objects by use
of partiality� even when there is a solution in the total
setting� We illustrate this phenomenon with an abstract
datatype of �nite and in�nite sequences�
On the other hand� partiality often complicates

proofs� therefore� we prefer to stay in HOL as long
as possible and switch only to HOLCF when really re�
quired� We explain how we deal with mixtures of partial
and total objects in Subsection ����

���� Introduction to HOLCF

HOLCF ��	� ��
 extends HOL conservatively with con�
cepts of domain theory such as complete partial orders�
continuous partial functions and a �xed point operator�
As a result� the original LCF logic �		
 constitutes a

proper sublanguage of HOLCF� HOLCF uses Isabelles
type classes to distinguish HOL and LCF types� More
precisely� a type class pcpo which is equipped with a
complete partial order v and a least element  is intro�
duced� pcpo becomes the default type class of HOLCF
and is a subclass of term� the default type class of HOL�
There is a special type for partial� continuous func�

tions between pcpos� Elements of this type are called
operations� the type constructor is denoted by �� in
contrast to the standard HOL function type construc�
tor �� Special syntax is introduced for abstractions
�� instead of �� and applications �ft instead of �f t���
For continuous functions the �xpoint operator �x ex�
ists� HOLCF comes with several standard domains�
The truth values tr� which are HOLCFs counterpart
to HOLs bool� are modeled by a  at domain with the
elements TT� FF and � Operations on them include
andalso� orelse and neg� which are strict extensions of
the standard predicates � �� and 	 on bool� The coun�
terpart of the conditional expression if A then B else C
is written If A then B else C ��

���� A Modelling Example

Sometimes it is simpler to use partial functions� even if
there is a solution using total functions� As an example
we describe the problem of modelling �nite and in�nite
sequences� The following requirements are posed on the
abstract datatype sequence�


 Sequences are �nite or in�nite�

 A predicate is �nite selects the �nite ones�

 List operations like hd� tl� map� �lter� concat� length�

last must be provided�

 An indexing function nth should be available�

Such sequences are often used to model communication
histories �traces� of distributed systems� For abstrac�
tion and modularity purposes� internal messages are al�
lowed in histories� Therefore� a �lter operation is needed
to remove internal messages from histories� In the fol�
lowing we will focus on how �lter for sequences is de�ned
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in total and partial settings� The main problem is how
elements removed by �lter are treated� they do not re�
ally disappear if they are replaced by explicit !gaps"�
which will be the cause of di�culties in the total set�
ting�

Sequences as total functions� In HOL� in�nite se�
quences can be described by functions of type nat���
However� if we want to incorporate �nite sequences into
the model� we have to de�ne values for the in�nite
tail of a �nite sequence� This can be done by using
nat����option�� where None is used to denote a nonex�
isting element� To avoid the case in which None appears
within a sequence � otherwise the representation would
not be unique � the predicate

is sequence s � �i�s�i��None �� s�Suc�i���None

is introduced� which has to hold of every sequence� At
�rst glance it seems to be easy to de�ne �lter in this
context� Just replace Some�a� by None if P�a� does not
hold�

�lter P s � �i�
case s�i� of
None � None

j Some�a� � if P�a� then Some�a�
else None

But the problem with this coding of partiality is that
such a �lter generates Nones all over the sequence� there�
fore� to satisfy the predicate is sequence� �lter has to
compute a normal form NF� where Nones are not al�
lowed within a sequence� However� to remove Nones
in this setting is very awkward� because shifting means
!rede�nition" of all succeeding values� NF can be de�
�ned by claiming a monotone function f between se�
quences that serves as an index transformation �see
Fig� ���

NF�s� � �nf� �f� mono�f� � ��i� nf�i��s�f�i��� �
��j� j �� range�f� �� s�j�� None� �
is sequence nf

Hilberts choice operator �x�P�x� and the index transfor�
mation make proofs about NF hard and clumsy� Other
operations� like in�nite concatenation� are also very
complicated to realize with this representation� The
reader may think that there is an easier means of di�
rectly de�ning sequences in a total setting� for example
by an inductive de�nition� but we have not been able
to �nd such� despite considerable e�ort�

Sequences as disjoint sum of �nite and in�nite

sequences� Another modelling possibility is to use a
disjoint sum of �nite and in�nite sequences�

���seq � FinSeq����list� j InfSeq�nat�����

�We use the standard option datatype which is de�ned as
���option� Some��� j None

Here ���list stands for the inductively de�ned �nite lists
of HOL� Note that �lter can produce both �nite and in�
�nite sequences from an in�nite sequence� Therefore
�lter in this setting is de�ned using limits of projections
of �nite sequences� which are in turn de�ned using re�
cursion on lists� Thus� the notion of a limit of an ascend�
ing chain of sequences �acording to the pre�x ordering�
has to be formalized� This approach has been taken
by Chou and Peled �	�
 to model sequences as a pre�
requisite for the formal veri�cation of a partial�order
reduction technique in the HOL theorem prover ���
�
However� this seems to be an ad hoc modelling of do�
main concepts tailored for a speci�c datatype� which is
more generally supported in HOLCF� as we will see in
the sequel�

Sequences as domains� In HOLCF �nite and in�nite
sequences are de�ned by the simple recursive domain
equation

domain ���sequence � nil j �����lazy ���sequence�

where nil and the !cons"�operator � are the construc�
tors of the datatype� � is strict in its �rst argu�
ment and lazy in the second� The datatype pack�
age of HOLCF �	�
 automatically proves a number of
user�relevant theorems concerning the constructors� dis�
criminators� and selectors of the datatype� as well as
induction and co�induction principles� For example�
hd�nil�� and tl��� are generated automatically�
See the next section for a short account of the induction
principles�
The de�nition above means that elements of type

sequence come in �  avours�


 Finite total sequences� a��	 	 	�an�nil�

 Finite partial sequences� a��	 	 	�an��

 In�nite sequences� a��	 	 	�an�	 	 	�

All the operations known from functional program�
ming with lazy lists� e�g� map� �lter and the concatena�
tion operator � are easily de�ned over ���sequence� For
example� �lter has type

�� � tr� � ���sequence � ���sequence

and is de�ned as a �xpoint� The following rewrite rules
can immediately be deduced from the de�nition�

�lterP�
�lterPnil�nil
x�� �� �lterP�x�xs�� If Px

then x���lterPxs�
else �lterPxs �

To us� this seems to be the simplest implementation of
�lter� The other operations of the abstract datatype
are likewise easy to de�ne� In �	�
 this representation
of sequences has been used to model �nite and in�nite
behaviors of I�O automata� a speci�cation and veri�ca�
tion methodology for reactive� distributed systems�
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None 	 	 	

None None None 	 	 	

Some�a�� NoneNF�s��

f�

s� Some�a�� Some�a��

Some�a�� Some�a��

Some�a��

FIGURE �� Generating Normal Forms using Index Transformation

Comparison� The second and last solution have in
common that recursive de�nitions construct a com�
pletely new sequence� where the removed elements are
really absent� whereas the total solution just changes
the old sequence a bit by replacing elements by Nones�
Then the main problem is to remove these Nones�
The second and last solution di�er in the handling

of in�nite sequences� The second solution has to rep�
resent in�nite sequences separately� while the HOLCF
approach just extends the recursive construction to in�
�nity� Thus� in this example� the advantage of partiality
is the representation of in�nite computations�
The interested reader is referred to �	�
 where a

deeper comparison of these three approaches to model
sequences in higher order logic is presented�

Related Work� An important approach to modelling
in�nite datatypes is the theory of coalgebras� This the�
ory has recently been mechanized in higher order the�
orem provers� namely in Isabelle�HOL by Paulson �	�

and in PVS by Jacobs and Hensel �	�
� Both implemen�
tations have been applied to sequences� It is known that
the de�nition of �lter in a pure coalgebraic manner is
more complicated than the inductive de�nition� Paul�
son very recently found a mixed inductive�coinductive
de�nition of �lter on sequences that allows the deriva�
tion of some common properties� It remains to see
whether such a de�nition is as easy to use as that of
HOLCF�
Feferman �	�
 has recently also addressed the prob�

lem of de�ning a common type of �nite and in�nite
sequences� signi�cantly� his solution also models se�
quences by partial functions� One di�erence with our
approach is that his solution does not require continu�
ity of functions� and has not� as far as we know� been
mechanized in a proof tool�

���� Moving between HOL and HOLCF

Although we have seen that some modelling questions
have nice solutions in HOLCF� there is also a disad�
vantage in that proofs may become more complicated�
Why� First�  as least element of every domain of�
ten creates an additional proof case� which cannot al�
ways be discharged automatically� However� admissi�
bility proofs cause even more problems� In HOLCF the
main proof principles� structural induction and �xpoint
induction� demand that the predicate to be proven is
admissible� denoted by adm P� Because of their im�
portance we mention induction theorems here explic�

itly� �xpoint induction reduces properties of �xpoints
to properties of function application�

�P� adm P �
P  �
��x� P x �� P �fx��
�� P ��xf�

whereas structural induction �here for the example of
the sequences of the last section�

�P� adm P �
P  �
P nil �
��x xs� x�� � P xs �� P �x�xs�
�� �y� P y

reduces properties of an �in�nite� data element to lo�
cal properties of the constructors of that datatype� As
noted� both rules need admissibility� which means that
P holds for the least upper bound of every chain sat�
isfying P� If P �reduced to conjunctive normal form�
contains no existential quanti�er or negation� admissi�
bility can be proved automatically by reducing it to the
continuity of every operation occurring in P� for which
an automatic tactic exists� Otherwise admissibility has
to be shown interactively by arguing explicitly about
least upper bounds of chains� As experience shows� this
can be very clumsy and often represents the most di��
cult part of the entire proof�
Therefore we propose using HOLCF only when the

general model becomes much simpler� as in the case
of ���sequence� or when modelling programming lan�
guages in Scotts style� Even in the latter case� it pays
to �stay total for as long as possible�

Lifting HOL types� Domain de�nitions� like
���sequence� require that the argument type � be a do�
main type� too� Suppose however� we want to model
sequences of natural numbers� Then it would not be
appropriate according to the argumentation above to
model the natural numbers by a domain� thus dragging
unde�ned elements and partial orders into them� This
is emphasized by the fact that often theorem provers
provide a theory of natural numbers with total opera�
tors like Suc� �� � and �� together with speci�c proof
procedures� which should not be developed twice� In�
stead we propose !lifting" the existing HOL type nat to
a domain a posteriori� Then computations on nat are
done in HOL� and HOLCF is only used for the sequences
of natural numbers�
As example� we could then de�ne an operation
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gt� � ��nat�lift�sequence � ��nat�lift�sequence

that �lters every element greater than � in a sequence
by

gt� � �lter��ift� ��x�x������

Here �lter is a HOLCF operation� � a HOL predicate�
and �ift� one of the lifting constructs we will introduce
in the sequel�
We de�ne a type constructor lift of arity �term�pcpo

which lifts every HOL�datatype to a pcpo type�

datatype ���lift � Undef j Def���

The least element and the approximation ordering are
de�ned very easily�

 � Undef
x v y � �x�y� j x�Undef

This is known as a �at domain� Note that  and v are
overloaded and this de�nition only �xes their meaning
at type ���lift� Futhermore� Undef is completely hidden
from the user who deals with  as least element from
now on�

Lifting HOL functions� If in an operation on
��nat�lift�sequence a total function on nat is involved� it
is also necessary to lift this total function to an partial
operation� For this purpose we introduce two function�
als that transform HOL functions to HOLCF operations
using lift� The type variables ���� and �� are of class
term� whereas � is of class pcpo�

�ift� �� � �� � ����lift � ��
�ift� ��� � ��� � �����lift � ����lift�

The former lifts only the argument type of a HOL func�
tion� the latter both argument and result type� Lifting
essentially means strict extension� Formally�

�ift� f � �x� case x of
Undef � 
j Def�y� � f�y�

�ift� f � �x� case x of
Undef � 
j Def�y� � Def�f�y��

Notice that these two functionals indeed su�ce� Since
the truth values tr are de�ned as �bool�lift� a special lift�
ing for booleans or predicates on booleans is not needed�
Using the above lifting functionals instead of lifting

argument or result types in an ad hoc fashion has the
following advantages�


 First� these concepts are frequently used� and ab�
breviating them increases readability�


 More importantly� these functionals enable auto�
mated proof support for continuity proofs� In
HOLCF ��reduction on domains is subject to the
following continuity restriction�

cont��x�t�x�� �� ��x�t�x��u � t�u�

where cont��x�t�x�� means that t is continuous in x�
These continuity proof obligations are discharged
automatically for all terms of the LCF sublan�
guage ���abstractions and ft�applications�� But
for normal HOL terms ���abstractions and �f t��
applications� these proof obligations have to be
discharged manually� Here the lifting functionals
serve as a !continuity interface" to HOL� By prov�
ing them to be continuous and adding these the�
orems to the automatic proof tactic� we get auto�
matic continuity proofs also for the combination of
HOL and LCF terms� More precisely� the following
three theorems are proved�

cont��x��ift� f x�
cont��x��ift� f x�
�a� cont��y���f y� a�� �� cont��y��ift� �f y� x�

The �rst two theorems hold� since strict functions
from a  at domain are always continuous� The last
one handles the case when continuity of the func�
tion f to lift is claimed not in its argument x� but in
another variable y� It is easily proved� as �ift� be�
haves as a constant in this context� An equivalent
theorem need not be stated for �ift�� as continuity
requires a partial order v on the range� Therefore
these theorems su�ce to establish automatic proof
support for HOL and LCF terms� Note that this
proof support is particularly useful for admissibil�
ity requirements�

�� ANALYSIS AND DISCUSSION

This section addresses the issue of proof support in the
various approaches to partiality� In particular it is ar�
gued for our solution of taking an existing platform sup�
porting total functions instead of a building a new sys�
tem tailored only for partial functions� As well� we dis�
cuss a few remaining technical points�
The major bene�t of our approach is reuse� Higher�

order logic theorem provers� like Isabelle�HOL� often
provide many user�invocable proof procedures� Follow�
ing our approach� one has the immense pragmatic bene�
�t that existing proof procedures need not be modi�ed�
However� if partial functions were allowed in the logic�
some important proof techniques might not work� For
example� totality of uninterpreted function symbols is
assumed in the Nelson�Oppen method for combining
decision procedures ���
�
In applications that truly need partial functions� our

methodology� as explained in section ���� allows fur�
ther instances of reuse� Our experience in proving facts
about sequences has shown that many proof obliga�
tions in the mixed HOL�HOLCF setting can be broken
down into pure HOL propositions� For example� since
the type of truth values tr in HOLCF was de�ned as
�bool� lift� there is no need for �say� a tableaux prover
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for three valued logic� which would be a major under�
taking� see for example ���
�
Another example is conditional rewriting� which is

heavily used in proof� The HOLCF simpli�er �an in�
stantiation of Isabelles generic simpli�er� must solve
frequent �and usually trivial� conditions showing that
function arguments are not equal to bottom� Using the
lift interface to HOL explicitly documents the intuition
that elements are not unde�ned � they are modeled in
HOL and lifted to HOLCF only a posteriori to �t the
context� This can often be used to rule out the x��
conditions statically� i�e� before rewriting commences�
Another important point is that most work to date

on proof support for partiality has focused only on how
to de�ne partial functions and the semantics of partial
function application� This is not enough� proof princi�
ples for the properties of partial functions must also be
accounted for� this explains our emphasis on induction
throughout the paper� To re�capitulate� for those to�
tal functions de�ned by recursion� induction principles
can be straightforwardly derived� However� as we have
shown with our TFL examples� extra steps must be taken
to construct induction principles for partially described
�but total� functions� For partial recursive functions�
�xpoint induction is the main reasoning principle� For
partial functions represented by inductively de�ned re�
lations� rule induction is indispensable� The kind of
partiality to adopt when de�ning a function is an im�
portant matter� and experience is required in order to
make the right choice�
Finally� we remark a more technical point� the ob�

servant reader will have noticed that there have been
several occurrences of lifting in this paper� namely
���option� ���subst and ���lift� From the point of view
of uniformity� it seems that only one lifted type� e�g�
option should be de�ned� On the other hand� such an
approach would mean that the type of the uni�cation
algorithm would be

���uterm � ���uterm � �� � � uterm� list option

rather than

���uterm � ���uterm � �� � � uterm�subst

which we feel is more readable� Using type abbrevia�
tions� which are available in Isabelle�HOL� should solve
the problem� However� the constructors Some and None
will also need to be aliased in some way� Furthermore�
���lift distinguishes itself from the two other liftings as
it is the only one which is interpreted as a  at domain�

�� RELATED WORK

There has been a lot of theoretical work on free log�
ics and logics of partial functions� a small amount of
which has been mechanized� We have neglected this
research in our discussion� however� the following cita�
tions should serve as useful entrypoints to the interested
reader� ��� 	� �	� ��� �� ��
�

Turning to mechanizations of partial functions� the
work most closely related to our work is probably ���

which provides a subtle analysis of partiality and recur�
sive function de�nition as presented in the LAMBDA
system� which is used in commercial hardware veri�ca�
tion� Mechanizations of other logics are provided by the
following tools�


 The IMPS system ���
 implements a simple type
theory of partial functions and it has been used to
formalize some interesting mathematics�


 Dependent types can be well utilized in both
constructive and classical logic� as shown by the
LEGO� Coq� and PVS systems ���� ��� �
�


 Recently� implementations of classical ZF set the�
ory� which treats functions as certain sets of or�
dered pairs� have become available ���� ��� ��� �	�
��
�

It will be interesting to see whether the availability of
partial functions in these implementations will provide
objectively better veri�cation environments than those
based on total functions�

�� CONCLUSION

In this paper we have attempted no new theory� rather
we have surveyed methods for dealing with partiality in
a well�established higher�order logic of total functions�
The methods range from underspeci�cation� lifting� and
default values� to more special�purpose �although quite
powerful� formalization styles� such as inductively de�
�ned relations� to a formalization of domain theory� For
each of these� we have shown� by example� how proof
support� e�g� induction theorems� is provided�
We have also discussed the advantages and disadvan�

tages of lifting and underspeci�cation� Lifting provides
clarity and modularity at the price of clutter� whereas
underspeci�cation allows clean formalizations� but bur�
dens the user with the task of correctly constraining
goals involving underspeci�ed functions�
Our broad spectrum approach allows total functions

to be employed as much as possible� partiality requires
extra work� as it does in any setting� However� when
partiality problems must be addressed� a range of di�er�
ent solutions can be applied� from lightweight to heavy�
weight� Our heavyweight solution� domain theory� is
a restricted model� where continuity of functions be�
comes a requirement� For modelling issues dealing with
programs� this is suitable� Our Section � modelling ex�
ample shows� somewhat surprisingly� that some issues
resolvable with total functions can be more easily solved
in domain theory� Moreover� we presented a smooth in�
tegration of domain theory into the total logic HOL�
so that the theory libraries developed for HOL can be
reused in a hybrid HOL�HOLCF formalization�
Computer Science shows that there are many  avours

of partiality� For example�


 total functions �zero partiality�
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 intended in�nite loops �reactive systems� e�g� our
�nite and in�nite sequences�


 unintended in�nite loops �programmer mistake�

 error states in programs

 total functions of high computational complexity�

Our approach uses standard methods in classical logic
to deal with all of these distinctions except the last�
To summarize� we feel that the convenience of staying
in a framework of total functions is a de�nite advan�
tage� since standard techniques� when well�supported
by tools� often su�ce in treating partiality�
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