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The need to use partial functions arises frequently in formal descriptions of com-
puter systems. However, most proof assistants are based on logics of total func-
tions. One way to address this mismatch is to invent and mechanize a new logic.
Another is to develop practical workarounds in existing settings. In this paper we
take the latter course: we survey and compare methods used to support partiality
in a mechanization of a higher order logic featuring only total functions. The tech-
niques we discuss are generally applicable and are illustrated by relatively large
examples.
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INTRODUCTION

In any setting where there are operations acting on el-
ements, the following fundamental consideration arises:
how should an operation treat an element that lies out-
side of its domain? This is known as partiality. In many
cases, matters can be arranged such that the question
simply does not arise, but in many others partiality
must be addressed. The problem of partiality has re-
ceived a great deal of attention in the fields of logic and
formal methods; in fact, there is a deep mismatch be-
tween modelling problems in formal methods and the
tools used to solve such problems, since the tools are
often based on logics of total functions, while the mod-
elling problems often demand treatment of partiality.
One way to repair this mismatch is to bring partiality
into the logic: as can be seen in e.g. [1, 2], there are
a range of possibilities. Unfortunately, few have been
mechanized, and none have yet proved to be clearly bet-
ter than the others. On the other hand, tools based on
total logics have prospered and are beginning to be used
in realistic industrial applications, see e.g. [3]. Hence,
in this paper, we will argue for staying in a logic of to-
tal functions and using various ‘tricks of the trade’ to
model partiality.

To start, we first provide a sketchy survey of these
tricks before moving on to examine some approaches
in more detail. We will relate various approaches by
describing, in a not completely serious way, what they
mean for a familiar function: a shoe shop. Customers
come in to the shop, ask for shoes, and either go away
with shoes, or go away empty handed (when, e.g., shoes
in the requested size are not available).

Total. A total function corresponds to a shoe shop that
always has ezactly the desired shoes for each cus-
tomer.

Since such perfection can rarely, if ever, be achieved,
a shoe shop should naturally be modelled with a par-
tial function. In the following we first survey some ap-
proaches that use total functions in order to represent
partial functions.

Conditional. The function is applied only if the argu-
ment x meets a predicate P. Thus the usual way
of using a function’s value f(x) is in the conditional
style: P(x) —Q(f(x)).

You phone the store to see if the shoes are in.

Relational. Explicitly use the set-theoretic graph of a
function, i.e. the relation representing the function.
(In many interesting cases, such a relation can be
defined inductively.)

You have to look through the storeroom yourself for
your shoes.

Underspecification. When a function is defined, one
neglects to give values for some arguments. The
function still has values at those arguments, but
only the existence of the values is guaranteed: the
user will be unable to prove much about them.

You get a pair of shoes but can’t be sure they’re
going to fit.

Lifting. A tag is attached to each result of the func-
tion, saying whether the input was in the domain
of the function or not.

You either get your shoes (and know you got them,)
or you don’t get your shoes (and know you didn’t
get them).
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Default value. Each invocation of the function must
provide a dummy value to return at undefined ar-
guments.

When you ask for a pair of shoes, you must hand
the clerk a pair of shoes. You get some shoes back,
but if they didn’t have the requested shoes, you get
the shoes you handed in.

Dependent types. In this, the conditional approach
has (roughly) been integrated into the type system
of the logic [4, 5, 6]. Types can capture the domain
of functions precisely, so that partial functions can
often be modelled as total functions on a dependent

type.

A heavyset Swede at the door of the shop allows
entry only if you promise to ask for shoes they have
in stock.

Instead of using these workarounds it is also possible
to provide a tailored logic which explicitly supports par-
tial functions. We can distinguish between two different
approaches here.

Logical solutions. These lift concerns about partial-
ity up to the level of the logical rules. Examples
are LPT [7] or PF [8].

You ask for a pair of shoes and you get something
from the clerk. It might not be shoes.

Domain theory. Functions over complete partial or-
ders (so-called domains) are used to represent the
computable subset of partial functions. This ap-
proach is due to Scott and is called LCF (Logic of
Computable Functions) [9].

You ask for a pair of shoes and the clerk goes to
search for them. If this search terminates, you get
your shoes. Otherwise, you do not know if either
the search ends in an infinite loop or the requested
shoes are not in stock.

In this paper, we will not discuss a new approach
in order to extend the list above; instead, we will sur-
vey and compare the techniques available in an existing
logic: the higher-order logic instantiation of the generic
theorem prover Isabelle [10]. Isabelle/HOL mechanizes
a logic similar to Church’s formulation of Higher Order
Logic and is conceptually close to Gordon’s HOL sys-
tem [11]. (In the sequel HOL is short for Isabelle/HOL.)
In HOL, all terms are typed and a function of type
a — [ can only be applied to a term of type a. All
functions are total: an function of type a — 3 is de-
fined for every element of type . Since HOL is a logic of
total functions, most of the known workarounds for par-
tiality apply. We will examine some of these; however,
there is another arrow in our quiver: Isabelle/HOL has
a semantic embedding of Scott’s LCF, called HOLCF,
due to Regensburger [12, 13]. When partiality problems
become particularly difficult, one can move smoothly

to the extension and use the machinery that HOLCF
makes available. Arguing about formalizations that
contain both the total functions of HOL and the par-
tial functions of HOLCF often requires extra work, e.g.
proofs of continuity; we will explain a methodology de-
veloped for supporting this mixture of different types of
function.

The approaches are illustrated by examples, some
quite substantial, like an unification algorithm, oper-
ational semantics of an imperative language and mod-
elling of finite and infinite sequences. Different exam-
ples are used for different approaches to partiality in
order to clarify in what applications which approach is
of most use.

1.1. Overview

The structure of the paper is given by several packages
that are incorporated into Isabelle/HOL. Each pack-
age is used to illustrate one (or more) techniques used
to treat partiality. We first examine how TFL, a pack-
age for the definition of total recursive functions can
be adjusted to handle underspecification without loss
of reasoning power (Section 2). In the same section
we examine a larger example, a unification algorithm,
where another standard method, lifting, is used to ad-
vantage. Then we move on to illustrate how inductive
definitions can be used in place of partial functions, by
examining a recent formalization of programming lan-
guage semantics by Nipkow (Section 3). In Section 4 we
discuss HOLCF and examine its use in solving a trou-
blesome modelling question. Although this modelling
problem has a solution using purely total functions, the
HOLCF solution is much simpler. We discuss a few of
the advantages and disadvantages of using HOLCF and
discuss our approach to formalizations featuring a mix
of total and partial functions.

1.2. Notation and Basic Definitions

The HOL logic offers the standard connectives and
quantifiers. The following provides a short introduc-
tion to HOL’s surface syntax:

Formulae The syntax is standard, except that there
are two implications (— and =) and two equal-
ities (= and =) which stem from object and meta-
logic, respectively. The distinction can be ignored
while reading this paper. In parsing logical ex-
pressions, earlier members of the following list of
infixes (denoting, in order, conjunction, disjunc-
tion, implication, and equality) have stronger bind-
ing power than later members: =, &,V, —,=.
All infixes associate to the right. Suc denotes the
successor function on the natural numbers. The
Hilbert Choice operator ex.P(x) is used to imple-
ment underspecification: its behaviour is charac-
terized by the following version of the Axiom of
Choice:
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VP x. P(x) — P(ex.P(x))

Types follow the syntax for ML types, except that the
Isabelle function arrow is written as =-.

Theories introduce constants with the keyword
consts and non-recursive definitions with defs.
Further constructs are explained as we encounter
them.

2. GENERAL RECURSION

TFL [14] is a package for defining total recursive func-
tions described via ML-style pattern matching and for
reasoning about them via recursion induction. The sys-
tem is portable and has been instantiated to Gordon’s
HOL [11] and also to Isabelle-HOL. The interface to
the system is that the user supplies recursion equations
along with a termination relation and TFL will then de-
fine the function corresponding to the recursion equa-
tions and automatically derive a principle of recursion
induction. For example, the following description de-
fines the greatest common denominator algorithm (we
will ignore termination relations throughout this pa-

per):

function (termination relation)
ged(0yy) =y
ged(Suc x, 0) = Suc x
gcd(Suc x, Sucy) =
if (y<x) then gcd(x-y,Suc y)
else ged(Suc x, y-x)

A proof of the pattern completeness theorem for this
function

Vx. (Ay. x = (0,y)) v
(Jy. x = (Sucy, 0)) vV
Jdy z. x = (Sucy, Suc z)

is also carried out in this process. (The pattern com-
pleteness theorem shows that the patterns used in the
definition of gcd are exhaustive and non-overlapping.)
As a consequence the following induction theorem is au-
tomatically derived for gcd:

VP. (Vy. P (0.y)) A
(Vx. P (Suc x,0)) A
(¥ y. (—(y<x) — P (Suc x,yx)) A
(y<x — P (x-y,Suc y))
— P (Suc x,Suc y))
— Vv w. P (v,w).

Although the intent of TFL is to provide a nice envi-
ronment for reasoning about total functions, partiality
has been a recurrent subject in its development:

e partial functions are used in the statement and
proof of the recursion theorem that TFL is based
on;

e TFL has recently been extended to accept partial
descriptions of functions; and

e interesting examples of partial functions defined
through lifting have been defined and reasoned
about.

We will discuss these in turn.

2.1. Wellfounded recursion

TFL bases itself on the notion of wellfoundedness (de-
noted WF). A general induction theorem applies to re-
lations enjoying this property. Also, the following re-
cursion theorem can be proven (see [14] for details):?

(f = WFREC R M) — WF(R)
— ¥x. f(x) = M (fIlR,x) x.

The proof of this theorem, as usual in proofs of recursion
theorems, constructs a function by taking the union of a
set of partial functions—making this work out properly
in a logic of total functions takes a little bit of care. Also
in the statement of the recursion theorem we find a use
of underspecification to describe function restriction, a
ternary operator that restricts a function to a certain
set of values:

(fIR)y) = Ax.if R x y then f x else ez.True.

In this definition, the expression z. True uses the Hilbert
choice operator to denote an arbitrary element of the
range of f. Thus, we are using partiality (underspeci-
fication) to define a total function (more precisely, one
in which no underspecification occurs): when TFL pro-
cesses a definition, it traverses the recursion equations
looking for recursive calls. If it can be established that
the argument to each recursive call becomes smaller in
a wellfounded relation, then the function is total. But
what does this mean when all functions are already to-
tal? Merely, as already mentioned, that no underspecifi-
cation occurs. This means that the recursion equations,
as initially given by the user, can be validly used.

2.2. Underspecification and induction

Now we discuss how TFL deals with function descrip-
tions which are missing some patterns. Suppose we give
the following ML-style description to the system:

function (termination relation)
(nth(0,h::t) = h) A
(nth(Suc n h::t) = nth(n,t))

This definition is a partial description of a function:
it neglects to say what values nth has when the list
argument is empty. However, we would still like to be
able to derive an induction theorem for this function,
and to do that we need full coverage of the domain,

2WFREC is a recursion operator; M (roughly) represents the
body of the function, from which recursive occurrences have been
A-abstracted.
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i.e., we must prove the pattern completeness theorem.
In TFL, this is handled by underspecifying nth and also
automatically generating the full set of patterns so that
the induction theorem can still be derived. We get the
following rules (an echo of the input, with the difference
that the input is a term and the output a theorem):

(nth(0,hz:t) = h) A
(nth(Suc n,h::t) = nth(n,t))

Notice that only the rules given by the user are re-
turned. The values of the function for the unspecified
clauses are derivable (and are equal to €z.True), but are
not easily accessible: the user would have to burrow un-
der the level of abstraction provided by TFL and that
would be painful. What is more noteworthy is that TFL
is able to return the following customized induction the-
orem, which contains the full cases:

vP. P(0,[]) A
(Vn. P(Suc n,[])) A
(Vvh t. P(0, h:t)) A
(Vn ht. P(n,t) — P (Suc n, h:t))
— Vv w. P(v,w).

This is only possible because TFL contains an adaptation
of a standard pattern matching algorithm [15], which
generates the complete set of patterns for the type the
function is being defined over, as well as returning a
nested case expression (its usual functionality). With
this induction theorem, proofs of inductive properties
of nth are easy, for example the following theorem:

Vn |. n<length | — mem (nth(n,1)) |

where mem denotes membership of an element in a list.
Notice the condition in this theorem: it restricts the
domain of nth so that the only base cases considered in
the induction are those in the initally given recursion
equations. To summarize, underspecification for recur-
sively defined functions requires extra steps to be taken
so that handy induction theorems can still be automat-
ically derived. Even then, properties of underspecified
functions must be restricted so that underspecified por-
tions of the domain of the function are ruled out. We
will return to this point at the end of the next section.

Default Values and Lifting

Now we show how the lifting approach is used in a rel-
atively large example: a unification algorithm [16, 17].
This illustrates a computer science model of partiality:
failure. When two terms are not unifiable, the algo-
rithm is required to fail. Thus, when unification is used
in another function (e.g., a type inference algorithm),
failure (partiality) of type inference arises directly from
failure (partiality) in unification. To begin the formal-
ization we define a simple type of terms.

datatype (a)uterm = Var(a)
| Const(a)
| Comb(a uterm)(a uterm)

The type of substitutions is represented by lists of pairs
(v,t) where v has type a and t has type (« uterm). Thus
the unification algorithm will have the (naive) type

(a)uterm * (a)uterm = (a * a uterm)list

Now we define the substitution function (infix <]) by
primitive recursion. It is implemented in terms of the
well-known assoc function, the partiality of which is per-
fectly accomodated by a default value: when assoc is
called by the substitution operation <] and cannot find
a replacement, the default value d is used instead.

assocvd [ =d
assoc v d ((a,b)#tal) = if v=a then b
else assoc v d al
(Varv <|'s) =assocv (Varv) s
(Const ¢ < s) = Const c
(Comb M N <] s) = Comb (M < s) (N < s)

Composition of substitutions (infix <>) and the occurs
check (infix < ) are also defined by primitive recur-
sion, but we omit their definitions. Now we come to
unification. First, we define a type of answers: either
the algorithm fails or it returns a substitution.

datatype («a)subst = Fail | Subst (« list)
Thus the algorithm has the following lifted type:
(a)uterm * (a)uterm = (a * « uterm)subst

and is given to TFL in the form shown in Fig. 1.

The proof of termination of Unify is a difficult exercise
in its own right, and we omit it. After the termination
proof, one can prove the following correctness statement
by induction (we also omit the definition of what an
MGUnifier is).

V6. Unify (P,Q) = Subst § — MGUnifier 6 P Q.

An important point that this example brings out is
that the success or failure of the algorithm is explicit
in the returned value. In contrast to a function defined
by underspecification, one can use Unify without know-
ing what inputs it is defined on. There may be a use-
ful methodological point here, so we repeat it: knowl-
edge of the domain of the function (required to prove
properties about underspecified functions) is replaced
by knowledge of the result of calling the function (lift-
ing). As invocations of a function are found further and
further from its definition, one would like to be able to
forget about its domain. Thus the lifting approach may
scale up better. However, we also note that use of the
properties of Unify can be a bit clumsy to deal with
because of the ‘pipefitting’ that must be done to handle
success and failure. This is an instance of employing a
monad [18].

3. INDUCTIVE DEFINITIONS

The graph of an n-ary function, total or partial, is eas-
ily represented as an (n + 1)-ary relation. Hence par-
tial functions can be specified and reasoned about in
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function (termination relation)

(Unify(Const m, Const n) = if (m=n) then Subst][] else Fail) A

Unify(Const m, Comb M N) = Fail) A
Unify(Const m, Var v)

= Subst[(v,Const m)]) A

(
(
Unify(Var v, M) = if (Var v < M) then Fail else Subst[(v,M)]) A
(
(

Unify(Comb M N, Var v) = if (Var v < Comb M N) then Fail else Subst[(v,Comb M N)]) A

(
E
(Unify(Comb M N, Const x) = Fail) A
(
(

Unify(Comb M1 N1, Comb M2 N2) =
(case Unify(M1,M2)
of Fail = Fail

| Subst(#) = (case Unify(N1 <] 6, N2 <] 6)

of Fail = Fail

| Subst ¢ = Subst (6 <> ¢)))).

FIGURE 1. A unification algorithm as input to TFL

terms of their graphs. Reasoning about such relations
is natural and powerful if one uses inductive definitions
and the induction proof principle. In HOL the keyword
inductive together with a set of rules defines the least
relation closed under the rules. HOL automatically de-
rives the corresponding induction principles, called rule
induction in [9].

We will demonstrate this approach by the inductive
definition of the operational semantics of the simple
imperative programming language IMP with WHILE-
loops, taken from Nipkow [19]. Clearly, a total function
can never capture the semantics of infinitely looping
programs in this language.

3.1. Syntax of IMP

Datatypes in HOL resemble those in functional pro-
gramming languages and allow a direct representation
of the abstract syntax of the commands of IMP:

datatype com = SKIP
| ":=" loc aexp (infixI)
| " com com (infixI)
| Cond bexp com com ("IF _ THEN _ ELSE _")
| While bexp com ("WHILE _ DO _")

The annotations in brackets define the concrete syntax.?
For simplicity we identify the syntax of arithmetic ex-
pressions (aexp) and boolean expressions (bexp) with
their semantics. The central semantic concept is that
of a state, i.e. a mapping from locations to values. We
formalize both locations loc and values val as unspeci-
fied types and define state, aexp and bexp as function
spaces:

types state = loc = val
aexp = state = val
bexp = state = bool

3We have omitted the priority of binding

3.2. Operational Semantics of IMP

We consider a natural semantics for IMP, expressing
the evaluation of commands as a relation between a
command, an initial state, and a final state. In HOL
we declare a constant evalc as a set of such triples

consts evalc :: (com * state * state)set
n and add some syntactic sugar for better readability:
translations <cs> —t = (cs.t)€evalc

This means we read and write <c,s> — t instead of
(c,s,t)€evalc. The relation evalc is defined inductively
by a set of inference rules, which are represented by
implications in HOL. Fig. 2 displays the definition. The
assignment command is defined in terms of an auxiliary
function on states:

consts assign :: state = val = loc = state ("_[-/_]")
defs s[m/x] = (MAy.if y=xthen melse sy)

where the suffix ("_[-/-]") in the definition introduces
a specific infix syntax for the command.

Reasoning about inductive definitions. In [19] a
number of other semantics of IMP are defined in HOL,
an operational transition semantics and a denotational
fixpoint semantics, for example. All these semantics are
shown to be equivalent. The proofs make heavy use of
rule induction and convincingly show the power of this
proof principle. For further details we refer to [19].

3.3. Discussion

Tackling partiality by inductive definitions is particu-
larly interesting, because many notions of mathematics
are defined inductively, so that inductive definitions and
proofs are natural and familiar principles for the reader
of general mathematics textbooks. Of course, one has
to distinguish between the inductive definition princi-
ple as such, which is often used to define arbitrary sets
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inductive evalc
<SKIP,s> — s
<x = a,s> — s[a(s)/x]
<cl,s0> — sl A

<c2,51> — 2 — <cl;c2,s0> — s2

bsA <cls> —t = <IFbTHEN cl ELSEc2,s> — t
-bsA <c2s> —t = <IFbTHEN cl ELSEc2,s> — t

-bs = <WHILEbDOc, s> —s

bsA <cs>—sl A

<WHILEb DO ¢, s1> — s2 = <WHILEb DO ¢, s> — s2

FIGURE 2. Operational semantics: evalc as inductive definition in HOL

in mathematics, and its applications to the definition of
partial functions. In the latter case it has to be guar-
anteed that the relation is indeed a (partial) function,
i.e. that there is at most one y in relation to every x.
For the former case, there are many examples in math-
ematics, e.g. the Borel hierarchy of subsets of the real
numbers, can be described inductively.

4. PARTIAL FUNCTIONS IN HOLCF

The collections of techniques we have seen so far avoid
partiality or code around it somehow; but sometimes it
is necessary to have real partial functions. The HOL
extension HOLCF formalizes domain theory [20], our
theory for partial functions. HOLCF can, of course,
be used to model semantics of sequential programming
languages — the original motivation for developing do-
main theory. It has also been used to formalize FO-
CUS [21], a specification and verification methodology
for distributed, reactive systems. In FOCUS the sys-
tem requirements are described in HOL, and refinement
steps end up with a system described in HOLCF as a
set of computable partial functions.

In 4.1 we provide a brief introduction to HOLCF. In
4.2. we discuss the following interesting point: Some-
times, it is easier to model mathematical objects by use
of partiality, even when there is a solution in the total
setting. We illustrate this phenomenon with an abstract
datatype of finite and infinite sequences.

On the other hand, partiality often complicates
proofs; therefore, we prefer to stay in HOL as long
as possible and switch only to HOLCF when really re-
quired. We explain how we deal with mixtures of partial
and total objects in Subsection 4.3.

4.1. Introduction to HOLCF

HOLCEF [12, 13] extends HOL conservatively with con-
cepts of domain theory such as complete partial orders,
continuous partial functions and a fixed point operator.
As a result, the original LCF logic [22] constitutes a

proper sublanguage of HOLCF. HOLCF uses Isabelle’s
type classes to distinguish HOL and LCF types. More
precisely, a type class pcpo which is equipped with a
complete partial order C and a least element L is intro-
duced. pcpo becomes the default type class of HOLCF
and is a subclass of term, the default type class of HOL.

There is a special type for partial, continuous func-
tions between pcpos. Elements of this type are called
operations, the type constructor is denoted by —, in
contrast to the standard HOL function type construc-
tor =. Special syntax is introduced for abstractions
(A instead of A\) and applications (f't instead of (f t)).
For continuous functions the fixpoint operator fix ex-
ists. HOLCF comes with several standard domains.
The truth values tr, which are HOLCF’s counterpart
to HOL’s bool, are modeled by a flat domain with the
elements TT, FF and L. Operations on them include
andalso, orelse and neg, which are strict extensions of
the standard predicates A .V and — on bool. The coun-
terpart of the conditional expression if A then B else C
is written If A then B else C fi.

4.2. A Modelling Example

Sometimes it is simpler to use partial functions, even if
there is a solution using total functions. As an example
we describe the problem of modelling finite and infinite
sequences. The following requirements are posed on the
abstract datatype sequence:

Sequences are finite or infinite.
A predicate is_finite selects the finite ones.
List operations like hd, tl, map, filter, concat, length,
last must be provided.
¢ An indexing function nth should be available.

Such sequences are often used to model communication
histories (traces) of distributed systems. For abstrac-
tion and modularity purposes, internal messages are al-
lowed in histories. Therefore, a filter operation is needed
to remove internal messages from histories. In the fol-
lowing we will focus on how filter for sequences is defined
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in total and partial settings. The main problem is how
elements removed by filter are treated: they do not re-
ally disappear if they are replaced by explicit “gaps”,
which will be the cause of difficulties in the total set-
ting.

Sequences as total functions. In HOL, infinite se-
quences can be described by functions of type nat=-a.
However, if we want to incorporate finite sequences into
the model, we have to define values for the infinite
tail of a finite sequence. This can be done by using
nat=-(a)option?, where None is used to denote a nonex-
isting element. To avoid the case in which None appears
within a sequence — otherwise the representation would
not, be unique — the predicate

is_sequence s = Vi.s(i)=None — s(Suc(i))=None

is introduced, which has to hold of every sequence. At
first glance it seems to be easy to define filter in this
context: Just replace Some(a) by None if P(a) does not
hold:

filter P s = Ai.
case s(i) of
None = None
| Some(a) = if P(a) then Some(a)
else None

But the problem with this coding of partiality is that
such a filter generates Nones all over the sequence; there-
fore, to satisfy the predicate is_sequence, filter has to
compute a normal form NF, where Nones are not al-
lowed within a sequence. However, to remove Nones
in this setting is very awkward, because shifting means
“redefinition” of all succeeding values. NF can be de-
fined by claiming a monotone function f between se-
quences that serves as an index transformation (see
Fig. 3):

NF(s) = enf. 3f. mono(f) A (Vi. nf(i)=s(f(i))) A
(Vj. j ¢ range(f) — s(j)= None) A
is_sequence nf

Hilbert’s choice operator ex.P(x) and the index transfor-
mation make proofs about NF hard and clumsy. Other
operations, like infinite concatenation, are also very
complicated to realize with this representation. The
reader may think that there is an easier means of di-
rectly defining sequences in a total setting, for example
by an inductive definition, but we have not been able
to find such, despite considerable effort.

Sequences as disjoint sum of finite and infinite
sequences. Another modelling possibility is to use a
disjoint sum of finite and infinite sequences:

(a)seq = FinSeq((a)list) | InfSeq(nat=-(«))

4We use the standard option datatype which is defined as
(a)option= Some(c) | None

Here (a)list stands for the inductively defined finite lists
of HOL. Note that filter can produce both finite and in-
finite sequences from an infinite sequence. Therefore
filter in this setting is defined using limits of projections
of finite sequences, which are in turn defined using re-
cursion on lists. Thus, the notion of a limit of an ascend-
ing chain of sequences (acording to the prefix ordering)
has to be formalized. This approach has been taken
by Chou and Peled [23] to model sequences as a pre-
requisite for the formal verification of a partial-order
reduction technique in the HOL theorem prover [11].
However, this seems to be an ad hoc modelling of do-
main concepts tailored for a specific datatype, which is
more generally supported in HOLCF, as we will see in
the sequel.

Sequences as domains. In HOLCF finite and infinite
sequences are defined by the simple recursive domain
equation

domain (a)sequence = nil | (a)#(lazy («)sequence)

where nil and the “cons”-operator # are the construc-
tors of the datatype. # is strict in its first argu-
ment and lazy in the second. The datatype pack-
age of HOLCF [24] automatically proves a number of
user-relevant theorems concerning the constructors, dis-
criminators, and selectors of the datatype, as well as
induction and co-induction principles. For example,
hd(nil)=L and tl(L)=L1 are generated automatically.
See the next section for a short account of the induction
principles.

The definition above means that elements of type
sequence come in 3 flavours:

e Finite total sequences: aj#...#a,#nil.
e Finite partial sequences: a1 #...#a,# L.
e Infinite sequences: ay#...#ap#- - ..

All the operations known from functional program-
ming with lazy lists, e.g. map, filter and the concatena-
tion operator , are easily defined over (a)sequence. For
example, filter has type

(a — tr) — (a)sequence — (a)sequence

and is defined as a fixpoint. The following rewrite rules
can immediately be deduced from the definition:

filter'P' L=1

filter'P*nil=nil

x#L = filter'P*(x#xs)= If P'x
then x#(filter'P'xs)
else filter'P'xs fi

To us, this seems to be the simplest implementation of
filter. The other operations of the abstract datatype
are likewise easy to define. In [25] this representation
of sequences has been used to model finite and infinite
behaviors of I/O automata, a specification and verifica-
tion methodology for reactive, distributed systems.
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8: Some(ay) None Some(asz) None  Some(as) None
NF(s): Some(a;) Some(as) Some(as) None None

FIGURE 3. Generating Normal Forms using Index Transformation

Comparison. The second and last solution have in
common that recursive definitions construct a com-
pletely new sequence, where the removed elements are
really absent, whereas the total solution just changes
the old sequence a bit by replacing elements by Nones.
Then the main problem is to remove these Nones.

The second and last solution differ in the handling
of infinite sequences. The second solution has to rep-
resent infinite sequences separately, while the HOLCF
approach just extends the recursive construction to in-
finity. Thus, in this example, the advantage of partiality
is the representation of infinite computations.

The interested reader is referred to [26] where a
deeper comparison of these three approaches to model
sequences in higher order logic is presented.

Related Work. An important approach to modelling
infinite datatypes is the theory of coalgebras. This the-
ory has recently been mechanized in higher order the-
orem provers, namely in Isabelle/HOL by Paulson [27]
and in PVS by Jacobs and Hensel [28]. Both implemen-
tations have been applied to sequences. It is known that
the definition of filter in a pure coalgebraic manner is
more complicated than the inductive definition. Paul-
son very recently found a mixed inductive-coinductive
definition of filter on sequences that allows the deriva-
tion of some common properties. It remains to see
whether such a definition is as easy to use as that of
HOLCF.

Feferman [29] has recently also addressed the prob-
lem of defining a common type of finite and infinite
sequences; significantly, his solution also models se-
quences by partial functions. One difference with our
approach is that his solution does not require continu-
ity of functions, and has not, as far as we know, been
mechanized in a proof tool.

4.3. Moving between HOL and HOLCF

Although we have seen that some modelling questions
have nice solutions in HOLCF, there is also a disad-
vantage in that proofs may become more complicated.
Why? First, L as least element of every domain of-
ten creates an additional proof case, which cannot al-
ways be discharged automatically. However, admissi-
bility proofs cause even more problems. In HOLCF the
main proof principles, structural induction and fixpoint
induction, demand that the predicate to be proven is
admissible, denoted by adm P. Because of their im-
portance we mention induction theorems here explic-

itly: fixpoint induction reduces properties of fixpoints
to properties of function application:

VP. adm P A
PLA
(Vx. P x — P (f'x))
P (fix'f)

whereas structural induction (here for the example of
the sequences of the last section)

VP. adm P A
PLA
P nil A
(Vx xs. x£L A P xs — P (x#xs)
— Vy. Py

reduces properties of an (infinite) data element to lo-
cal properties of the constructors of that datatype. As
noted, both rules need admissibility, which means that
P holds for the least upper bound of every chain sat-
isfying P. If P (reduced to conjunctive normal form)
contains no existential quantifier or negation, admissi-
bility can be proved automatically by reducing it to the
continuity of every operation occurring in P, for which
an automatic tactic exists. Otherwise admissibility has
to be shown interactively by arguing explicitly about
least upper bounds of chains. As experience shows, this
can be very clumsy and often represents the most diffi-
cult part of the entire proof.

Therefore we propose using HOLCF only when the
general model becomes much simpler, as in the case
of (a)sequence, or when modelling programming lan-
guages in Scott’s style. Even in the latter case, it pays
to ‘stay total’ for as long as possible.

Lifting HOL types. Domain definitions, like
(a)sequence, require that the argument type a be a do-
main type, too. Suppose however, we want to model
sequences of natural numbers. Then it would not be
appropriate according to the argumentation above to
model the natural numbers by a domain, thus dragging
undefined elements and partial orders into them. This
is emphasized by the fact that often theorem provers
provide a theory of natural numbers with total opera-
tors like Suc, +, * and >, together with specific proof
procedures, which should not be developed twice. In-
stead we propose “lifting” the existing HOL type nat to
a domain a posteriori. Then computations on nat are
done in HOL, and HOLCF is only used for the sequences
of natural numbers.
As example, we could then define an operation
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gt9 : ((nat)lift)sequence — ((nat)lift)sequence

that filters every element greater than 9 in a sequence
by

gt = filter'(flift2 (Ax.x>10)).

Here filter is a HOLCF operation, > a HOL predicate,
and flift2 one of the lifting constructs we will introduce
in the sequel.

We define a type constructor lift of arity (term)pcpo
which lifts every HOL-datatype to a pcpo type:

datatype (a)lift = Undef | Def(«)

The least element and the approximation ordering are
defined very easily:

1 = Undef
x Ey = (x=y) | x=Undef

This is known as a flat domain. Note that L and C are
overloaded and this definition only fixes their meaning
at type ()lift. Futhermore, Undef is completely hidden
from the user who deals with L as least element from
now on.

Lifting HOL functions. If in an operation on
((nat)lift)sequence a total function on nat is involved, it
is also necessary to lift this total function to an partial
operation. For this purpose we introduce two function-
als that transform HOL functions to HOLCF operations
using lift. The type variables a,a; and as are of class
term, whereas 3 is of class pcpo.

fliftl (a = B) = ((o)lift = F)
flift2 (a1 = a2) = ((a1)lift = (ao)lift)

The former lifts only the argument type of a HOL func-
tion, the latter both argument and result type. Lifting
essentially means strict extension. Formally:

fliftl f = Ax. case x of
Undef = L
| Def(y) = f(y)
flift2 f = Ax. case x of
Undef = L
| Def(y) = Def(f(y))

Notice that these two functionals indeed suffice: Since
the truth values tr are defined as (bool)lift, a special lift-
ing for booleans or predicates on booleans is not needed.

Using the above lifting functionals instead of lifting
argument or result types in an ad hoc fashion has the
following advantages:

e First, these concepts are frequently used, and ab-
breviating them increases readability.

e More importantly, these functionals enable auto-
mated proof support for continuity proofs. In
HOLCEF fS-reduction on domains is subject to the
following continuity restriction:

cont(Ax.t(x)) — (Ax.t(x))'u = t(u)

where cont(Ax.t(x)) means that t is continuous in x.
These continuity proof obligations are discharged
automatically for all terms of the LCF sublan-
guage (A-abstractions and f‘t-applications). But
for normal HOL terms (A-abstractions and (f t)-
applications) these proof obligations have to be
discharged manually. Here the lifting functionals
serve as a “continuity interface” to HOL. By prov-
ing them to be continuous and adding these the-
orems to the automatic proof tactic, we get auto-
matic continuity proofs also for the combination of
HOL and LCF terms. More precisely, the following
three theorems are proved:

cont(Ax.fliftl f x)
cont(Ax.flift2 f x)
Va. cont(Ay.((f y) a)) = cont(Ayfliftl (f y) x)

The first two theorems hold, since strict functions
from a flat domain are always continuous. The last
one handles the case when continuity of the func-
tion f to lift is claimed not in its argument x, but in
another variable y. It is easily proved, as fliftl be-
haves as a constant in this context. An equivalent
theorem need not be stated for flift2, as continuity
requires a partial order C on the range. Therefore
these theorems suffice to establish automatic proof
support for HOL and LCF terms. Note that this
proof support is particularly useful for admissibil-
ity requirements.

5. ANALYSIS AND DISCUSSION

This section addresses the issue of proof support in the
various approaches to partiality. In particular it is ar-
gued for our solution of taking an existing platform sup-
porting total functions instead of a building a new sys-
tem tailored only for partial functions. As well, we dis-
cuss a few remaining technical points.

The major benefit of our approach is reuse. Higher-
order logic theorem provers, like Isabelle-HOL, often
provide many user-invocable proof procedures. Follow-
ing our approach, one has the immense pragmatic bene-
fit that existing proof procedures need not be modified.
However, if partial functions were allowed in the logic,
some important proof techniques might not work. For
example, totality of uninterpreted function symbols is
assumed in the Nelson-Oppen method for combining
decision procedures [30].

In applications that truly need partial functions, our
methodology, as explained in section 4.3, allows fur-
ther instances of reuse. Our experience in proving facts
about sequences has shown that many proof obliga-
tions in the mixed HOL/HOLCF setting can be broken
down into pure HOL propositions. For example, since
the type of truth values tr in HOLCF was defined as
(bool) lift, there is no need for (say) a tableaux prover
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for three valued logic, which would be a major under-
taking, see for example [31].

Another example is conditional rewriting, which is
heavily used in proof. The HOLCF simplifier (an in-
stantiation of Isabelle’s generic simplifier) must solve
frequent (and usually trivial) conditions showing that
function arguments are not equal to bottom. Using the
lift interface to HOL explicitly documents the intuition
that elements are not undefined — they are modeled in
HOL and lifted to HOLCF only a posteriori to fit the
context. This can often be used to rule out the x# 1
conditions statically, i.e. before rewriting commences.

Another important point is that most work to date
on proof support for partiality has focused only on how
to define partial functions and the semantics of partial
function application. This is not enough: proof princi-
ples for the properties of partial functions must also be
accounted for; this explains our emphasis on induction
throughout the paper. To re-capitulate, for those to-
tal functions defined by recursion, induction principles
can be straightforwardly derived. However, as we have
shown with our TFL examples, extra steps must be taken
to construct induction principles for partially described
(but total) functions. For partial recursive functions,
fixpoint induction is the main reasoning principle. For
partial functions represented by inductively defined re-
lations, rule induction is indispensable. The kind of
partiality to adopt when defining a function is an im-
portant matter, and experience is required in order to
make the right choice.

Finally, we remark a more technical point: the ob-
servant reader will have noticed that there have been
several occurrences of lifting in this paper, namely
(a)option, (a)subst and («)lift. From the point of view
of uniformity, it seems that only one lifted type, e.g.
option should be defined. On the other hand, such an
approach would mean that the type of the unification
algorithm would be

(a)uterm * (a)uterm = (a * o uterm) list option
rather than
(a)uterm * (a)uterm = (a * a uterm)subst

which we feel is more readable. Using type abbrevia-
tions, which are available in Isabelle/HOL, should solve
the problem. However, the constructors Some and None
will also need to be aliased in some way. Furthermore,
(a)lift distinguishes itself from the two other liftings as
it is the only one which is interpreted as a flat domain.

6. RELATED WORK

There has been a lot of theoretical work on free log-
ics and logics of partial functions, a small amount of
which has been mechanized. We have neglected this
research in our discussion; however, the following cita-
tions should serve as useful entrypoints to the interested
reader: [1, 2, 32, 33, 8, 34].

Turning to mechanizations of partial functions, the
work most closely related to our work is probably [35]
which provides a subtle analysis of partiality and recur-
sive function definition as presented in the LAMBDA
system, which is used in commercial hardware verifica-
tion. Mechanizations of other logics are provided by the
following tools:

e The IMPS system [36] implements a simple type
theory of partial functions and it has been used to
formalize some interesting mathematics.

e Dependent types can be well utilized in both
constructive and classical logic, as shown by the
LEGO, Coq, and PVS systems [37, 38, 6].

e Recently, implementations of classical ZF set the-
ory, which treats functions as certain sets of or-
dered pairs, have become available [39, 40, 41, 42,
43].

It will be interesting to see whether the availability of
partial functions in these implementations will provide
objectively better verification environments than those
based on total functions.

7. CONCLUSION

In this paper we have attempted no new theory, rather
we have surveyed methods for dealing with partiality in
a well-established higher-order logic of total functions.
The methods range from underspecification, lifting, and
default values, to more special-purpose (although quite
powerful) formalization styles, such as inductively de-
fined relations, to a formalization of domain theory. For
each of these, we have shown, by example, how proof
support, e.g. induction theorems, is provided.

We have also discussed the advantages and disadvan-
tages of lifting and underspecification. Lifting provides
clarity and modularity at the price of clutter, whereas
underspecification allows clean formalizations, but bur-
dens the user with the task of correctly constraining
goals involving underspecified functions.

Our broad spectrum approach allows total functions
to be employed as much as possible; partiality requires
extra work, as it does in any setting. However, when
partiality problems must be addressed, a range of differ-
ent solutions can be applied, from lightweight to heavy-
weight. Our heavyweight solution, domain theory, is
a restricted model, where continuity of functions be-
comes a requirement. For modelling issues dealing with
programs, this is suitable. Our Section 4 modelling ex-
ample shows, somewhat surprisingly, that some issues
resolvable with total functions can be more easily solved
in domain theory. Moreover, we presented a smooth in-
tegration of domain theory into the total logic HOL,
so that the theory libraries developed for HOL can be
reused in a hybrid HOL/HOLCF formalization.

Computer Science shows that there are many flavours
of partiality. For example:

e total functions (zero partiality)
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e intended infinite loops (reactive systems, e.g. our
finite and infinite sequences)
unintended infinite loops (programmer mistake)
error states in programs
total functions of high computational complexity.

Our approach uses standard methods in classical logic
to deal with all of these distinctions except the last.
To summarize, we feel that the convenience of staying
in a framework of total functions is a definite advan-
tage, since standard techniques, when well-supported
by tools, often suffice in treating partiality.
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