Automated Software Engineering
Special Issue on
Precise Semantics for Software Modeling
Techniques

(PSMT98 — an ICSE’98 Workshop)

Tom S. E. Maibaum Bernhard Rumpe
Imperial College TU Miinchen
London SW7 2BZ, UK 80333 Miinchen, Germany
+44-171-594-8274 ++49-89-289-28129
tsem@doc.ic.ac.uk rumpe@in.tum.de

November 9, 1999

1 Introduction

Over the last few years, there has been a growing recognition that the worlds
of Formal Methods and the CASE tool supported modelling techniques must
come together to provide Software Engineers with soundly based, but notation-
ally familiar development environments and techniques. Since many engineering
disciplines use what appear to be informal, sometimes iconic, languages as ’in-
terfaces” to their mathematical languages for modelling application solutions, it
seems plausible to try the same approach in Software Engineering. This means,
effectively, that we should take extant Software Modeling Techniques and see if
we can develop formal semantics for their notations, so as to provide software
engineers with familiar tools, and also providing them with the possibility of per-
forming the analyses and formal checks, on the one hand, and the support for
transformational techniques being applied for implementation and code genera-
tion, on the other. (In the longer term, effective formal notations may generate
modelling techniques and notations which will then be adopted by Software En-
gineers.)

With this motivation in mind, the PSMT workshop was organized in conjunc-
tion with ICSE’98 in Kyoto on April 20th, so as to take a critical look at recent

1



thoughts and developments in this emerging area. Work based on three of the
submissions of this workshop have been selected for inclusion in this journal.

2 Workshop Themes

Currently there is an ongoing standardization process for syntactical representa-
tions of object-oriented modeling techniques (MT) initiated by the OMG, which
had its first notable output in the standardisation of UML [2]. The standard-
ization of MT should not only involve provision of a precise syntax, but also of
a precise semantics. This is essential for an unambiguous understanding of sys-
tem specifications written using a M'T, escpecially when using diagrammatic and
iconic languages, as they are very common in software engineering.

A precise semantics allows us to detect inconsistencies and inaccuracies both
in MT themselves (metareasoning about the MT used), and in specifications writ-
ten using these MT (reasoning about the system under design). It also provides
a means for comparing different MT in a more precise way and for improving
the notation. Furthermore, it enables precise characterisation of interoperability
between different MT. From an engineering perspective, it also allows us to use a
notation in a more standardized way, thus leading to better and less ambiguous
understanding, supporting true reuse of specifications and designs, and a more
accurate definition of context conditions or (code) generators. Also requirements
decisions can be traced more precisely to code produced from them. Based on a
precise semantics of modeling techniques, tool support beyond graphic editors be-
comes possible. Finally, the integration of tools and the combination of methods
is more feasible than today.

We would like to express our immense gratitude to the rest of the Pro-
gram Commitee, which consisted of Manfred Broy (TU Munich), Derek Cole-
man (Hewlett-Packard), Desmond D’ Souza (ICON Computing), Robert France
(Florida Atlantic University), Qystein Haugen (Ericsson, Oslo), and Bran Selic
(ObjecTime, Ottawa). Thanks go also to the additional reviewers of the journal
versions of the papers, namely Colin Atkinson, Kokichi Futatsugi, Pavel Hruby,
Haim Kilov, Ulrike Lechner, Alexander Schmidt, and Wolfgang Schwerin.

In their paper Logic of Change: Semantics of Object Systems with Active
Relations 1. Bider, M. Khomyakov, and E. Pushchinsky present a new model for
programming. It extends object-orientation by employing active relations. This
is especially suited for business applications, where relations actively maintain
business rules. A logical semantics, as well as a procedural semantics based on
state machines, is given and an appropriate programming language is discussed.

T. Mens and T. D’Hondt in their paper Automating Support for Software
FEvolution in UML focus on the question of how to use UML concepts to improve
the development process. They particularly concentrate on the potential of UML
with respect to iterative evolution of software within and between projects. They



identify the lack of a precise semantics for UML as one of the main inhibitors
that needs to be overcome and they suggest some additional features for UML
that especially support evolution.

Despite its widespread use and industrial importance, SDL lacks at present
a complete and integrated formal semantics. A formal semantics for SDL using
a new algebraic formalism called Timed Rewriting Logic (TRL) is presented
by L. J. Steggles and P. Kosiuczenko in their paper A Formal Model for SDL
Specifications based on Timed Rewriting Logic. The given semantics provides a
natural basis for analysing, verifying, testing and composing SDL systems. The
authors present a new equivalence theorem that allows this TRL semantics to be
automated using Rewriting Logic and its associated tools. This is demonstrated
by modelling an SDL specification for the benchmark alternating bit protocol.

References

[1] M. Broy, D. Coleman, T. S. E. Maibaum, B. Rumpe. PSMT — Workshop on
Precise Semantics for Software Modeling Techniques. Proceedings. Technical
Report TUM-19803, Technische Universitat Miinchen, April 1998.

[2] OMG. The Unified Modeling Language (UML) Specification. Version 1.4.
Technical recommendation. 1999.



