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Abstract—Requirements documents often describe the sys-
tem on different abstraction levels. This results in the fact that
the same issues may be described in different documents and
with different vocabulary. For analysts who are new to the
application domain, this poses a major orientation problem,
as they cannot link different concepts or documents with each
other.

In the presented paper, we propose an approach to map
concepts extracted from different documents to each other.
This, in turn, allows us to find related passages in different
documents, even though the documents represent different
levels of abstraction. Practical applicability of the approach
was proven in a case study with real-world requirements
documents.

I. DIFFERENT ABSTRACTION LEVELS IN
REQUIREMENTS DOCUMENTS

At the beginning of every software project, some kind
of requirements document is usually written. There are
many different modeling notations that support the precise
description of requirements and which support reasoning to
help achieve completeness and consistency in the specified
requirements. However, use of these notations is only feasi-
ble if they are intelligible to the documents’ authors and to
the stakeholders who are required to approve the documents’
contents. In most cases, they are not and therefore, as the
survey by Mich et al. shows [1], the great majority of
requirements documents are written in natural language. As
a consequence, most requirements documents are imprecise,
incomplete, and inconsistent, because precision, complete-
ness and consistency are extremely difficult to achieve using
natural language as the main presentation means.

These problems become even worse when it comes to
different abstraction levels. Typically, requirements docu-
mentation contains both high-level documents, describing
the application domain and general goals of the system
to be developed, and low-level documents, focusing on
application scenarios, user interfaces, etc. The links between
these documents mostly remain unspecified, as they are
perfectly obvious for the document authors. However, for
an analyst new to the application domain or to the project,
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it often remains unclear how the different documents are
linked to each other. The situation is further complicated
by the fact that documents written at different abstraction
levels can contain different vocabulary. This renders recently
developed techniques for automatic tracing [2], [3], relying
on common vocabulary in different documents, infeasible.

This situation is typical to software projects and results
in a vicious circle: the experienced domain expert has the
necessary knowledge, but is either too busy to express it,
or does not know what should be written down. An analyst
new to the domain sees a lot of gaps in the specification,
but does not know which of the gaps are genuine and which
of them are due to missing links between documents.

In the presented paper, we propose an approach to concept
mapping and tracing that caters for different abstraction
levels. The generated mappings and traces can then be used
to guide an interview with a domain expert. It turned out
in our case study that the domain expert, simply by arguing
about correctness or incorrectness of the provided mappings
and traces, revealed a lot of relevant information that seemed
too obvious when writing the document; an example of
taken-for-granted knowledge [4]. This additional informa-
tion definitely contributes to the exchange of domain-specific
knowledge.

The presented approach consists of three phases: In the
first phase, we extract domain specific concepts from re-
quirements documents. Then, in the second phase, we map
every low-level concept onto the most similar high-level
concept. Finally, in the third phase, we find for every low
level concept the occurrences of its corresponding high-level
concept in the high-level documents. This allows us to link
low-level and high-level documents with each other, despite
different vocabulary used in the documents.
Outline: The remainder of the paper is organised as follows:
Section II presents the case study used to evaluate our
approach. Sections III and IV are the technical core of the
paper: Section III presents the proposed method of concept
mapping and tracing, and Section IV the evaluation of the
method. Then, Section V presents the lessons learned in
the case study. Finally, Sections VI, VII, and VIII present
the related work, some directions for future work, and the
summary of the paper.



II. CASE STUDY: POSTGRADUATE ADMISSION PORTAL

A specification of a postgraduate admissions portal for a
UK university was used as a case study in the presented
work. The requirements for the admission portal consist of
several documents: one high-level document (approximately
100 pages), describing the general problems that the system
should solve, and five low-level documents (2 to 4 pages
each), specifying concrete application scenarios. The doc-
uments were written by several authors, but there was at
least one author who participated in all the documents. All
documents are written in grammatically correct English, but
no language restrictions in the sense of controlled languages
(cf. [5]) or special language or document structure were
enforced.

The problem description in the high-level document states
informally, what improvements to the currently existing
process should be achieved with the new system:

Electronic workflow:
• enabling work with actions to be moved elec-

tronically through (to and from) the system.
• enabling applications to be processed and

audited electronically via the system.
• enables context sensitive distribution e.g., ac-

ceptance of offer triggers links to information
related to a department or forms to download
depending on fee status etc.

• . . .
The scenarios documents are more concrete and specify

the desired system behaviour in exemplary situations, like
this:

• Miss X, having completed her undergraduate
studies in the PRC, is interested in study-
ing a professionally-accredited postgraduate
finance course in the UK.

• Mrs Y, a management school (MS) faculty
admissions officer (FAO), logs on to the system
and sees an enquiry from Miss X about local
transport options.

• The enquiry also requests that Miss X can
book a chat session with somebody about
student accommodation and funding options.

• . . .
The difficulty in linking the documents written at different

abstraction levels lies in the fact that the vocabulary used
in these documents is different, which renders recently
developed techniques for automatic tracing infeasible. For
example, the second sentence of the above application
scenario, stating that “Mrs Y . . . logs on to the system and
sees an enquiry. . . ” is definitely relevant for the general
goal of electronic workflow, but, due to differences in
vocabulary, the existing tracing methods would not identify a
relationship between this sentence and the phrase “electronic
communication”. This link is tacit, in the sense that its

existence is obvious for a domain expert but hidden for
a novice. Identification of related low-level and high-level
concepts and passages, despite differences in vocabulary, and
in this way providing hints about potential tacit knowledge
in the documents, is the goal of our approach presented in
this paper.

III. TRACING AND CONCEPT MAPPING

The aim of the approach presented in this paper is to find
concepts and document passages that are close to each other,
even though they use different words to represent similar
issues. The proposed mapping and tracing procedure consists
of three phases:

1) Extraction of domain-specific concepts: Before
looking for similar concepts and passages, it is nec-
essary to know what concepts are really relevant. The
extraction of domain-specific concepts is presented in
Section III-A.

2) Concept mapping: To solve the problem of different
concepts used to describe the same issue, we define a
similarity metric with which to map similar concepts
to each other. The mapping algorithm is presented in
Section III-B.

3) Tracing: When the concept mapping is known, we
can find related text passages. We assume that two
passages are related if they contain concepts that are
mapped to each other. Details of the related passage
tracing are presented in Section III-C.

A. Extraction of Domain-Specific Concepts

Extraction of domain-specific concepts is a prerequisite
for our tracing technique, as every concept from a low-
level document is mapped to a high-level concept before
tracing. Two techniques are used for concept extraction:
frequency profiling and relevance-driven abstraction iden-
tification. Both techniques are presented below.

• Frequency profiling: There exist linguistic corpora,
like the British National Corpus [6] that document the
everyday usage of language. If the frequency of some
term in a domain specific document significantly devi-
ates from the frequency of the same term in everyday
usage, this can be an indicator that this particular term
is domain specific [7]. In addition to pure frequency
profiling, we can use part-of-speech tagging1 to filter
the results. In this case we obtain the specified part
of speech only (nouns, adjectives, . . . ) as suggested
terms. OntoLancs [8], the tool used in the presented
work, provides a user interface to sort all the extracted
terms by their relevance (=frequency deviation) and to
help the analyst decide which of the terms represent
domain-specific concepts.

1http://en.wikipedia.org/wiki/Part-of-speech tagging



• Relevance-driven abstraction identification: The
corpus-based frequency profiling technique works well
for concepts that are signified by single words, but
not for compound terms. In order to adapt frequency
profiling to compound terms, a new technique called
RAI (Relevance-driven abstraction identification) was
recently added to OntoLancs [9]. The RAI algorithm
comprises the following steps:

1) Each word in the domain text is annotated with a
part-of-speech tag.

2) The set of words is filtered to remove stop words.
3) The remaining words are lemmatized to reduce

them to their dictionary form, i.e. to collapse
inflected forms of words to a base form or lemma.

4) Each word is assigned a log-likelihood value
by applying the corpus-based frequency profiling
approach.

5) Syntactic patterns are applied to the text to iden-
tify multi-words term.

6) A significance score is derived from the frequency
profiling.

7) The terms are ranked according to their signifi-
cance score.

As in the case of frequency profiling, the user decides
which of the suggested terms represent domain-specific
concepts.

B. Concept Mapping

The problem of linking different requirements documents
with each other results from the fact that different lexical
forms can be used for the same concept. For example, ap-
plicants are referred to both as “applicant” and as “prospec-
tive student” in our case study. Furthermore, different but
related concepts can be used to illustrate the same idea. For
example, in our case study, it was stated in the high-level
document that communication between the applicants and
the admission officers should be automated. In the low-level
documents, however, some examples were given where the
applicants and the admission officers send and receive e-
mails to/from each other, but there were no explicit links to
the automated communication in the high-level document.

The main idea of the proposed concept mapping is to find
concepts that are similar to each other. When looking for
similar concepts, we are interested not only in similar lexical
forms, but in similar meanings. This motivates the usage
of WordNet [10], a comprehensive taxonomy of English
nouns and verbs: When looking for related concepts, we are
looking not for similar lexical forms, but for word proximity
in WordNet. The WordNet-based search can become compu-
tationally expensive, so we perform the search not for every
word set or every sentence, but for significant concepts,
as extracted by relevance-driven abstraction identification
(cf. Section III-A).

For the purposes of concept mapping, we consider every
concept as a set of words. As every word can have several
meanings, there is no 1:1 mapping between lexical forms and
WordNet nodes, called synsets2: Every synset characterises
one meaning, thus every lexical form can be relevant for
several synsets. Analogously, every synset can be relevant
for several lexical forms. This idea is illustrated in Figure 1:
“mail” and “post” share many meanings, as they both can
refer to different aspects of postal services. For example,
according to WordNet, they share the meanings “the sys-
tem whereby messages are transmitted via the post office”
(Synset 2 in Figure 1) and “any particular collection of
letters or packages that is delivered” (Synset 3 in Figure 1).
Additionally, “mail” has the meaning “the bags of letters
and packages that are transported by the postal service”
(Synset 1), not shared with “post”. Analogously, “post” has
the meaning “military installation at which a body of troops
is stationed”, not shared with “mail” (Synset 4). Both words
have further meanings as well.

Our main assumption for concept mapping is that, if three
words are used in the same application domain to denote
related concepts, then there must exist close synsets for
them. Conversely, if we can find close synsets for two words,
we assume that they denote related concepts. For exam-
ple, the hypernym (parent node) of “e-mail” is “electronic
communication”, which, in turn, has “transmission” and
“communication” as its hypernyms. Thus, we can infer that
“e-mail”, used in specific application scenarios, is related to
the “communication” concept, used in the generic domain
document. In general, given two words, we list all synsets for
every word, and then use breadth-first search to find synsets
closest to each other. This allows us to define the distance
between two words:

Def. 1: The distance between two synsets is the length
of the shortest path in the WordNet-graph between these
synsets. The distance between two words is the shortest
distance between their synsets.
Based on the above definition, we can define distance
between two sets of words:

Def. 2: The distance between two sets of words is the
shortest distance between their constituting words.
This definition can be illustrated as follows. Let us assume
that we have two sets of words:

s1 = {w1.1, w1.2}
s2 = {w2.1, w2.2}

Furthermore, let us assume the following relationships for
distances between single words, according to Definition 1:

d(w1.1, w2.1) < d(w1.1, w2.2) < d(w1.2, w2.2) <

< d(w1.2, w2.1)

2see also http://en.wikipedia.org/wiki/Synonym ring



Word

mail

post

Synset

1. the bags of letters and packages that are transported by the postal service

3. any particular collection of letters or packages that is delivered

2. the system whereby messages are transmitted via the post office

4. military installation at which a body of troops is stationed

...

...

Figure 1. WordNet entries: words and synsets

Table I
MEASURING CONCEPTS SIMILARITY

Consider every multiword concept as a set of words
sum := 0
counter := 0
while both sets non-empty do

distance := distance between word sets according to Def .2
sum := sum + 1

2distance
counter := counter + 1
remove concepts that result in the shortest path from the sets

end while
WordNet similarity := sum

counter

Then, the distance between s1 and s2 is defined as
d(w1.1, w2.1).

Definition 2 allows us to calculate a similarity metric for
multiword concepts. As two multiword concepts can contain
several words that are similar to each other, the shortest
distance between word sets is not sufficient. However, we
can use the shortest distance for an iteratively defined
similarity metric.

This iterative algorithm, measuring similarity between two
sets of words, is presented in Table I. Given two sets of
words, it finds word pairs in multiword concepts that are
closest to each other. Every found pair contributes its share
to the similarity metric. The weighting of the found word
pair with 1

2distance
emphasises that we are not interested in

distant relations between words.
Apart from words that are contained in WordNet, we

have to cater for specific words without WordNet entries.
For example, in our case study, there was an important
abbreviation “DSO”3. Automatic expansion of abbreviations
is not yet possible. As “DSO” is not contained in WordNet,
it does not contribute to the WordNet similarity, as defined
above. Nevertheless, it does contribute to concept similarity:
as “DSO” is a domain-specific abbreviation, it is likely that
two concepts referring to the same abbreviation “DSO” are
related with each other. Thus, we introduced an additional

3“Disabled Support Officer”

similarity metric, based on words that are not contained
in WordNet. Let shared be the number of common non-
WordNet words in two concepts, and lengthshorter be the
number of words in the shorter concept. Then, the non-
WordNet similarity is defined as follows:

Non−WordNet similarity =
shared

lengthshorter

The total similarity is defined as

similarity =α×WordNet similarity+

(1− α)× non−WordNet similarity
(1)

By varying α, it is possible to assign higher significance
either to words not contained in WordNet (e.g., domain
specific acronyms), or to words contained in WordNet.

For example, if we assume α = 0.8 and measure the
similarity between “DSO communication record” and “mail
sent to DSO”, we will get:

• WordNet similarity: “communication” and “mail” pro-
vide a pair of words most close to each other in
WordNet: “communication” is the direct hypernym for
one of the “mail” synsets. Thus, the distance is equal
to 1 and WordNet similarity = 0.5. “Sent” is a verb
and is not considered in our WordNet similarity metric.

• non-WordNet similarity: one common non-WordNet
word (“DSO”), the shorter concept consists of three
words ⇒ non−WordNet similarity = 1

3 . For non-
WordNet similarity, we consider all words as relevant,
in order to obtain non-zero concept length even for
concepts consisting of acronyms only.

• similarity = 0.5× 0.8 + 1
3 × 0.2 ≈ 0.46667

The above definition of concept similarity allows us to
perform mapping between low-level and high-level concepts:
For every low-level concept, we look for the high-level
concept most similar to it, according to the above metric.
This concept mapping allows us, in turn, to find related
passages in low-level and high-level documents: We consider
two passages as related, if they contain concepts that were
mapped to each other.
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Figure 2. Concept mapping, as applied to document tracing

Table II
ITERATIVE GREP ALGORITHM

result := whole text
consider concept to search for as a set of words
for every word in set of words do

restrict the result to sentences in the result containing word
end for

C. Tracing

When the concept mappings are available, we can link
documents using different vocabulary with each other. The
main idea, illustrated in Figure 2, is to look for concepts that
occur in one document, and for every concept, to look for its
mapping counterpart in the other document. As the concept
mapping algorithm, presented in Section III-B, does not con-
sider the internal grammatical structure of the concepts, any
set of words occurring in Document 1 (resp. Document 2)
can be considered as Concept 1 (resp. Concept 2) in the
sense of Figure 2. In particular, it is possible to declare
whole sentences as concepts and then to look for the most
similar sentences. However, due to the size of WordNet, the
computational effort grows when the concepts become too
long, so it is not advisable to skip concept extraction (as
presented in Section III-A) and to consider arbitrary sets of
words as concepts.

When searching for concept occurrences in a document,
we have to take into account that the same concept can occur
not only as an uninterrupted word sequence, but its words
may be permuted or mixed with other words. For example,
“on line application” occurs in the following contexts in our
case study:

• This applies to on-line and manual applica-
tions; in fact, on-line applications are printed
before processing begins.

• Applications can either be on-line or by paper
applications.

• Paper applications (unlike on line ones) are
not automatically acknowledged.

In order that such occurrences of a concept can be found,
we apply the iterative grep algorithm, presented in Table II.

This algorithm allows us to find every concept occurrence,
at the small price of potential identification of irrelevant

passages as relevant (false positives). This strategy was
proven to be useful in the evaluation, as it highlights not
only the exact occurrences of the sought concept, but also
similar phrases.

On the tool side, every found trace is represented as a
pair of sentences (sentence from the low-level document and
the traced sentence in the high-level document) with several
sentences of context information. The context information
is provided in order to facilitate the reconstruction of the
relevant parts of the documents, as a remedy for the missing
GUI.

IV. EVALUATION

For evaluation, we focused on the concept mapping and
the actual tracing, as the concept extraction is already
evaluated [9]. To evaluate our technique, we interviewed a
domain expert about the quality of the generated mappings
and traces. We considered traces from application scenarios
to the generic domain document. Due to the relatively small
volume of scenarios we treated every scenario sentence as
a concept. A similar strategy was used in our previous
work where we mapped scenario sentences to elements of
executable models [11]. Thus, by combining the traces from
scenario sentences to models, and from scenarios sentences
to the generic domain document, we can bridge the gap
between executable models and the generic document.

We converted the generic domain document to plain
text and then, using relevance-driven abstraction identifica-
tion (cf. Section III-A), extracted the 150 most significant
concepts from it. As there were not too many acronyms
(non-WordNet terms) extracted, we set α for Equation (1)
to 0.9, giving higher weight to the WordNet-part of the
similarity metric. Then, for every scenario sentence, we
calculated the similarity metric and determined the most
similar generic concept for every sentence. The concept
mappings were presented to the domain expert as pairs of
strings, one string representing the scenario sentence, and
one string representing the mapping result (most similar
generic concept). We evaluated the resulting mapping by
interviewing a domain expert on two questions:

1) Is the mapping correct?
2) Is the produced mapping the best one for the given

sentence?
We evaluated every “yes” answer as “1” and every “no”
answer as “0”, and measured the statistical correlation4

between the expert’s answers and automatically calculated
similarity metric. We got the correlation of 0.38 on the
correct mappings (first question), and 0.21 on best mappings
(second question). Given our sample size of approx. 160
sentences to be mapped, both correlation values are sta-
tistically significant at the confidence level of 95% and

4http://en.wikipedia.org/wiki/Pearson product-moment correlation
coefficient



show that the calculated similarity metrics correlate with the
relevance/irrelevance decisions made by the human analyst.

In order to evaluate the traces between the documents
that result from concept mappings, we picked at random
17 traces and presented them to the domain expert. Larger
sample size was not possible due to the availability of the
expert. He evaluated 5 of these traces as correct, which cor-
responds to approx. 29% precision. Given that our technique
provides by construction 100% recall, we conclude from
high precision (as compared to other tracing approaches)
that tracing based on concept mapping can be applied in
real-life projects.

V. LESSONS LEARNED

The most important lesson learned in the case study was
that our approach helps elicit tacit knowledge, although
not directly. When the obtained concept mappings and
traces were presented to the domain expert, he explained
why the obtained mapping was correct or not, and in this
way provided a lot of information about the application
domain. This information was not explicitly stated in the
written documents, but nevertheless important. Eliciting of
this information without concept mappings or traces would
have required highly directed questions, and coming up with
such questions requires profound domain knowledge.

Conducting the case study has revealed a number of
further important lessons that we shall incorporate into our
future work, and which, we believe, have wider relevance for
concept mapping and taxonomy-based tracing. The bottom
line is that it is not always possible to grasp the whole
application domain just by analysing the domain-specific
vocabulary. The main implication of this lesson is that there
are more indicators for traces between documents than the
vocabulary. In particular, the overall goals of the prospective
system turned out to be an important trace indicator. More
concretely, our domain expert pointed out the following
issues that should be taken into consideration:

• Explicit goal modelling
• Definition of relevant concepts
• Mapping of one set of words to several concepts

These points are discussed below in detail.
Explicit goal modelling. When evaluating the automat-

ically produced concept mappings, the domain expert ex-
plained every answer to us. The explanations were mostly
motivated by system goals: for every concept, he decided
first, to which goal the concept in question was most rele-
vant. If two concepts that were mapped to each other were
relevant for the same goal, he agreed with the automatically
produced mapping.

This observation gives an important insight into the pro-
cess of decision making: the most important part seems
to be not the lexical or even semantic similarity of the
concepts, but their pragmatic usage. Automatic capture of

pragmatics is far beyond the capabilities of the state-of-the-
art in computational linguistics [12]. Nevertheless, explicit
goal models can help model pragmatics and should be
produced and used, inter alia, for tracing.

Definition of relevant concepts. Several of the produced
concept mappings were wrong due to the fact that the
most relevant concept, that would provide the best mapping,
was not in the set of 150 most significant concepts. As
a consequence, we missed some important concepts as
potential mapping targets. One of the sources of the problem
can be that, in order to save the domain expert’s time, we
reviewed the set of extracted concept without the domain
expert and decided ourselves, which concepts were relevant
and which were not.

To mitigate this problem in a real world setting, we would
need to perform a thorough review of the extracted concepts
with an application domain expert. As the review of the long
concept list can be tedious and tiring, a mixed mode might
make sense:

• The domain expert names the concepts that are, in
her opinion, most relevant for the application domain
(brainstorming).

• Additionally, abstraction identification is used to extract
concepts.

• Finally, both lists are reviewed and joined to the final
concept list.

This would allow us to avoid the problem that concepts
important for the domain expert are neglected.

Mapping of one set of words to several concepts. When
evaluating the correctness of the produced concept map-
pings, the domain expert often gave comments like “yes,
this mapping is correct, but mappings X, Y, and Z would
be correct too”. This implies that there is no gold standard
in concept mapping, at least in our case study. The conse-
quence for concept mapping and document tracing is that
we should investigate how close the similarity metric for
different concept pairs are. One research question would be
whether all mappings that the domain expert evaluated as
possible get close similarity scores, and conversely, non-
related concepts get distinctly different scores. A follow-up
research question would relate to the influence of additional
mappings on tracing: with more than one map for a set of
words, we can provide more traces between documents. The
research question would be how this extension influences the
precision of the method.

To summarise, our results show that concept mapping and
document tracing can not only be used in software devel-
opment projects to obtain unspecified information, but also
give rise to a set of further interesting research questions.

VI. RELATED WORK

On the technical side, work on WordNet-based simi-
larity metrics is most close to the presented paper. Such
metric were introduced, for example, by Leacock and



Chodorow [13], Resnik [14], Lin [15], and Jiang and
Conrath [16] The existing similarity metrics are, however,
focused on defining similarities between two single words,
whereas we are interested in multiword concepts.

In the requirements engineering context, requirements
tracing is related to our work. Requirements tracing attracted
significant attention in the 1990s, spurred by the seminal
work of Gotel and Finkelstein whose empirical research [17]
highlighted its impact on practice. Their work on con-
tribution structures [18] was conceived to make explicit
how the actors contribute to the requirements’ formulation.
Pohl’s contribution [19] was to highlight the critical issue of
agreement in the formulation process, representing it, along
with specification and representation, as one of the three
dimensions of requirements engineering. Pohl also argued
that tracing needed to be, as far as possible, automated, while
recognizing that the nature of the information that had to be
manipulated made full automation impossible.

Tracing is often viewed primarily as a means to trace
artifacts to each other in order to track how derived re-
quirements and components contribute to satisfaction of the
user requirements. Ramesh and Jarke [20], [21] call this
basic tracing utility low-end tracing. They note that richer
information about relationships between artifacts can be
captured, which they term high-end tracing. The activity of
deriving traces between a rich set of documents that might
be used by (e.g. domain descriptions), if not necessarily
all generated by (e.g. the requirements specification) the
requirements process, is an example of high-end tracing.
Being able to trace between heterogeneous documents can
have a variety of benefits such as the discovery and recording
of requirements’ rationale.

However, even low-end tracing is commonly neglected
because “requirements tracing is at best a mundane, mind
numbing activity” [22] the benefits of which only appear
later in the development process. Consequently, even if
mandated by process standards, tracing is vulnerable to
neglect. Even if the relationships between requirements
and downstream artifacts are recorded, they may not be
properly maintained as the requirements and other artifacts
evolve. Effective high-end tracing is even more of a problem.
These difficulties in effecting good requirements tracing
practice have motivated several researchers [23], [24], [25],
[26], [27] to investigate automatic tracing as a way to
mitigate prevalent poor practice. Automatic tracing is the
post-hoc discovery of relationships between artifacts, some-
times called link generation. Automatic tracing, without the
overhead associated with the on-going manual recording and
maintenance of trace information, has clear appeal.

In recent years, several researchers have applied infor-
mation retrieval (IR) techniques to automatic tracing. IR is
concerned with the identification of information in natural
language documents for applications that include automatic
abstracting and search engines. IR has developed the key

concept of document similarity. Several robust techniques
have been devised for calculating document similarity. In a
typical usage scenario, the document similarity is calculated
between a query, which may be anything from a string of
keywords to a large document, and a set of target documents
to see which document(s) best match the query. Applying
IR techniques to automatic tracing means that artifacts
such as requirements are treated as documents, allowing
similarity measures to be calculated between requirements,
and between requirements and other downstream artifacts.
Vector-space models, term frequency-inverse document fre-
quency (TF-IDF) and cosine similarity have all proven
effective for low-end tracing, by inferring the existence of
derives relationships between requirements [2], and between
requirements and other artifacts such as test cases [26].

Experiments using requirements data sets benchmarked
against manually-derived gold standard sets of trace rela-
tionships, [2], [28], [3] show that IR-based trace-recovery
tools are capable of discovering up to 90% of derives
relationships. Precision is typically significantly poorer but
this is justified by the fact that human analysts are better at
identifying errors of commission than errors of omission [3].
The practical effect of this is to value recall above precision.

The performance that is achievable by IR-based tools is
sensitive to properties of the requirements documents to
which the tools are applied. In experiments on different
data sets, Cleland-Huang et al [2] note that their Poirot tool
achieved performance that varied from 90% recall with 30%
precision to around 60% recall with only 4% precision. This
variation in performance appears to correlate with properties
of the requirements documents.

One desirable document property is consistency across all
requirements documents and across all levels of abstraction.
However, this is commonly not achieved. In particular,
high-end tracing may seek to establish trace relationships
between the requirements formulated for the system-to-be
and the structural, behavioural and organisational properties
described in (e.g.) general domain descriptions, process
descriptions and concepts of operation. There may also
be ’raw’ elicitation material such as verbatim reports of
elicitation interviews. This heterogeneity of requirements
documents reflects the complexity of the requirements for-
mulation process itself; a complex combination of Pohl’s
agreement and specification dimensions. Requirements are
seldom elicited ready-formed from the stakeholders. Rather,
requirements are formulated from information about what
Alexander and Robertson [29] term our system, the con-
taining system and the wider environment, the needs of
the stakeholders in each of these systems, the factors that
constrain the possible solutions and the analyst’s knowledge
and experience. Moreover, the roles of the analyst and stake-
holders in requirements formulation may not be clear-cut.
The requirements formulation process is further complicated
by the fact that some sources are intangible. As noted by



Ryan “neither informal speech nor natural language text is
capable of expressing unambiguously the myriad facts and
behaviours that are included in large scale systems” [30]. In
particular, the assumptions used to fill the inevitable gaps
in the available knowledge and the judgement and creativity
that is so vital to the requirements formulation process [31]
may have no physical, textual or other representation. In
combination, the nature of requirements sources and the
complexity of the requirements formulation process make it
both difficult and tedious to identify the user requirements’
sources.

One tangible result of the complexity of requirements
formulation is that it is unrealistic to expect complete
consistency of terminology across all the documents that
form part of the wider set of requirements artifacts typically
used in a project. For example, there may be several terms
that are used to signify a common underlying concept. While
a project dictionary may be definable for the requirements
specification document, it will typically be derived only after
the process of formulating the user requirements, and no
assumptions about adherence to the terms in the dictionary
can be made on behalf of many actors, particularly those
involved earlier in the requirements process. Although in-
consistent use of terminology is only one of the problems
posed by high-end tracing, synonymy (where different words
represent the same underlying concept) significantly compli-
cates automatic tracing for the reasons described above.

Latent semantic analysis (LSA) is capable of tolerating
a degree of synonymy (and polysemy) and has been used
for tracing requirements provenance [32]; a high-end tracing
task that seeks to identify the sources of user requirements
formulation by generating links between the user require-
ments and (e.g.) elicitation interview statements. However,
LSA is computationally expensive and does not work well
where the requirements statements are terse. Automatic trac-
ing, particularly in support of high-end tracing, is therefore
a tough research problem that currently has few solutions.
Our work presents a contribution in this direction.

VII. FUTURE WORK

One of the lessons learned in the case study was that,
even though the automatically calculated similarity metric
correlate with the answers of the human analyst, the best
concept mappings are sometimes not contained in the set of
extracted abstractions. This means that even the concept with
the highest similarity would not provide the best mapping,
as the best mapping is not in the set of mapping targets.

For this reason, manual concept mapping should be
available too. This would involve a graphical interface,
currently under development, that will provide support for
the identification of relationships between abstractions man-
ually. The graphical interface will provide the user with
a set of sentences extracted from the text. The significant
abstractions occurring in the sentences will be highlighted.

A screenshot of the graphical interface prototype for
relationships identification is presented in Figure 3. In the
left panel, documents are shown sentence by sentence. The
user selects one or more sentences, and the tool presents
the set of abstractions that occur in the selected sentences
in the right panel at the bottom. At the top of the right
panel, a description of a relationship is presented. The user
can modify both abstractions and the relationship. Based
on the similarity metric presented in this paper, we could
go beyond purely manual identification of relationships, and
suggest concepts with high similarity to the user. This would
not preclude, however, manual identification of relationships.

With the prototype presented in Figure 3 the user is
given a possibility to select two concepts in order to set a
relationship between them. Then, the user will have several
options to set a relationship:

• Selecting a relationship from a predefined set of rela-
tionships, such as “is-a”, and “is-part-of”, in case that
a generic relation is identified.

• Using the verbs that occur between both abstractions
found in the text document, which describe an explicit
relationship between them. For instance, in the sen-
tence: “Mr B has already used the portal to check his
appointment details.”, two abstractions are identified:
“Mr B”, and “portal”. In this case, the verb “use” is
identified between them and stated as the relationships
between the concepts, as follows: “Mr B uses the
portal”.

• Providing a new relationship defined by the user, in
case that a new relationship is inferred but not explicit
in the text document. For instance, the sentence “Miss
X notices an email from the Programme Director for
the course she is applying for thanking her for the
application”. signifies a relationship “Miss X’s applica-
tion for the postgraduate program has been received”.
Identification of such relationships cannot yet be auto-
mated, so we give the user the possibility to set arbitrary
relationships manually.

In terms of future research, we should compare the per-
formance of the manual and the automatic concept mapping.
The comparison should take place not only on the case study
presented in the paper but on larger case studies too.

VIII. CONCLUSION

Requirements knowledge is manyfold, which may be
one of the reasons that some knowledge is forgotten when
requirements are written down. Furthermore, some knowl-
edge may be simply considered by document authors not
important enough to be documented. As errors of omission
are more difficult to identify than errors of commission,
detection of undocumented knowledge can be tedious.

Our approach, presented in this paper, detects undocu-
mented knowledge pertinent to two aspects:



Figure 3. Manual identification of concept mappings

• The approach shows which application domain con-
cepts are potentially related to each other. Even though
our case study was limited to two abstraction levels,
the presented technique is able to cope with pairwise
mappings on many different abstraction levels.

• The approach detects links between documents or their
passages.

This knowledge can be important on its own, just in order
to give the analyst more orientation in the application
domain than she gets from explicit specifications. More
importantly, this knowledge can guide an interview with
a domain expert. In this respect, it provides an important
contribution in two directions: both by showing the domain
expert what else should be documented, and by giving the
analyst explicit additional knowledge about the application
domain. Just by this fact of fostering communication our
approach provides an important contribution to managing
requirements knowledge.
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