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Abstract

This paper describes an approach for analysis of natural language requirements
documents and two case studies conducted to prove the feasibility of the approach.
The goal of the analysis is to define a common language understood both by the
domain expert and the software engineer. To define such a common language, it is
necessary to extract terms from the text written by domain expert. The extracted
terms must be classified to build a taxonomy. This taxonomy is augmented by
associations between terms to build a domain ontology.

The paper introduces two case studies that illustrate feasibility of the approach.
The first case study was conducted to test the approach itself and showed that
the approach works, but certain interaction with human analyst is necessary. The
second case study showed that this interaction does not consume too much time so
that the approach scales to larger documents.

1 Introduction

Precise specification is a key success factor for a software project. Formal specification
is ideal for the software developer, but it is not reasonable to require the author of the
requirements document, who is seldom familiar with formal methods or even with the
concept of specification, to provide a formal description.

According to Berry [4] and Mich et al. [17], the overwhelming majority of require-
ments are written in natural language. For the reader of such a requirements document
it is very important to identify the concepts used by the writer (domain expert) and
relations between them. These concepts and relations build the basis of the common
language used both by the requirements engineer and the domain expert. On the basis
of these terms it is also possible to construct a domain ontology. Domain ontology is
itself a valuable requirements engineering product, as stated by Breitman et al. [6].

The necessity to extract information from natural language documents motivated a
lot of research on application of text analysis in requirements engineering.

1.1 Related Work

Although Kevin Ryan claimed in 1992 [26] that natural language processing (NLP) is
not ripe enough to be used in requirements engineering, it is nevertheless possible to



identify several useful applications:

• According to Ryan [26], NLP cannot understand the text. But it is not the goal
of most NLP-using approaches to understand the text, the goal is often to extract
concepts contained in the document.

• Kevin Ryan [26] claims also that the domain model produced by NLP means may
be incomplete because some information that is thought to be common domain
knowledge is omitted in the requirements text. But this is exactly one of the
tasks of the requirements engineer to detect such omissions. So, an incomplete
extracted model would be an indicator for some omissions in text.

To put it in a nutshell, there are some sensible NLP applications in requirements engi-
neering even though NLP is not yet capable of proper text understanding.

Ben Achour [3] classifies the linguistic methods as either lexical or syntactic or
semantic. Lexical methods, as for example AbstFinder [14] are the most robust ones.
AbstFinder extracts the terms (lexica) that occur repetitively in the specification text.
This method is extremely robust because it does not rely on part–of–speech analysis,
parsing or something like that. It just considers sentences as character sequences and
searches for common subsequences in different sentences. It does not perform any term
classification.

In the syntactical approaches, like in those of Abbott [1], Chen [8] and Saeki et
al. [27], one analyzes either parts of speech (substantives, verbs, etc.) or looks for
special sentence constructions. Abbott [1] analyzes used substantives to produce the
data types for the construction of the program. Saeki et al. [27] additionally analyze
verbs and declare them to operations. Saeki et al. also introduce a tool helping to copy
extracted concepts to the formal specification. However, part–of–speech identification
and concept extraction are still performed manually. Chen [8] goes further than Abbott
and produces an E/R–diagram as analysis result. To construct the E/R–diagram, Chen
searches for special sentence constructions that become the basis for certain relations.
The set of constructions that can be analyzed is finite and the sentences that do not fit
into one of the predefined types cannot be analyzed.

Semantic approaches, like those of Fuchs [12], Rolland and Ben Achour [24], Ger-
vasi and Nuseibeh [13] and Vadera and Meziane [29] promise more than the other two
classes: They interpret each sentence as a logical formula. The syntax of the formula
can vary: it can be a kind of first–order logic, like in ACE (Attempto Controlled En-
glish [12]) or based on verbs and their arguments, like in the approaches by Rolland and
Ben Achour [24] and Gervasi and Nuseibeh [13], but the principle remains the same:
each sentence of the specification text is translated into a formula. As this goal is dif-
ficult to achieve, such approaches require that sentences follow a certain pattern for
the analysis to function automatically. They require also that all the words used in the
specification text be previously explicitly defined. Some of the approaches (ACE [12])
use purely manual lexicon construction, others (the one by Vadera and Meziane [29])
use manual lexicon extraction of similar type as in syntactical approaches.

There are also some other related approaches, as for example approaches by Chris
Rupp [25], Natt och Dag et al. [20] and Fabbrini et al. [10]. They are related in the
sense that they analyze also requirements documents written in natural language, but
they do not fit into the above classification scheme because their goal is not to automate
the extraction of the information from text.

Chris Rupp [25] defines a set of writing rules (writing templates). The templates
define which arguments are necessary for which verbs. For the sentences written ac-



cording to templates, one can manually extract the actors, actions and objects. The goal
of the approach is to unify the writing, which allows to produce better requirements
documents. The approach does not offer automated support for text analysis. Fabbrini
et al. [10] introduce categories of key words that are undesirable in requirements doc-
uments (e.g., “if needed”, “as . . . as possible”, etc.) and measures document quality
by counting the undesirable constructions. Natt och Dag et al. [20] search for similar
and related requirements by finding common concepts (words) in different requirement
phrasings. These approaches are interesting for producing qualitative requirements, but
they are not comparable with the approach presented in this paper, whose primary goal
is to extract domain information from the document.

1.2 Goals of the Presented Work

Daniel Berry addressed in his talk “Natural language and requirements engineering –
nu?” [4], what could help to reduce the disadvantages of natural language specifica-
tions:

1. Learn to write less ambiguously and less imprecisely

2. Learn to detect ambiguity and imprecision

3. Use a restricted natural language which is inherently unambiguous and more
precise

Additionally to the extraction of the domain ontology, the goal of the approach pre-
sented in this paper is to address the first two points. “Learn to write less ambiguously
and less imprecisely” means that a set of writing rules is introduced. These rules make
the text less ambiguous from the point of view of the human reader and at the same
time make computer–based analysis better applicable.

The approach detects also ambiguities in the specification text and eliminates them.
Ambiguities mean in this context inconsistencies in term usage. When the specification
text is good enough, it is possible to extract a domain ontology from the text. A text
is good enough for the analysis, when it is consistent in term usage and grammatically
correct.

The goal of the presented work is also to further develop syntactical approaches
mentioned in the previous section. The objective is to support the extraction both of
the terms and the relations between them, aiming at building an application domain on-
tology, thus providing more than purely syntactical approaches. Nevertheless, the pre-
sented approach does not require firm sentence structure, like semantical approaches.

This paper describes a set of techniques to extract terms and relations between
them. It introduces also two case studies conducted to prove the applicability of these
extraction techniques.

The paper is organized in the following way: Section 2 introduces theoretical con-
cepts and the tools implementing these concepts, Sections 3 and 4 describe the case
studies, and Section 5 sums up the results.

2 Steps of Ontology Extraction

Extraction of domain knowledge consists of three basic steps:

1. term extraction



2. term clustering and taxonomy building

3. finding associations between extracted terms

The domain model to be extracted is built of the terms with the associations be-
tween them.

Term Extraction: The aim of this step is to extract predicates with their arguments
(subjects and objects). Subjects and objects are the terms to extract, predicates
are used to classify them. See Subsection 2.2 for details of term clustering and
classification process.

In the very first step of term extraction, each sentence is properly parsed. Proper
parsing means that a parse tree is built, as opposed to Part–of–Speech (POS)
tagging, which just marks every word as a substantive / adjective / verb / . . .
POS tagging would suffice for automation of the approaches of Abbott [1] and
Saeki et al. [27]. Proper parsing eases the extraction of predicates and their
arguments, which, in turn, is used for classification of the extracted terms. See
Subsection 2.1 for details.

Term Clustering: Extracted terms are clustered according to grammatical contexts
(verb subcategorization frames) they are used in. Primary clusters are built by
either subjects or objects of the same predicate. Cluster overlaps are used to
find related clusters and to join them. The tool ASIUM [11] is used for term
classification. The result of this classification is an initial domain taxonomy. See
Subsection 2.2 for details of term clustering.

Association Mining: This step takes the taxonomy generated in the second step as
input and enriches it by general associations between extracted terms. The idea
is borrowed from data mining, as described by Maedche and Staab [16]. Text is
considered as a set of database transactions and the terms occurring often in the
same transaction are assumed to be related. Additionally, the relations are lifted
to the right ontology level, as described by Srikant and Agrawal [28]. Details of
association mining are presented in Subsection 2.3

After the last step an initial application domain model is built, represented as a set
of terms and binary relations between these terms.

The rest of this section describes the ontology building procedure in more detail.

2.1 Subcategorization Frame Extraction

A verb subcategorization frame is a predicate with its arguments (subject and objects).
Subcategorization frames are used by the tool ASIUM [11] for term classification and
clustering. Extraction of subcategorization frames uses as input parse trees produced
by the parser. The parser by Michael Collins [9] is used to produce parse trees. The
parser provides also information about the head child of every tree node. The head
child of a parse tree node is the most important child, capturing the actual meaning
of the node. The following oversimplified grammar illustrates the idea of head child:
Head children are marked bold.

S → NP VP

NP → DT NN

VP → VB NP



Tag meanings are introduced in the “Bracketing Guidelines for Treebank II Style
Penn Treebank Project” by Bies et al. [5]. In a nutshell,S and similar tags likeS-A,
S-B mark complete sentences,V P and similar tags mark verb phrases,V B marks
verbs,MD modal verbs,NP marks noun phrases,PP marks prepositional phrases
andNN marks nouns.

For the usage of ASIUM the predicate and its arguments (subject and objects) are
extracted from each sentence. This process is illustrated on the tree shown in Figure 1.

VBN/refined

NN/implementation

Points to the
head child

Node labels:

NPB/implementation

TAG/head word

VP/can

Terminal

Non−Terminal

S/can

NP/specification

NN/specification MD/can VP/be

VB/be VP/refined

PP/to

TO/to

Figure 1: Parse tree for “Specification can be refined to
implementation. ”

To extract the predicate, the extraction algorithm descends from the root node to
the head leaf. That is, it descends to the root’s head child, then to its head child and
so on. This descend process yields the main verb of the sentence. For example, this
method extracts “can” from “can be refined . . . ”. “Can” is not really interesting for
term classification, so it is necessary to correct the extracted predicate.

The correction algorithm works in the following way: It starts with the verb node
extracted initially, i.e. “MD/can” in the case of Figure 1, and looks for sibling verb or
verb phrase nodes. In the case of Figure 1 the algorithm finds “VP/be”. It descends
from “VP/be” to its head child node “VB/be” and looks for the sibling verb or verb
phrase nodes again. In such fashion it reaches “VBN/refined”. This node does not
have any sibling verb or verb phrase nodes, so “VBN/refined” is the verb node that is
interesting for term classification.

To extract the subject, the extraction algorithm starts with the main predicate node,
e.g., “VP/can” in Figure 1 and traverses the parse tree to the left until it finds a noun
phrase. In Figure 1 it finds “NP/specification”. Then it descends to the head child of
the noun phrase, which is “NN/specification”.

The direct object is extracted in a similar way: The extraction algorithm starts with
the significant predicate node, i.e., “VBN/refined” in Figure 1 and traverses the parse
tree to the right, looking for thelast noun phrase. (See also “Bracketing Guidelines
for Treebank II Style Penn Treebank Project” [5], page 12.) In the case of Figure 1
there is no direct object. The indirect object is the noun or prepositional phrase situated
between the verb and the direct object. If the algorithm finds a direct object, it looks for
such a phrase between the significant verb node “VBN/refined” and the direct object,
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Non−Terminal

Points to the
head child

Node labels:
TAG/head word

NN/level NN/detection NN/unitNN/waterDT/the

PP/of

NPB/unitIN/ofDT/a

NPB/failure

NN/failure

NP−A/failure

Figure 2: Parse subtree for “failure of . . . ”–construction

otherwise it looks for a prepositional phrase closest to the significant verb node. In
the case of Figure 1 it extracts “PP/to”. The prepositional phrase is then split into the
preposition “TO/to” and the noun phrase “NPB/specification”. Then it descends to the
head child of the noun phrase, as in the case of subject extraction.

2.1.1 Extraction of Compound Concepts

The procedure described above extracts just concepts consisting of a single word. As
many examples in case studies show, most concepts are compound ones. To extract
compound concepts the extraction algorithm ascends from the leaf noun to the next
noun phrase. For example, in the case of parse tree shown in Figure 2 it ascends from
“NN/failure” to “NPB/failure”. For the example in Figure 2 it results in extracting “a
failure” instead of “failure”. If the node “NPB/failure” had more children, it were also
possible to extract, for example, “a fatal failure” using the same ascending idea.

During the experiments with this extraction heuristics it was found out that there are
many compound concepts of the form〈PROPERTY 〉 of 〈OBJECT 〉, like “failure
of control unit”. To extract concepts of this type, the extraction algorithm checks the
node directly to the right from the noun phrase node. If this node contains “of” as
its head word, the algorithm ascends one level up. For example, for the parse tree in
Figure 2 it starts with the node “NPB/failure” and checks the node “PP/of”. The head
word of “PP/of” is “of”, so the extraction algorithm ascends to “NP-A/failure” and
extracts the whole subtree “a failure of the water level detection unit”.

2.1.2 Stemmer

To properly classify the concepts, it is also necessary to make them grammatically
uniform. I.e., it is undesirable to differ between different forms of the same word, like
“use”, “uses” and “using”. Martin Porter’s stemmer [22] was used for this purpose. The
stemmer was applied after the extraction of subcategorization frames to verbs only. In
principle it is possible to use the stemmer also for substantives. The stemmer was not
applied to substantives to ease the reading of the resulting subcategorization frames.
To unify the spelling of substantives, the ASIUM’s orthography correction feature was
used.



2.2 Taxonomy Building

The tool ASIUM [11] is based on the assumption that concepts used in the same gram-
matical context are usually related. It builds clusters of nouns occurring in the same
context and looks for common words in different cluster pairs. From ASIUM’s point of
view, grammatical context is a verb subcategorization frame. If the intersection of two
clusters is not empty, the user may join them to a larger cluster. When joining clusters,
the user may introduce a generic term describing both joined clusters. In this way the
user builds a tree of “is-a” relations, which is the domain taxonomy.

For example, in one of the case studies following clusters were extracted:

{waiting state, emergency stop mode, normal mode, degraded mode }

(direct objects of “enter”)
and

{initialization mode, rescue mode, emergency stop mode}

(prepositional objects of “goes into”).
The intersection of these two clusters is not empty, so they may be joined to a

larger cluster. The user may freely choose the name for the new cluster. In the above
example, it would be “operation modes”. This new larger cluster can be also used in
further analysis of cluster intersections.

2.2.1 Other Clustering Approaches

ASIUM clustering is based on grammatical contexts (subcategorization frames). There
are also other clustering approaches, described by Nenadić et al. [21]. Nenadíc’s term
clustering approach is based on three similarity measures:

Contextual Similarity of two terms measures the number of common and different
contexts for these two terms. For this measure, a context is defined as a sequence
of Part–of–Speech tags occurring in the sentence before and after the term.

Lexical Similarity of two terms measures the presence of common lexical heads (e.g.,
“message” in “start message” and “stop message”) and the number of common
modifiers. For example, “first start message” and “second start message” are
more similar according to this measure than “start message” and “stop message”.

Syntactical Similarity checks for the presence of certain standard constructions. For
example, in the construction “Xs, such as A, B, and C”,X, A, B andC are seen
as similar. The syntactical similarity measure is discrete: It can be either 0, if
terms are not similar, or 1, if terms are similar.

To decide whether two terms are similar, one calculates a linear combination of the
three above measures. Terms with high similarity can be grouped to clusters.

Unfortunately, it was not possible to compare whether the above approach or the
ASIUM–approach, based on grammatical contexts, is more suitable for taxonomy
building because the tool ATRACT [18], implementing the approach by Nenadić et
al., was developed in an industrial project and is not available for research purposes.
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Figure 4: Building a less deep taxonomy tree

2.2.2 Improvements of ASIUM Tree Building Algorithm

During the case studies it turned out that some improvements to the basic tree building
algorithm implemented in ASIUM are necessary.

First of all, the standard ASIUM tree building algorithm produces taxonomy trees
that are deeper than really necessary. This is due to the fact that ASIUM can join
clusters pairwise only. Pairwise joining of clusters is illustrated in Figure 3. Sometimes
several clusters belong to the same general concept. In this case it is better to join these
clusters in the way shown in Figure 4, without producing intermediate tree levels.

Sometimes it is also the case that one of the intersecting clusters contains more
general concepts and the other cluster both more general and less general concepts. For
example, in Figure 5 cluster 2 contains more general and cluster 1 less general concepts.
In this case it is better to join the clusters and to separate more general concepts from
less general concepts. To do so, the clusters are joined, but a set difference for the
mixed up cluster is built, as shown in Figure 5.

2.3 Association Mining

The tool KAON [16] borrows its main idea from data mining: It considers the input
texts as database transactions and counts how often certain concepts occur in the same
transaction. Each transaction is considered just as a set of items. In the case of data
mining, it is usually the set of items bought by a single customer.

To decide if an association is important, the tool computes two metrics. For an
item setA, let trans(A) be the set of transactions containingA and letN be the
total number of transactions. Thesupportof the associationA ⇒ B is defined as
|trans(A∪B)|

N . Theconfidenceof the associationA ⇒ B is defined as|trans(A∪B)|
|trans(A)| . An

1−2 2

1 2
1+2

Figure 5: Building cluster difference when joining clusters



association is considered as important if its support and confidence exceed a certain
user–defined threshold. Given a taxonomy, KAON can also generalize the association
rules as described by Srikant and Agrawal [28].

In order that the data mining idea can be used for association mining, the text is
split into single sentences and each sentence is declared to a transaction. The tool
KAON offers an own concept extraction facility, based on Part–of–Speech tagging and
extraction of tag patterns, so it is possible to extract the set of items (concepts) from
each transaction (sentence).

For example, in one of the case studies the association

“transmission failure ⇒ emergency stop mode ′′.

got the support of0.056 and confidence of0.667. The confidence of0.667 means that
2/3 of the sentences containing “transmissionfailure” contain also “emergency stop
mode”. This association arises from the sentence

“A transmission failure puts the program into the emergency stop mode”,

which is repeated several times in the specification text. For every found potential
association the user may decide if it should be included in the ontology. The confidence
of 0.667 was considered high enough to include the association “transmission failure
causesemergency stop mode” into the case study model.

3 First Case Study: The Steam Boiler

In this section the first case study conducted to evaluate applicability of the methods
and tools described above is presented.

The steam boiler specification [2] was chosen for the case study because this spec-
ification was used also as a benchmark for different formal specification techniques.
The specification describes a system consisting of the boiler itself, a valve, four pumps
and a couple of measuring devices. The goal of the control program is to maintain cer-
tain level of water in the boiler in order to avoid the damage of the boiler. The control
program should be fault tolerant and maintain the proper water level despite failures
of some hardware units. The goal of the case study was to build a domain model us-
ing the techniques described above. Subsection 3.1 presents the case study itself and
Subsection 3.2 the lessons learned from this case study.

3.1 Steam Boiler: The Case Study Itself

3.1.1 Overview of the Case Study

In the very first run of the case study the text was analyzed as is, without eliminat-
ing inconsistencies. The results of the very first analysis run did not allow to build a
sensibledomain model. Unrelated concepts were put into the same cluster during the
taxonomy building. For example, one of the clusters contained both “program” and
hardware components:

{program, steam boiler, water level measuring unit, pump},

(subjects of “work”)
and another contained completely unrelated terms:

{level, mode, program}
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Figure 6: Run of the ontology building case study

(subjects of “reach”).
Association mining was not performed with this original text, as it was necessary

to build a sensible taxonomy first.
Manual analysis of the input text, driven by the clustering results, showed that it

contained many inconsistencies preventing from direct building of domain ontology.
So the case study turned into interleaving steps of ontology building, inconsistence de-
tection, its elimination and rebuilding of the ontology. At the bottom line two ontology
building iterations were necessary, each iteration consisting of text parsing, subcate-
gorization frame extraction, taxonomy building with ASIUM and association mining
with KAON.

Figure 6 clarifies the idea: The predicates and their arguments were extracted, then
they were used for term clustering. During clustering inconsistencies were detected
and then eliminated, until there were no more inconsistencies detectable with ASIUM.
Then association mining was performed, which discovered further inconsistencies. So
the newly detected inconsistencies were eliminated in the specification text and then
the same iteration again was performed again: The subcategorization frames were ex-
tracted, the terms were clustered and classified, etc.

3.1.2 First Case Study Iteration: Detection and Elimination of Inconsistencies

The first manual analysis of the extracted subcategorization frames showed that some
parts of the specification text are unsuitable for sentence–based analysis. I.e., they lose
their meaning if considered outside of their original context. For example, the text part
describing possible failures looks like this:

Detection of equipment failures

TRANSMISSION: (1) The program receives a message whose presence
is aberrant. (2) The program does not receive a message whose presence
is indispensable.

The first sentence of this example causes a wrong parse, as the parser considers “TRANS-
MISSION” to be a part of the sentence. From the second sentence “program” is ex-
tracted as the subject, “receive” as the predicate and “message” as the object. Although
this extraction is absolutely correct, it is not what is really necessary: It is necessary to
relate failure detection and message reception or non-reception.



The first consequence of this analysis was to replace such construction as cited
above by fully-fledged sentences like

The program detects transmission failure if it receives a message whose
presence is aberrant. The program detects transmission failure if it does
not receive a message whose presence is indispensable.

This first correction step replaced all the enumeration–like constructions by fully-
fledged sentences. This was mostly necessary in constructions like

Message X: This message is sent . . .

Failure Y: This failure is detected when . . .

The text without enumeration–like constructions was suitable for analysis with
ASIUM. Clustering of the extracted concepts using ASIUM discovered further prob-
lems: For example, one of the clusters (direct objects of “enter”) consisted of

{state, emergency stop mode, mode, mode emrgency stop}

First of all, this cluster showed that at least one operation mode had several names.
Replacing the different names by “emergency stop mode” was easy. The second prob-
lem was more interesting: neither “state” nor “mode” is suitable for classification with-
out further specification, which state or mode is meant. Text search showed that “state”
comes from the sentence

The program enters a state in which it waits for the message STEAM-
BOILER-WAITING to come from the physical units.

To make the specification more precise, “a state” was replaced by “the waiting state”.
The origin of the orphan “mode” was even more interesting: it arose from the

sentence

As soon as this signal has been received, the program enters either the
mode normal if all the physical units operate correctly or the mode de-
graded if any physical unit is defective.

The two mode mentions in this sentence are grammatically incorrect. The parser can-
not know that “normal” and “degraded” are mode names and parses them as ordinary
adjectives. This puts the words “mode” and “normal” into disjoint subtrees and makes
the extraction of compound concepts “normal mode” and “degraded mode” impossible.
An additional difficulty arises from the “either . . . or”–construction in this sentence.
This difficulty is a deficiency of the current heuristics for subcategorization frame ex-
traction, but not an inherent problem. The current extraction heuristics just ignores the
conjunctions like “and”, “or”, “either . . . or” altogether. Although the conjunctions are
vital for semantics capturing, they are not that important for subcategorization frame
extraction. To overcome all these difficulties, the original sentence was replaced by

As soon as this signal has been received, the program enters either the nor-
mal mode or the degraded mode. If all the physical units operate correctly
it enters the normal mode. If any physical unit is defective it enters the
degraded mode.



A similar problem was detected in other clusters: there were orphan “unit” and “de-
vice” terms. Text search discovered “unit which measures the quantity of steam”, “unit
which measures the outcome of steam”, “physical unit which measures the outcome of
steam”, “device to measure the quantity of steam” and “steam measurement device”.
All these constructions were replaced by “steam measurement unit”. The same name
unification was necessary for “pump controller” and “water level measuring unit”.

The last curiosity discovered with ASIUM in the first iteration was the cluster

{program, physical unit}

containing prepositional objects of “emitted by” and “received by”. This is an example
of metonymy, whereby one object is used to stand for another. The program itself
does not send or receive messages, whereas the control unit running the program does.
Every human reader understands this substitution, but it provokes senseless clusters.
For this reason “program” was replaced by “central control unit” everywhere in the
sending or receiving context.

The purified text allowed for building of this simple taxonomy:

• Message sources (prepositional objects of “comes from”):

{water level measuring unit , steam measurement unit , pump controller}

• Potentially failing hardware (subjects of “is repaired” (passive form), subjects of
“working”)

{water level measuring unit , steam measurement unit , pump,

physical control unit , pump controller}

• Operation modes (direct objects of “enter”, prepositional objects of “goes into”)

{waiting state, emergency stop mode, normal mode, degraded mode,

initialization mode, rescue mode}

• Messages (direct objects of “receive”, subjects of “indicate”, subjects of “is re-
ceived” (passive form), subjects of “is sent” (passive form))1

{message, message pump−state, message steam−boiler−waiting ,

message stop, message valve, message open−pump, . . .}

• Actuators (direct objects of “activate”)

{valve, pump}

• Failures (subjects of “is detected” (passive form), direct objects of “detect”, sub-
jects of “put” (In the context “. . . puts the program into mode XY”))2

{failure, pump failure, transmission failure, pump controller failure,

water−level−measuring−unit failure,

steam−level−measuring−unit failure}
1For this cluster it was necessary to use the improved version of the clustering algorithm, as described in

Subsection 2.2.2
2For this cluster it was necessary to use the improved version of the clustering algorithm as well.



This taxonomy was transferred to KAON. When extracting the terms with the
KAON concept extraction facility, it was discovered that the concept extraction by
ASIUM was incomplete. For example, “message level”, “message mode” and many
more other messages were not discovered by ASIUM. Recognition of this problem
made a second iteration necessary.

3.1.3 Inconsistency Elimination and Ontology Building: Second Iteration

First of all, all the new messages discovered in KAON were marked as compound
concepts. It is sufficient to write “message-level” instead of “message level” for the
parser to consider it as a single compound concept. During this marking the expression
“start or stop message” was discovered , which was replaced by “message-start or
message-stop”.

In a similar way “acknowledgement message” and “detection message” were dis-
covered. As neither “acknowledgement message” nor “detection message” is a real
message used for communication, the corresponding sentences were rephrased more
precisely, so that they specifywhichacknowledgement or detection message is used in
every particular case.

Analysis of term clusters extracted from the corrected text showed following prob-
lems:

• there were large clusters produced by the verbs “be” and “have”, containing
different unrelated concepts

• there were orphan “mode” and “failure” concepts.

The first problem was solved by rephrasing all the sentences containing “be” or
“have”. For example, “has a failure” and “is defective” were replaced by “fails”; “is
really zero” was replaced by “really equals zero”, etc.

The orphan “mode” arose from “this mode”, where the actual mode was specified
in the previous sentence. The current text analysis approach cannot establish relations
between sentences, so the only solution was to replace “this mode” by the actual mode
name that is meant.

After the purification of the text it was possible to build asensibleontology using
the text analysis techniques.

The steam boiler case study showed that the amount of manual work necessary
to process the document is not negligible. However, this manual work is not in vain:
Detection and correction of inconsistencies is a part of document validation. This part
of validation is eased by the tool that fails to extract a consistent ontology from an
inconsistent document. The amount of manual work was not measured during the first
case study because the goal of this case study was to evaluate the feasibility of the
approach itself. Applicability to larger documents was addressed in the second case
study, presented in Section 4.

3.2 Steam Boiler Case Study: Results and Lessons Learned

3.2.1 Results: The Domain Ontology

Figure 7 shows a part of the produced ontology. The diagram shows the ontology
root (kaon:Root ), three top-level concepts (operation mode , failure and
message ) with some of their subordinate concepts and relations between them. Col-
ors and arrows have the following meaning: Variable–width lines denote “is-a”–relations,



Figure 7: Steam Boiler: part of the produced ontology



the thin end pointing to the more general concept and the thick end pointing to the more
special one. White boxes denote concepts and classes of concepts, dark boxes are
properties (associations) connecting concepts. Arrow directions and property names
are chosen in such a way that they produce sensible sentences. One gets the sen-
tence in reading a concept name, following the arrow to the property and subsequent
reading the property and the second concept. For example, one can read “Trans-
missionfailure causes emergencystopmode” and “Rescuemode iscausedby wa-
ter level measuringunit failure”.

3.2.2 Writing Rules

The case study showed that extraction results become better if the text follows certain
rules. Some of these rules are natural and just require consistency in concept names
and in expressions, while one rule is caused by deficiencies of currently available tools.
Here it is important to emphasize that the approachdoes workeven if the text does not
follow the rules, as it worked for the initial version of the requirements document.
However, the produced results are less sensible if the document does not follow the
guidelines, just confirming the known “garbage in – garbage out” rule.

Here is the summary of writing rules:

• Rules that make sense anyway:

– Always use the same name for the same concept

– In the case of compound names, either use names that, put in the sentence,
remain grammatically correct (e.g., “normal mode” instead of “mode nor-
mal”) or mark the compound names as such (i.e., “mode-normal”).

– Always use the complete form in the case of compound names: i.e., “stop
message or start message” instead of “stop or start message”.

– Do not use the verbs “be” and “have”. They do not provide much infor-
mation even for the human reader. For the computer–based analysis they
produce large clusters of unrelated concepts. Nevertheless, it is allowed to
use these verbs to build passive form or perfect tenses. In this case they are
easy to filter out.

• Rule due to technical deficiencies:

– Do not use cross–sentence references like “Message X is sent by unit Y.
This message indicates . . . ” In future versions of the approach it may be
sensible to try to use anaphora resolution algorithms, like those developed
by Lappin and Leass [15] and Mitkov [19]. Such an algorithm could match
“Message X” in the first sentence and “This message” in the second one.

3.2.3 Limitations of the Approach

The approach in its current form has an inherent limitation that further constrain the
writing rules. This limitation is due to the clustering algorithm. The algorithm clusters
the concepts used with the same verb and looks for cluster intersections. It cannot relate
disjoint clusters containing similar concepts. It is possible to define similarity of con-
cepts by means of their main noun. This definition would relate “stop message” with
“start message” and “pump state message” and so on. This kind of similarity (lexical



similarity) is taken into account in the ATRACT approach [18]. See Subsection 2.2.1
for the details of similarity measures used by Nenadić et al. [18].

At a first glance, building basic clusters solely on the basis of grammatical contexts
does not look like a limitation, but it caused, for example, that “message-pump-control-
state” was completely ignored in the first run of the analysis. “Message-pump-control-
state” occurs only in the sentence

Message pump-control-state(n; b) gives the information which comes from
the pump controller of pump n (there is flow of water or there is no flow
of water).

The verb “give” is also used solely in this sentence, which causes a stand alone concept.
This problem could be solved in two ways:

• Another principle to construct basic clusters can be used. Additionally to simi-
larity of grammatical contexts, which is used now for clustering, it is possible to
use measures introduced in Subsection 2.2.1: lexical and syntactical similarity.
Lexical similarity would solve the above problem because “message” is the head
word of both “Message pump-control-state(n; b)” and other message names.

• The same verbs must be systematically used with related concepts. For example,
“indicate” is used with other messages, so “Message pump-control-state(n; b)
indicates . . . ” would solve the problem. In this case it is sufficient stick to basic
clusters built on the basis of grammatical contexts.

4 Second Case Study: Instrument Cluster

The goal of the first case study was to test principal applicability of the approach and
to experiment with available tools. This case study showed that the approach works,
but a certain amount of manual work is necessary. Although this manual work may be
perceived as bothersome, this work is necessary to validate the document: Apart from
allowing the tool to extract the ontology, it produces a consistent document.

Necessity of manual work gives raise to the question whether the approach scale.
A second case study was conducted to prove the scalability. The second case study was
based on the DaimlerChrysler Demonstrator [7]. This document is much larger than
the steam boiler specification (approx. 80 pages vs. 6 pages for the steam boiler), what
makes it suitable for a scalability case study.

The document [7] describes a car instrument cluster, showing the current speed,
RPM (motor revolutions per minute), outside temperature and so on. The instrument
cluster communicates via CAN bus with other ECUs (electronic control units).

As in the first case study, the goal was to extract the application domain ontology
from the document. In the scalability case study the time that was necessary for differ-
ent process steps was also documented. This made the identification of time consuming
steps that potentially do not scale possible.

The rest of this section describes single steps of the case study. Subsection 4.1
describes document preparation, which was necessary for a large document, Subsec-
tion 4.2 introduces the results of the first parsing and Subsection 4.3 explains why
rephrasing of some text parts were necessary. Subsections 4.4 and 4.5 describe the
results of taxonomy building and association mining respectively. Subsection 4.6 sum-
marizes the lessons learned from this case study.



4.1 Document Preparation

Text analysis starts with document preparation. There is a set of purely technical is-
sues that are unimportant for smaller documents, but can become time consuming for
larger ones. For the analysis it is necessary to convert the text in one-sentence-per-line
format. There are tools that recognize sentence boundaries, as for example the one by
Ratnaparkhi [23]. However, it turned out that this approach does not work well if the
text contains also incomplete sentences.

So, in the first step of text preparation, the text was manually transformed into one-
sentence-per-line format. The formatting and the first reading of the specification text
took one working day.

At this stage, grammatically wrong sentences were not reformulated and item lists
and tables were not converted to fully-fledged sentences. Although the subcategoriza-
tion frame extraction in its current form (see Subsection 2.1) works for grammatically
correct sentences only, the goal was to see how much noise data is produced in such a
way and whether it is really necessary to rephrase incorrect sentences manually.

4.2 Parsing and Information Extraction

After reformatting the text it was possible to parse it and to extract syntax information.
The predicate, the subject and objects were extracted from each sentence. Extraction
results showed that rephrasing of incorrect sentences was necessary.

By analyzing the extracted predicates and their arguments, a lot of wrong verbs and
objects were discovered. For example, the operations “=”, “<” and “>” were classified
as verbs, as they often occurred in the specification text in the verb position:

• If Ig-Lock = 1 then the ignition key is in position ignition on.

• If Current-Speed-V< 30 km/h and the Internal-Temp values are sinking, then
Outside-Temp-Shown = Internal-Temp.

• If Current-Speed-V>= 50 km/h the rising Internal-Temp values are ignored for
1,5 minutes.

There was an additional problem with the text containing incomplete and gram-
matically incorrect sentences: The term extraction looks for the sentence predicate and
then extracts predicate’s arguments (terms). For grammatically incorrect sentences this
is not always possible, so incorrect sentences are just ignored during term extraction. If
the requirements document contains incorrect sentences, it is not possible to guarantee
that all the relevant concepts are extracted. It could happen that some concepts occur
in incomplete sentences only, so that they are completely ignored.

For these reasons the next step was to rewrite incomplete sentences into grammati-
cally correct ones.

4.3 Lists and Tables: Proper Phrasing

It turned out that lists and tables were the main source of incomplete sentences. For
example, input signals of the instrument cluster were described like this:

Ig-Lock: Describes the position of the ignition key. If Ig-Lock = 1 then the ignition
key is in position ignition on. Sent by the ignition lock control unit. Scope:
{0,1}. Received every 100 ms. Transferred by the CAN bus.



Ig-LockR: Describes the position of the ignition key. If Ig-LockR = 1 then the ignition
key is in position radio. Sent by the ignition lock control unit. Scope:{0,1}.
Received every 100 ms. Transferred by the CAN bus.

Status-Door-dd: Describes the status of the driver’s door. Scope:{open (= 1), closed
(= 0)}. Sent by the door control unit. Received every 100 ms. Transferred by the
CAN bus.

Each phrase of such constructions was completed so that it became a grammatically
correct sentence. In most cases it could be done schematically, but the rephrasing still
required manual work. For example, the above list was transformed into

• Ig-Lock describes the position of the ignition key. If Ig-Lock equals 1 then the
ignition key is in ignition-on-position. Ig-Lock is sent by the ignition lock control
unit. Ig-Lock can equal 0 or 1. Ig-Lock is received every 100 ms. Ig-Lock is
transferred by the CAN bus.

• Ig-LockR describes the position of the ignition key. If Ig-LockR equals 1 then
the ignition key is in radio-position. Ig-LockR is sent by the ignition lock control
unit. Ig-LockR can equal 0 or 1 Ig-LockR is received every 100 ms. Ig-LockR
is transferred by the CAN bus.

• Status-Door-dd describes the status of the driver’s door. Status-Door-dd can
equal 0 or 1. If Status-Door-dd equals 1, the driver’s door is open. If Status-
Door-dd equals 0, the driver’s door is closed. Status-Door-dd is sent by the door
control unit. Status-Door-dd is received every 100 ms. Status-Door-dd is trans-
ferred by the CAN bus.

Some transformations according to the writing rules were necessary as well. (See
also Subsection 3.2.2.) These writing rules include:

• always use the same name for the same concept. (The original text obeyed this
rule, so no correction was necessary.)

• In the case of compound names, either use names that, put in the sentence, remain
grammatically correct (e.g., “normal mode” instead of “mode normal”) or mark
the compound names as such (i.e., “mode-normal”). In the instrument cluster
specification, “position radio” was replaced with “radio position”, “switched off
position” with “switched-off-position”, etc.

Such transformations made syntax–based analysis possible. All these transforma-
tions took 1.5 working days, which is justifiable for a 80–page document. The overall
time cost for document preparation up to this point amounted to 2.5 working days.

4.4 Taxonomy Extraction

Taxonomy extraction is based on the analysis of cluster intersections. The first ASIUM
run showed that there were more than 600 cluster intersections produced by the text.
To build a taxonomy it is necessary to analyze cluster intersections, so this step could
become time consuming.

During taxonomy building single clusters were analyzed as well to detect wrong
usage of terms: Every time a cluster containing unrelated concepts was encountered, it
was possible to detect the textual source of this inconsistency and eliminate it.



In the instrument cluster case study relatively small number of inconsistencies was
detected:

• The verb “denote” produced a huge concept cluster containing unrelated con-
cepts. This was due to the fact that the verb “denote” occurred both in construc-
tions like “〈some-signal 〉 denotes . . . ” and in “〈some-parameter 〉
denotes . . . ” This problem could be corrected for example by replacing “de-
note” by “influence” when talking about system parameters. In the case study
this correction was not done because both signals and system parameters could
be clustered using other verbs. The “denotes”–cluster was just ignored.

• During the clustering it was discovered that some concept names that had to be
replaced. The replacement was necessary because several different names were
used for the same concept. Following concept names were corrected:

– engine-warning−→ engine-warning-signal

– indicator-left−→ indicator-left-signal

– indicator-right−→ indicator-right-signal

– turn-signal-left signal−→ turn-signal-left

– turn-signal-right signal−→ turn-signal-right

– the pointer of the engine speed indicator−→ rev-meter-display-pointer

With the corrections described above the following taxonomy was built:

• users (subjects of “adjust”, subjects of “enter”, subjects of “press”, subjects of
“release”):

{driver , service man, user}

• hardware (subjects of “determine”, prepositional objects of “seen as”, prepo-
sitional objects of “sent to”, prepositional objects of “send to”, prepositional
objects of “transmitted by”, subjects of “turned on”)

{system, engine control unit , message receivers, message transmitters}

Message receivers andmessage transmitters are clusters on their own, so there
are following sub-clusters:

– message receivers (prepositional objects of “sent to”, prepositional objects
of “send to”)

{engine control , indicator , digital display , radio, display}

– message transmitters (prepositional objects of “transmitted by”)

{can bus, instrument cluster}

• displays (direct objects of “watch”)

{rev meter , speedometer , outside temperature display}



• signal (subjects of “equal”, subjects of “sent” (passive form), direct objects of
“sending”, subjects of “transferred”, subjects of “describes”, subjects of “sent
by” (passive form), direct objects of “sending”, subjects of “processed”, subjects
of “received”, subjects of “transmitted”, direct objects of “equal”, subjects of
“describe”). There are too many signals to present all of them, so just a subset is
presented here.

{actual−number−of−revolutions,
actual−number−of−wheel−revolutions−sensor1 , . . . ,

actual−number−of−wheel−revolutions−sensor4 ,

but−down, but−left , but−minus, but−plus, but−right ,
command , computed−second , . . .}

• errors (subjects of “determined”)

{error , problem}

• values

– adjusted values (subjects of “adjusted”, direct objects of “decrease”, direct
objects of “increase”)

{time, minutes/hours}

– computed values (subjects of “computed”, subjects of “calculated”)

{time, speed , car speed}

• pointer (prepositional objects of “goes to”, subjects of “steered” (passive form))

{rev−meter−display−pointer , the pointer of the engine speed indicator}

• temperature (direct objects of “falling”, subjects of “sinking”)

{temperature values, internal−temp values}

• scale position (prepositional objects of “is below”, direct objects of “remain at”)

{horizontals, minsv , right scale end}

• warning (subjects of “appear”)

{warnings of level 2 , other warnings, warning}

• actuator (direct objects of “activate”, prepositional objects of “turn off”, subjects
of “turned on” (passive form), subjects of “deactivated”, subjects of “activated”
(passive form)).

{stepping motor , automatic door lock , both arrows of the indicator lights,
indicatior lights, lights, turn signal , hazard warning , display , attribute,

the left arrow of the indicator lights, the right arrow of the indicator
lights, the display of the engine warning light , the indication of the
outside temperature, radio, instrument cluster , ic, ignition, engine}



• indication (direct objects of “stop”)

{visible and audible indication, hazard−warning signal flasher , blinking}

• suppressed information (subjects of “suppressed” (passive form), subjects of “ig-
nored”)

{numbers of revolutions below 320 min−1 , warnings, the warnings of
level 3 , messages of level 2 , rising internal−temp values,

r−ic−stat messages, r−stat messages}

• settings (subjects of “stored” (passive form), subjects of “damping”)

{blink−frequency−adj , blink−frequency−colon, ice−threshold ,

parameter−value, release−bit , damping , variant−car ,

adjustment−speed−minutes, 12−24−time−format ,
variant−specific−bit−temp, adjustment−speed−hours}

– Damping is itself a cluster, consisting of subjects of “damping”:

damping = {damping−pt1 , damping−pt2}

Analyzing the whole plethora of cluster intersections and building a taxonomy
(concept and cluster hierarchy) took approximately 1.5 working days. The overall time
cost up to this point amounted to 4 working days.

4.5 Association Mining

To explain scalability problems potentially posed by association mining, it is sensible to
start by repeating some definitions from Subsection 2.3: For an item setA, let trans(A)
be the set of transactions containingA and letN be the total number of transactions.
Thesupportof the associationA ⇒ B is defined as|trans(A∪B)|

N . Theconfidenceof

the associationA ⇒ B is defined as|trans(A∪B)|
|trans(A)| .

In the case studies the analysis was performed on the per–sentence basis and a
transaction was defined as a pair of concepts occurring in the same sentence. For the
instrument cluster case study this definition led to more than 1000 potential associ-
ations. In order that this plethora of potential associations become manageable, the
associations were sorted lexicographically by(absolute frequency , confidence). Ab-
solute frequency of the associationA ⇒ B is defined as|trans(A∪B)|. Formally, two
associations with the same support have also the same absolute frequency, so it is pos-
sible to use the standard measuresupport . Due to rounded support values presented
by KAON to the user,absolute frequency gives more information. Lexicographical
sorting means that the associations were sorted byabsolute frequency and in the case
of equalabsolute frequency they were sorted byconfidence.

For the ontology building the associations withabsolute frequency ≥ 5 were used,
which corresponded approximately to the most frequent 25% of associations. It took
about one working day to manually validate these associations and to include the rel-
evant ones into the ontology. The overall time cost up to this point amounted to 5
working days.



Figure 8: Instrument Cluster: part of the extracted ontology

4.6 Instrument Cluster Case Study: Results and Lessons Learned

The goal of the instrument cluster case study was to see whether the ontology extraction
approach presented in section 2 still works for large documents and whether the amount
of manual work necessary for the extraction is still justifiable.

Figure 8 illustrates that ontology extraction worked for this case study as well:
Figure 8 shows an excerpt of the extracted ontology. It shows the top ontology class
(kaon:Root ), its subclasses (actual ontology classes) and relations between them.
Colors and arrows have the same meaning as in Figure 7: Variable–width lines denote
“is-a”–relations, the thin end pointing to the more general concept and the thick end
pointing to the more special one. White boxes denote concepts and classes of concepts,
dark boxes are properties (associations) connecting concepts. Arrows are directed in
such a way that a property and two concepts that it connects build a sensible sentence,
if read in the arrow direction. For example, in Figure 8 one can read:



• Canbus transfers inputsignals

• Instrumentcluster receives inputsignals

• Instrumentcluster contains display

• . . .

The other goal of the instrument cluster case study was testing the scalability of the
approach. During this case study were extracted:

• 123 concepts and concept classes, organized in 13 top–level classes and further
subclasses

• 61 associations between different concepts

Additionally to the extraction of concepts and associations inconsistencies in term us-
age were discovered and corrected. The time cost of 5 working days seems justifiable
for an 80–page document, given that inconsistencies were detected and corrected and
a domain ontology was constructed.

5 Summary

This paper presented an approach for extraction of domain ontology from text docu-
ments. This section gives an overview of the complete approach and of the produced
results.

5.1 Summary of the Approach

The ontology extraction approach consists of several steps, most important of which
were introduced in Section 2. The following list gives an overview of the whole ap-
proach and shows which steps are performed completely automatically and which ones
require human interaction.

1. Format the text (one sentence per line) partially automatic
2. Tag each word (Part–of–Speech) automatic
3. Parse the tagged text automatic
4. Extract predicates and their arguments automatic
5. Build concept clusters automatic
6. Look for cluster intersections and build a taxonomy interactive
7. Transfer the taxonomy to the associations mining tool partially automatic
8. Look for potential associations automatic
9. Decide which associations are sensible interactive

These steps correspond to the principal approach, they do not show detection and
correction of inconsistencies. Inconsistencies are detected in interactive steps: con-
cept clustering (Step 6) and decision about sensible associations (Step 9). After the
correction of inconsistencies it is necessary to restart with the tagging (Step 2).

As one can see, some steps are marked as partially automatic, while others are inter-
active. The difference is fundamental: partially automatic steps are not completely au-
tomatic yet because of some technical problems. In the case of text formatting (Step 1),
there are problems with incomplete or grammatically incorrect sentences that are often



present as bullet points in specification texts. In the case of taxonomy transfer (Step 7)
it is a mere problem of tool integration.

For the steps that are marked as interactive complete automation is not desirable.
As Goldin and Berry state [14], complete automation is not desirable if it could lead to
information loss or wrong results. In the case of taxonomy building (Step 6) and associ-
ation ascription (Step 9) inconsistencies can be found, which often manifest themselves
in senseless term clusters or senseless associations. It is impossible for an automatic
tool to decide which clusters/associations are sensible. Even after elimination of in-
consistencies not every cluster intersection leads to asensiblelarger cluster defining a
more general concept and not every potential association is a sensible one. So, even for
a perfectly consistent text a completely automatic tool would not be feasible. Goldin
and Berry would also say that a completely automatic tool is not even desirable. This
tool interactivity achieves one of the most important goals of document analysis and
validation: detection of terminology inconsistencies.

Although the approachdoes requiremanual intervention, this cannot be seen as its
weakness: Manual intervention leads to better document validation, which is itself as
important as terminology extraction.

5.2 Evaluation of the Extraction Results

This subsection evaluates the results of the ontology extraction. As the criterion for
the evaluation it is sensible to takecompleteness for concepts(“were all the concepts
extracted?”). It does not make sense consider completeness for associations because
associations are not explicitly defined in text. It does not also make sense to consider
correctness (in the sense “are all the extracted concepts/associations relevant?”), neither
as applied to concepts nor as applied to associations. Correctness evaluation makes
no sense for concepts, as long as the analyst does not invent terms, but only extract
concepts from text. It makes also no sense to evaluate correctness of the extracted
associations because every single proposed association is checked manually before it
is included into the ontology. So, the associations that are present in the final model
are per definition correct from the human analyst’s point of view.

Completeness evaluation for the steam boiler case study is easy: The steam boiler
specification explicitly defines following concept classes: hardware components, mes-
sages, operation modes and failures. As for hardware concepts, all but two were ex-
tracted. The approach failed to extract “operator desk ” and “message
transmission system ”. These concepts are mentioned only once in the docu-
ment. Their role is not further specified. A human reader would extract these two
concepts, but would have to guess how they interact with other components. This point
can be seen both as a weakness of the extraction technique and as an omission in the
document. As for other concept classes (messages, operation modes and failures), the
approach succeeded in extracting all the concepts belonging to these classes.

Evaluation of completeness of term extraction for the instrument cluster case study
is more difficult because the document does not list concepts and concept classes ex-
plicitly. Ad hoc, by skim reading the document, one can identify following concepts:
instrument cluster, rev meter, speedometer, indicator lights, engine control light, dis-
play, ignition key, radio, . . . , that are all present in the extracted model. One can
also easily identify some messages and technical parameters, like default pointer po-
sitions for dials. Nevertheless, for proper evaluation of completeness it is unwise to
rely on such a comparison. Either a domain expert that could evaluate completeness
of the extracted model directly or an extraction tool thatguaranteesthat all the con-



cepts are extracted is necessary for proper evaluation. In future research it could make
sense to try to compare the extraction results of the presented approach with those of
AbstFinder [14] and with those produced by a domain expert via manual document
analysis.

5.3 Lessons Learned

In the first case study, presented in Section 3, the goal was to see the actual applicability
of the approach. For this purpose a relatively small document was chosen, consisting
of only 6 pages. On the basis of this first case study the principal applicability of the
approach was shown, as long as the text is consistent in term usage. Inconsistencies
were detected on the basis of strange–looking term clusters and associations. Detection
of inconsistencies is a part of document validation. Furthermore, it focuses the attention
of the stakeholders and requirements engineers on terminology problems and helps to
use a consistent terminology throughout the whole document.

Terminology inconsistencies can be eliminated only manually, which was not a
problem for a short text. However, this gave rise to the question whether the approach
is applicable to larger documents.

The goal of the second case study, presented in Section 4, was testing scalability
of the approach. For this case study just one iteration of inconsistency correction was
necessary, as opposed to several iterations in the first case study because the writing
rules produced in the first case study could be used. The overall time cost for both
inconsistency elimination and ontology building amounted to 5 working days. Given
the fact that mere skim reading of the document took almost one working day, the total
of 5 days seems justifiable.

Summing up, I can say that the presented approach is promising for requirements
engineering. It can be used in RE–process both for quality assurance on the document
level and for bridging the gap between documents and domain–specific ontology.
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