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Abstract

Natural language is the main presentation means in in-
dustrial requirements documents. In such documents, sys-
tem behavior is mostly specified in the form of scenarios,
with every scenario written as a sequence of sentences in
natural language. The scenarios are often incomplete: For
the authors of requirements documents some facts are so
obvious that they forget to mention them; this surely causes
problems for the requirements analyst.

In our previous work we developed an approach to trans-
late textual scenarios to message sequence charts (MSCs).
In order that the produced MSCs can be used for further
development, they must be validated: i.e., for each MSC we
have to say whether it really represents a possible system
behavior, and whether the textual scenario was correctly
interpreted. In the presented paper we suggest an approach
to visualize different interpretations for the same scenario.
For visualized scenarios, the user can decide, which of them
represent allowed system behavior. This allows, in turn, to
generalize exemplary scenarios to universal specifications.
Applicability of the presented approach was confirmed in a
case study.

1. A Scenario Can Have Several Interpreta-
tions

At the beginning of every software project, some kind
of requirements document is usually written. The majority
of these documents are written in natural language, as the
survey by Mich et al. shows [22]. This results in require-
ments documents are imprecise, incomplete, and inconsis-
tent. From the linguistic point of view, document authors
may introduce three defect types, without perceiving them
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as defects, cf. Rupp [24]:1

Deletion: “. . . is the process of selective focusing of our at-
tention on some dimensions of our experiences while
excluding other dimensions. Deletion reduces the
world to the extent that we can handle.”

Generalization: “. . . is the process of detachment of the el-
ements of the personal model from the original experi-
ence and the transfer of the original exemplary experi-
ence to the whole category of objects.”

Distortion: “. . . is the process of reorganization of our sen-
sory experience.”

The authors of requirements documents are mostly un-
aware of these document defects. According to Boehm [2],
the later an error is found, the more expensive its correc-
tion. Correction of an error found in the design phase is
much more expensive than the correction of the same error
found already in the requirements engineering phase. Thus,
it is one of the goals of requirements analysis, to find and to
correct the defects of requirements documents.

The presented paper focuses on the “deletion”-defects in
scenarios. Deletion can manifest itself in exemplary spec-
ifications of some general rules: For example, the specifi-
cation can look like “The system receives inputa and pro-
duces outputb” instead of more general “Every time when
the system receives inputa, it immediatelyproduces output
b”. In order to find out, which interpretation of such se-
quences of actions is intended by the author of the require-
ments document, we visualize different possible interpreta-
tions, in the form of MSCs. Then, the analyst should decide
which of them really represent allowed system behavior.
Terminology: For the remainder of the paper we use the
following terminology: Ascenariois a sequence of natu-
ral language sentences. AMessage Sequence Chart(MSC)
consists of a set ofactors, a sequence ofmessagessent and

1The following definitions are translations of the definitions from [24],
in German



received by these actors, and a sequence ofconditionsinter-
leaved with the message sequence. Figure 1 illustrates the
introduced terminology.

actor 1 actor 2

message 1

condition

message 2

mscTerminology definition

Figure 1. MSCs: Terminology Definition

The remainder of the paper is organized as follows: Sec-
tion 2 introduces the case study used to evaluate the pre-
sented approach. Section 3 is the technical core of the paper.
It presents and evaluates the approach translating scenarios
to MSCs and then visualizing and validating the resulting
MSCs. Then, Sections 4, 5, and 6 present an overview of
related work, the summary of the paper, and possible direc-
tions for future work, respectively.

2. Case Study: The Instrument Cluster

Authors of requirements documents tend to forget to
write down facts that seem obvious to them. Even in a rel-
atively precise requirements document, as for example the
Instrument Cluster Specification [6], used as a case study
in the presented paper, missing facts can be identified. The
Instrument Cluster Specification describes the optical de-
sign of the instrument cluster (a part of a car dashboard), its
hardware, and, most importantly, its behavior. The behav-
ior is specified as a set of scenarios, like the below example,
taken from [6]:

1. The driver switches on the car.

2. The instrument cluster is turned on and stays active.

3. After the trip the driver switches off the ignition.

4. The instrument cluster stays active for 30 seconds and
then turns itself off.

5. The driver leaves the car.

If we translate this scenario to an MSC, we get the MSC in
Figure 22 as a possible interpretation. It is easy to see that

2“instrument cluster” is abbreviated as “ins. cl.”.

some implicit assumptions had to be made to construct the
MSC: it was assumed that the instrument cluster is turned
off by special messages sent by the car. Furthermore, it
was assumed that the message “turn off ignition” from the
driver directly follows turning the instrument cluster on and
that there are no messages in between. It is the goal of the
presented work, to make such assumptions explicit and to
validate them with the analyst.

driver car ins. cl.

switch on

ins. cl. is turned on

switch off ignition

?

ins. cl. stays active 30s.

turns itself off

leave

mscActivation of the instrument cluster

Figure 2. Scenario “Activation of the instru-
ment cluster”, manual translation to MSC

3. Interactive Validation of Scenarios

The starting point for our behavior analysis approach is
textual behavior specification, represented as a set of sce-
narios. In our previous work [17, 18, 19, 20] we devel-
oped an approach translating textual scenarios to message
sequence charts (MSCs). MSCs were chosen because they
represent a rather natural formalization of scenarios: in a
textual scenario, every sentence typically represents some
interaction with the system, and in an MSC every message
represents some atomic interaction between two actors. The
formalization approach, sketched in Section 3.1, results in
one MSC for every scenario.

To become useful for further system development, the
MSCs should be validated. To validate them, we visualize
every MSC and generate and visualize further MSCs, repre-
senting further potential system behaviors. For every gener-
ated MSC, the analyst has to decide whether the MSC rep-
resents an allowed system behavior. The theoretical basis



for the generation of further MSCs is the PROPEL (“PROP-
erty ELucidation”) approach [26], presented in Section 3.2.
We generate additional MSCs in two modes: batch, pre-
sented in Section 3.3, and interactive mode, presented in
Section 3.4. The case study has shown that the batch mode
produces too many MSCs, imposing high workload for the
analyst, whereas the interactive mode produces much less
MSCs without major impact on the informative value of the
produced MSCs. Both in the batch and in the interactive
mode, every generated additional MSC addresses the dele-
tion defect in scenarios, as it represents a potential system
behavior, possibly forgotten by the author of the require-
ments document.

3.1. From Text to MSCs

Translation of textual scenarios to MSCs is the prereq-
uisite for our visualization and validation approach, for two
reasons:

• Firstly, requirements documents typically contain tex-
tual scenarios, and not MSCs.

• Secondly, special structure of the MSCs extracted from
the text can be explicitly used for validation, cf. Sec-
tions 3.3 and 3.4.

In our previous work [17, 18, 19] we developed an ap-
proach for fully automated generation of MSCs from textual
scenarios. This approach takes two inputs: a set of actors,
with every actor represented as a word sequence, and a set
of scenarios, with every scenario represented as a sentence
sequence. First, our approach determines the passive sen-
tences (like “instrument cluster is turned on”) and translates
them to MSC conditions. Active sentences are translated to
messages, by identifying the message sender/receiver as the
longest word sequence occurring both before/after the main
verb and in the set of actors.

When translating scenarios to MSCs, our approach deals
with some typical deficiencies of natural language texts: It
can happen that either the message sender or the receiver
are not explicitly mentioned, or the whole message is just
omitted. For example, the sentence “The instrument cluster
turns on”, does not specify the message receiver.

The problem of unspecified message senders/receivers
and missing messages was solved by the organization of
MSC messages in a stack. Organization of messages in a
stack is motivated by the idea of situation stack by Grosz et
al. [14]. Grosz et al. introduce a situation stack to explain
how the human attention focuses on different objects during
a discourse. The focus depends on the sequence of sentence
heard so far. By default, a sentence defines some situation
and is pushed onto the stack. If a sentence reverts the effect
of some previous sentence, the corresponding stack element
is popped:

John enters the shop //push “enter”
— Some actions in the shop —
John leaves the shop //pop “enter” and the above

//stack elements
The idea of the situation stack can be easily transferred

to MSCs: We define an active actor as an actor that has sent
a message but has not received an answer yet. If the receiver
of the message under analysis (msg) is an active actor, then
it is possible to find the topmost message of the stack sent by
this actor (msg ′). Then,msg ′ and the messages contained
in the stack above it are popped. If the receiver is not an
active actor, the message under analysis is pushed onto the
stack.

The organization of messages in a stack makes also the
identification of missing messages possible: If the sender
of the message under analysis (sendernew ) differs from the
receiver of the message on the top of the stack (rectop),
then the message fromrectop to sendernew is missing.
For example, for the MSC in Figure 2, missing message
from “car” to “instrument cluster” just after the message
“switch off ignition” can be identified in this way. The mes-
sage stack enables the identification of missing message re-
ceivers as well: The default message receiver equals to the
sender of the message on the top of the stack. For the ex-
ample MSC shown in Figure 2, this allows to state that the
message “turns itself off” goes from the instrument cluster
to the car.

The above approach can visualize textual scenarios, but
it does not provide any means for validation of the generated
MSCs. Generation and visualization of further MSCs for
validation purposes are presented in Sections 3.3 and 3.4.

3.2. Behavior Visualization: Theoretical

Basis

The PROPEL (“PROPerty ELucidation”) approach by
Avrunin et al. [26] introduces a set of rules for interac-
tive validation of behavior models. The validation rules
are based on the specification patterns by Dwyer et al. [9].
PROPEL states that two specification patterns,responseand
precedence, are especially important for interactive valida-
tion: Avrunin et al. identified several interpretation possi-
bilities for them. The response pattern consists, in its ba-
sic form, of the messageaction, followed by the message
response. An interpretation possibility for the response
pattern consists, for example, in the question whether the
messageresponsemust immediately follow theaction or
whether some other messages are allowed in between.
Based on different possibilities to interpret the responseand
precedence patterns, Avrunin et al. introduced a set of ques-
tions to distinguish interpretation possibilities from each
other. For example, one of the questions for theresponse-
pattern is “Doesresponsehave to immediately followac-



tion?”. They apply the same set of questions to theprece-
dence-pattern too.

Avrunin et al. introduce six options to interpret the
response- and precedence-patterns:

“Pre-arity, which determines whetheraction may occur
one time or many times beforeresponsedoes.” To de-
termine pre-arity, we generate an additional MSC with
two instances ofaction before the occurrence ofre-
sponseand let the analyst decide whether this behavior
is allowed.

“Post-arity, which determines whetherresponsemay oc-
cur one time or many times afteraction does.” To
determine post-arity, we generate an additional MSC
with two instances ofresponseafter the occurrence of
actionand let the analyst decide whether this behavior
is allowed.

“Immediacy, which determines whether or not other in-
tervening events may occur betweenaction and re-
sponse.” To determine immediacy, we generate an ad-
ditional MSC containing a new message betweenac-
tion andresponse.

“Precedency, which determines whether or notresponse
is allowed to occur before the first occurrence ofac-
tion.” To determine precedency, we generate an addi-
tional MSC containingresponsebeforeaction.

“Nullity, which determines whether or notaction must
ever occur.” To determine nullity, we generate an addi-
tional MSC containing noaction, but in other respects
coinciding with the original MSC.

“Repeatability, which determines whether or not occur-
rences ofaction after an occurrence ofresponseare
required to be followed byresponse.” To determine
repeatability, we generate two additional MSCs. Both
of them containactionafterresponse. In one of them,
the second occurrence ofaction is again followed by
response, and in the other, the second occurrence of
actionis not followed byresponse.

Altogether, seven additional MSCs are necessary to de-
cide which variant of the response-pattern is the correct one
for a given scenario. For every additional MSC, the analyst
must decide whether this MSC represents a possible system
behavior.

3.3. Generation and Visualization of Addi-

tional MSCs: Batch Mode

To apply the PROPEL ideas to MSCs extracted from the
text, it is necessary to cut every MSC. Every cut divides the
MSC in four parts:

1. prefix, not a constituent of the pattern,

2. sequence of messages/conditions declared toaction,

3. sequence of messages/conditions declared toresponse,

4. and suffix, not a constituent of the pattern.

Let i be the length of the prefix andj the length of the suffix.
After stipulating the prefix and the suffix, we can arbitrarily
cut the remaining MSC elements (messages and conditions)
into actionandresponse. This implies that the number of
cut possibilities of an MSC containingn elements is equal
to

∑
n

i=0

∑
n−i

j=0 (n − i − j) ≈ n
3

6
.

The longest MSC extracted from the text in our case
study contains 22 elements. The above procedure would
result in223/6 ≈ 1800 possibilities to instantiate the re-
sponse pattern. Given seven additional MSCs for every pat-
tern instantiation, this would lead to approximately 12,000
additional MSCs. Obviously, the above, brute force, valida-
tion strategy is not feasible.

1 2 3 4

a

b

c

d

e

f1

f2

f3

g

h

mscCuts and levels

Figure 3. MSCs: levels to instantiate the re-
sponseor precedencepatterns

To circumvent the above problem of combinatorial ex-
plosion, we cut MSCs in blocks, on three levels:

Level 1: A block of Level 1 is a message sequence starting
with a message from the actor that initiates the whole
MSC. For example, in Figure 3 we have three such
blocks: the first block consists of the message “a”, the
second one consists of the messages “b”-“c”, and the
third one of the messages “d”-“h”.

The rationale for blocks of Level 1 is possible aggre-
gation of several independent interactions in a single
textual scenario. For example, in the example scenario
presented in Section 2, sentence 1 and sentence 3 ini-
tiate independent interactions, but are present in the



same scenario. Cutting an MSC in blocks of Level 1
separates such independent interactions.

Level 2: Block of Level 2 is motivated by the structure of
the MSCs extracted from the text (cf. Section 3.1): A
block of Level 2 consists of a consecutive sequence of
messages pushed onto the stack or popped from the
stack. Formally, a block of Level 2 is a part of a block
of Level 1, consisting of a sequence of consecutive
messages where each message either involves a new
actor in the communication or has the same sender and
receiver as the preceding message.

In Figure 3 we have four such blocks: the first block
consists of the message “a”, the second one of the mes-
sages “b” and “c”, the third one of the messages “d”-
“f3”, and the fourth one of the messages “g” and “h”.

Level 3: A block of Level 3 is a part of a block of Level 2,
consisting of a sequence of consecutive messages hav-
ing the same sender and receiver. The reason is to bun-
dle communication between two actors. In Figure 3
we have one such block, consisting of the messages
“f1”-“f3”.

If a condition occurs on the boundary between two blocks
of the same level, we consider this condition as belonging
to both blocks. If a condition occurs inside some block, we
consider it as an ordinary element of the block. The ratio-
nale for this design decision is the assumption that a condi-
tion occurring between two blocks of the same level denotes
an important system state, such that the messages occurring
in the preceding block result in this state, and messages oc-
curring in the subsequent block are initiated in this state.
This idea is illustrated in Figure 4: the condition “instru-
ment cluster is turned on” belongs both to the first and to
the second block.

On every level we consider all cut possibilities. How-
ever, we consider blocks as atomic. Formally, all cuts on
the leveln are performed within the corresponding block
of level n − 1, other parts of the MSC remain untouched.
Figures 4 and 5 illustrate this idea: Figure 4 shows blocks
of Level 1, and Figure 5 shows blocks of Level 2, belonging
to the same block of Level 1. When generating additional
MSCs, as required by PROPEL, we consider the MSC in
Figure 4 as consisting of just three elements, and the MSC
in Figure 5 as consisting of just two.

For every level and every cut on this level, we gener-
ate all additional MSCs necessary to determine which in-
stance of the response pattern represents the correct inter-
pretation. This strategy, although generating less additional
MSCs than the brute force strategy, can still result in so
many MSCs that this way of behavior validation becomes
infeasible. To measure the effort necessary to validate the
MSCs, we generated additional MSCs for the MSCs ex-

driver car ins. cl.

switch on

ins. cl. is turned on

ins. cl. is turned on
switch off ignition

?

ins. cl. stays active 30s.

turns itself off

leave

mscActivation of the instrument cluster

Figure 4. Cut of the MSC from Figure 2,
Level 1

tracted from the case study presented in Section 2. To il-
lustrate the generated MSCs, Figure 6 shows an additional
MSC (“post-arity” in the PROPEL-terminology, cf. page 4)
generated for the MSC from Figure 5.

To evaluate the number of additional MSCs, we gener-
ated them in two settings, proven to provide the highest
number of correct MSCs [20]. Every setting is defined by
the heuristics used to construct the set of actors. The set of
actors influences the identification of senders and receivers
in the sentences translated to messages, which, in turn, in-
fluences the structure of the extracted MSC. This implies
that different MSCs can be extracted from the same scenar-
ios, and thus different number of additional MSCs can be
generated, depending on the heuristics used to construct the
set of actors.

We used two different linguistic heuristics to extract ac-
tors: one based on the analysis of sentence structure, and
one based on the recognition of named entities3, cf. [20].
41 out of 42 scenarios from the case study presented in Sec-
tion 2 were used for evaluation. One scenario was not taken

3http://www.cnts.ua.ac.be/conll2003/ner/



heuristics to extract actors
number of generated additional MSCs, for 41 MSCs extracted from the text
maximum, for one MSC total, for all MSCs

Level 1 Level 2 Level 3 max. sum, level 1-3 Level 1 Level 2 Level 3 sum, level 1-3
recognition of named entities 588 70 42 658 4935 455 511 5901
analysis of sentence structure 588 140 252 686 4970 469 1050 6489

Table 1. Statistics: generation of additional MSCs in batch mode

driver car ins. cl.

ins. cl. is turned on
switch off ignition

?

ins. cl. stays active 30s.

turns itself off

mscActivation of the instrument cluster

Figure 5. Cut of the MSC from Figure 2,
Level 2

into account due to technical difficulties of its batch pro-
cessing. Table 1 shows the evaluation results: the number
of generated additional MSCs for levels 1-3. In this table,
columns “Leveln” refer to the number of questions gener-
ated when cutting the blocks of the corresponding level.

In Table 1, it is easy to see that up to686 additional
MSCs can be generated for a single given MSC, and that the
overall number of generated additional MSCs can amount
to 6489. In the brute force approach from page 4, approx-
imately19,000additional MSCs would be generated in the
setting with named entity recognition, and approximately
24,000in the setting with sentence structure analysis. As
every additional MSC has to be validated by the human
analyst, the figures presented in Table 1, although signifi-
cantly better than for the brute force approach, still imply
high workload for the analyst. The interactive approach,
presented in Section 3.4, reduces this workload at a price
of slight reduction of completeness of the generated set of
additional MSCs.

driver car ins. cl.

ins. cl. is turned on
switch off ignition

?

ins. cl. stays active 30s.

turns itself off

turns itself off

mscActivation of the instrument cluster

Figure 6. Generated additional MSC (post-
arity) for the MSC from Figure 5

3.4. Generation and Visualization of Addi-

tional MSCs: Interactive Mode

Interactive generation and visualization of additional
MSCs is based on the following key idea: in the batch
version, the tool generates all possible cuts for an MSC,
preserving the block structure. In the interactive version,
the tool consecutively asks the user where the prefix ends,
where the suffix starts, and where the boundary between ac-
tion and response lies. These questions are asked by visu-
alizing the MSC with a possible cut, and asking the user
whether the visualized cut makes sense. An example of
such visualized cut is shown in Figure 7.

The visualized cuts can be incomplete, as in Figure 7.
This allows to determine the end of the prefix first, then
the start of the suffix, and then the cut between the action
and response. Theoretically, in a really interactive system it
could be possible to let the user cut the MSC in prefix, suf-
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Figure 7. Possible partial cut of the MSC from
Figure 4

fix, action, and response, for example just by placing spe-
cial markers into the MSC to be cut. However, our current
Tcl/Tk GUI4 is limited to yes/no questions only. Thus, our
system generates MSCs containing questions, like the one
shown in Figure 7, visualizes such MSCs, and collects the
yes/no answers from the user. If the user answers “yes”
to the generated question-MSC, the corresponding cut is
fixed. Otherwise, the position of the question-cut is moved
one block down the time line, and the new question-MSC is
presented to the user. The boundaries of the prefix and the
suffix are determined consecutively, which implies that the
number of additional MSCs generated for an MSC of length
n isO(n), and notO(n3), as for the batch mode.

First experiments with the interactive determining of
MSC cuts have shown that there is one further possibility
to reduce the number of questions that the user has to an-
swer. It turned out that some blocks are repeatedly used in
several MSCs. For example, the first block from Figure 4

4http://www.tcl.tk/

is used in many MSCs dealing with different ways of turn-
ing the instrument cluster on or off. For every such block
used in several MSCs, it makes sense to generate additional
MSCs for it only once, and not every time it occurs in an
MSC.

Implementation of this optimization resulted in the im-
possibility to evaluate the number of generated additional
MSCs for a single given MSC. Thus, we evaluated the to-
tal number of generated additional MSCs only. As the total
number of generated additional MSCs determines the ac-
tual workload for the analyst, the evaluation results are still
meaningful.

Tables 2 and 3 show the number of generated addi-
tional MSCs in the interactive mode. As for Table 1,
columns “Leveln” refer to the number of questions gener-
ated when cutting the blocks of the corresponding level, and
the columns “Whole MSCs” refer to the number of ques-
tions generated when cutting whole MSCs. Table 2 shows
the results for the setting with actor extraction by means
of named entity recognition, corresponding to the first line
of Table 1. Table 3 shows the results for the setting with
actor extraction by sentence structure analysis, correspond-
ing to the second line of Table 1. It is easy to see that in
both settings, the user has to answer significantly less ques-
tions than in the batch mode. Although the number of ques-
tions might seem high (on total, up to 915 questions), all
the questions are yes/no-questions and can be answered by
a single click. On total, in every setting it took us approxi-
mately three hours to answer all generated questions, which
corresponds to approximately 10 seconds per question. In
the long run, it should be empirically evaluated whether the
question answering remains quick in an industrial setting.

When all questions are answered, the MSCs can be gen-
eralized, as proposed by Avrunin et al. [26], and used for
further system development. Furthermore, the set of MSCs
obtained after answering all questions can be used to gener-
ate an automaton for every actor, as sketched in Section 6.

4. Related Work

Work related to the presented paper can be subdivided
in two areas: work on natural language processing (NLP)
in requirements engineering, and work on validation of sce-
narios and MSCs. Both areas are presented below.

Natural Language Processing in Requirements Engi-
neering: There are three areas where natural language
processing is applied to requirements engineering: assess-
ment of document quality, identification and classification
of application specific concepts, and analysis of system be-
havior. Approaches to the analysis of document quality
were introduced, for example, by Rupp [24], Fabbrini et
al. [11], Kamsties et al. [16], and Nuseibeh et al. [7]. These



Whole MSCs Level 1 Level 2 Level 3 Total
“prefix end” questions 35 25 19 9 88
“suffix begin” questions 70 22 24 7 123
“action/response”-cut questions 35 22 21 8 86
additional MSCs as required by PROPEL 182 154 133 49 518

Total 322 223 197 73 815

Table 2. Statistics: generation of additional MSCs in inter active mode, setting with actors extracted
by means of named entity recognition

Whole MSCs Level 1 Level 2 Level 3 Total
“prefix end” questions 43 29 24 9 105
“suffix begin” questions 53 27 28 12 120
“action/response”-cut questions 28 25 26 9 88
additional MSCs as required by PROPEL 196 175 168 63 602

Total 320 256 246 93 915

Table 3. Statistics: generation of additional MSCs in inter active mode, setting with actors extracted
by means of sentence structure analysis

approaches have in common that they define writing guide-
lines and measure document quality by measuring the de-
gree to which the document satisfies the guidelines. These
approaches have a different focus from the approach pre-
sented in this paper: their aim is to detect poor phrasing and
to improve it, they do not target at behavior analysis.

Another class of approaches, like for example those by
Goldin and Berry [13], Abbott [1], and Sawyer et al. [25]
analyze the requirements documents, extract application
specific concepts, and provide an initial model of the ap-
plication domain. These approaches do not perform any
behavior analysis, either.

The approaches analyzing system behavior, as, for ex-
ample, those by Vadera and Meziane [28], Rolland and Ben
Achour [23], Gervasi and Zowghi [12], Breaux et al. [4],
Avrunin et al. [26], and and Dı́az et al. [10] translate re-
quirements documents to executable models by analyzing
linguistic patterns. In this sense they are similar to our work.
Vadera and Meziane propose a procedure to translate cer-
tain linguistic patterns into first order logic and then to the
specification language VDM, but they do not provide au-
tomation for this procedure. Rolland and Ben Achour state
that system behavior can consist of pairs of service request
and provision, which is comparable to theresponsepattern
used in this paper. However, although they introduce event
pairs, they do not use event pairs for validation. Gervasi
and Zowghi go further and introduce a restricted language,
a subset of English. They automatically translate textual
requirements written in this restricted language to first or-
der logic. Similarly, Breaux et al. introduce a restricted
language and translate this language to description logic.

The approach by Avrunin et al. is similar to the approach
by Gervasi and Zowghi in the sense that it introduces a re-
stricted natural language. The difference lies in the formal
representation means: Gervasi and Zowghi stick to first or-
der logic, Avrunin et al. translate natural language to tem-
poral logic. Our work goes further than the above three
approaches, as we do not assume or enforce language re-
strictions. Dı́az et al. introduce a transformation technique
producing UML sequence diagrams. However, the input to
this transformation technique is a semantical representation
of the sentences and not plain text as in our work.

Validation of MSCs: The play in/play out approach by
Harel and Marelly [15] is in its spirit most close to the pre-
sented work: It allows to specify system behavior as a set of
Live Sequence Charts (an extention of the MSC notation),
and then to simulate the system by sending stimuli and ob-
serving the system reaction. When simulating the system,
the play in/play out approach assumes that the specification
is complete and thus produces exactly the specified reac-
tions. In our work we challenge this assumption and gener-
ate new additional MSCs representing possible system be-
haviors, in order to see whether the specification is really
complete. In the long run, both approaches can be inte-
grated: new generated MSCs that were approved as pos-
sible system behaviors can serve as additional input to the
play in/play out approach.

There also exist a whole class of approaches deal-
ing with generation of additional MSCs and MSC valida-
tion [3, 8, 21, 27]. These approaches are based on the in-



teractive procedure to learn finite automata from a set of
examples. When necessary, the procedure to learn automata
can generate new MSCs and ask the user whether the gener-
ated MSC represents a possible system behavior. The main
drawback of these approaches is their complexity: For ex-
ample, Smyle [3] isPSPACE-complete, and the approach
by Letier et al. [21] requires exponential memory (exponen-
tial in the number of actors). Our approach presented in this
paper is much cheaper in the sense of resource consump-
tion, at the price of heuristic validation instead of precise
automata learning.

To summarize, to the best of our knowledge, there is no
approach to requirements documents analysis, that is able
to analyze scenarios written in natural language, to identify
missing information, and to visualize and validate resulting
MSCs, yet.

5. Summary

Requirements Engineering is a non-trivial task and the
presented approach does not claim to solve all its problems.
However, it solves an important problem of requirements
analysis, namely visualization and validation of the behav-
ior extracted from textual documents, as well as generaliza-
tion of explicitly specified system behavior. Visualization
and validation ensure that the textual specification is cor-
rectly interpreted. Generalized behavior builds the basisfor
the formalization of system behavior in automata, which,
in turn, can be used both for system simulation and code
generation. In a nutshell, the presented approach providesa
bridge between textual specifications and executable mod-
els.

6. Future Work

The presented approach provides a first step in the transi-
tion from textual behavior specifications to executable mod-
els. In the long run, the presented approach can be used as
the basis of refinement-based development, as well as for
automata generation. Broy et al. [5] proposed stepwise re-
finement of system functionality. In their specification pro-
cess, MSCs build the basis for the first step, namely partial
specification of the system behavior. To obtain complete
behavior specification, partial specifications should be com-
pleted and refined. The process to generate possible system
runs, as presented in Section 3, can be used to complete and
validate partial specifications.

To go further in specification completion, the presented
approach can be integrated with the approach by van Lam-
sweerde et al. [8] and the tool Smyle [3]. These approaches
translate a set of MSCs to automata (one automaton for ev-
ery actor). When additional information is necessary to pro-

duce automata, they generate new MSCs and ask the user,
which of the new MSCs represent possible system behavior.

Experiments with the tool Smyle have shown that the
number of generated MSCs is extremely high. This means
high workload for the user of the tool. Integration with the
approach presented in this paper can reduce the number of
the questions to the user in the following way:

1. For MSCs generated as described in Section 3, the user
decides which of them represent possible system runs.

2. When Smyle generates a new MSC, the integrated tool
tries to decide on the basis of Step 1, whether the new
MSC represents a possible system run.

3. If such decision is not possible (i.e., if the information
obtained in Step 1 is not sufficient), the integrated tool
forwards the question to the user.

Integration sketched above would combine the advan-
tages of both approaches: it would imply complete check of
possible system behaviors, provided by Smyle, and would
imply lower workload than pure Smyle, due to heuristic val-
idation developed in our work.
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F. Meziane, and Y. Rezgui, editors,Application of Natural
Language to Information Systems, volume 4592 ofLNCS,
pages 181–192, Paris, France, June 27–29 2007. Springer.

[19] L. Kof. From Textual Scenarios to Message Sequence
Charts: Inclusion of Condition Generation and Actor Ex-
traction. In 16th IEEE International Requirements En-
gineering Conference, pages 331–332, Barcelona, Spain,
September 10-12 2008. IEEE Computer Society Conference
Publishing Services.

[20] L. Kof. Requirements Analysis: Concept Extraction and
Translation of Textual Specifications to Executable Models.
In H. Horacek, R. Mu n̄oz, and E. Méthais, editors,Appli-
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