
Scenarios: Identifying Missing Objects and Actions by Means of Computational
Linguistics

Leonid Kof

Fakultät für Informatik, Technische Universität München,
Boltzmannstr. 3, D-85748 Garching bei München, Germany

E-mail: kof@informatik.tu-muenchen.de

Abstract

In industrial requirements documents natural language
is the main presentation means. In such documents, system
behavior is specified in the form of scenarios, written as a
sequence of sentences in natural language. The scenarios
are often incomplete: For the authors of requirements docu-
ments some facts are so obvious that they forget to mention
them. This surely causes problems for the requirements an-
alyst.

This paper presents an approach that analyzes textual
scenarios with the means of computational linguistics, iden-
tifies where communicating objects or whole actions are
missing in the text, completes the missing information, and
creates a message sequence chart (MSC) including the in-
formation missing in the textual scenario. Finally, this MSC
is presented to the requirements analyst for validation. The
paper presents also a case study in which scenarios from
a requirement document based on industrial specifications
were translated to MSCs. The case study shows the feasi-
bility of the approach.

1. Document Authors are not Aware that some
Information is Missing

Some kind of requirements document is usually writ-
ten at the beginning of every software project. The ma-
jority of these documents are written in natural language,
as the survey by Mich et al. shows [13]. This results in
the fact that the requirements documents are imprecise, in-
complete, and inconsistent. The authors of requirements
documents are not always aware of these document defects.
From the linguistic point of view, document authors intro-
duce three defect types, without perceiving them as defects,
cf. Rupp [15]:1

1The following definitions are translations of the definition from [15],
in German

Deletion: “. . . is the process of selective focusing of our at-
tention on some dimensions of our experiences while
excluding other dimensions. Deletion reduces the
world to the extent that we can handle.”

Generalization: “. . . is the process of detachment of the el-
ements of the personal model from the original experi-
ence and the transfer of the original exemplary experi-
ence to the whole category of objects.”

Distortion: “. . . is the process of reorganization of our sen-
sory experience.”

It is one of the goals of requirements analysis, to find and
to correct the defects of requirements documents. This pa-
per focuses on the “deletion”-defects in scenarios. Deletion
manifests itself in scenarios in the form of missing action
subjects or objects or even in whole missing actions. One
of the reasons for the deletion may be the fact that some in-
formation is too obvious for the author of the requirements
document, so that she finds it unnecessary to write down
this information. It is the goal of the approach presented in
this paper, to identify missing parts of the scenarios written
in natural language and to produce message sequence charts
(MSCs) containing the reconstructed information.

For the remainder of the paper we use the following ter-
minology: A scenario is a sequence of natural language
sentences, each sentence representing some action. An
MSC is a set of communicating objects and a sequence of
messages sent and received by these objects.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces the case study used to evaluate the pre-
sented approach. Section 3 explains ontology extraction,
a technology necessary for the analysis of scenarios. Sec-
tion 4 is the technical core of the paper, it presents the algo-
rithms transforming scenarios to MSCs. Section 5 presents
the evaluation of the approach on a case study. Finally, Sec-
tions 6, 7, and 8 present an overview of related work, the
summary of the paper, and possible directions for future
work, respectively.



2. Case Study: The Instrument Cluster

Authors of requirements documents tend to forget to
write down facts that seem obvious to them. Even in a rel-
atively precise requirements document, as for example the
instrument cluster specification [5], some missing facts can
be identified. The aim of the approach presented in this pa-
per is to identify missing parts of scenarios and complete
them.

The instrument cluster specification describes the optical
design of the instrument cluster as a part of the car dash-
board, its hardware, and, most importantly, its behavior.
The behavior is specified as a set of scenarios, like this:

1. The driver switches on the car (ignition key in position
ignition on).

2. The instrument cluster is turned on and stays active.

3. After the trip the driver switches off the ignition.

4. The instrument cluster stays active for 30 seconds and
then turns itself off.

5. The driver leaves the car.

If we translate this scenario to an MSC containing solely
a message sequence, we get the MSC in Figure 1. This
translation is surely incomplete, in the sense that timing,
“. . . stays active for 30 seconds”, is not taken into account.
Theoretically, MSCs allow also to set timers and for every
timer to perform some actions when the timer expires. Such
MSCs can be constructed by a human analyst. However,
extraction of MSCs with timers with the means of com-
putational linguistics requires semantic analysis, going far
beyond the capabilities of state-of-the-art linguistic tools.
Thus, in the presented work we focus on MSCs consisting
of message sequences only.

There are apparent problems even for the construction of
MSCs without timers: For example, in the second sentence
of the above example, “The instrument cluster is turned on
and stays active”, either the message sender or receiver is
missing, and the connection between the first and the sec-
ond message is not specified. Furthermore, the MSC con-
tains missing messages from the car to the instrument clus-
ter, most probably, something like “turn on” and “turn off
in 30 seconds”. These messages were simply forgotten by
the scenario author. It is one of the goals of the approach
presented in this paper, to identify such missing messages.

3. Identifying Communicating Objects in Sce-
narios

To identify communicating objects in scenarios, to dis-
tinguish them from other nouns, it is useful to have a list of

driver car ins. clust.

switch on

?

is turned on

switch off ignition

?

stays active for 30 seconds

turns itself off

leave

msc Activation of the instrument cluster

Figure 1. Scenario “Activation of the instru-
ment cluster”, manual translation to MSC

application specific names of potential communicating ob-
jects. This idea is similar to the glossary in CICO [8], where
application specific concepts are manually annotated either
as potential message senders or receivers, or sent data.

The approach presented in this paper differs from CICO
in the way how the actions specified in single sentences are
glued together, cf. Section 4, and in the way how the list
of communicating objects is constructed. In this paper an
ontology extracted from the requirements document is used
instead of a glossary, whereas in CICO a glossary has to be
handcrafted.

In computer science an ontology consists of three parts:
a list of concepts, a classification of these concepts (“is-a”
relation, taxonomy), and a set of non-taxonomic relations.
An ontology can be extracted from a requirements docu-
ments in four steps, as described in [12]:

• Every sentence is parsed, the subject and the objects of
every sentence are extracted.

• Each subject and each object is clustered according to
grammatical context in which it occurs.

• Every pair of overlapping clusters is joined to a larger
cluster, representing more general concepts. “is-a” re-
lation (taxonomy) is derived from the cluster hierarchy.

• A non-taxonomic relation is assumed for every two
concepts that often co-occur in the same sentence.

An ontology is vital when analyzing scenarios: for ex-
ample, the sentence “The driver switches off the ignition”
can be translated in two ways to an MSC message:

• The driver sends the message “switch off” to the igni-
tion.

2



• The driver sends the message “switch off ignition” to
some unspecified receiver. In this particular example
the receiver is most probably the car.

Thus, identification of message senders and receivers is a
non-trivial problem in the process of translation of scenar-
ios to MSCs. Given an ontology, a possible heuristics to
identify message senders and receivers would be the fol-
lowing: if the concept occurring in the sentence before/after
the verb is also contained is the ontology, it is the message
sender/receiver.

At the first glance, these heuristics has a obvious draw-
backs: when the ontology contains concepts that are nei-
ther message senders nor receivers, wrong communicating
objects are adopted for the MSC. Furthermore, if the on-
tology misses some concepts, correct message senders and
receivers are not identified either. However, this seeming
drawback is really an advantage: Before an ontology can
be used as a common project vocabulary, it must be vali-
dated. If errors in the MSCs generated from scenarios arise
from missing or redundant concepts in the ontology, they
contribute to ontology validation. The case study (cf. Sec-
tion 5.2) showed that the ontology correction induced by the
analysis of scenarios is not time consuming.

4. From Scenarios to Message Sequence Charts

4.1. Translating Sentences to Messages:
Linguistic Prerequisites

When analyzing scenarios, we want to translate every
sentence of a textual scenario to an MSC message. Further-
more, we want to identify which messages are missing, as
in the example in Figure 1. When translating a sentence
to an MSC message, we decompose the sentence in three
constituents: message sender, message content, message re-
ceiver. For this purpose we consider the sentence parts be-
fore and after the main verb:

• The message sender/receiver is the longest word se-
quence before/after the verb, contained in the ontol-
ogy.

• The message content is the verb plus the word se-
quence between the verb and the first word of the mes-
sage receiver, except for the determiners. If the re-
ceiver/sender cannot be identified, the message con-
tent is the whole part of the sentence after/before the
sender/receiver.

For example, if the concepts “driver”, “drunk driver”, and
“car” are all contained in the ontology, then, in the sentence
“The drunk driver switches on the car”, “drunk driver” is
identified as the message sender, “car” as the receiver, and

“switch on” as the message content. These heuristics work
under the assumption that the sentence is in active voice and
contains exactly one verb.

As the technical means for identifying the verb, a part-
of-speech (POS) tagger is used. Such a tagger assigns a
POS-tag (substantive, verb, adjective, . . . ) to every word.
Currently available taggers, as for example the tagger by
Ratnaparkhi [14], have the precision of about 97%, which
makes them unlikely to become an extra error source.

In the process of sentence decomposition we have to take
two linguistic error sources into consideration:

1. The sentence with POS-tags does not contain any verb
tag, what can happen in two cases:

• The sentence really contains no verb.

• The sentence contains a verb, but no verb tag due
to a tagger error. This situation is rather unlikely
given the tagger precision of 97%.

In both these cases the sentence has to be rephrased in
order to be translated to an MSC message.

2. The sentence with POS-tags contains more than one
verb tag, what happens in the following cases:

• The sentence contains a modal verb, like “must”
or “should”, together with a normal verb. In this
case it is even for the human analyst unclear, how
the sentence can be translated to an MSC mes-
sage. Thus, the sentence should be rephrased
anyway.

• The sentence contains passive, like “X is sent a
message” or “X is sent to Y by Z”. In the first
case a human analyst would make the grammati-
cal subject “X” to the message receiver. In the
second case a human analyst would make the
grammatical subject “X” to the message content.
Due to this ambiguity and resulting necessity for
advanced linguistic analysis, we consider passive
as an error case in this paper. Analysis of passive
sentences is a part of future work, cf. Section 8.

• The sentence contains several subordinate sen-
tences, like “If X sends Y to Z, Z sends . . . ”.
In this case a human analyst would produce two
MSCs for a single scenario: one MSC where X
sends Y to Z and Z reacts, and one MSC where
X does not send Y to Z. Our analysis software
cannot generate several MSCs for one scenario
yet. For this reason we consider subordinate sen-
tences as an error case. Analysis of compound
sentences is a part of future work.

• The sentence contains several actions, like in “X
sends Y to Z and replies something to T”. In this

3



case a human analyst would produce two mes-
sages for a single sentence: X sends Y to Z, X
sends something to T. Our analysis software can-
not generate several MSC messages for one sen-
tence yet. For this reason we consider several ac-
tions in one sentence as an error case. Analysis
of sentences containing several actions is a part
of future work.

From the linguistic point of view, all these error cases
can be detected with the same technique: The sen-
tences contain more than one verb, thus, the tagged
sentence contains the regular expression VB.*VB2

4.2. Glueing Messages Together

From now on we consider sentences containing exactly
one verb. Even in this case the identification of message
senders and receivers is not always simple. In order to avoid
the identification of wrong objects, e.g. sent messages, as
communicating objects for an MSC , we accept only ob-
jects contained in the previously extracted ontology as mes-
sage senders and receivers. This leads to the problem that
in some sentences we cannot identify the message sender or
receiver. The problem arises additionally from the fact that
some sentences, like “instrument cluster turns on”, do not
explicitly mention the sender or the receiver. We solve this
problem by introducing a default sender and receiver for ev-
ery sentence under analysis. Obviously, the default sender
and receiver depend on the messages previously sent. Man-
agement of this dependency is the core of the approach to
MSC construction presented in this paper.

To identify default senders and receivers, we organize
the messages in a stack. The idea of organization of mes-
sages in a stack is based on the following analogy: Grosz
et al. [10] introduce a situation stack to explain how the
human attention focuses on different objects during a dis-
course. The focus depends on the sequence of sentence
heard so far. By default, a sentence defines some situation
and is pushed onto the stack. If a sentence reverts the effect
of some previous sentence, the corresponding stack element
is popped:

John enters the shop //push “enter”
— Some actions in the shop —
John leaves the shop //pop “enter”

This idea can be transferred to MSCs in the following
way: If a new message m represents an answer to some
previously pushed message m′, m′ and the messages above
it are popped from the stack. Otherwise, the new message
m is pushed onto the stack.

2VB is the verb tag.

The remainder of this section describes the transfer of the
situation stack idea to MSCs in more detail: Section 4.2.1
introduces stack-based identification of the senders and re-
ceivers in incomplete sentences and Section 4.2.2 shows
stack management after the identification of senders and re-
ceivers.

4.2.1. Identifying the Sender and Receiver in Incomplete
Sentences

When translating a sentence to an MSC message, we say
that the message sender/receiver is the longest word se-
quence before/after the verb3 that is contained in the on-
tology. The problem arises when we cannot identify the
sender or receiver. For example, if we translate the sentence
“The instrument cluster turns on” to an MSC message, we
know that “instrument cluster” is the message sender, but
we do not know the receiver. To identify missing message
senders and receivers, we analyze the sender and receiver of
the message on the top of the stack. Here we assume that
the message stack contains the sent messages, for which no
corresponding answer message is available yet. The exact
rules of stack management will be described below, see Sec-
tion 4.2.2.

When identifying missing message receiver, we distin-
guish three cases, shown in Figure 2:

• The sender of the message under analysis equals to the
receiver of the message on the top of the stack, as in
Figure 2(a). In this case we assume that the message
under analysis is an answer to the message on the top
of the stack. The receiver of the message is then the
sender of the message on the top of the stack. In the
case of Figure 2(a) it is “Object 1”.

• The sender of the message under analysis equals to the
sender of the message on the top of the stack, as in
Figure 2(b). In this case we assume that the message
under analysis augments the message on the top of the
stack and, thus, has the same receiver. In the case of
Figure 2(b) it is “Object 2”.

• The sender of the message under analysis does not
equal to the sender nor to receiver of the message on
the top of the stack, as in Figure 2(c). In this case we
assume that some message is missing in the MSC, de-
noted by the dashed message in Figure 2(c), and that
the message under analysis is an answer to the missing
message. The sender of the missing message and the
receiver of the message under analysis coincide with
the receiver of the message on the top of the stack. In
the case of Figure 2(c) it is “Object 2”.

A missing message sender can be identified in a similar way.
3Please note that here we consider only sentences containing exactly

one verb.

4



the stack
top message of

the stack
top message of

the stack
top message of

message under
analysis

message under
analysis message under

analysis

?
?

Object 1 Object 1Object 2 Object 2 Object 3

?

Object 2Object 1

(a) (b) (c)

Figure 2. Missing message receiver, possible situations

the stack
top message of

message under
analysis

Object 3Object 1 Object 2

} push the stack
top message of

Object 3

missing
message message under

analysis

Object 1 Object 2 Object 4

}push

(b)

message under
analysis

Object 3 Object 1 Object 2

the stack
top message of

message under
analysis

missing
messagethe stack

top message of
}

Object 4 Object 1 Object 2 Object 3

} pop

(d)(c)

pop
m’ m’

(a)

Figure 3. Identification of missing messages and stack management

4.2.2. Identifying Missing Messages

When every message has a defined sender and receiver,
we can determine the necessary operations on the message
stack. Following situations are taken into account:

1. The sender of the message under analysis equals to the
sender of the first message, starting the whole MSC.
In this case we assume that the message under anal-
ysis starts a completely new MSC segment. This is
the case, for example, for the sentence “After the trip
the driver switches off the ignition” in the introductory
scenario in Section 2. Thus, we empty the stack and
reinitialize it with the new message.

2. The sender and the receiver of the message under anal-
ysis are equal to the sender and the receiver of the mes-
sage on the top of the stack, respectively. In this case
we assume that the new message augments the mes-
sage on the top of the stack. Thus, we just add the new
message to the MSC but do not change the stack.

3. The sender of the message under analysis equals to the
receiver of the message on the top of the stack, as in
Figures 3(a) and 3(c). We call an object “active” if it is
a sender of some message contained in the stack (for
example, “Object 1” and “Object 3” in Figure 3(c)) or
is the receiver of the top message on the stack.

• If the receiver of the message under analysis is

not an active object (Figure 3(a)), we add the new
message to the MSC and push it onto the stack.

• If the receiver of the message under analysis (m)
is an active object (“Object 3” in Figure 3(c)), we
assume that m is the reply to some message m′

sent by this active object. We pop m′ and all the
messages contained in the stack above m′.

4. The sender of the message under analysis is not equal
to the receiver of the message on the top of the stack,
as in Figures 3(b) and 3(d). In this case some message
is missing. We add a missing message to the MSC, as
shown in Figures 3(b) and 3(d).

• If the receiver of the message under analysis is
not an active object (Figure 3(b)), we add a new
message to the MSC and push it onto the stack.

• If the receiver of the message under analysis (m)
is an active object (“Object 4” in Figure 3(d)), we
assume that m is the reply to some message m′

sent by this active object. We pop m′ and all the
messages contained in the stack above m′.

Application of the procedure described above can be eas-
ily exemplified on the scenario presented in Section 2. Ta-
ble 1 shows a slightly changed scenario, so that each sen-
tence contains exactly one verb.4 For the analysis we as-

4To make the table compacter, “instrument cluster” is abbreviated in
Table 1 as “ins. clust.”.

5



extracted extracted sender receiver stack pushed/popped
sentence sender receiver assumed assumed action messages

for MSC for MSC (push/pop)

The driver switches driver car driver car push driver → car
on the car.
The instrument cluster ins. clust. — ins. clust. car 2x push car → ins. clust.
turns on. 2x pop ins. clust. → car
The instrument cluster ins. clust. — ins. clust. car — —
stays active.

After the trip the driver driver — driver car empty, push driver → car
switches off the ignition.
The instrument cluster ins. clust. — ins. clust. car 2x push car → ins. clust.
stays active for 30 seconds. 2x pop ins. clust. → car
The instrument cluster ins. clust. — ins. clust. car — —
turns itself off.

The driver leaves the car. driver — driver car empty, push driver → car

Table 1. Organization of MSC messages in a stack

sume that the previously extracted ontology contains “in-
strument cluster”, “driver”, and “car”, but no other nouns
used in the scenario.

We initialize the analysis with an empty stack. In the
first sentence the driver is identified as the message sender
and the car as the message receiver. The message “driver →
car” is pushed onto the stack. In the second sentence the in-
strument cluster is identified as the message sender, but the
sentence does not contain any message receiver. The situa-
tion corresponds to Figure 2(c). Thus, “car” is identified as
the receiver. Then, the missing message “ins. clust. → car”
and the message “car → ins. clust.” are added to the MSC,
as in Figure 3(d). The next sentence, “The instrument clus-
ter stays active”, results in a message that augments the pre-
vious message. Thus, the stack remains unchanged. Then,
the next sentence causes the emptying of the stack and the
same sequence of push and pop operations is performed
again. The resulting MSC is shown in Figure 5.

This example shows that the presented idea of message
stack works for this simple scenario. The approach was also
evaluated on more complicated examples. The results of the
evaluation are presented in the next section.

5. Case Study and Evaluation

The presented approach was evaluated on the instrument
cluster specification [5]. Although not used in an industrial
development project, this specification was derived from
real industrial documents. This specification was also in-
tended to serve as the contract basis between the car manu-
facturer and the supplier of the instrument cluster. The on-
tology, necessary for the translation of scenarios to MSCs,
was extracted in our previous work [12].

The case study consisted of three steps: First, the scenar-
ios had to be rewritten. Section 5.1 documents the changes
that were necessary and the time spent. Then, the scenar-
ios were translated to MSCs using the ontology extracted
in [12]. It turned out that the ontology contains some un-
necessary concepts and, at the same time, does not contain
some necessary ones. Section 5.2 presents the necessary
ontology changes in detail and documents the time spent
on these changes. Finally, Section 5.3 presents the MSCs
extracted from the corrected scenarios with the corrected
ontology.

5.1. Case Study: Correction of Linguistic
Deficiencies

The original scenarios from [5] had to be rephrased in
order to be translated to MSCs. The necessity to rewrite
the scenarios was caused by the extensive usage of passive
in the original version. Furthermore, some sentences con-
tained several actions, like “The instrument cluster stays ac-
tive for 30 seconds and then turns itself off”.

On the total, 42 scenarios were analyzed in the case
study. None of the scenarios satisfied the linguistic require-
ments, stated in Section 4.1, out of the box. 37 scenarios
were rephrased in less than two hours. For the 5 remain-
ing scenarios the necessary phrasing corrections were too
large due to extensive usage of passive and combination of
several actions in one sentence. These 5 scenarios were not
rephrased and not translated to MSCs either. Table 2 shows
the corrections performed on three of the scenarios. Sen-
tences in bold font are the new versions of the correspond-
ing sentences on the left hand side. It is easy to see that the
corrections are minimal.

6



Use Case: activation of the instrument cluster Use Case: activation of the instrument cluster
The driver switches on the car (ignition key in position ig-
nition on).

The driver switches on the car (ignition key in position ig-
nition on).

The instrument cluster is turned on and stays active. The instrument cluster turns on.
The instrument cluster stays active.

After the trip the driver switches off the ignition. After the trip the driver switches off the ignition.
The instrument cluster stays active for 30 seconds and then The instrument cluster stays active for 30 seconds.
turns itself off. The instrument cluster turns itself off.
The driver leaves the car. The driver leaves the car.

Use Case: temporary activation of the instrument cluster Use Case: temporary activation of the instrument cluster
The driver opens the door. The driver opens the door.
The instrument cluster is activated temporarily. The instrument cluster turns on temporarily.
The instrument cluster turns itself off after 30 seconds. The instrument cluster turns itself off after 30 seconds.
The driver leaves the car. The driver leaves the car.

Use Case: show RPM (revolutions per minute) Use Case: show RPM (revolutions per minute)
The driver switches on the car by turning the ignition key
to the switched on position.

The driver switches on the car by turning the ignition key
to the switched on position.

The car is switched on and the pointer of the rev meter
display goes from the technical initial position to the initial
position of the scale (0 min-1), damped as described below.

The pointer of the rev meter display goes from the tech-
nical initial position to the initial position of the scale (0
min-1), damped as described below.

The input signals from the motor are sent regularly. The motor regularly sends input signals.
The system determines the engine speed and displays it. The system determines the engine speed.

The system displays the engine speed.
The driver switches off the car by turning the ignition key
to the switched off position.

The driver switches off the car by turning the ignition key
to the switched off position.

The car is switched off and the pointer of the rev meter
display falls back to its technical initial position, damped
as described below.

The pointer of the rev meter display falls back to its
technical initial position, damped as described below.

The driver leaves the car. The driver leaves the car.

Table 2. Original scenarios (left) and corrected scenarios (right)

driver car pointer inp. signals system speed

switches on

?

goes from technical initial position . . .

motor regularly sends

?

determines engine

msc Show RPM

Figure 4. MSC (excerpt) for the scenario “Show RPM”, extracted with the original ontology from [12]

7



driver car ins. clust.

switches on

?

turns on

stays active

switches off ignition

?

stays active for 30 seconds

turns itself off

leaves

msc Activation of the instrument cluster

Figure 5. MSC for the scenario “Activation
of the instrument cluster” from Table 2, ex-
tracted with the corrected ontology

5.2. Ontology Validation via Construction
of MSCs

In the presented approach the translation of sentences to
MSC messages is strongly influenced by the available on-
tology: A word sequence is identified as a communicating
object if and only if the ontology contains it. If the ontology
does not contain all the necessary concepts, some commu-
nicating objects would not be identified. On the other hand,
if the ontology contains dispensable concepts, these could
be erroneously identified as communicating objects.

These considerations are exemplified in Figure 4. It
shows the MSC for the use case “Show RPM”, as presented
in the bottom right part of Table 2, extracted using the orig-
inal ontology from [12]. This MSC has obvious deficien-
cies: “input signals”, “system”, and “speed” are identified
as communicating objects, “motor” is not identified as a
communicating object, but, instead, just as a part of the
message from “car” to “input signals”.

Basing on the results of the validation of this MSC and
also other extracted MSCs, the original ontology from [12]
was corrected in the following way:

• The ontology branches containing non-hardware con-
cepts (system messages, names of scale positions, sen-
sor values (speed, temperature, . . . )) were deleted.

• The concepts “motor”, “sensor”, “wheel speed sen-
sor”, “IC display”, “digital speedometer display”,
“analog speedometer displays” were added to the
branch “hardware” of the ontology. These concepts
were used in the scenarios but missing in the ontology.

driver car ins. clust.

opens door

?

turns on temporarily

turns itself off after 30 seconds

leaves

msc Temporary activation of the instrument cluster

Figure 6. MSC for the scenario “Temporary
activation of the instrument cluster” from Ta-
ble 2, extracted with the corrected ontology

It is important to emphasize that all these changes, al-
though performed manually in an ontology editor, were
done in approximately two hours. This means that in a real
software project, such an ontology adjustment would not be
expensive either.

The necessity of ontology adjustment gives also another
important hint for ontology construction: When construct-
ing an ontology, it is vital to know what the ontology will
be used for. If it is intended to serve as the project glossary,
as in [12], it should contain all domain-specific concepts.
If it is to be used for the analysis of scenarios, as in the
presented paper, it should contain potential communicating
objects only.

5.3. Extracted MSCs, Validation

When the ontology contains all the potential communi-
cating objects and every sentence of the scenario satisfies
our minimal grammatical requirements, every scenario can
be translated to an MSC. Figures 5–7 show the MSCs con-
structed from scenarios shown in Table 2, right hand side.
A simple comparison of Table 2 and Figures 5–7 shows
that even for the sentences where the message sender or re-
ceiver are not explicitly mentioned, they are correctly iden-
tified. A comparison of the extraction results with other
scenarios from [5] showed that for all the 37 scenarios that
we rephrased to satisfy the grammatical requirements, the
MSCs coincide with the scenarios, modulo identified miss-
ing messages, timers like “turns off in 30 seconds”, and im-
plicit message repetitions like “motor regularly sends . . . ”

Figures 5–7 show also that even in seemingly precise
scenarios some information can be missing. To explicitly
present these missing parts to the requirements analyst is
also an important feature of the presented approach.

8



driver car pointer motor

switches on

?

goes from initial position . . .

?

sends input signals

determines engine speed

displays engine speed

switches off

?

falls back to its technical initial . . .

leaves

msc Show RPM

Figure 7. MSCs for the scenario “Show RPM” from Table 2, extracted with the corrected ontology

6. Related Work

The idea to use computational linguistic to analyze re-
quirements documents is surely not new. Although Ryan
claimed that natural language processing is not mature
enough to be used in requirements engineering [16], there
was a lot of work in this area in recent years.

There are three areas where natural language process-
ing is applied to requirements engineering: assessment of
document quality, identification and classification of appli-
cation specific concepts, and analysis of system behavior.
Approaches for the analysis of document quality were in-
troduced, for example, by Rupp [15], Fabbrini et al. [7],
Kamsties et al. [11], and Chantree et al. [6]. All these ap-
proaches have in common that they define guidelines for
document writing and measure document quality by mea-
suring the degree to which the document satisfies the guide-
lines. These approaches are barely comparable to the ap-
proach presented in this paper, as they do not perform any
behavior analysis.

Other class of approaches, like for example those by
Goldin and Berry [9] and Abbott [1], analyze the require-
ments documents, extract application specific concepts, and
provide an initial model of the application domain. They do
not perform any behavior analysis, either.

The approaches analyzing system behavior, as for exam-
ple those by Gervasi and Zowghi [8] and Tawbi et el. [17]
translate the text to executable models by analyzing linguis-
tic patterns. In this sense they are very similar to the ap-
proach presented in this paper. Gervasi and Zowghi trans-
late textual requirements to first order logic. They ana-
lyze only the information directly available in the docu-
ment, without reconstructing missing objects and actions.

Tawbi et al. state that the behavior can consist of pairs of
service request and provision pairs, which is comparable to
the stack idea building the core of the presented approach.
However, they do not explicitly introduce stack discipline
and do not provide automation.

To summarize, to the best of our knowledge, there is no
approach to requirements documents analysis, able to an-
alyze scenarios and to identify missing pieces of behavior,
yet.

7. Conclusion

The presented approach solves three important problems
of the early requirements analysis phase:

• It detects missing information in scenarios.

• It validates the previously extracted application spe-
cific ontology or glossary.

• It translates textual scenarios to MSCs.

The constructed MSCs can be used in further software de-
velopment, when validated. Thus, the approach presented
in this paper makes a contribution to behavior modeling and
also to formalization of functional requirements.

8. Future Work

The work presented in this paper can be further devel-
oped in three directions:

Taking different sentence constructions into account:
Some sentence forms, such as passive sentences,

9



sentences containing several action verbs, were treated
as error cases in this paper. One direction for future
work is the improvement of the linguistic part of the
analysis, in order that such sentences can be treated
as well. Furthermore, Tawbi et al. [17] list several
linguistic forms that the same action can have. In
the ideal case, all these forms should be taken into
account and lead to the same message in the MSC.

Refinement of ontology extraction: An ontology that is
to be used for analysis of scenarios should contain all
the potential communicating objects, and only them.
The ontology extraction procedure should be refined
to be able to distinguish communicating objects from
other nouns. The ideal ontology extraction procedure
would also classify the objects as senders or receivers.
Such a classification, although handcrafted, is used, for
example, in CICO [8].

Tool-based validation of the produced MSCs: Broy et
al. [4] proposed MSCs as the means of formalization
of partially specified system behavior. To achieve
such formalization, the presented approach can be
combined with the tool Smyle [2]. Smyle takes a set
of MSCs and generates other MSCs, corresponding to
not yet specified parts of system behavior. The analyst
has to decide which of the generated MSCs represent
allowed system behavior. When Smyle has gathered
enough information, it generates an automaton for
each communicating object.

A solution to these problems would further improve the pre-
sented approach and make it industrially applicable.

References

[1] R. J. Abbott. Program design by informal English descrip-
tions. Communications of the ACM, 26(11):882–894, 1983.

[2] B. Bollig, J.-P. Katoen, C. Kern, and M. Leucker. Re-
playing Play in and Play out: Synthesis of Design
Models from Scenarios by Learning. Technical Report
AIB-2006-12, RWTH Aachen, Germany, October 2006.
http://smyle.in.tum.de/2006-12.pdf, accessed 01.02.2007.

[3] T. D. Breaux, M. W. Vail, and A. I. Anton. Towards regula-
tory compliance: Extracting rights and obligations to align
requirements with regulations. In RE ’06: Proceedings
of the 14th IEEE International Requirements Engineering
Conference (RE’06), pages 46–55, Washington, DC, USA,
2006. IEEE Computer Society.

[4] M. Broy, I. Krüger, and M. Meisinger. A formal model
of services. ACM Transactions on Software Engineer-
ing Methodology (TOSEM), 16(1), 2007. available at
http://doi.acm.org/10.1145/1189748.1189753.

[5] K. Buhr, N. Heumesser, F. Houdek, H. Omasreiter,
F. Rothermehl, R. Tavakoli, and T. Zink. Daimler-
Chrysler demonstrator: System specification instrument
cluster, 2004. http://www.empress-itea.org/deliverables/-
D5.1 Appendix B v1.0 Public Version.pdf, accessed
11.01.2007.

[6] F. Chantree, B. Nuseibeh, A. de Roeck, and A. Willis. Iden-
tifying nocuous ambiguities in natural language require-
ments. In RE ’06: Proceedings of the 14th IEEE In-
ternational Requirements Engineering Conference (RE’06),
pages 56–65, Washington, DC, USA, 2006. IEEE Computer
Society.

[7] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. The lin-
guistic approach to the natural language requirements qual-
ity: benefit of the use of an automatic tool. In 26th Annual
NASA Goddard Software Engineering Workshop, pages 97–
105, Greenbelt, Maryland, 2001. IEEE Computer Society.

[8] V. Gervasi and D. Zowghi. Reasoning about inconsistencies
in natural language requirements. ACM Trans. Softw. Eng.
Methodol., 14(3):277–330, 2005.

[9] L. Goldin and D. M. Berry. AbstFinder, a prototype natu-
ral language text abstraction finder for use in requirements
elicitation. Automated Software Eng., 4(4):375–412, 1997.

[10] B. J. Grosz, A. K. Joshi, and S. Weinstein. Centering: A
framework for modeling the local coherence of discourse.
Computational Linguistics, 21(2):203–225, 1995.

[11] E. Kamsties, D. M. Berry, and B. Paech. Detecting ambigu-
ities in requirements documents using inspections. In Work-
shop on Inspections in Software Engineering, pages 68 –80,
Paris, France, 2001.

[12] L. Kof. Text Analysis for Requirements Engineering. PhD
thesis, Technische Universitaet Muenchen, 2005.

[13] L. Mich, M. Franch, and P. Novi Inverardi. Market research
on requirements analysis using linguistic tools. Require-
ments Engineering, 9(1):40–56, 2004.

[14] A. Ratnaparkhi. A maximum entropy model for part-of-
speech tagging. In E. Brill and K. Church, editors, Pro-
ceedings of the Conference on Empirical Methods in Nat-
ural Language Processing, pages 133–142. Association for
Computational Linguistics, Somerset, New Jersey, 1996.

[15] C. Rupp. Requirements-Engineering und -Management.
Professionelle, iterative Anforderungsanalyse für die
Praxis. Hanser–Verlag, second edition, 05. 2002. ISBN
3-446-21960-9.

[16] K. Ryan. The role of natural language in requirements engi-
neering. In Proceedings of IEEE International Symposium
on Requirements Engineering, pages 240–242. IEEE Com-
puter Society Press, 1992.

[17] M. Tawbi, F. Velez, C. Souveyet, and C. B. Achour.
Evaluating the CREWS-L’Ecritoire Requirements Elic-
itation Process, 1999. http://sunsite.informatik.rwth-
aachen.de/CREWS/reports99.htm, accessed 01.05.2007.

10


