
Combining Aspects of Reactive Systems

Leonid Kof and Bernhard Schätz

Technische Universität München, Fakultät für Informatik, Boltzmannstr. 3, D-85748
Garching bei München, Germany

{kof|schaetz}@in.tum.de

Abstract. For reactive systems, a large collection of formal models has
been developed. While the formal relationship between those models is
often carefully analyzed, the methodical implications for selecting or con-
structing appropriate models for specific application domains are rarely
addressed. We classify and compare different specification methods for
distributed systems concerning communication, behavior, and causality.
We discuss the implications of these dimensions, especially concerning
the combination of their properties.

1 Introduction

In the last thirty years, a variety of different formalisms for specifying distributed
and reactive systems were introduced, like Owicki/Gries [1], CSP [2], CCS [3],
UNITY [4], Esterel [5], Focus [6], to name a few. In general, each of them draws
from a different foundation and is therefore exhibiting its own strengths and
weaknesses. As a consequence, often pragmatic description formalisms like Stat-
echarts end up with a large set of formal models [7] differing in essential aspects.
However, for the engineer it is not always obvious which model to select for a
specific application domain.

In this paper we identify three essential aspects of those formalisms by strip-
ping away the more technical details:

– models of communication and compositionality as a related issue
– model of behavior and hiding internal structure as a related issue
– models of causality and action refinement as a related issue,

each aspect offering different variations to choose from. By classifying formalisms
accordingly, we show that these variations can be chosen independently. More
importantly, there also is a methodological dimension to identify combinations
that are useful concerning the modeling of reactive systems. In Section 2 we
introduce our classification dimensions and different characteristics of each di-
mension. In Section 3 we start off with the classification of some prominent
formalisms and sketch how less prominent combination could look like. Further-
more, we discuss methodical implications. Finally, in Section 4 we sum up the
results of the previous sections.



Development Step Modeling Aspect Abstraction

Composition
(‘Observations about com-
ponents still hold after combing
them’)

Communication
(‘How does the behavior of
one component influence the
behavior of others?’)

Interference by
environment

Modularization
(‘Observations about com-
ponents still hold after hiding
internal structure’)

Behavior
(‘How are observations com-
bined to describe a behavior?’)

Scheduling of ac-
tions

Action Refinement
(‘Relation between actions
still hold after refining actions’)

Timing
(‘How are actions combined
to describe an observation?’)

Delays between
actions

Table 1. Aspects of Reactive Systems

2 Classification

In the following subsections we consider three different aspects of reactive sys-
tems: communication, behavior, and causality. Since in the following we compare
those models, we give a short informal list of those common concepts that are
used for comparison:
A component is a unit of a system capsuling a state and supplying an interface.
The interface of a component describes the part of the component which can be
accessed by other components or the environment, e.g., by means of communica-
tion. Behavior relates components to (sets of) observations. Using composition,
components are combined into a new component. An observation is a set of events
of a component related by a causality relation, describing some form of sequence
of actions. An event is an observable interaction occurring at the interface of a
component, e.g. the communication of a message. Causality defines a relation
between events of a component, inducing observations in form of executions. By
adding time, it is possible to describe behavior which is influenced by the fact
that no communication takes place by modeling time has passed without com-
munication. Refinement relates different behaviors; e.g., behavioral refinement
(relating a behavior of a component to a more restricted form of behavior) and
structural refinement (relating a component to a network of subcomponents).

As shown in Table 1, the above aspects are related to principles of system
description: Communication is related to the compositionality of a model.
Behavior is related to the abstraction from implementation aspects (e.g., con-
tinuity) simplifying the description of a system behavior (e.g., modeling fairness).
Causality is related to refining the interaction of a system, e.g. when abstract-
ing from internal structure or when breaking up an atomic interaction.

For each of these aspects, we describe different variation classes of models.
Each variation describes a different level of abstraction from concrete implemen-
tations as found in models of reactive systems. The corresponding classes are
ordered concerning their capability to support these aspects. For sake of brevity,



we only distinguish three classes in each aspect - of course, when considering
fine-grained mathematical classifications more complex orders are needed, as,
e.g., [8] shows for behavioral models. Since however we focus here on the me-
thodical principles behind these formalisms we restrict these aspects to basic
classes and concentrate on the aspect of combining them.

2.1 Modes of Communication

The aspect of communication deals with modes of synchronization between reac-
tive systems, including the ways of exchanging information. As mentioned above,
the corresponding methodical aspect is the issue of compositionality, i.e., the ca-
pability to deduce the observations of a composed system from the observations
of its components. In this dimension, we consider the following range:

Implicit communication: This mode of communication corresponds to im-
plicit communication, e.g. by using (undirected) shared variables. Since no
explicit communication mechanism is used, the environment can change the
(shared) variables unnoticed by the component. Therefore, compositionality
is dependent on the behavior of the environment. This approach is used, e.g.,
in co-routine approaches like [1] or UNITY [4].

Explicit event based synchronous communication: While this model of-
fers an explicit communication mechanism, synchronization is undirected
(there is no designated sender and receiver); synchronization between com-
ponents takes place by the components agreeing on an event they are all
ready to accept. Therefore, when composing components, in this model the
possibility of blocking has to be considered. This model of communication
is found in TCSP [2] or CCS [3].

Explicit message based asynchronous communication: In this model the-
re is an explicit distinction between sender and receiver; furthermore, the
receiver of a message is input enabled, i.e. always ready to accept a mes-
sage. Examples for this model are semantics for asynchronous circuits like
[9], reactive modules [10], or stream processing functions like [6].

Note that increasing modularity is related to increasing abstraction from restric-
tions concerning compositionality: from compositionality with respect to freedom
of interference (implicit), via compositionality with respect to deadlock (syn-
chronous), to unrestricted compositionality (asynchronous). The corresponding
refinement steps successively add these restrictions (cf., [11]).

2.2 Types of Behavior Modeling

The behavioral aspect focuses on how observations are combined to form a de-
scription of the behavior of a system. In denotational models (e.g., traces [9],
failures [2], or stream processing functions [6]), observations are defined by the
elements of the domain; in algebraic ([12]) or operational models (e.g., CCS
[3], I/O-Automata [13]) observations are defined in terms of states and possi-
ble transitions from these states. Since these formalisms describe (potentially)



nonterminating systems, infinite observations are included in the behavior of a
system. Accordingly, this aspect is related to the abstraction from an operational
view of the system including issues like explicit parallelism/true concurrency of
events as well as fairness of observations. Consequently, depending on the level
of abstraction supplied by the model, phenomena like divergence in TCSP [2]
can occur. Combining the issues of fairness and explicit parallelism, we obtain
the following range:

Finite: These models essentially support only the description of finite behavior;
they do not include a distinction between arbitrary sequentialization and
parallel execution. No notion of fairness is supported; divergence can occur
in these models. Examples are TCSP [2] or receptive processes [14].

Weak Fairness: While this model also only supports admissible behavior for
sequential executions, it also supports explicit parallelism or weak fairness
avoiding the treatment of divergence. Examples for this model are continuous
stream processing functions [6] or CCS [3].

General Fairness: These systems support general non-admissible behavior or
fairness. Examples are TLA [15], or general trace-based descriptions [12].

The methodical aspect of this dimension is the increasing abstraction from
scheduling details: from scheduling parallel systems analogously to sequential
ones (finite), via a fair scheduling of parallel systems (weak), to a fair schedul-
ing independent of the kind of systems (general). The corresponding refinement
steps ensure these implicit fairness assumptions.

2.3 Causality and Time Modeling

Models of causality describe possible relations between the (inter)actions of a
component or system. Since those relations describe the unfolding of the com-
munication and behavioral actions over the time, those models always contain
some (explicit or implicit) aspect of time. The causality relation should allow for
structural refinement, i.e., we should be able to replace an abstract component
by a network of sub-components often requires augmentation of the causality
relation by internal actions of the network. Concerning causality we obtain the
following range of this dimension:

Metric Models: These models introduce an explicit labeling of events with
(real-valued) time stamps. Non-operational properties like Zeno behavior1

can arise. Examples for this model are Timed CSP, Timed or Densely-Timed
Focus.

Strict Sequentialization: Here, a linear order of events is imposed, making
absence of events implicit or explicit. Accordingly, the model excludes causal
loops and either imposes an interleaving semantics or introduces implicit tim-
ing constraints. Examples for this model are trace-based (e.g., asynchronous
circuits [9]) or state-based history semantics (TLA [15]).

1 By Zeno-behavior we characterize those models that do not exclude the occurrence
of infinitely many (inter)action in a finite amount of time; see, e.g., [16].



Unrestricted Causality: Here, no restrictions are imposed on the interaction
relation of a system, since an input received by the system can immediately
stimulate the production of some output without any delay (perfect syn-
chrony hypothesis). These model is used in Esterel [5] or some Statecharts
variants [7].

Note that this dimension in ordered with respect to abstraction from timing as-
pects: from metric models explicitly dealing with real time, via sequentialization
abstracting from the passing of time between events, to unrestricted causality
abstracting from the introduction of delays. The corresponding refinement steps
introduce explicit delays or durations (cf., [17]).

3 Putting Different Classifications Together

To illustrate the classification, we classify formalisms as shown in Table 2: TCSP
[2], CCS [3], I/O-Automata [13], Asynchronous Traces [9] Esterel [5], Focus [6],
TLA [15], Co-routines [1], fair process algebra [18] and Receptive Processes [14].
We also consider timed variants of some formalisms: Timed CSP [19], Timed
Focus[6] and Timed TLA [20]. In the following, we consider Esterel, Focus, and
TCSP more thoroughly to clarify the classification principles. The rest of the
classification is treated analogously. Then the address the issue of combing as-
pects to from specific variants of models of reactive systems.

3.1 Classification of Existing Techniques

To clarify the construction of Table 2, we use Esterel, Focus, and TCSP for
illustration.

Esterel uses signals to describe system states. An execution of a system con-
sists of a sequence of computing rounds. Within each round all the signals (inputs
and outputs) are considered as perfectly synchronous, leading to a “unrestricted
causal” model. Furthermore, communication is “message asynchronous”, as the
sender does not have to wait for the receiver. As Esterel is a state transition
system with (possibly) infinite runs and without any explicit fairness conditions,
it belongs to the class of weak fair systems. Focus defines each component as a
stream processing function. Such a stream implies a linear order on messages,
so we classify the causality modeling as “strict sequentialization”. Message de-
livery is not influenced by the receiver and therefore the communication mode is
asynchronous. As Focus includes infinite histories of interaction to describe the
behavior of a system, it is classified as a weak fair system. In TCSP message
exchange is realized by general synchronizing events; thus it is classified as us-
ing synchronous event-based communication. Since additionally TCSP considers
only finite runs, it is classified as finite.

3.2 Combining Aspects

When combining aspects to form a specific modeling formalism, the question
arises whether these combinations lead to reasonable models. Therefore, from a



Behavior Communication Causality
Metric Sequential Unrestricted

Implicit Co-routines
Finite Synchronous Timed CSP TCSP

Asynchronous Receptive Processes

Implicit
Weak Synchronous Timed CCS CCS

Asynchronous Focus, Traces Esterel

Implicit Timed TLA TLA
General Synchronous Fair Process Alg.

Asynchronous Timed Focus I/O-Automata

Table 2. Classification according to communication, behavior, and causality modeling.

technical point of view we are interested in independent dimensions, supporting
arbitrary combinations. From a methodical point of view, we are furthermore in-
terested in selecting the right class for each dimension for a particular application
domain. As each dimension is ordered according to its degree of abstraction, the
selection depends on the levels of abstraction needed in the application domain.

To show the independence of the dimensions, each possible combination is
investigated; For example, for ‘finite/asynchronous/real-time’, we can derive a
timed variant from the receptive processes along the lines of Timed CSP. For
‘weak/asynchronous/real-time’, suitable variants of Statecharts can be identified.
Appropriate real-time variants are discussed, among others, in the Statecharts
classification of [7]. For ‘general/synchronous/real-time’, timed variants of fair
process algebras can be used.

The methodical aspect of combinations is especially relevant if several mod-
els are combined in a development approach to support views of a system with
decreasing levels of abstraction. While an abstract, service-oriented view of em-
bedded hardware is supported best by a model including asynchronous com-
munication, general fairness, and unlimited causality, a low-level, task-oriented
view may require synchronous communication, weak fairness, and metric time.
Here, the ordering within the dimensions can help to find appropriate models
and corresponding refinement steps stating which properties must be considered
explicitly (e.g., buffer sizes when moving from asynchronous to synchronous com-
munication, causal loops when moving from unrestricted causality to sequential-
ization).

4 Conclusion

The introduced classification scheme supports the analysis of reactive models
from a methodical as well as a technical point of view. Such classification is
useful when selecting a formalism best suited to capture the aspects of systems
for a given application domain. Technically, the classification helps by structur-
ing the choice; methodically, the classification helps by addressing the strengths



and weaknesses arising from certain combinations. The independence of these
aspects help when ‘switching on and off’ of certain properties to produce possi-
ble formalisms. The ordering within the domains helps to support the relation
between different models arranged in a development process.

References

1. Owicki, S., Gries, D.: An Axiomatic Proof Technique for Parallel Programs. Acta
Informatica 14 (1976)

2. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International
(1985)

3. Milner, R.: Communication and Concurrency. Series in Computer Science. Prentice
Hall (1989)

4. Chandy, K.M., Misra, J.: Parallel Program Design - A Foundation. 2 edn. Addison-
Wesley (1989)

5. Berry, G.: The Esterel v5 Language Primer. Technical report, INRIA (2000)
http://www-sop.inria.fr/meije/esterel/esterel-eng.html; accessed August 19, 2002.

6. Broy, M., Stølen, K.: Specification and Development of Interactive Systems: FO-
CUS on Streams, Interfaces, and Refinement. Springer (2001) Texts and Mono-
graphs in Computer Science.

7. von der Beeck, M.: Comparison of Statecharts Variants. In: Proceedings of
FTRTFT94. (1995) LNCS 863.

8. van Glabbeek, R.J.H.: Comparative concurrency semantics and refinement of ac-
tions. Technical Report 109, Centrum voor Wiskunden en Informatica (1996) CWI
Tracts.

9. Dill, D.L.: Trace Theory for Automatic Hierarchical Verification of Speed Inde-
pendent Circuits. ACM Distinguished Dissertations. The MIT Press (1989)

10. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design:
An International Journal 15 (1999) 7–48

11. Schätz, B.: Ein methodischer Übergang von asynchronen zu synchronen Systemen.
PhD thesis, Technische Universität München (1998)

12. Bergstra, J.A., Ponse, A., Smolka, S.A.: Handbook of Process Algebra. Elsevier
(2001)

13. Lynch, N., Tuttle, M.: An Introduction to Input/Output Automata. CWI Quar-
terly 2 (1989) 219–246

14. Josephs, M.B.: Receptive process theory. Acta Informatica 29 (1992) 17–31
15. Lamport, L.: Verification and Specification of Concurrent Programs. In Bakker,

J., Roever, W.P., G.Rozenberg, eds.: A Decade of Concurrency - Reflexions and
Perspectives, Springer Verlag (1993) 347–374 LNCS 803.

16. Shields, M.W.: Semantics of Parallelism. Springer (1997)
17. Scholz, P.: Design of reactive Systgems and their Distributed Implementaion with

Statecharts. PhD thesis, Technische Universität München (1998)
18. Parrow, J.: Fairness properties in process algebra with applications in communi-

cation protocol verification. PhD thesis, Uppsala University (1985)
19. Davis, J., Schneider, S.: An Introduction to Timed CSP. PRG- 75, PRG Program-

ming Research Group Oxford (1989)
20. Abadi, M., Lamport, L.: An old-fashioned recipe for real time. ACM Transactions

on Programming Languages and Systems 16 (1994) 1543–1571


