
A stream�based mathematical

model for distributed

information processing systems

� SysLab system model �

Cornel Klein� Bernhard Rumpe� Manfred Broy

Institut f�ur Informatik� Technische Universit�at M�unchen

����� M�unchen� Germany

e�mail� �broyjkleinjrumpe�	informatik
tu�muenchen
de

Abstract

In the SysLab�project� we develop a software engineering method based

on a mathematical foundation� The SysLab system model serves as an ab�

stract mathematical model for information systems and their components�

It is used to formalize the semantics of all used description techniques�

such as object diagrams� state automata� sequence charts or data��ow di�

agrams� Based on the requirements for such a reference model� we de�ne

the system model including its di�erent views and their relationships�

Keywords� Semantic Model� Re�nement� Decomposition� Streams�
Data��ow� Software Development Method

�This paper originated in the SysLab project� which is supported by the DFG under
the Leibnizprogramme and by Siemens�Nixdorf�

�It is published in the proceedings of FMOODS��� �Formal Methods for Open Object�
based Distributed Systems� Workshop as report ENST ��S��	 by ENST France Telecom�
pages 
�
�

�� Editors Elie Naijm and Jean�Bernard Stefani�





� Introduction

Methods for systems and software development� like OMT �RBP����� Fusion
�CAB����� and GRAPES �Hel���� model a system at di�erent abstraction levels
and under di�erent views
 Within the process of modeling they provide de�
scription techniques like entity��relationship�diagrams and their object�oriented
extensions� state automata� sequence charts or data��ow diagrams
 A critical
point of existing commercial methods is imprecision of the semantic description

The de�nition of the description techniques as well as the relationships between
di�erent description techniques of a method is usually only given informally
 A
lot of problems during the application of the methods exist� which are caused by
the ambiguous and vague interpretation of the semantics of the used modeling
concepts�

� the communication between the persons involved in the project is more
di�cult� because of ambiguities arising from informal semantic descriptions�

� it is impossible to de�ne formal relationships between di�erent description
levels and to de�ne rules to transfer information between two description
levels�

� a solid basis for tool support is missing�

� even in one description level there is a lack of clarity concerning the con�
sistency and completeness of a set of documents
 Issues concerning �con�
sistency� and �completeness� can only be tackled informal


As a consequence� tool systems for the support of methods ��CASE�Tools�� often
do not cause the expected gain in productivity� The information which can be
acquired by the use of methods is� because of the de�cient semantic foundation
of the methods� not very evident
 As a result of this� the functionality of tools is
mostly restricted to document editing� and managing functions


Recently� various approaches for formalizing methods of systems and software de�
velopment were given
 Well known are the so�called �meta�models�� originating
in the context of tool integration� �see �CDI���� �Tho��� and �HL����
 However�
by this �models� almost only the abstract syntax of the description techniques
is captured
 An overview of several projects concerning the integration of struc�
tured methods with techniques of formal speci�cation can be found in �SFD���

In �Hus���� the British standard method SSADM �AG��� is formalized using the
algebraic speci�cation language Spectrum �BFG����
 The work of Hussmann
goes beyond the approaches described in �SFD���
 Hussmann states a mathemat�
ical model of the information systems modeled by SSADM to which he relates
the di�erent description techniques which occur in in the method
 This approach

�



o�ers a complete analysis of the semantics of the SSADM�description techniques
and their relationships� the de�nition of conditions for consistency and complete�
ness of a set of description techniques� and a simple basis for obtaining prototypes
by functional programs


��� The role of the system model in SysLab

The SysLab�project aims at developing a practicable method for system� and
software development� that is scienti�cally founded� and that does not show the
above�mentioned disadvantages due to the lack of a semantic foundation
 More�
over� in SysLab a prototype of a tool system should be created
 The formal�
ization should not end in itself� but it should provide the semantic basis for the
check for consistency of the concepts
 The semantic foundation is achieved by
the usage of a uniform mathematical system model for SysLab
 This abstract
mathematical model of information processing systems serves for relating to it all
description techniques used in SysLab� such as object diagrams� state diagrams�
data��ow diagrams� etc
� and all transformation rules for the transformation of
documents
 Each document� such as an object diagram� is regarded as a propo�
sition over the mathematical system model


The formalization of description techniques leads primarily to a deeper compre�
hension of the meaning of the descriptions� the aspects on which statements are
given� and their inter�relations
 Therefore description techniques can be used
more objectively
 Furthermore it is possible to state conditions for consistency
and completeness of a set of description documents� and to de�ne and to analyze
relationships between description documents of di�erent abstraction levels
 Fi�
nally formalization is an important mile�stone on the way to a more e�ective tool
support of methods� because semantic�preserving transformations between dif�
ferent description techniques are feasible which �nally result in executable code

Moreover a �exible application of formal techniques� which is necessary in safety�
critical applications� is possible


��� Requirements on the system model

It is the aim of this paper to provide a common basis for all people involved in
the SysLab�project concerning the notion of a system used and the de�nition of
the semantic of the various description techniques
 Therefore� the system model
has to cover all phases and all description techniques of the SysLab method�
and it may not be restricted to a certain class of information processing systems�
such as commercial information systems
 From that results the requirement to
develop a system model which is as general as possible


�



On the other hand� it should be easy to de�ne a semantics based on the system
model for the description techniques to be developed
 This leads to the require�
ment that the system model has to be tailored for the description techniques we
are aiming at
 This means for instance that we are aiming at a model supporting
the dynamic creation and deletion of components ��objects��


The basic assumption with respect to the structure of information processing
systems is that such systems are hierarchically and modularly constructed from a
number of components� which may interact in parallel and which can be viewed
as information processing systems themselves
 In this case� we call the system
a distributed system
 Distribution here means spatial distribution as well as log�
ical distribution of functionality across components
 However� there are systems
which are not parallelized or distributed any further
 Such basic components can
be modeled using state automata with input and output
 The repeated decom�
position of a system into subsystems yields a hierarchical system� the structure
of which can be viewed as a tree with distributed systems on the inner nodes and
with basic components on the leaves


We are interested in a system model in which each kind of interaction is express�
ible
 In our opinion� each kind of interaction can be viewed as the exchange of a

message between the interacting components
 Thus components can be modeled
as having input ports to receive messages from their environment� and output

ports to send messages to their environment
 The ports constitute the interface
of a component� they provide the only possibility for the interaction between a
component and its environment
 The behavior of such a component is the rela�
tionship between the sequences of messages on its inputs ports and the sequences
of messages on its output ports
 Systems and their components encapsulate data
as well as process
 Encapsulation of data means that the state is not directly vis�
ible to the environment� but can only be accessed using explicit communication

Encapsulation of a process means that the exchange of a message does not imply
the exchange of control� and that therefore each component is a process of its
own


Exchange of messages between the components of a system is asynchronous
 This
means that a message can be sent independently of the actual readiness of the re�
ceiver to receive the message
 The requirement for asynchronous communication
results from experience in the project Focus �BDD����� Asynchronous system
models provide the most abstract system model for systems with message ex�
change
 They can easily be modeled using stream processing functions� for which
a multitude of tractable speci�cation techniques for untimed as well as for timed
systems exist ��GS���� �BDD�����
 Moreover� for stream processing functions
a powerful theory for compositional re�nement has been developed
 By using
an asynchronous system model� in contrast to process algebraic approaches like
the ��calculus �Mil�� or CCS �Mil���� we do not have to tackle synchronization
issues
 To take into account synchronization aspects is in our opinion an issue

�



which is irrelevant in the early phases of system development
 However� synchro�
nization can easily be encoded in our model� for instance by using an appropriate
protocol


If possible� the system model should not impose any constraints concerning the
addressing of messages
 One possibility for the addressing is that the input� and
output ports are statically connected through channels
 Alternatively� it is also
possible in our model to address messages using identi�ers� as they are used in
the context of object�oriented programming languages
 Moreover� in de�ning the
semantics of object�oriented programming languages we cannot assume that the
set of components is static� but we have to allow for the dynamic generation of
components
 These requirements lead to two concepts for communication
 The
�rst uses ports and the second uses identi�ers
 The system model has to be
prepared for both communication concepts� where one of them or a combination
of both may be chosen if the systemmodel is applied
 However� our systemmodel
is not concerned with further object oriented concepts like class descriptions
or inheritance hierarchies
 These are regarded as description techniques� the
semantics of which is de�ned using the mathematical system model


To allow for the consideration of systems in which quantitative time is relevant�
the system model has to provide an explicit notion of time which goes beyond
the causality relation formalized by the monotonicity requirement for stream pro�
cessing functions �BDD����
 We assume that a discrete time� which is obtained
by partitioning the time scale into equidistant time intervals� is su�cient for the
purpose of SysLab


The system model is a reference model� which is referred to by the SysLab

method description� by the de�nitions of the semantics of the description tech�
niques� and by the tool development
 It serves primarily as a basis for the com�
munication among the people involved in the project� and it has to be presented
accordingly
 Because issues concerning re�nement and veri�cation� as they are
treated in the projects Focus �BDD���� and Spectrum �BFG����� play a sub�
ordinated role � at least for the present � it is not necessary to provide a concrete
syntax or a deduction calculus for the systemmodel� or to code the system model
in a formal logic
 Therefore� we restrict ourselves to a purely mathematical pre�
sentation of the system model
 However� it is possible that future enhancements
of the system model will obtain a more formal syntax and semantics


This paper is organized as follows� In the next section the black�box view of
systems is presented
 This is done by describing the mathematical structure of
streams� by presenting stream processing functions as a model of interactive sys�
tems� and by introducing identi�ers for components
 In section � we introduce
two glass�box views� the system as a basic component and the system as a dis�

tributed system
 In section � we give a conclusion by comparing the presented
system model with the requirements stated in this section


�



� Black�Box View

An information processing system is an entity interacting with its environment
by the exchange of messages
 The interface between the system and the environ�
ment can be modeled as consisting of so called ports� which are often also called
channels� over which data �ow
 We distinguish between input ports and output

ports
 A graphical representation of a component with the input ports port� and
port� and the output ports port�� port� and port� is given in Figure 
 We assume
that all port names like port� � � � port� are contained in the set P of port names�
which is required to be at most countable


port� port�

port�

port�

port�

Figure � Black�box view of a system

At runtime� a system receives messages on its input ports and sends messages
on its output ports according to its behavior
 In the sequel� we will start by
introducing streams as a model for the communication history of ports� after
which we present stream processing functions as a model of interactive systems
and identi�ers of components in our system model


��� Streams

The behavior of a system is modeled by its system runs� which describe the
relationship between the messages arriving on the input ports of the system and
the messages sent on the output ports of the system
 We assume that for each
run the events on a port are totally ordered� which means that for two di�erent
events always one causally and temporarily precedes the other
 This allows to
model the communication history on a port by a stream of messages


A stream is a �nite or in�nite sequences of messages
 If M denotes the set of
messages� M� the set of all �nite sequences of messages and M� the set of all
in�nite sequences of messages� for the set of all streams over M � denoted by M��
we can de�ne�

M� � M� �M�

�



We will use the following operations on streams�

� � � M� �M� � M� denotes the concatenation of two streams
 Thus s�t
is the stream which is obtained by putting the second argument after the
�rst
 The operator � is usually written in in�x notation
 We assume that

s �M� � s�t � s�

holds� which states that the concatenation of an in�nite stream s with a
stream t yields the stream s
 � will also be used to concatenate a single
message with a stream


� � �M� � N � f�g delivers the length of the stream as a natural number
or �� if the stream is in�nite


� Filter � P�M��M� �M� denotes the �lter�function
 Filter �N� s� deletes
all elements in s which are not contained in set N 


In addition to the total order of events modeled by the data�type of streams our
system model also provides an explicit notion of time
 Like in �St���� we assume
that time proceeds in equidistant time intervals� and we model the proceeding of
time by one time interval using a time signal

p �� M � called tick
 With M
p
we

denote the set M � fpg� and we de�ne�

M� � fs � �M
p
��j��Filter �fpg� s�� ��g

M� � �M
p
��

The set M� is the set of all in�nite sequences of elements from M � fpg� which
contain in�nitely many copies of

p

 The requirement for in�nitely many copies

of
p

models the fact that time never ends and that we consider only in�nite
communication histories
 Streams over M

p
contain only �nitely many messages

fromM between two ticks
 The set M� will be used in the sequel to speak about
�nite pre�xes of in�nite streams


Assuming that In denotes the set of all input ports and that Out denotes the set
of all output ports� the communication history of a system can be modeled by a
pair of functions in and out� which map ports to streams of messages and ticks�

in � In�M�

out � Out�M�

�



Functions like in and out� which map port names to timed streams� are called
bunches of message streams
 This way� the selection of a message stream of port
p out of a bunch of messages b corresponds to function application
 To ease
readability� in this case we write the function application in the form

b�x

where x � In �Out


��� Stream processing functions

The behavior of a system is modeled by a timed stream processing function map�
ping a bunch of input streams to a bunch of output streams�

Behavior � �In�M��� �Out �M��

However� not every function with this functionality represents an adequate model
of an information processing system� In reality� it is impossible that at any point
of time the output depends on future input
 To model this fact� we impose an
additional mathematical requirement
 First we de�ne�

��M� � Nat�M�


The application of � will be written in in�x notation
 s � j yields the �rst j time
intervals of the stream s� i
e
 s � j is the pre�x of s containing the j
th tick as
last element� or the empty stream if j � �
 For that reason� s � j contains exactly
j ticks� and s � j is a pre�x of s�

��Filter �fpg� s � j�� � j

	t �M� � �s � j��t � s

j � �� ��s � j� � �
j � �� 	t � M� � s � j � t�

p

The operator � is overloaded to bunches of in�nite timed streams by point�wise
application
 Let s � L�M� with L 
 P be such a bunch of timed streams�

�s � j��p � �s�p� � j

�



We now postulate the requirement that the output of a component at any point of
time j may not depend on the input at a future point of time
 This would result
in an oracle� which is not implementable
 We therefore require stream processing
functions to be pulse�driven
 The function Behavior is called pulse�driven� if for
each j� the output up to to time j is only determined by the input up to time j�

s � j � t � j � Behavior�s� � j � Behavior�t� � j

Functions with a bunch of input streams as domain and a bunch of output streams
as range that are pulse�driven are called stream processing functions
 We denote
the set of stream processing functions by

�In�M��
p���Out�M��


To use stream processing functions to model behavior of systems gives us a very
simple composition technique for components� based on function composition


In the following� we characterize the set of all distributed systems we are inter�
ested to model
 This is done by characterizing properties of all instances of the
system model


��� Identi�ers

We are interested in systems that allow to address a message by the identi�er

of the receiver� like this is in general done in object�oriented programming lan�
guages
 We use a countable set ID of identi�ers for this purpose
 Every identi�er
names exactly one component in the system and every component has exactly one
identi�er
 However every component may have several input and output ports

We denote them by functions Inid and Outid� that attach sets of portnames to
every identi�er�

In � ID� P�P �
Out � ID� P�P �

The application of In and Out is written as Inid and Outid
 We require the sets
of portnames of di�erent components to be disjoint�

id �� id� � �Inid �Outid� � �Inid� �Outid�� � 

This requirement does not restrict the power of our system model� but simpli�es
the de�nitions in the sequel� because now every portname is uniquely attached
to one component


�



Identi�ers and portnames serve two purposes
 On one hand� they allow us to
model components resp
 channels during the system development� on the other
hand� they can be used for the implementation of message passing mechanisms

In the second case identi�ers or portnames become part of the messages which
�ow within the system


A stream processing function that models the behavior of a system component
with identi�er id is denoted as

Behaviorid � �Inid �M��
p���Outid �M���

Function Behaviorid exactly describes the result on the output ports for every
input given on the input ports


� Glass�Box Views

As already mentioned in the beginning� regarding the internal construction� we
distinguish between

� basic components and

� distributed systems that are decomposed into a nonempty set of compo�
nents


The set of identi�ers ID can therefore be divided into the disjoint sets of identi�ers
for basic components IDb and of identi�ers for distributed components IDs�

ID � IDb � IDs

IDb � IDs � 

��� Basic components

Basic components are systems that are not composed of distributed components

They can be modeled by stream processing functions or by state�machines with
input and output
 Mathematical models for basic components are for example
state�transition�systems �BDDW�� or I�O�automata �LS���
 Especially concur�
rent timed port automata �GR��� are suited to describe basic components with
several input and output ports in a timed environment


A description of basic components by state�machines is suitable whenever con�
crete assumptions about the structure of the internal state of the component are
made
 If a description�technique only considers the black�box behavior of a com�
ponent� we will not explicitly construct state�machines� but instead we will use a
characterization of the behavior just by stream processing functions


�



��� Distributed Systems

Besides being a basic component� a component can internally be decomposed into
a set subsystems called components
 In this case we speak of a distributed system

As already mentioned� distribution in this case means spatial distribution as well
as logical distribution
 The identi�ers of the components of a distributed system
are denoted by Parts�

Parts � IDs � P�ID�

By repeated decomposition of a system we get a hierarchy of systems and sub�
systems
 Function Parts therefore characterizes a tree� with a special identi�er

RootSystem � ID

as root of this tree
 By this arrangement of all components in a component hier�
archy� the superior components as well as the parts of a component are uniquely
determined
 The set of identi�ers together with function Parts is used to de�
�ne this hierarchical structure of systems� while the set of portnames determines
communication channels


We now examine the relationship between the behavior of a distributed system
id � IDs and the behaviors of its components
 By InPartsid and OutPartsid�
we denote the sets of input and output ports of all components of id
 They are
de�ned as follows�

InPartsid � fpj	id� � Parts�id� � p � Inid�g
OutPartsid � fpj	id� � Parts�id� � p � Outid�g

Figure � shows a diagram of a distributed system
 A distributed system consists
of its components Parts�id� and a communication medium� which transmits the
messages from the sender to the correct port of the receiver
 The communica�
tion medium acts like a �membrane� between the inner and the environment of
a component
 In the following� we characterize the message �ow through this
membrane by relating the input and the output message streams of this mem�
brane


��� The Communication Medium

The communication medium has a complex signature� the message origins

Originsid and the message destinations Destinationsid
 The message origins con�
sist of the input ports of system id and of the output ports of the components of
id
 Conversely the message destinations consist of the output ports of id and of
the input ports of the components of id






OutidInid

Parts�id�

OutPartsid

InPartsid

Figure �� A distributed system

Originsid � Inid �OutPartsid
Destinationsid � Outid � InPartsid

For description purposes� we assume that every message contains its origin and
destinations in itself
 We therefore do not allow message broadcasting� but require
that every message carries the information that identi�es a unique destination

We model this by two functions

originid �M � Originsid
destinationid �M � Destinationsid�

that describe the origin and the destination port of a message depending on the
system id through which the message actually �ows
 The two functions originid
and destinationid de�ne the connection structure between the components of a
distributed system
 If we have an object�oriented system� messages carry their
destination identi�er and destinationid solely depends on this identi�er
 If we
have hard�wired systems� such as hardware systems� function destinationid may
only depend on function originid� where it is required that messages with the
same origin have the same destination


We require that the following properties w
r
t the message �ow hold within the
system model�

� For each input port of the system and for each output port of a component
the order of messages sent to a certain destination has to be maintained

This requirement enforces a linear ordering of messages within every con�
nection


�



� The contents of messages may not be modi�ed
 Messages cannot be dupli�
cated or lost
 No new messages are generated


A lot of systems exhibit connection structures where these requirements for mes�
sage transmission are not valid
 These systems can easily be encoded within our
system model if we use special transmitter components exhibiting the behavior
of such a connection structure


We do not require our communication medium to be free of delay� since we do
not impose any requirement on the time di�erence between the sending and the
receiving of a message besides the requirement that this time is �nite


We are now able to specify a communication medium that distributes messages
according to the above requirements by relating origin and destination streams
of the communication medium
 Let

ostreams � Originsid �M�

dstreams � Destinationsid �M�

be timed streams of messages for the input and output ports
 Then we have�


 Origin and destination streams restricted to the input resp
 output ports
of system id exhibit the behavior of system id�

Behaviorid�ostreamsjInid� � dstreamsjOutid

With f jM we denote the restriction of a function f � N � L withM 
 N to
set M 
 Therefore the restriction ostreamsjInid selects the bunch of streams
that �ow on the input ports of the system only
 Accordingly dstreamsjOutid
selects the streams on the output ports of the system


�
 Input and output ports of every component have to exhibit message streams
according to their behavior�

id� � Parts�id�� Behaviorid��dstreamsjInid�� � ostreamsjOutid�

�
 Every destination stream actually contains the messages for this destination
port�

Filter �fmjoriginid�m� � sg � fpg� dstreams�d�
� Delay�Filter �fmjdestinationid�m� � dg � fpg� ostreams�s��

�



If the message stream of destination port dstreams�d is �ltered for messages
coming from origin port s� we get a similar message stream� as if we �lter
the messages of origin stream ostreams�s for messages to destination port d

The only di�erence is possible delay of messages� but no rearrangement of
ordering� duplication or loss of messages
 Delay is modeled by the following
pulse�driven stream processing function�

Delay �M� p��M�

Filter �M�Delay�s�� � Filter �M�s�

From the de�nition of pulse�driven stream processing functions� it follows
that Delay really delays messages


� Discussion and Concluding Remarks

In this paper a so�called system model has been presented as an abstract math�
ematical model for information processing systems
 Because the model is based
on Focus �BDD����� a mathematical modeling and development technique for
distributed systems� a multitude of re�nement and veri�cation techniques for the
system model exists
 The presented model allows for the formal foundation and
semantic integration of a large class of description� and programming techniques

The applicability ranges from analysis� speci�cation and design documents to
programs in �distributed� object�oriented programming languages
 An explicit
notion of time makes the model also well�suited for real�time and hardware sys�
tems
 The �exibility of the system model is to a large extent possible due to the
underspeci�cation of the communication mediumwhich allows for a large number
of di�erent applications


A lot of open problems are to be tackled with this model
 First of all� dynamic
creation of components exists only implicitly
 A component that starts to act only
if it gets an initial creation message may be regarded as a component which is
not created until the creation message arrives
 Similarly deletion of components
may be encoded
 Only experience will show whether this is tedious� when proving
properties of systems
 Another problem is that it is lengthy and to some extent
intricate to model systems directly within this system model
 Instead we propose
a coherent set of description techniques� that do not only exhibit a formal syntax�
but also a formal semantics based on the system model
 This is done within the
SysLab project� for which the system model is a vital part


�



References

�AG��� C
 Ashworth and M
 Goodland
 SSADM� A Practical Approach

McGraw�Hill� ���


�BDD���� M
 Broy� F
 Dederichs� C
 Dendorfer� M
 Fuchs� T
F
 Gritzner� and
R
 Weber
 The Design of Distributed Systems � An Introduction to
FOCUS
 Technical Report SFB �������� A� Technische Universit�at
M�unchen� Institut f�ur Informatik� ���


�BDDW�� M
 Broy� F
 Dederichs� C
 Dendorfer� and R
 Weber
 Characterizing
the behaviour of reactive systems by trace sets
 Technical Report SFB
������� A� TUM�I���� Technische Universit�at M�unchen� Institut
f�ur Informatik� February ��


�BFG���� M
 Broy� C
 Facchi� R
 Grosu� R
 Hettler� H
 Hussmann� D
 Nazareth�
F
 Regensburger� O
 Slotosch� and K
 St�len
 The Requirement and
Design Speci�cation Language Spectrum� An Informal Introduc�
tion� Version 
�
 Technical Report TUM�I��� Technische Univer�
sit�at M�unchen� Institut f�ur Informatik� May ���


�CAB���� D
 Coleman� P
 Arnold� S
 Bodo�� C
 Dollin� H
 Gilchrist� F
 Hayes�
and P
 Jeremaes
 Object�Oriented Development � The Fusion Method

Prentice Hall� Inc
� Englewood Cli�s� New Jersey� ���


�CDI��� Introduction to CDIF� The CASE data interchange format standards�
April ���
 CDIF Technical Commitee� LBMS� Evelyn House� ��
Oxford Street� London WN �LF� United Kingdom


�GR��� R
 Grosu and B
 Rumpe
 Concurrent timed port automata
 Technical
Report TUM�I ����� Technische Universit�at M�unchen� ���


�GS��� R
 Grosu and K
 St�len
 A Denotational Model for Mobile Point�to�
Point Data�ow Networks
 Technical Report TUM�I ����� Technische
Universit�at M�unchen� ���


�Hel��� G
 Held� editor
 Sprachbeschreibung GRAPES
 SNI AG� M�unchen
Paderborn� ���


�HL��� H
J
 Habermann and F
 Leymann
 Repository � eine Einf�uhrung

Handbuch der Informatik
 Oldenbourg� ���


�Hus��� H
 Hussmann
 Formal Foundations for SSADM� An Approach In�
tegrating the Formal and Pragmatic Worlds of Requirements Engi�
neering
 Habilitation thesis� Technische Universit�at M�unchen� July
���


�



�LS��� N
 Lynch and E
 Stark
 A proof of the kahn principle for input�output
automata
 Information and Computation� �������� ���


�Mil��� R
 Milner
 Communication and Concurrency
 Prentice Hall� Engle�
wood Cli�� ���


�Mil�� R
 Milner
 The polyadic ��calculus� A tutorial
 Technical Report
ECS�LFCS������ October ��


�RBP���� J
 Rumbaugh� M
 Blaha� W
 Premerlani� F
 Eddy� and W
 Lorensen

Object�Oriented Modeling and Design
 Prentice Hall� Inc
� Englewood
Cli�s� New Jersey� ���


�SFD��� L
T
 Semmens� R
B
 France� and T
W
G
 Docker
 Integrated Struc�
tured Analysis and Formal Speci�cation Techniques
 The Computer

Journal� ������������� ���


�St���� K
 St�len
 A Framework for the Speci�cation and Development of
Reactive Systems
 Draft� ���


�Tho��� I
 Thomas
 PCTE interfaces� Supporting tools in software�
engineering environments
 IEEE Software� pages ����� November
���


�


