
Using Relations on Streams to Solve

the RPC�Memory Speci�cation Problem

Ketil St�len�

Institut f�ur Informatik� TU M�unchen� D������ M�unchen

Abstract� We employ a speci�cation and re�nement technique based
on streams to solve the RPC�memory speci�cation problem� Streams
are used to represent the communication histories of channels� We dis�
tinguish between input and output streams� Each input stream rep�
resents the communication history of an input channel	 each output
stream represents the communication history of an output channel� Spec�
i�cations are relations between input and output streams� These re�
lations are expressed as logical formulas� Composition corresponds to
logical conjunction� We distinguish between time�independent and time�
dependent speci�cations� A time�independent speci�cation is based on
untimed streams	 a time�dependent speci�cation employs timed streams�
Timed streams are needed to capture timing constraints and causalities�
A speci�cation re�nes
or alternatively� implements� another speci�ca�
tion if any input�output behavior of the former is also an input�output
behavior of the latter� This means that re�nement corresponds to logical
implication�

� Introduction

We use streams and relations on streams to solve the the RPC�memory spec�
i�cation problem� as described in �BL�� We address all parts of the problem
statement with one exception� we do not impose the hand�shake protocol on
which �BL� is based� This means for example� a user may send a new call before
the memory component issues a reply to the previous call sent by the same user�
The hand�shake protocol is not considered because our approach is tailored to�
wards asynchronous communication with unbounded bu�ering� More correctly�
our approach is based on the hypotheses that asynchronous communication with
unbounded bu�ering simpli�es speci�cations and the veri�cation of re�nement
steps 	 simpli�es in the sense that it allows us to abstract from synchronization
requirements needed in system descriptions based on bounded communication
bu�ers� In our approach this kind of synchronization is �rst introduced when
it is really needed� namely when a speci�cation is mapped into its �nal im�
plementation� How system speci�cations based on asynchronous communication
with unbounded bu�ering can be re�ned into system speci�cations based on

� Address from September � ���� Institute for Energy Technology� P�O�Box ��� ��
Halden� Norway� Email�Ketil�Stoelen�hrp�no

���

hand�shake communication is explained in the appendix� More explicitly� in the
appendix we show how the implementation of the memory component can be
re�ned into an implementation which di�ers from the �rst in only one respect�
the communication is conducted via hand�shakes� Thus� we do not ignore the
hand�shake protocol because we cannot handle it� On the contrary� we can easily
specify hand�shake communication� We ignore the hand�shake protocol because
we see asynchronous communication with unbounded bu�ering as a helpful fea�
ture of our method�
Any sensible speci�cation language allows speci�cations to be expressed in

many di�erent ways and styles� and this is of course also true for our approach� In
this paper we have tried to �nd the right balance between readability and brevity�
In particular� we characterize nondeterministic behavior in terms of oracles�
The rest of the paper is structured as follows� In Sect�
 we introduce streams

and the most basic operators for their manipulation� In Sect� � we specify the
memory components� The RPC component is the subject of Sect� �� and in Sect�
 we show how it can be used to implement the memory component� Similarly�
the lossy RPC component is speci�ed in Sect� � and used to implement the
RPC component in Sect� �� In Sect� � we give a brief summary and draw some
conclusions� Finally� as mentioned above� there is an appendix dealing with the
introduction of hand�shake communication�

� Streams and Operators on Streams

We use streams to model the communication histories of channels� A stream is
a �nite or in�nite sequence of messages� The messages occur in the order they
are transmitted� For any set of messages M � by M�� M � and M � we denote
respectively the set of all in�nite streams over M � the set of all �nite streams
over M � and the set of all �nite and in�nite streams over M �
We now introduce the most basic operators for the manipulation of streams�

N denotes the set of natural numbers� N� denotes N nf�g� N� denotes N�f�g�
����n� denotes f�� ���ng� B denotes the Booleans� Let r � s � M � and j � N� �

� �r denotes the length of r � This means �� if r is in�nite� and the number
of messages in r otherwise�

� aj denotes the stream consisting of exactly j copies of the message a�
� dom�r� denotes N� if �r ��� and f��
� � � � ��rg� otherwise�
� r �j � denotes the j th message of r if j � dom�r��
� ha�� a�� ��� an i denotes the stream of length n whose �rst message is a�� whose
second message is a�� and so on� As a consequence� hi denotes the empty

stream�
� rjj denotes the pre�x of r of length j if � � j � �r � and r otherwise� This
means that rj� � r �

� r�s denotes the result of concatenating r and s � Thus� ha� bi� hc� di �
ha� b� c� di� If r is in�nite we have that r�s � r �

� r v s holds if r is a pre�x of or equal to s � In other words� if � v � M � �
r�v � s �

���

For any n�tuple t � we use �j �t to denote the j th component of t �counting from
the left to the right�� For example� ����a� b� c� � c� When convenient we use tk
as a short�hand for �k �t �

We also need a �ltration operators for tuples of streams� For any n�tuple of
streams t and natural number j � N� less than or equal to the shortest stream
in t � by t�j we denote the n�tuple of messages whose kth component is equal to
��k �t��j �� For example� if t � �ha� bi� hc� di� then t�� � �a� c� and t�
 � �b� d��
For any set of n�tuples of messages A and n�tuple of streams t � by Ast we
denote the n�tuple of streams obtained from t by

� truncating each stream in t at the length of the shortest stream in t �

� selecting or deleting t�j depending on whether t�j is in A or not�

For example� if n � � we have that

fa� bgsha� b� d � c� d � a� di � ha� b� ai

and if n �
 we have that

f�a� a�� �b� b�gs�ha� b� a� b� a� b� ai� ha � a � a � bi� � �ha� a� bi� ha� a� bi�

Moreover� if n � � we have that

f�a� b� c�gs�ha� a� ai� hb� b� bi� ha� b� ci� � �hai� hbi� hci�

� Problem I� The Memory Component

In this section we specify the reliable and the unreliable memory components�� as
described in Sect�
 of the problem statement �BL�� To give a smooth introduction
to our speci�cation technique� we construct these speci�cations in a stepwise
fashion� We �rst specify a simple memory component with a sequential interface�
This component has exactly one input and one output channel� We refer to this
memory component as the sequential memory component� Then we consider
memory components with a concurrent interface� More explicitly� as indicated
by Fig� �� memory components which communicate with n user components in
a point�to�point fashion� These components we call concurrent� We �rst explain
how the speci�cation of the sequential memory component can be generalized to
handle a concurrent interface� This speci�cation is then step�by�step generalized
to capture the requirements to the reliable and unreliable memory components�
as described in �BL��

� What we call the �unreliable memory component� corresponds to the �memory
component� in �BL��

���

�

�

�

�

�

�

� � �

� � �

� � �

MEM USER� USER� USERn

Fig� �� Network with Concurrent Memory Component�

��� Basic De�nitions

We �rst give some basic de�nitions�

Call
def
� fRead�l� j l � Lg � fWrite�l � v� j l � L � v � V g

Rpl
def
� fOkRd�v� j v � V g � fOkWr�BadArg�MemFailg

VldRd
def
� fRead�l� j l � MemLocsg

Wr
def
� fWrite�l � v� j l � L � v � V g

VldWr�l�
def
� fWrite�l � v� j v � MemValsg

VldWr
def
� fVldWr�l� j l � MemLocsg

VldCall
def
� VldRd � VldWr

L is a set of locations� V is a set of values� Call and Rpl are the sets of all
possible calls and replies� respectively� VldRd and VldWr are the sets of all valid
read and write calls� respectively� Wr is the set of all possible write calls� and
VldWr�l� is the set of all write calls whose value is valid� VldCall is the set of all
valid calls� We also introduce two auxiliary functions which are used to access
the contents of calls�

���

Loc � Call� L

Loc�Read�l��
def
� l

Loc�Write�l � v��
def
� l

Val � VldWr� MemVals

Val�Write�l � v��
def
� v

By InitVal we denote the initial value of the memory locations� We assume that

InitVal � MemVals ���

��� The Sequential Memory Component

As already mentioned� we start by specifying a simple sequential memory com�
ponent� This component communicates with exactly one user component via
exactly one input and one output channel� The component is reliable in the
sense that each call results in exactly one memory access and that a call never
fails� It can be speci�ed as follows�

SeqMc time independent

in i � Call�
out o � Rpl�

�o � �i

� j � dom�o� �

let w � �VldWr�Loc�i �j ���s�ij
j
� �

in SeqMcBehavior�i �j �� o�j ��w�

SeqMc is the name of the speci�cation� The keyword time independent is used
to state that the speci�cation is expressed in a time�independent setting� Thus�
SeqMc does not impose any timing requirements� The keywords in and out sep�
arate the declarations of the input streams from the declarations of the output
streams� In the speci�cation above there is one input stream i of type Call� and
one output stream o of type Rpl�� The input stream i models the communi�
cation history of the input channel� Similarly� the output stream o models the
communication history of the output channel� We refer to these declarations as
the speci�cation�s syntactic interface� The formula constituting the rest of the
speci�cation characterizes the required input�output behavior� We refer to this

���

formula as the I�O�relation� For any speci�cation with name S � we use RS to
denote its I�O�relation�
Throughout this paper we often use line breaks to �x scoping and represent

conjunction� We indicate scoping dependency by indenting the new line with
respect to the previous one� For example� in the I�O�relation above� this tech�
nique is used to indicate that the let construct is in the scope of the universal
quanti�er� We indicate that a line break represents conjunction by not indenting
the new line with respect to the previous one� For example� in the I�O�relation
above the �rst line break represents a conjunction� The same does not hold for
the third line break� The reason is of course that the third and fourth line do
not represent formulas�
The I�O�relation of SeqMc has two main conjuncts� The �rst main conjunct

requires that the number of output messages is equal to the number of input
messages� This implies that exactly one reply is issued for each call� The sec�
ond main conjunct determines the output messages as a function of the input
messages� For any j � the let construct de�nes w to be the sub�stream of ijj of
valid write calls to location Loc�i �j ��� The body of the let construct refers to an
auxiliary function which is de�ned below�

SeqMcBehavior�i � o�w�

Call�Rpl�Wr� � B

i � VldWr	 o � OkWr

i � VldRd	
w � hi 	 o � OkRd�InitVal�

w
� hi 	 o � OkRd�Val�w ��w ���

i
� VldCall	 o � BadArg

Note that the types of i � o di�er from their types in SeqMc� The auxiliary func�
tion SeqMcBehavior has three main conjuncts� The �rst conjunct states that if
the call is a valid write call� then the reply is an OkWr� The second conjunct
states that if the call is a valid read call then the reply is OkRd�InitVal� if
the actual memory location has not yet been updated �w is the empty stream��
otherwise the reply is OkRd�v�� where v is the value of the last update of this
memory location �last message of w�� The third conjunct states that if the call
is not a valid call then BadArg is returned�

��� The Concurrent Memory Component

We now generalize SeqMc to handle a concurrent interface consisting of n input
and n output channels� This new component� whose behavior is captured by the

���

speci�cation ConMc below� communicates with n user components� as indicated
by Fig� ��

ConMc time independent

in ip � �Call��n
out op � �Rpl��n

� p � ����n��� i � Call�� o � Rpl� �
Merged�ip� i � p�

Merged�op� o� p�

RSeqMc�i�o�

ip and op are n�tuples of streams� The variable p is an oracle �or� alternatively�
a prophecy� characterizing the order in which the input messages access the
memory� Obviously� there are in�nitely many interpretations of p� For each in�
terpretation of p such that the �rst conjunct holds� the output history op is a
function of the input history ip� Thus� the nondeterminism allowed by this spec�
i�cation is completely captured by p� Strictly speaking� also i and o are oracles�
However� for any interpretation of p and input history ip their interpretations
are �xed� The oracle i can be thought of as an internal bu�er in which the input
messages are placed in the same order as they access the memory 	 in other
words� in accordance with p� Similarly� o can be seen as a bu�er which stores
the replies in the same order� This is expressed by the �rst two conjuncts� The
third conjunct makes sure that i and o are related as in the sequential case� The
auxiliary function Merged is de�ned below�

Merged�ap� a� p�

����n � �� � ����n�� � B

� k � ����n� � apk � ���� ��� fkg�s�a� p� �

� is a type variable� The �ltration operator is used to make sure that the n

streams in ap are merged into a in accordance with p�

��� The Repetitive Memory Component

The reliable memory component described in �BL� di�ers from ConMc in several
respects� In particular� ConMc does not allow the same call to access the mem�
ory more than once� We now generalize ConMc to allow each call to result in
an unbounded� �nite� nonzero number of memory accesses� Note that we allow
a read call to result in more than one memory access� Strictly speaking� this

���

is in con�ict with the problem statement� However� we are only interested in
specifying the externally observable behavior� In that case this deviation from
the problem statement does not matter� Let

RpEx
def
� fRep�Exitg

The repetitive memory component can then be speci�ed as below�

RepMc time independent

in ip � �Call��n
out op � �Rpl��n

� p � ����n��� r � RpEx�� i � Call� � o � Rpl� �
RepMerged�ip� i � p� r�

RepMerged�op� o� p� r�

Compatible�i � p� r�

RSeqMc�i�o�

Another oracle r has been introduced� It determines the number of memory
accesses for each call� The �nal memory access for a call has Exit as its corre�
sponding element in r � any other memory access corresponds to a Rep in r � As
before the amount of nondeterminism is completely captured by the oracles� The
output history op is a function of the input history ip for each choice of p and r
such that the �rst and third conjuncts hold� The merge of the input and output
histories is captured by the auxiliary function RepMerged which is de�ned as
follows�

RepMerged�ap� a� p� r�

����n � �� � ����n�� �RpEx� � B

� k � ����n� � apk � ���� ��� fkg � fExitg�s�a� p� r� �

It di�ers from the earlier merge function in that it considers only the entries
whose element in r is Exit� In other words� we �lter away those elements of
i and o that correspond to Rep in r � The third conjunct in the I�O�relation
of RepMc makes sure that also those entries that correspond to Rep in r are
related to i in the correct way� In other words� that the memory accesses which
correspond to Rep are compatible with the input streams� and that for each call
the entry representing the last memory access has Exit as its element in r � This
is captured by the auxiliary function de�ned below�

���

Compatible�i � p� r�

Call� � ����n�� �RpEx� � B

� j � dom�i� � r �j � � Rep	
� l � dom�i� �

l � j � i �l � � i �j � � p�l � � p�j � � r �l � � Exit

� t � N � j � t � l 	 r �t �
� Exit � p�t �
� p�j �

Although RepMc is closer to the reliable memory component of �BL� than
ConMc� some requirements are still missing� Firstly� as already mentioned in
the introduction� we do not impose the hand�shake protocol on which �BL� is
based� Our approach is based on asynchronous communication with unbounded
bu�ering� Thus� we do not need the the environment assumption that a user
never sends a new call before the memory component has issued a reply to its
previous call�
However� this is not the only respect in which RepMc di�ers from the reliable

memory component of �BL�� it also di�ers in the sense that it does not require
the memory accesses to take place in the time interval between the arrival of
the corresponding call and the issue of its reply� Moreover� RepMc does not
say anything about the timing of the output with respect to the timing of the
input� We now show how the missing causality and timing requirements can be
imposed� To do so� we �rst have to explain what we mean by a timed stream�

��� Timed Streams and Operators on Timed Streams

To express timing constraints and also causality requirements between the input
and output streams we use timed streams� A timed stream is a �nite or in�nite
sequence of messages and time ticks� A time tick is represented by

p
� The interval

between two consecutive ticks represents the least unit of time� A tick occurs in
a timed stream at the end of each time unit�
An in�nite timed stream represents a complete communication history� a

�nite timed stream represents a partial communication history� Since time never
halts� any in�nite timed stream is required to have in�nitely many ticks� We do
not want timed streams to end in the middle of a time unit� Thus� we insist
that a timed stream is either empty� in�nite or ends with a tick� For any set of
messages M � by M�� M � and M � we denote respectively the set of all in�nite
timed streams over M � the set of all �nite timed streams over M � and the set of
all �nite and in�nite timed streams over M �
All the operators for untimed streams are also de�ned for timed streams�

Their de�nitions are the the same as before given that
p
is interpreted as an

ordinary message� We also introduce some operators specially designed for timed
streams� Let r � M � and j � N� �

��	

� r denotes the result of removing all ticks in r � Thus� ha�p� b�
pi � ha� bi�

This operator is overloaded to tuples of timed streams in the obvious way�

� tm�r � j � denotes the time unit in which the j th message �
p
is not a mes�

sage� of r occurs if j � dom�r �� For example� if r � ha� b�p�
p
� b�

pi then
tm�r � �� � tm�r �
� � � and tm�r � �� � ��

� r�j denotes the pre�x of r characterizing the behavior until the end of time
unit j � This means that r�j denotes r if j is greater than the number of
ticks in r � and the shortest pre�x of r containing j ticks� otherwise� Note
that r�� � r and also that r�� � hi� Note also the way � di�ers from j� For
example� if r � ha� b�p� c�

pi then r�� � ha� b�pi and rj� � hai�

We also introduce a specially designed �ltration operator� For any set of pairs
of messages A �

p
is not a message�� timed in�nite stream t � M�� untimed

in�nite stream s � M�� let Ar�t � s� denote the timed in�nite stream such that

Ar�t � s� � ����As�t � s� �

� j � N � ��Ar�t � s���j � �fm � dom�t�j � j �t �m�� s �m�� � Ag

Roughly speaking� Ar�t � s� denotes the timed in�nite stream obtained from t

by removing the messages for which there are no corresponding pairs in A with
respect to the untimed stream s � For example� if

A � f�a� a�� �b� b�g
t � ha� b�p� a� b�

pi�p�

s � ha� ai�b�

then

Ar�t � s� � ha�p� b�
pi�p�

��� The Reliable Memory Component

As explained above� the component speci�ed by RepMc is quite close to the
reliable memory component described in �BL�� However� we still have to impose
the requirement that any memory access takes place in the time interval between
the transmission of the corresponding call and the issue of its reply� and that the
reply is issued �rst after the call is transmitted� To do so� we introduce another
oracle t � Informally speaking� it assigns a time stamp to each memory access�
The speci�cation of the reliable memory component is given below�

���

RelMc time dependent

in ip � �Call��n
out op � �Rpl��n

� p � ����n��� r � RpEx�� t � N
� � i � Call�� o � Rpl� �

RepMerged��p� i � p� r�

RepMerged�op� o� p� r�

Compatible�i � p� r�

Timed�ip� op� p� r � t � i�

RSeqMc�i�o�

In contrast to earlier the input and output streams are timed in�nite streams�
When this is the case we say that a speci�cation is time�dependent� In a time�
independent speci�cation we represent the input and output histories by untimed
streams� in a time�dependent speci�cation we use timed in�nite streams� Thus�
strictly speaking� the keyword occurring in the frame is redundant� it is used
to emphasize something that is already clear from the declarations of the input
and output streams�

The reason why we allow the the input and output streams to be �nite in the
time�independent case is that a timed in�nite stream with only �nitely many
ordinary messages degenerates to a �nite stream when the time information is re�
moved� For example

p
� � hi� In fact� any time�independent speci�cation S can

be understood as syntactic sugar for a time�dependent speci�cation S �� namely
the time�dependent speci�cation obtained from S by replacing the keyword by
time�dependent� replacing any occurrence of � by � in the declarations of the
input and output streams� replacing any free occurrence of any input or output
stream v in the I�O�relation by v �

In the speci�cation of the reliable memory component there is one �new�
conjunct with respect to the RelMc� It requires the externally observable behav�
ior to be compatible with an interpretation where any memory access takes place
in the time interval between the transmission of the corresponding call and the
issue of its reply� Moreover� it requires the reply to be delayed by at least one
time unit with respect to the transmission of the call� The auxiliary function
Timed is de�ned below�

���

Timed�ip� op� p� r � t � i�

�Call��n � �Rpl��n � ����n�� �RpEx� � N
� � Call� � B

� j � N� � t �j � � t �j � ��

� j � dom�i� �

let k � p�j �

w � ���� �RpEx� fkg�s�rjj � p� �
m � CallNumb�w � fExitg�

in tm�ipk �m� � t �j � � tm�opk �m�

The �rst conjunct states that the in�nite stream of time stamps is nondecreas�
ing� The let construct introduces three variables� the channel number k of the
considered memory access� the sub�stream w of r containing the entries for the
channel k until this memory access� the number m of the call transmitted on
the channel ipk for which this memory access is performed� Thus� the second
conjunct requires each memory access to take place between the transmission of
the corresponding call and the issue of its reply� Note that this requirement also
makes sure that there is a delay of at least one time unit between the transmis�
sion of a call and the issue of its reply� This is a sensible requirement under the
assumption that the least unit of time is chosen su�ciently small�
The auxiliary function CallNumb is de�ned below�

CallNumb�w �A�

�� � P���� N

let n � ��Asw� in if w ��w � � A then n else n � �

� is a type variable� P��� denotes the power set of ��

��	 The Unreliable Memory Component

The unreliable memory component �called the �memory component� in �BL��
di�ers from the reliable memory component in that calls may fail� Let

OkFail
def
� fOk�Pfail�Tfailg

Once more an oracle is introduced� This time of type OkFail�� This new oracle
q determines whether a memory access is successful or not� Any memory access
whose corresponding element in q is Tfail has no e�ect on the memory� Thus�
the di�erence between Pfail �partial failure� and Ok� on the one hand� and Tfail

���

�total failure�� on the other hand� is that the latter has no e�ect on the memory
locations� In addition� any call whose �nal memory access corresponds to a Pfail
or a Tfail in q results in a MemFail� Note that a write call that fails may result
in several memory updates� but it may also leave the memory unchanged�

UnrelMc time dependent

in ip � �Call��n
out op � �Rpl��n

� p � ����n��� r � RpEx�� t � N
� � q � OkFail�� i � Call�� o � Rpl� �

RepMerged��p� i � p� r�

RepMerged�op� o� p� r�

Compatible�i � p� r�

Timed�ip� op� p� r � t � i�

UnrelSeqMc�i � o� q�

As before� for each interpretation of the oracles such that the �rst� third and
fourth conjuncts hold� the output history is completely determined by the input
history �if the timing of the output is ignored�� The speci�cation SeqMc is no
longer su�cient to characterize the relationship between i and o� Instead we
introduce an auxiliary function�

UnrelSeqMc�i � o� q�

Call� �Rpl� �OkFail� � B

�o � �i

� j � dom�o� �

q �j � � Ok	
let w � ���� �VldWr�Loc�i �j ��� � fOk�Pfailg�s�ijj � q� �
in SeqMcBehavior�i �j �� o�j ��w�

q �j � � fPfail�Tfailg 	 o�j � � MemFail

Note that w is de�ned to ignore memory accesses which correspond to Tfail�
The rest is a straightforward adaptation of the SeqMc speci�cation�

���

��
 Implementation

In order to discuss whether RelMc is a re�nement �or alternatively� an imple�

mentation� of UnrelMc or not� we have to de�ne what we mean by re�nement�
Since any time�independent speci�cation can be understood as syntactic sugar
for an equivalent time�dependent speci�cation� we consider only speci�cations
written in the time�dependent format�
Let S and S � be speci�cations of the same syntactic interface� We de�ne S �

to be a re�nement of S if the I�O�relation of S � implies the I�O�relation of S �
More explicitly� if

RS � 	 RS

under the assumption that any free variable is typed in accordance with its
declaration in the syntactic interface�
Since UnrelMc is equal to RelMc if q is �xed as Ok�� it follows that RelMc

is a re�nement of UnrelMc� It is also clear that UnrelMc allows an implemen�
tation which returns MemFail to any call 	 it is enough to �x q as Tfail��
It is straightforward to strengthen UnrelMc to avoid this� In fact the required
behavior can be characterized by imposing additional constraints on the distri�
bution of Ok�s in q � This is the normal way of imposing fairness constraints in
our method�

� Problem II� The RPC Component

The second problem described in �BL� is to specify a remote procedure call com�
ponent 	 from now on called the RPC component� As indicated by Fig�
� the
RPC component interfaces with two environment components� a sender and a
receiver� It relays procedure calls from the sender to the receiver� and relays the
return values back to the sender�

� �

� �

cp

dp

ap

bp

Sender of

Remote Calls

Receiver of

Procedure Calls
RPC

Fig� �� The RPC Component and its Environment�

��� Basic De�nitions

We �rst give some basic de�nitions�

���

PrCall
def
� fp�a� j p � Procs ��a � ArgNum�p�g

ReCall
def
� fRemoteCall�p� a� j p � P � a � A�g

VldReCall
def
� fRemoteCall�p� a� j p � Procs ��a � ArgNum�p�g

NotVldReCall
def
� ReCall nVldReCall

ReRpl
def
� PrRpl � fRPCFail�BadCallg

P is a set of identi�ers� A is a set of arguments� PrCall and ReCall are the sets
of all possible procedure and remote calls� respectively� VldReCall is the set of
all valid remote calls� PrRpl and ReRpl are the sets of all possible replies to
procedure and remote calls� respectively� We assume that

PrRpl fRPCFail�BadCallg � fg �
�

We also introduce three auxiliary functions�

Map � �� � ��� ��� ��

Map�a�m�
def
� b

where �b � �a � � j � dom�b� � b�j � � m�a�j ��

Cl � VldReCall� � PrCall�

Cl�e�
def
� Map�e�m�

where m�RemoteCall�p� a�� � p�a�

Rp � ReRpl� � ReRpl�

Rp�e�
def
� Map�e�m�

where m�r� � �if r � RPCFail then MemFail else r�

�� � are type variables�

��� The Sequential RPC Component

We �rst specify a sequential RPC component 	 in other words� an RPC compo�
nent with respect to one user� As indicated by Fig� �� the general �concurrent�
RPC component can be thought of as a network of n sequential RPC compo�
nents�

���

SeqRPC time dependent

in a � ReCall�� d � PrRpl�
out b � ReRpl�� c � PrCall�

�d � �c

Delayed�c� d�

	
� q � OkFail� �

RPCBehavior�a � d � b� c� q�

RPCDelayed�a� d � b� c� q�

Throughout the paper we use the convention that an indented implication oper�
ator on a separate line is the main operator of an I�O�relation� Thus� SeqRPC
can be understood as an assumption�commitment speci�cation� The antecedent
characterizes the environment assumption� and the commitment is characterized
by the consequent� If the environment behaves in accordance with the assump�
tion then the speci�ed component is required to behave in accordance with the
commitment� The �rst conjunct of the assumption requires that the environment
issues exactly one reply on d for each call received on c� The second imposes
the constraint that the environment never sends a reply on d before at least one
time unit after the call is transmitted on c� This is a sensible assumption given
that the least unit of time is chosen su�ciently small� The auxiliary function
Delayed is de�ned below�

Delayed�a� b�

�� � �� � B

� j � N � ��b�j��� � ��a�j �

� is a type variable� The function requires that for any j � the number of messages
transmitted along b until time j�� is less than or equal to the number of messages
transmitted along a until time j �

The commitment employs an oracle q to determine whether a call terminates
normally or with a BadCall exception �Ok�� terminates with an RPCFail after
having made the procedure call �Pfail�� or terminates with an RPCFail with�
out doing anything �Tfail�� There are two main conjuncts� both represented by
auxiliary functions� The �rst one is de�ned below�

���

RPCBehavior�a� d � b� c� q�

ReCall� � PrRpl� �ReRpl� � PrCall� �OkFail� � B

� k � dom�a� � q �k � � Pfail	 a�k � � VldReCall
�b � �a

let �w � x � � �VldReCall� fOk�Pfailg�s�a� q� in
c � Cl�w�

PrRplsb � ���� �PrRpl� fOkg�s�d � x � �
� j � dom�b� �

q �j �
� Ok	 b�j � � RPCFail

q �j � � Ok � a�j �
� VldReCall	 b�j � � BadCall

Note that the types of a� d � b� c di�er from their types in SeqRPC� There are
four main conjuncts� The �rst conjunct makes sure that q is chosen in such a
way that there is no invalid remote call in a whose corresponding element in q

is Pfail� The second conjunct requires that a reply is issued for any remote call
received�

The let construct of which the third conjunct consists de�nes two local vari�
ables w and x � w can be thought of as a bu�er in which any remote call which
leads to a procedure call is inserted� x contains the corresponding elements of q �
Thus� x � fOk�Pfailg� since a valid call� whose corresponding element in p is
Tfail� does not lead to a procedure call� The body of the let construct consists
of two sub�conjuncts� The �rst sub�conjunct requires that the output along c is
equal to the stream obtained by executing the call of every valid RemoteCall in
w � The second sub�conjunct requires that the stream of PrRpl sent along b is
equal to the stream of PrRpl received on d minus those replies which correspond
to Pfail in x �

Also the fourth conjunct consists of two sub�conjuncts� The �rst sub�conjunct
requires that any remote call� that fails� results in an RPCFail� The second sub�
conjunct requires that any invalid RemoteCall� that does not fail� results in a
BadCall�

The second main conjunct in the commitment of SeqRPC refers to the aux�
iliary function RPCDelayed� It makes sure that any response to a message is
issued �rst one time unit after the message has been received� This function is
de�ned below�

���

RPCDelayed�a� d � b� c� q�

ReCall� � PrRpl� �ReRpl� � PrCall� �OkFail� � B

Delayed��VldReCall� fOk�Pfailg�r�a� q�� c�
Delayed�a� b�

Delayed�d � ��ReRpl n fBadCallg�� fOk�Pfailg�r�b� q��

��� The RPC Component

The RPC component can be thought of as a network of n sequential RPC com�
ponents �see Fig� ��� This network is speci�ed as follows�

RPC time dependent

in ap � �ReCall��n � dp � �PrRpl��n
out bp � �ReRpl��n � cp � �PrCall��n

�n
j��SeqRPC�apj � dpj � bpj � cpj �

The I�O�relation of RPC is equivalent to

�n
j��RSeqRPC�apj �dpj �bpj �cpj �

We use � instead of � to emphasize that we compose component speci�cations�
The � operator is employed only when the speci�cations have mutually disjoint
output alphabets 	 in other words� when for any pair of speci�cations the sets
of identi�ers representing output streams are disjoint� Since fbpk � cpkg is disjoint
from fbpl � cplg if k
� l this clearly holds in the case of RPC� We say that the
speci�cations interfere if the sets of output identi�ers are not mutually disjoint
in this sense�
To implement such a composite speci�cation it is enough to implement the n

component speci�cations� These implementations can be designed independently
of each other in a compositional manner� This is always the case when a network
is speci�ed by the � operator� Note the di�erence with respect to an ordinary
basic speci�cation based on auxiliary functions� For example� the �ve conjuncts
of UnrelMc cannot be understood as independent component speci�cations� First
of all� the oracles cannot easily be interpreted as local input and output channels�
Secondly� the conjuncts interfere�
The RPC component as speci�ed by us deviates from the informal speci�

�cation in �BL�� Firstly� since we do not impose the hand�shake protocol� our
speci�cation does not disallow a sequential RPC component to transmit a new
call before the environment has issued a reply to its previous call� Secondly� it

���

can be argued that the environment assumptions of the sequential RPC speci��
cations are too strong� If the environment never replies to a call then we allow
arbitrary behavior� However� since a component never knows in advance whether
a reply eventually comes or not� it is not possible for a component to exploit
this� After all� computer programs cannot predict the future� Thus� we do not
see this as a problem�

� Problem III� Implementing the Unreliable Memory

Component

The unreliable memory component is implemented by combining the RPC com�
ponent with the reliable memory component and a driver� We refer to the latter
as the clerk� As in the case of the RPC component the clerk is divided into n

sequential clerk components� The overall network is pictured in Fig� ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

dp�

cp�

dp�

cpn

dpn

ap�

bp�

ap�

bp�

apn

bpn

ip�

op�

ip�

op�

ipn

opn

cp�

RelMc

SeqClerk

SeqClerk

���
���

���

SeqRPC

SeqClerkSeqRPC

SeqRPC

Fig� �� Network Implementing the Unreliable Memory Component�

��� Basic Assumptions

In the following we assume that

Call � PrCall ���

Rpl � PrRpl ���

fRead�Writeg � Procs ��

ArgNum�Read� � � ���

��	

ArgNum�Write� �
 ���

��� The Sequential Clerk Component

We �rst specify the sequential clerk component� It has the same main structure
as the speci�cation of the sequential RPC component�

SeqClerk time dependent

in i � Call�� b � ReRpl�
out o � ReRpl�� a � ReCall�

�b � �a

Delayed�a� b�

	
� r � RpEx� �

ClerkBehavior��� b� o� a � r�

ClerkDelayed�i � b� o� a� r�

The environment assumption corresponds to that for SeqRPC� For each remote
call sent along a the environment is assumed to send exactly one reply along b
delayed by at least one time unit� In the commitment the oracle r is used to
determine whether a call which results in an RPCFail should be retried or not�
There are two sub�conjuncts� Both refer to auxiliary functions� The �rst one is
de�ned below�

ClerkBehavior�i � b� o� a� r�

Call� �ReRpl� �ReRpl� �ReCall� �RpEx� � B

� j � dom�b� � r �j � � Rep	
b�j � � RPCFail

� l � dom�b� � l � j � r �l � � Exit � � t � N � j � t � l 	 a�t � � a�j �

let �w � z � � ������ �ReCall�ReRpl� fExitg�s�a� b� r� � in
Cl�w� � i

o � Rp�z �

Note that the types of i � b� o� a di�er from their types in SeqClerk� There are
two main conjuncts� The �rst conjunct requires that r is chosen in such a way

���

that each occurrence of a Rep in rj�b corresponds to an RPCFail in b� It also
makes sure that any remote call is repeated only a �nite number of times�
The second conjunct consists of a let construct that de�nes w to be the stream

of remote calls which correspond to Exit in r � and z to contain the corresponding
replies� The body consists of two sub�conjuncts� The �rst requires i to be equal
to w if each remote call in w is replaced by the corresponding call� The second
requires that the stream of replies sent along o is equal to z given that each
RPCFail is replaced by MemFail�
The second conjunct in the commitment of SeqClerk refers to an auxiliary

function ClerkDelayed� In the same way as RPCDelayed� it captures that there
is a delay of at least one time unit between input and output�

ClerkDelayed�i � b� o� a� r�

Call� �ReRpl� �ReRpl� �ReCall� �RpEx� � B

Delayed��ReRpl� fExitg�r�b� r�� o�
� j � dom�a� � let m � CallNumb�rjj � fExitg� in tm�a� j � � tm�i �m�

��� The Clerk Component

As already explained� the clerk can be understood as a network of n sequential
clerk components� It is speci�ed as follows�

Clerk time dependent

in ip � �Call��n � bp � �ReRpl��n
out op � �ReRpl��n � ap � �ReCall��n

�n
j��SeqClerk�ipj � bpj � opj � apj �

��� The Implementation

The network pictured in Fig� � can now be speci�ed as follows�

McImpl time dependent

in ip � �Call��n
out op � �Rpl��n
loc cp � �Call��n � dp � �Rpl��n � ap � �ReCall��n � bp � �ReRpl��n

RelMc�cp� dp� �RPC�ap� dp� bp� cp� � Clerk�ip� bp� op� ap�

���

cp� dp� ap� bp represent tuples of local channels� This motivates the keyword loc�
We have already explained that � corresponds to conjunction� The logical inter�
pretation of the loc declarations is existential quanti�cation� Thus� the composite
speci�cation McImpl is equivalent to a basic speci�cation with the same external
interface and the following I�O�relation

� cp � �Call��n � dp � �Rpl��n � ap � �ReCall��n � bp � �ReRpl��n �
RRelMc�cp�dp� � RRPC�ap�dp�bp�cp� �RClerk�ip�bp�op�ap�

��� Veri�cation

We now prove that McImpl is a re�nement of UnrelMc� Remember that for any
speci�cation S � we use RS to denote its I�O�relation� If the I�O�relation has
	 as its main operator� we use AS to denote its antecedent �assumption� and
CS to denote its consequent �commitment�� Although in most cases this is not
pointed out explicitly� the validity of the many deductions depends on the type
de�nitions listed in Sect� ���� ���� and also the assumptions ��� listed in Sect�
���� ���� ��� In the following we assume that

ip � �Call��n ���

cp � �Call��n ���

op � �Rpl��n ����

dp � �Rpl��n ����

ap � �ReCall��n ��
�

bp � �ReRpl��n ����

j � ����n� ����

It must be shown that

RRelMc�cp�dp� �RRPC�ap�dp�bp�cp� � RClerk�ip�bp�op�ap� 	 RUnrelMc�ip�op� ���

From the de�nitions of RepMerged and Timed it follows straightforwardly that

RRelMc�cp�dp� 	 ASeqRPC�apj �dpj �bpj �cpj � ����

From the second conjunct of RPCBehavior and the second conjunct of RPCDe�
layed it follows that

ASeqRPC�apj �dpj �bpj �cpj � � CSeqRPC�apj �dpj �bpj �cpj � ����

	 ASeqClerk�ipj �bpj �opj �apj �

��� �� imply it is enough to show that

RRelMc�cp�dp� � ��n
k��CSeqRPC�apk �dpk �bpk �cpk� � CSeqClerk�ipk �bpk �opk �apk �� ����

	 RUnrelMc�ip�op�

���

Let ip� cp� op� dp� ap� bp be such that

RRelMc�cp�dp� ����

CSeqRPC�apj �dpj �bpj �cpj � �
��

CSeqClerk�ipj �bpj �opj �apj � �
��

It must be shown that

RUnrelMc�ip�op� �

�

�� implies there are p� � ����n��� r � � RpEx�� t � � N
� � i � � Call�� o� � Rpl�

such that

RepMerged�cp� i �� p�� r �� �
��

RepMerged�dp � o�� p�� r �� �
��

Compatible�i �� p�� r �� �
�

Timed�cp� dp� p� � r �� t �� i �� �
��

SeqMc�i �� o�� �
��

� implies there are q�� ��� qn � OkFail� such that

RPCBehavior�apj � dpj � bpj � cpj � qj � �
��

RPCDelayed�apj � dpj � bpj � cpj � qj � �
��

� implies there are r�� ��� rn � RpEx� such that

ClerkBehavior��pj � bpj � opj � apj � rj � ����

ClerkDelayed�ipj � bpj � opj � apj � rj � ����

 follows if we can �nd p � ����n�
�

� r � RpEx�� t � N
� � q � OkFail��

i � Call�� o � Rpl� such that
RepMerged��p� i � p� r� ��
�

RepMerged�op � o� p� r� ����

Compatible�i � p� r� ����

Timed�ip� op� p� r � t � i� ���

UnrelSeqMc�i � o� q� ����

The remaining of the proof is structured as follows� We �rst argue the existence
of oracles p� r � t � q � i � o satisfying a number of useful properties� Then we show
the validity of �
����

���

De�nition of oracles� We start by de�ning the new oracles p� t � i � Informally
speaking� they are constructed from the oracles p�� r �� t �� i �� q�� ��� qn and the
communication history ap by inserting one new entry for each call that
reaches the RPC component but is not forwarded to the reliable memory
component 	 in other words� for each call received on ap that is not for�
warded along cp� It follows from
� that the only calls that reach the j th
sequential RPC component without being forwarded to the reliable memory
component are those calls
� whose corresponding element in qj is Tfail�
� that are contained in NotVldReCall and whose corresponding element
in qj is Ok�

�� � �� �� �� �� imply that each remote call is a valid remote call� Thus� it is
enough to insert new entries for those elements of apj whose corresponding
elements in qj are Tfail� Let p � ����n��� t � N

� � i � Call�� y � RpExIns��
where RpExIns

def
� fIns�Rep�Exitg� be such that

i � � ���� �Call�RpEx�s�i � y� � ����

�p�� r �� t �� � �����n��RpEx� N�s�p� y � t� ����

The idea is that any inserted call has Ins as its corresponding element in
y � Any other call corresponds to Exit or Rep in y depending on whether
the call�s corresponding element in r � is Exit or Rep� Since ��� �� hold if
p � p�� t � t �� i � i �� y � r � it follows that such oracles exist� The fact that
��� �� do not constrain entries whose element in y is Ins imply that this is
still the case if we also impose the requirement that

Cl����� �ReCall� fTfailg�s�apj � qj � �� � ����

���� �Call� fjg � fInsg�s�i � p� y� �
�� allows us to insert the new entries at arbitrary positions in the old oracles
as long as the order of the new entries is maintained� This is obviously too

liberal� Give that ExIns
def
� fExit� Insg� we therefore also require that

� l � N� � ����

let k � p�l �

w � ���� �RpExIns� fkg�s�yjl � p� �
m � CallNumb�w �ExIns�

in y �l � � Ins	 qk �m� � Tfail

�� guarantees that each Ins entry is correctly ordered with respect to the
Exit entries in r �� To make sure that the Ins entries are correctly ordered
with respect to the old Rep entries we also assume that

� l � N� � ����

���

let k � p�l �

w � ���� �RpExIns� fkg�s�yjl��� p� �
in y �l � � Ins	 w � hi � w ��w �
� Rep

Thus� an Ins entry does not interfere with the memory accesses belonging to
the next call by the same user�
� implies

� l � dom�i �� � ��
�

let k � p��l �

w � ���� �RpEx� fkg�s�r �jl � p�� �
m � CallNumb�w � fExitg�

in tm�cpk �m� � t ��l � � tm�dpk �m�

��� ��� �
 imply

� l � dom�i� � y �l �
� Ins	 ����

let k � p�l �

w � ���� �RpExIns� fkg�s�yjl � p� �
m � CallNumb�w � fExitg�

in tm�cpk �m� � t �l � � tm�dpk �m�

� implies

Delayed��VldReCall� fOk�Pfailg�r�apj � qj �� cpj � ����

Delayed�dpj � ��ReRpl n fBadCallg�� fOk�Pfailg�r�bpj � qj �� ���

�� � �� �� �� �� imply that any remote call is a valid remote� Thus� ��� �
imply

Delayed��ReCall� fOk�Pfailg�r�apj � qj �� cpj � ����

Delayed�dpj � �ReRpl� fOk�Pfailg�r�bpj � qj �� ����

��� ��� ��� ��� �� imply

� l � dom�i� � y �l �
� Ins	 ����

let k � p�l �

w � ���� �RpExIns� fkg�s�yjl � p� �
m � CallNumb�w �ExIns�

in tm�apk �m� � t �l � � tm�bpk �m�

���

�� ��� �� imply

� k � l � N� � k � l � fy �k �� y �l �g � RpEx	 t �k � � t �l � ����

� and
� guarantee that the replies to the calls received on apj are output
along bpj in the FIFO manner and with a delay of at least one time unit�
Moreover� �� implies that the inserted Ins entries do not interfere with the
memory accesses of the other calls by the same user� Thus� since neither of
the requirements imposed on the new oracles so far say anything about the
entries in t that correspond to Ins in y � it follows from ��� �� that we may
also assume that

� l � N� � t �l � � t �l � �� ���

� l � dom�i� � ���

let k � p�l �

w � ���� �RpExIns� fkg�s�yjl � p� �
m � CallNumb�w �ExIns�

in tm�apk �m� � t �l � � tm�bpk �m�

We now chose q � OkFail� and r � RpEx� such that

���� �OkFail� ExIns� fjg�s�q � y � p� � v qj �
�

���� �OkFail� fRepg�s�q � y� � v Ok� ���

���� �RpEx� ExIns� fjg�s�r � y � p� � v rj ���

���� �RpEx� fRepg�s�r � y� � v Rep� ��

Since ���� do not constrain q � r � they are clearly not in con�ict with
��
Moreover� since
� � do not constrain r � and �� do not constrain q � it
follows that
� � are not in con�ict with �� � Finally� since
� � only
constrain those entries that are marked by Exit or Ins in y � and since ��
 only constrain those entries that are marked by Rep in y � it follows that

� � are not in con�ict with �� � Finally� we de�ne o � Rpl� to be such
that

Rp�bpj � � ���� �Rpl� fjg � ExIns�s�o� p� y� � ���

�Rpl� fRepg�s�o�� r �� � �Rpl� fRepg�s�o� y� ���

Since the earlier constraints do not refer to o� and since � and � clearly are
not in con�ict with each other� we have shown that there are type correct
oracles p� r � t � q � i � o� y such that ���� hold�

It remains to prove that �
��� hold�

���

Proof of ���
�� ��� �� imply

cpj � ���� �Call� fjg � fExitg�s�i � p� y� � ���

� implies

cpj � Cl����� �VldReCall� fOk�Pfailg�s�apj � qj � �� ���

�� � �� �� �� �� imply that each remote call is a valid remote call� Thus� �
implies

cpj � Cl����� �ReCall� fOk�Pfailg�s�apj � qj � �� ����

��� ��� �� �� imply

Cl�apj � � ���� �Call� fjg � ExIns�s�i � p� y� � ����

�� implies

���� �Call� fExitg�s�Cl�apj �� rj � � � ��
�

���� �Call� fExitg�s����� �Call� fjg � ExIns�s�i � p� y� �� rj � �
Clearly

���� �Call� fExitg�s�Cl�apj �� rj � � � ����

Cl����� �ReCall� fExitg�s�apj � rj � ��
�� implies

�pj � Cl����� �ReCall� fExitg�s�apj � rj � �� ����

�
� ��� �� imply

�pj � ���

���� �Call� fExitg�s����� �Call� fjg � ExIns�s�i � p� y� �� rj � �
�� � � imply

�pj � ���� �Call� fjg � fExitg�s�i � p� r� � ����

� implies �
�

Proof of ��� �� implies

opj � Rp����� �ReRpl� fExitg�s�bpj � rj � �� ����

�� �� imply

opj � ���� �Rpl� fExitg�s ����

����� �Rpl� fjg � ExIns�s�o� p� y� �� rj � �
�� � �� imply

opj � ���� �Rpl� fjg � fExitg�s�o� p� r� � ����

�� implies ���

���

Proof of ���
� ��� ��� �� imply

� k � dom�i� � y �k � � Rep	 ����

� l � dom�i� �

l � k � i �l � � i �k � � p�l � � p�k � � y �l � � Exit

� t � N � k � t � l 	 y �t �
� Exit � p�t �
� p�k �

�� �� imply

� k � dom�apj � � rj �j � � Rep	 ����

� l � dom�apj � � l � k � rj �l � � Exit

� t � N � k � t � l 	 apj �t � � apj �k �

�� � ��� ��� �� imply

� k � dom�i� � r �k � � Rep	 ��
�

� l � dom�i� �

l � k � i �l � � i �k � � p�l � � p�k � � r �l � � Exit

� t � N � k � t � l 	 y �t �
� Exit � p�t �
� p�k �

�
 implies ���

Proof of ��� �� implies

Delayed��ReRpl� fExitg�r�bpj � rj �� opj � ����

� k � dom�apj � � ����

let m � CallNumb�rj jk � fExitg� in tm�apj � k� � tm�ipj �m�

�� �� � ��� �� imply

� l � dom�i� � ���

let k � p�l �

w � ���� �RpEx� fkg�s�rjl � p� �
m � CallNumb�w � fExitg�

in tm�ipk �m� � t �l � � tm�opk �m�

�� � imply ��

Proof of ���
� implies

�apj � �bpj ����

���

��� ��� �� �� ��� �� imply

�o � �i ����

� implies

� l � dom�o�� � ����

let w � �VldWr�Loc�i ��l ���s�i �j
l
� �

in SeqMcBehavior�i ��l �� o��l ��w�

We want to prove that

� k � dom�o� � ����

q �k � � Ok	
let w � ���� �VldWr�Loc�i �k ��� � fOk�Pfailg�s�ijk � q� �
in SeqMcBehavior�i �k �� o�k ��w�

q �k � � fPfail�Tfailg 	 o�k � � MemFail

Let

k � dom�o� ����

l � p�k � ����

w � ���� �RpExIns� flg�s�yjk � p� � ��
�

m � CallNumb�w �ExIns� ����

��� ���
� �� �� imply

� t � dom�o� � q �t � � Tfail� y �t � � Ins ����

There are three cases to consider�
Case �� Assume

y �k � � Rep ���
�� implies

i �k � � i ��k ���fInsgs�yjk ��� ����
��� � imply

o�k � � o��k ���fInsgs�yjk ��� ����
� implies

q �k � � Ok ����
��� ��� ��� ��� �� imply ���

Case �� Assume
y �k � � Ins ����

� ��� �
� ��� ��� �� imply
q �k � � ql �m� � Tfail ����

�� �� �� imply ���

��	

Case �� Assume

y �k � � Exit ����

� ��� �
� ��� ��� �� imply

�q �k � � ql �m� � Pfail� � �q �k � � ql �m� � Ok� ��
�
If the �rst disjunct holds� then
�� � imply ��� Assume

q �k � � ql �m� � Ok ����

��� �� imply
i �k � � i ��k ���fInsgs�yjk ��� ����

�� ��� �� ��� �� imply
o�k � � o��k ���fInsgs�yjk ��� ���

��� ��� ��� ��� � imply ���

� Problem IV� The Lossy RPC Component

We now specify the lossy RPC component� We consider only the sequential

case 	 in other words� a lossy RPC component with respect to one user� We
refer to this speci�cation as SeqLossyRPC� In the same way as we speci�ed the
RPC component by the conjunction of n SeqRPC speci�cations� we may specify
the lossy RPC component by the conjunction of n SeqLossyRPC speci�cations�
However� this is trivial and therefore left out�

��� The Sequential Lossy RPC Component

The speci�cation of the sequential lossy RPC component is given below�

SeqLossyRPC time dependent

in r � ReCall�� d � PrRpl�
out s � ReRpl�� c � PrCall�

�d � �c

Delayed�c� d�

	
� q � OkFail�� s � � ReRpl� �

s � ��ReRpl � fpg� n fRPCFailg�ss �

RPCBehavior�r � d � s �� c� q�

RPCDelayed�r � d � s �� c� q�

RPCBounded�r � d � s �� c� q�

���

As for the sequential RPC component speci�ed in Sect� ��
� we assume that
exactly one reply is received on d for each call sent along c� Moreover� we assume
that each reply is received with a delay of at least one time unit with respect to
the transmission of the call� The commitment is split into four conjuncts� The
second and third conjunct correspond to the two conjuncts in the commitment
of SeqRPC with the exception that s � is substituted for s � This means that s �

contains an RPCFail for each remote call that fails� The informal description of
the lossy RPC component disallows the output of RPCFail exceptions� which
is why the �rst conjunct in the commitment of SeqLossyRPC de�nes s to be
equal to s � minus the occurrences of RPCFail� The fourth conjunct refers to an
auxiliary function which is de�ned below�

RPCBounded�r � d � s �� c� q�

ReCall� � PrRpl� �ReRpl� � PrCall� �OkFail� � B

let

A � VldReCall� fOk�Pfailg
B � �ReCall�OkFail� nA
C � fBadCall�RPCFailg � fOk�Tfailg
D � �ReRpl n fBadCallg�� fOk�Pfailg

in

Bounded�Ar�r � q�� c� 	�

Bounded�Br�r � q��Cr�s �� q�� 	�

Bounded�d �Dr�s �� q�� 	�

For any j RPCBounded compares what has been sent along the output streams
s � and c until time j � 	 with what has been received on the input streams r
and d until time j � 	 stands for the number of time units that corresponds to
the upper bound on the response time imposed by the problem statement�
The �rst conjunct makes sure that if a remote call leads to a procedure call

then this procedure call takes place within 	 time units after the transmission
of the remote call�
The second conjunct makes sure that if a remote call leads to a BadCall then

this reply is output within 	 time units of the transmission of the remote call�
The third conjunct makes sure that if any other value than BadCall is re�

turned then this takes place within 	 time units of the reply to the corresponding
procedure call�
Note that the second and third conjuncts also impose response time con�

straints on the occurrences of RPCFail in s �� These constraints have no e�ect on

���

the externally observable behavior of SeqLossyRPC� However� they simplify the
proof in Sect� ����
The auxiliary function Bounded is de�ned below�

Bounded�a� b� 	�

�� � �� � N � B

� j � N � ��a�j � � ��b�j���

� is a type variable�

� Problem V� Implementing the RPC Component

The next task is to implement the sequential RPC component with the sequential
lossy RPC component� We �rst specify the required driver� which we refer to
as the sequential RPC clerk� It is connected to the lossy RPC component in
accordance with Fig� �� In the following we assume that
 �
	 � �� where �

�

�

�

��

� c

d

r

s

a

bSeqLossyRPC SeqRPCClerk

Fig� �� Network Implementing the RPC Component�

is the number of time units corresponding to the upper bound on the response
time of the environment assumed by the problem statement�

	�� The Sequential RPC Clerk Component

The sequential RPC Clerk component is speci�ed below�

SeqRPCClerk time dependent

in a � ReCall�� s � ReRpl�
out b � ReRpl�� r � ReCall�

RPCClerkBehavior�a� s � b� r�

RPCClerkDelayed�a� s � b� r�

���

The I�O�relation consists of two conjuncts captured by two auxiliary functions�
The �rst one is de�ned below�

RPCClerkBehavior�a� s � b� r�

ReCall� �ReRpl� �ReRpl� �ReCall� � B

r � a

�ReRpl n fRPCFailg�sb � s

�b � NbRp�s � r�

� k � dom�r� �

let m � NbRp�s�tm�r �k�� r� � �
in s�tm�r�k��

p� v s 	 b�m� � RPCFail

� k � l � dom�r � � k � l 	
tm�r � l�� tm�r � k� �
 ��s�tm�r�l��� ��s�tm�r�k� � �

There are �ve main conjuncts� The �rst requires that any message received on
a is forwarded along r � and that no other message is sent along r �
The second conjunct requires that if the RPCFail exceptions are ignored then

the output along b is exactly the input received on s �
The third conjunct requires that the number of messages in b is equal to the

number of messages in s plus the number of time�outs 	 in other words� the
number of messages in r for which no reply is received on s within
 time units�
The fourth conjunct requires that if a message is sent along r at some time k

and no reply is received on s within the next
 time units then the mth message
output along b is RPCFail� where m � � is the number of messages �time�outs
included� received on s until time tm�r � k��
The �fth conjunct requires that the component always waits for a reply to

the previous call before it makes a new call� This means that the next call comes
at least
 � � time units after the previous call or at least one time unit after
the transmission of a reply to the previous call� The auxiliary function NbRp is
de�ned below�

NbRp�s � r�

ReRpl� � ReCall� � N

�s ��fm � dom�r� j s�tm�r�m�
�
p� v sg

It yields the number of replies in s including the time�outs with respect to r �

���

The second main conjunct of the I�O�relation of SeqRPCClerk refers to the
auxiliary function de�ned below�

RPCClerkDelayed�a� s � b� r�

ReCall� �ReRpl� �ReRpl� �ReCall� � B

Delayed�a� r�

� j � N � ��b�j��� � NbRp�s�j � r�

The �rst conjunct makes sure that the messages received on a are forwarded
along r with a delay of at least one time unit� The second conjunct imposes a
similar requirement with respect to s and b� It looks a bit di�erent since it not
only considers the ordinary messages received on s � but also the time�outs with
respect to r �

	�� The Implementation

The network pictured in Fig� � is speci�ed as follows�

SeqRPCImpl time dependent

in a � ReCall�� d � PrRpl�
out b � ReRpl�� c � PrCall�
loc r � ReCall�� s � ReRpl�

SeqLossyRPC�r � d � s � c�� SeqRPCClerk�a� s � b� r�

	�� Veri�cation

In order to prove that SeqRPCImpl implements SeqRPC we need a more general
concept of re�nement 	 namely what we refer to as conditional re�nement� Let
S and S � be time�dependent speci�cations of the same syntactic interface� and let
B be a formula whose free variables are either input or output streams according
to the declarations in the syntactic interface� We de�ne S � to be a conditional

re�nement of S modulo the condition B if

B � RS � 	 RS

under the assumption that any free variable is typed in accordance with its
declaration in the syntactic interface�
We now prove that SeqRPCImpl is a conditional re�nement of SeqRPC mod�

ulo the condition Cond�c� d� de�ned below�

���

Cond�c� d�

PrCall� � PrRpl� � B

Delayed�c� d� � Bounded�c� d � ��

Remember that for any speci�cation S � we use RS to denote its I�O�relation� If
the I�O�relation has	 as its main operator� we use AS to denote its antecedent
�assumption� and CS to denote its consequent �commitment�� Although this is
normally not pointed out explicitly� the validity of the many deductions below
depends on the type de�nitions listed in Sect� ���� ���� and also the assumptions
��� listed in Sect� ���� ���� ���
In the following we assume that

a � ReCall� ����

r � ReCall� ����

b � ReRpl� ����

s � ReRpl� ����

c � PrCall� �����

d � PrRpl� �����

We want to prove that

Cond�c� d� � RSeqLossyRPC�r�d�s�c� � RSeqRPCClerk�a�s�b�r� ���
�

	 RSeqRPC�a�d�b�c�

Since

Cond�c� d�	 ASeqLossyRPC�r�d�s�c� � ASeqRPC�a�d�b�c� �����

it follows that ��
 holds if

Cond�c� d� � CSeqLossyRPC�r�d�s�c� � RSeqRPCClerk�a�s�b�r� �����

	 CSeqRPC�a�d�b�c�

It remains to prove ���� Let a� r � b� s � c� d be such that

Cond�c� d� ����

CSeqLossyRPC�r�d�s�c� �����

RSeqRPCClerk�a�s�b�r� �����

It must be shown that

CSeqRPC�a�d�b�c� �����

���

��� implies there are q � OkFail�� s � � ReRpl� such that

s � ��ReRpl � fpg� n fRPCFailg�ss � �����

RPCBehavior�r � d � s �� c� q� �����

RPCDelayed�r � d � s �� c� q� �����

RPCBounded�r � d � s �� c� q� ���
�

��� implies

RPCClerkBehavior�a� s � b� r� �����

RPCClerkDelayed�a� s � b� r� �����

��� follows if we can show that

RPCBehavior�a � d � b� c� q� ����

RPCDelayed�a� d � b� c� q� �����

We �rst prove the following two lemmas

Delayed�s �� b� �����

s � � b �����

Then we use ���� ��� to deduce ��� ����

Proof of ��	� ��� implies

Delayed�r � s �� �����

� ��� ��
 imply

Bounded�r � s ��
� ��
��

���� �
� imply

� j � N � ��s ��j��� � ��r�j � � ��s ��j��� ��
��

��� implies

� k � l � dom�r� � k � l 	 ��

�

tm�r � l�� tm�r � k� �
 ��s�tm�r�l��� ��s�tm�r�k� � �
���� �

 imply

� k � l � dom�r� � k � l 	 ��
��

tm�r � l�� tm�r � k� �
 ��s ��tm�r�l��� ��s ��tm�r�k� � �
�
�� �
� imply

� k � l � dom�r� � k � l 	 �s ��tm�r�l��� ��s ��tm�r�k� � � ��
��

���

���� �
�� �
� imply

� k � l � dom�r� � k � l 	 ��
�

tm�r � k� � tm�s �� k� � tm�r � l� � tm�s �� l�

���� �
�� �
 imply

� j � N � NbRp�s�j � r� � �s ��j ��
��

��� implies

� j � N � ��b�j��� � NbRp�s�j � r� ��
��

�
�� �
� imply ����

Proof of ��
� ��� implies

�ReRpl n fRPCFailg�sb � s ��
��

�b � NbRp�s � r� ��
��

� k � dom�r� � �����

let m � NbRp�s�tm�r�k�� r� � �

in s�tm�r�k��
p� v s 	 b�m� � RPCFail

���� �
� imply

�ReRpl n fRPCFailg�sb � �ReRpl n fRPCFailg�ss � �����

���� �

� �
 imply

� j � dom�s �� � s ��j � � RPCFail	 s�tm�r�j ��
p� v s ���
�

���� �

� �
� ���� ��
 imply

� j � dom�s �� � s ��j � � RPCFail	 b�j � � RPCFail �����

���� �
�� ���� ��� imply ����

Proof of ���� ��� implies

a � r �����

���� ���� ��� imply ���

Proof of ���� ��� implies

Delayed��VldReCall� fOk�Pfailg�r�r � q�� c� ����

Delayed�r � s �� �����

Delayed�d � ��PrRpl n fBadCallg�� fOk�Pfailg�r�s �� q�� �����

���

���� ��� imply

a � r �����

Delayed�a� r� �����

��� ���� ��� imply

Delayed��VldReCall� fOk�Pfailg�r�a� q�� c� �����

���� ���� ��� imply

Delayed�a� b� �����

���� ���� ��� imply

Delayed�d � ��PrRpl n fBadCallg�� fOk�Pfailg�r�b� q�� ���
�

���� ���� ��
 imply ����

� Conclusions

We have employed a speci�cation and re�nement technique based on streams to
solve the RPC�memory speci�cation problem� We have emphasized the use of
oracles to capture time�independent nondeterministic behavior� We �nd oracles
intuitive� Moreover� they allow us to deal with nondeterminism in a structured
way� The commitments of our speci�cations are all written in the form

�Oracle Decls � Oracle Constraint � Behavior Constraint

Oracle Decls is a list of oracle declarations� Oracle Constraint is a formula im�
posing additional constraints on the oracles� Oracle Constraint is typically used
to impose fairness requirements or to make sure that the oracles satisfy cer�
tain compatibility conditions� Behavior Constraint is formula which for each
oracle interpretation such that Oracle Constraint holds� determines the �time�
independent� output history as a function of the input history� If the timing
is ignored Behavior Constraint can easily be replaced by a functional program
viewing the oracles as additional input streams� Thus� with respect to the time�
independent behavior� our speci�cations are quite close to what one might think
of as �nondeterministic� functional programs�
We have carried out detailed proofs� They are all relatively straightforward�

Our proofs are not formal� However� they seem easy to formalize� The main
obstacle on the road to formalization is the de�nitions of the new oracles in Sec�
tion �� They must be restated in a constructive manner� This is not technically
di�cult� but nevertheless quite tedious�
The use of streams to model data�ow networks was �rst proposed in �Kah����

Timed streams and relations on timed streams are also well�known from the
literature �Par���� �Kok���� The same holds for oracles �Kel���� �AL��� �called
prophecy variables in the latter�� The presented approach is based on �BS���
which can be seen as a complete rework�relational reformulation of �BDD�����
There are also some obvious links to Z �Spi����

���

	 Acknowledgements

The author has bene�ted from discussions with Manfred Broy on this and re�
lated topics� A very constructive referee report by Leslie Lamport led to many
improvements and simpli�cations� A second anonymous referee report also pro�
vided some useful remarks� ystein Haugen read a more recent version of the
paper� His detailed comments were very helpful�

References

�AL��� M� Abadi and L� Lamport� The existence of re�nement mappings� Techni�
cal Report ��� Digital� SRC� Palo Alto� ����

�AL��� M� Abadi and L� Lamport� Conjoining speci�cations� ACM Transactions

on Programming Languages and Systems� ���������� ����
�BDD���� M� Broy� F� Dederichs� C� Dendorfer� M� Fuchs� T� F� Gritzner� and R� We�

ber� The design of distributed systems � an introduction to Focus
re�
vised version�� Technical Report SFB �������� A� Technische Universit�at
M�unchen� ����

�BL� M� Broy and L� Lamport� The rpc�memory speci�cation problem� This
volume�

�BS��� M� Broy and K� St�len� Focus � a method for the development of interac�
tive systems� Book manuscript� June ����

�Kah��� G� Kahn� The semantics of a simple language for parallel programming� In
Proc� Information Processing� pages ������� North�Holland� ����

�Kel��� R� M� Keller� Denotational models for parallel programs with indeterminate
operators� In Proc� Formal Description of Programming Concepts� pages
�������� North�Holland� ����

�Kok��� J� N� Kok� A fully abstract semantics for data �ow nets� In Proc� PARLE�

Lecture Notes in Computer Science ���� pages ������� Springer� ����
�Par��� D� Park� The �fairness� problem and nondeterministic computing networks�

In Proc� Foundations of Computer Science� Mathematical Centre Tracts ����
pages ����� Mathematisch Centrum Amsterdam� ����

�Spi��� J� M� Spivey� Understanding Z� A Speci�cation Language and its Formal

Semantics� volume � of Cambridge Tracts in Theoretical Computer Science�
Cambridge University Press� ����

�St���a� K� St�len� Assumption�commitment rules for data��ow networks � with
an emphasis on completeness� In Proc� ESOP� Lecture Notes in Computer

Science ����� pages �������� Springer� ����
�St���b� K� St�len� Re�nement principles supporting the transition from asyn�

chronous to synchronous communication� Science of Computer Program	

ming� ����������� ����

A Specifying the Hand
Shake Protocol

As pointed out in the introduction to this paper� we have not speci�ed the
hand�shake protocol on which �BL� is based� The protocol has not been left out
because it cannot be expressed in our formalism� In fact� as shown below� we can

��	

easily specify the hand�shake protocol� We have ignored the hand�shake protocol
because our formalism is tailored towards asynchronous communication with un�
bounded bu�ering� Our approach is based on the idea that the use of unbounded
bu�ering is helpful when a system is described and reasoned about during its
design 	 helpful because it allows us to abstract from the synchronization pro�
tocols needed in system descriptions based on bounded bu�ering�

Of course� at some point in a system development boundedness constraints
have to be introduced 	 after all� any real system is based on bounded re�
sources� To show that our approach supports the introduction of hand�shake
communication� we now use conditional re�nement� as de�ned in Sect� ���� to
re�ne McImpl into a speci�cation SynMcImpl that di�ers from McImpl in only
one respect� the hand�shake protocol is imposed� See �St���b� for a detailed dis�
cussion of re�nement principles supporting the introduction of synchronization
in a compositional manner� The new overall speci�cation is given below�

SynMcImpl time dependent

in ip � �Call��n
out op � �Rpl��n
loc cp � �Call��n � dp � �Rpl��n � ap � �ReCall��n � bp � �ReRpl��n

SynRelMc�cp� dp� � SynRPC�ap� dp� bp� cp� � SynClerk�ip� bp� op� ap�

To simplify the speci�cations of the three components we introduce an auxiliary
function HandShaked�

HandShaked�a� b� j �

����n � ����n � N� � B

� k � ����n�� l � ����j � � ��ak�l � � ��bk�l��� � �

� is a type variable� HandShaked�a� b��� holds if for any k � l the number of
messages transmitted on the channel ak until time l is maximum one greater
than the number of messages transmitted on the channel bk until time l��� The
component speci�cation SynRelMc is adapted from RelMc as follows�

���

SynRelMc time dependent

in cp � �Call��n
out dp � �Rpl��n

� j � N� � HandShaked�cp� dp� j � 	
� cp� � �Call��n � dp� � �Rpl��n �
RRelMc�cp��dp��

� k � ����n� � cpk�j v cp�k � dpk�j�� v dp�k

The component characterized by SynRelMc is required to behave in accordance
with RelMc at least one time unit longer than its environment behaves in accor�
dance with HandShaked� This is su�cient to ensure hand�shake behavior� since
RelMc requires that a reply is never output before at least one time unit after
the call is transmitted� Note the relationship to the interpretation of assump�
tion�commitment speci�cations in �AL�� �see also �St���a���

In exactly the same way as the speci�cations RPC and Clerk are de�ned as
the conjunctions of n sub�speci�cations� we de�ne SynRPC and SynClerk as the
conjunctions of n SeqSynRPC and SeqSynClerk speci�cations� respectively� We
give only the speci�cations of the sequential components� The following auxiliary
function is useful�

RplDelayed�a� b� j �

����n � ����n � N� � B

� k � ����n� �
� l � ����j � � ��bk�l � � ��ak�l���
j ��	 �bk � �ak

RplDelayed is used to capture that for any message sent on a exactly one reply is
received on b with a delay of at least one time unit� The sequential synchronous
RPC component is speci�ed as follows�

���

SeqSynRPC time dependent

in a � ReCall�� d � PrRpl�
out b � ReRpl�� c � PrCall�

� j � N� � HandShaked�a� b� j � � RplDelayed�c� d � j �	
� a � � ReCall�� d � � PrRpl�� b� � ReRpl�� c� � PrCall� �

ASeqRPC�a��d��b��c��

CSeqRPC�a��d��b��c��

a�j v a � � d�j v d � � b�j�� v b� � c�j�� v c�

Remember that for any speci�cation S � whose I�O�relation has 	 as its main
operator� we use AS and CS to denote its antecedent �assumption� and conse�
quent �commitment�� respectively� SeqSynRPC requires the speci�ed component
to behave in accordance with the commitment of SeqRPC at least one time unit
longer than the environment of SeqSynRPC behaves in accordance with the an�
tecedent �environment assumption� of SeqSynRPC� The sequential synchronous
clerk component is speci�ed below�

SeqSynClerk time dependent

in i � Call�� b � ReRpl�
out o � ReRpl�� a � ReCall�

� j � N� � HandShaked�i � o� j � � RplDelayed�a� b� j � 	
� i � � Call�� b� � ReRpl�� o� � ReRpl�� a � � ReCall� �

ASeqClerk�i��b��o��a��

CSeqClerk�i��b��o��a��

Delayed�hRPCFail�pi�b�� hpi�a ��

i�j v i � � b�j v b� � o�j�� v o� � a�j�� v a �

This speci�cation has exactly the same structure as SeqSynRPC with the ex�
ception that an additional causality constraint is introduced to make sure that
the clerk never sends a new call along a before it receives a reply on b to its pre�
vious call� Note that we could have replaced RPCFail by any other type correct
message �remember that

p
is not a message��

We now prove that SynMcImpl is a re�nement of McImpl under the condition
that a user never makes another call before it has received a reply to its previous

���

call� In the following we assume that

ip � �Call��n �����

cp � �Call��n �����

op � �Rpl��n ����

dp � �Rpl��n �����

ap � �ReCall��n �����

bp � �ReRpl��n �����

j � ����n� �����

It must be shown that

HandShaked�ip� op��� � RSynMcImpl�ip�op� 	 RMcImpl�ip�op� ����

We start by proving that the sub�speci�cations of SynMcImpl are conditional
re�nements of the corresponding sub�speci�cations of McImpl� More explicitly�
conditional re�nements in the following sense

HandShaked�cp� dp��� � RSynRelMc�cp�dp� 	 RRelMc�cp�dp� ����

HandShaked�apj � bpj ��� � RSeqSynRPC�apj �dpj �bpj �cpj � 	 ��
�

RSeqRPC�apj �dpj �bpj �cpj �

HandShaked�ipj � opj ��� � RSeqSynClerk�ipj �bpj �opj �apj � 	 ����

RSeqClerk�ipj �bpj �opj �apj �

�� holds trivially� Since

ASeqRPC�apj �dpj �bpj �cpj � 	 RplDelayed�cpj � dpj ��� ����

ASeqClerk�ipj �bpj �opj �apj � 	 RplDelayed�apj � bpj ��� ���

it is also clear that �
� �� hold� Let ip� op be such that

HandShaked�ip� op��� ����

RSynMcImpl�ip�op� ����

�� follows if we can show that

RMcImpl�ip�op� ����

�� implies there are cp� dp� ap� bp such that

RSynRelMc�cp�dp� ����

RSynRPC�ap�dp�bp�cp� �����

RSynClerk�ip�bp�op�ap� �����

���

��� �
� ��� ��� ��� ���� ��� imply that �� follows if we can show that

HandShaked�ap� bp��� �HandShaked�cp� dp��� ���
�

For any k � N� let

Ik
def
� HandShaked�ap� bp� k� � HandShaked�cp� dp� k� �����

RplDelayed�ap� bp� k� � RplDelayed�cp� dp� k�
��� implies

I� �����

��� ��� ���� ���� ��� imply

� k � N � Ik 	 Ik�� ����

���� �� and induction on k imply

� k � N � Ik �����

���� ��� imply ��
� This ends our proof�
In Sect� � we have shown that the composite speci�cation McImpl�ip� op� is

a re�nement of UnrelMc�ip� op�� Above we have shown that SynMcImpl�ip� op�
is a conditional re�nement of McImpl�ip� op� modulo HandShaked�ip� op���� By
the de�nitions of re�nement it follows that SynMcImpl�ip� op� is a conditional
re�nement of UnrelMc�ip� op� modulo HandShaked�ip� op����

