
Seventh OOPSLA Workshop on Behavioral Semantics of
OO Business and System Specifications

Haim Kilov
Merrill Lynch

Operations Services and Technology
World Financial Center

New York, NY 10080-6105, USA
Haim_Kilov@ml.com

Bernhard Rumpe
Institut für Informatik,

Technische Universität München,
80333 Munich, Germany

Bernhard.Rumpe@in.tum.de

Ian Simmonds
IBM T J Watson Research

Center
30 Saw Mill River

Hawthorne, NY 10532, USA
simmonds@us.ibm.com

The Seventh OOPSLA workshop on behavioral
semantics took place on Monday, October 19th, 1998.
With 17 accepted papers of high quality, written by 41
authors, quite a few new and consolidated ideas were
presented and discussed. As in previous years some
prominent guests visited and actively participated in
the workshop. Continuing the tradition of the six
successful OOPSLA workshops (for the last two see
[5,7] and two equally successful ECOOP workshops
[6,8] on behavioral semantics, the workshop brought
together theoreticians and practitioners to report on
their experience with making semantics precise and
explicit in various OO specifications. We consider that
this year's workshop was another success.
The proceedings [5] of this year's workshop are
available through the organizers. Contributions based
upon the first four OOPSLA workshops appear in the
book "Object-Oriented Behavioral Specifications" [3].
Results of the workshop and its participants are also
reflected in relevant national and international (ISO)
standards [1,2] (e.g., in Open Distributed Processing)
and in various OMG documents [4], to which many
workshop participants continue to contribute.

RULES

1.The words given to be linked together constitute a
‘Doublet’, the interposed words are the ‘Links’, and
the entire series a ‘Chain’. The object is to complete
the Chain with the least possible number of Links.
2.Each word in the Chain must be formed from the
preceding word by changing one letter in it, and one
only. The substituted letter must occupy the same
place, in the word so formed, which the discarded
letter occupied in the preceding word, and all the
other letters must retain their places.
3.When three or more words are given to be made
into a Chain, the first and last constitute a ‘Doublet’.
The others are called ‘Set Links’, and must be
introduced into the Chain in the order in which they
are given. A Chain of this kind must not contain any
word twice over.
4.No word is admissible as a Link unless it (or, if it be
an inflection, a word from which it comes) is to be

found in the following Glossary. Comparatives and
superlatives of adjectives and adverbs, when regularly
formed, are regarded as ‘ inflections’ of the positive
form, and are not given separately, e.g., the word
‘new’ being given, it is to be understood that ‘newer’
and ‘newest’ are also admissible. But nouns formed
from verbs (as ‘ reader’ from ‘ read’) are not so
regarded, and may not be used as Links unless they
are to be found in the Glossary.

Lewis Carroll. Doublets.

Like in any established engineering discipline, business
and system specifications sometimes are, and always
should be, technical documents used to describe and
understand businesses and the computer systems that
support the rules of the business. Specifications have
to express this understanding in a clear, precise,
concise, and explicit way, in order to act as common
ground between business domain experts, analysts and
software developers. They also provide the basis for
reuse of concepts and constructs ("patterns") common
to all, or a large number of, businesses, and in doing
so save intellectual effort, time and money. They
introduce precision much earlier than in coding, and in
a manner that allows business people – and not
programmers – to supply and validate business rules.
An example of a set of business rules (for the
Doublets game) provided by Lewis Carroll is
reproduced above. These rules are clear, precise and
elegant. As to conciseness, perhaps the reader can
determine where these rules could have been
improved. Nevertheless, if all business rules were
formulated as clearly, precisely, concisely, and
explicitly (and appropriately structured!) as this,
perhaps our workshops would no longer be necessary!
But this still has not happened.
Adequate specification approaches substantially ease
the discovery of business requirements in discussion
with business customers. They also support the clear
separation of concerns -- between problem
specification and solution design -- known since Adam
Smith as division of labor. Different audiences are

interested in different aspects of "common business
components" and so require different specifications.
Precise specification of semantics – as opposed to just
signatures – is essential not only for business
specifications, but also for business designs and
system specifications. In particular, it is needed for
appropriate handling of viewpoints which are essential
for understanding large and even moderately sized
systems, both business and computer ones. (800-page
"flat" specifications are neither used nor read by
anyone.) In order to handle the complexity of a (new
or existing) large system, it must be considered, on the
one hand, as a composition of separate viewpoints,
and on the other hand, as an integrated whole,
probably at different abstraction levels.
Many concepts and constructs used for all kinds of
behavioral specifications – from business to systems –
have common semantics and thus are good candidates
for standardization and industry-wide usage. Various
international standardization activities -- such as the
ISO Reference Model of Open Distributed Processing,
ISO General Relationship Model, OMG activities
around the semantics of UML and other OMG
submissions, (common) business objects, as well as
the OMG semantics and reference model working
groups -- are at different stages of addressing these
issues.
It was therefore the aim of the workshop to bring
together theoreticians and practitioners to report their
experience with making semantics precise (perhaps
even formal), clear, concise and explicit in OO
business specifications, business designs, and system
specifications. Papers varying from research (where
category theory is starting to be used successfully)
through academic (transfering theory into practice)
and industrial "war stories" were all welcome.
Experience in the usage of various (object-oriented)
modeling approaches for these purposes was of
special interest, as was experience in explicit
traceability of semantics between a business
specification, business design, and a system
specification.

The topics of the workshop included:
• business specifications
• business architectures
• precise specification of semantics
• semantics of OO modeling approaches
• semantics-preserving refinement strategies
• viewpoint modelling
• standards
• business patterns (reusable fragments of

specification)
• related tool support.

In the following, we present in alphabetical order our
(biased and) drastically shortened overviews of the
talks, as well as listing other papers that appear in the
workshop proceedings [5]. Some material has been
separated out to form the final conclusions presented
at the end of this report.

Kenneth Baclawski, Scott A. DeLoach, Mieczyslaw
Kokar, Jeffrey Smith: "Object-Oriented Parsing and
Transformation".
Modern CASE tools and formal methods systems are
more than just repositories of specification and design
information. They can also be used for refinement and
code generation. Refinement is the process of
transforming one specification into a more detailed
specification. Specifications and their refinements
typically do not use the same specification language.
Code generation is also a transformation, where the
target language is a programming language. Although
object-oriented programming languages and tools
have been available for a long time, all refinement and
transformational systems are still based on grammars
and parse trees. The authors compare grammar-based
transformation with object-oriented transformation
and introduce a toolkit that automates the generation
of parsers and transformers expressed in object-
oriented terms. (Grammar-based refinement requires a
great-deal of unnecessary effort. Direct OO refinement
is easier, eliminating the useless parse and unparse
steps.) A more specific objective is to apply these
techniques to the problem of translating a CASE
repository into logical theories of a formal methods
system.
Question: Is this any different from structural
reorganization within compilers? Answer: It's the
same. Question: Can't you do the same thing for
theorem proving? Answer: Yes.

Arne-Jorgen Berre, Tor Neple, Jack Hassall, John
Eaton, Gary Gray, Mike Wilcock: "Applying ISO
RM-ODP and UML in the Specification of Standard
Interfaces to General Ledger Systems".
The authors were unable to attend the workshop.

J. A. Camara, J. C. Gouveia, L. F. Andrade: "Object-
oriented implementation using state machines".
The authors define an architecture that enables the
automatic synthesis of production code (C++) from a
high level specification language (OBLOG) via an
intermediate state machine model (TEJA). The
specification language includes primitives that handle
both business and architectural requirements. The
authors' experience has profited from previous work
related to a real-life project in the banking industry,
where object-oriented models for large-scale projects
were used. From an OBLOG specification, a TEJA

specification is produced, allowing TEJA to produce
C++ code.
B.Cohen. "Being Served: The purposes, strengths and
limitations of formal service modeling" [Paper not in
proceedings].
The author’s goal was to show formal service
modeling, taking into account that we have perfectly
respectable mathematical frameworks (no need to
invent new ones). A particular motivation for the
author is that despite four conferences on service
interaction, inconsistencies arising as a result of this
interaction still cannot be detected analytically, "by a
system". (There exist more than 100 documented
cases of undesired feature interaction, in
telecommunications and elsewhere.) The author’s
approach it to compose business specifications with
models of platforms to produce system specifications.
An agent is either a user who sees only the service
description or a provider. The provider sees this
description and an implementation on the provider’s
platform (and promises to satisfy the specification).
An enterprise is composed of the two. Thus, an agent
is a category as a client, and a category as a supplier;
and these categories have to be composed together.
However, while category theory provides a good
mathematical framework, it does not solve all
problems -- in particular, it does not permit
inconsistencies, although work e.g. by Fiadeiro is
seeking to address these category-theoretical issues.
So in the author’s approach, formal service modeling
is the problem of matching the value needs of a client
to the value creation of a supplier.

Lucio Dinoto: "On supporting the separation of
Business Rules from the Business Actions
implementation".
The author defined business rules as business
constraints that an organization establishes as
conditions for its business actions or activities. They
are to be specified "separately from the object model".
Logical conditions or programming rules (such as
"password must be longer than 5 characters") must
not be confused with business rules. Also, business
rule implementation must not be hard-coded within
the implementation of business actions because it does
not make the object model reusable for other contexts.
Instead of this, a dynamic association is required
between business action implementation and business
rule execution.

Zinovy Diskin: "The arrow logic of meta
specifications: a formalized graph-based framework
for structuring schema repositories".
The author was unable to attend the workshop.

Janusz A. Dobrowolski, Edward Morton: "Use of the
Virtual Finite State Machine for the Behavioral
Specification of Complex Business Systems".
Too often, the (initial) behavioral specification of a
system becomes an outdated document since the code
takes precedence over the specification. To deal with
this, the authors propose to generate code
automatically, and state that manually accessing the
generated code should be forbidden and impossible.
The authors use virtual finite state machines – a
notation that is programming-language-, operating-
system- and database-independent – to represent
"active business object" behavior. (A state of a
business object is distinguished from a state of its
data.) This approach has been used to generate
millions of lines of code. The models are very
elementary – for example, there is no nesting.
Although a single model may contain hundreds of
states, the authors note that models with more than 20
or 30 states tend to be hard to understand.
Question: You stated that in your approach reliability
increases as complexity increases. This is
counterintuitive. Answer: This happens since the larger
the model, the more manually written code gets
replaced with automatically generated code.

Marc Frappier, R. St-Denis: "Specifying Information
Systems using Input-Output Traces and JSD Entities".
The authors describe a formal method based on input-
output traces to specify the behavior of information
systems. Input traces are described using entities
defined by regular expressions and process algebra
operators, in a precise style inspired by the Jackson
System Development method. Outputs are specified
using axioms on input sequences, taking advantage of
the process structure defining the input sequences.
Preconditions are taken care of by ordering Entity
Structure Diagrams.

Radu Grosu, Manfred Broy, Bran Selic, Gheorge
Stefanescu: "Towards a Calculus for UML-RT
Specifications".
The unified modeling language (UML) is currently
being tuned (by Rational Software Corporation and
ObjecTime Limited) for real-time applications in the
form of a new proposal -- UML for Real-Time (UML-
RT). Because of the importance of UML-RT the
authors are investigating its formal foundation in a
joint project between ObjecTime Limited, Technische
Universität München and the University of Bucharest.
The paper deals with a part of this foundation, namely
the theory of flow-graphs. The emphasis is on
providing good semantics, which has to be both
understandable and mathematically precise. An
approach similar to category theory is used as a
foundation of this approach.

Pavel Hruby: "Structuring Specification of Business
Systems with UML".
The use of Unified Modeling Language (UML) for
modeling business systems is intended to enhance
communication between software developers, domain
experts and other professionals with different
backgrounds. However, UML does not specify how to
structure information describing the business system,
nor does it specify which diagrams to include in the
design artifacts or what the relationships between
various artifacts are. The author described a pattern of
four design artifacts that can be used for description of
business systems with UML. The pattern is based on
artifacts that describe classifier relationships,
interactions, responsibilities and state machines. The
application of the pattern can easily be extended to
cover information about the business system in
different views and at different levels of abstraction.

Shusaku Iida, Kokichi Futatsugi, Razvan Diaconescu:
"Component Based Algebraic Specifications".
The authors propose a new specification style called
"component based algebraic specification" (CBAS)
which supports formal component based software
construction as well as software architecture and
design patterns (since testing huge and complex
systems is hard and expensive, verification techniques
become more important). CBAS allows the
specification not only a component’s interfaces but
also its behavior. Also, it can specify the architecture
of the system built from these components. The
approach is realized in CafeOBJ – an executable
algebraic specification language (available for
download) – for which the semantics of composition is
precisely defined. CafeOBJ supports many sorted
algebra, order sorted algebra, hidden algebra, and
rewriting logic. In particular, it becomes possible to
reuse not only code, but also proofs of behavioral
equivalence. CBAS has been applied to prove the
correctness of adding a component within the context
of the ODP Trading function.

Haim Kilov, Allan Ash: "The Business of
Automating".
Systems fail because (1) business specifications don't
exist; (2) system specifications don't connect to
business specifications, leading to the perception that
"code then appears magically". The realization
relationship provides traceability between business
specifications, business design; system specifications;
and system implementations. The (most important
aspect of the) business of automating is the business of
writing system specifications. The authors described
a(n accounting) part of a real-life project at Merrill
Lynch, in which there was a need to interface to

legacy systems treated (pragmatically) as black boxes.
Not surprisingly, you can do a system specification in
exactly the same way as a business specification –
based on the specification of the (business or system)
domain. Partial specifications of (pre- and
postconditions) for important operations are often
sketched when the appropriate fragments of the
domain are specified. A high-tech solution is not
necessarily the most cost-effective for operations. It
was found to be very helpful, during business design,
to generate a number of low-tech, manual, or "status
quo" variants for realizing some operations. (When the
accounting books don't satisfy the invariant then
"reconciliation" occurs, which may require manual
compensation).
Question: At one far end there's a program that runs.
What is the moment when a non- in principle
executable spec becomes an in principle executable
spec? Answer: the relationships between the system
objects are in the system specification. Nothing is
(automatically) generated. Question: How do you
know that you've done it correctly? Answer: There is a
step of invention that you can check by verifying that
the result satisfies (eg) the business invariant.
Question: What percentage of operations are specified
in terms of pre- and postconditions? Answer: At the
top level, most. In many cases the operation
specifications follow from the invariants.

D. Muthiayen, V.S. Alagar: "A UML-based
Methodology for Real-Time Reactive System
Development".
In developing a modeling technique for Real-Time
Reactive Systems, the authors introduce a minimal set
of extensions to the UML notation. A class stereotype
defines a classifier for a generic model describing
reactive entities. An association stereotype describes
responses to stimuli in the form of timing constraints
on reactions to events. To define the behavioral
semantics of objects described in the extended
notation, the authors extend (one of several specific
interpretations of) OCL (Object Constraint Language)
with specific predicates capturing temporal properties.
The semantics represents groundwork for a
methodology for formal development of reactive
systems of industrial scale. The authors also outlined a
verification methodology founded on formal
semantics and PVS (Prototype Verification System)
for automated reasoning.

Bernhard Rumpe, Veronika Thurner: "Refining
Business Processes".
The authors present a calculus for refinement of
business process models, based on a precise definition
of business processes and process nets. Business
process models are a vital concept for communicating

with experts of the application domain. Depending on
the roles and responsibilities of the application domain
experts involved, process models are discussed on
different levels of abstraction. These may range from
detailed rules of process execution to strategic level
interrelations of basic core processes. To ensure
consistency and to allow for a flexible integration of
process information on different levels of abstraction,
refinement rules are introduced that allow the
incremental addition to and refinement of the
information in a process model, while maintaining the
validity of more abstract high level processes. In
particular, the authors define rules for the
decomposition of single processes and logical data
channels, as well as the extension of the interface and
channel structure to include information that is newly
gained or increases in relevance during the modeling
process. Question: Why is this specific for business?
Can’t it also be used for other kinds of notation?
Answer: the rules were adapted from other calculi the
authors defined on data-flow based software
architectures and on state-machines.

Vishal Sikka, Martin King: "The International Effort
to Standardize Conceptual Schema Modeling".
The authors describe the standards work being done
by ISO for Conceptual Schema Modeling Facilities
(CSMF). The history of the ISO work goes back to
1977 and is based on the ANSI/SPARC report on
Conceptual Schema. A major milestone was the
availability in 1982 of the report "Concepts and
Terminology for the Conceptual Schema and the
Information Base", subsequently published by ISO as
TR 9007. The current ISO work is towards an actual
CSMF standard, and has recently seen significant
progress towards a final committee draft. A major
aspect of this work is related to defining the technical
foundations of the standard. The authors provide a
general overview of the standards process and
describe the formal basis of the CSMF, as well as the
set of constructs that comprise it.

Richard Sinnott, Mario Kolberg: "Business-Oriented
Development of Telecommunication Services".
The development of software for distributed systems,
e.g. telecommunication services, is a complex activity.
Interface definition languages (IDLs) often used for
these systems allow only for the specification of the
syntactic aspects of the interfaces. IDLs are
insufficient since they lack both behavior and
abstraction – in other words, they "lose the big
picture". The authors show how these issues are being
addressed in the TOSCA project in its development of
a service creation and validation environment.
Behaviour is specified using SDL based on collections
of "elementary" parameterized business patterns.

Thus, these OO frameworks allow semantics to be
captured and re-used. They describe "nearly finished
services", in which the user needs to intervene in
"points of flexibility" and specialize behavior (using
graphical tools) to provide services.

Angelo E. Thalassinidis, Ira Sack: "On the
Specification of Organizational Information
Processing Requirements".
The authors were unable to attend the workshop.

Hei-Chia Wang, V. Karakostas: "Business Object
Linking Using An Event Description Language and
Business Rules".
The authors present an approach for combining
business rules with an event language to enable the
automatic linking of business objects in a distributed
environment. Since message sending is an
overspecification, object communication is based on
business rules that act upon events rather than
messages. Business objects contain control rules used
for determining whether to accept an event request
and how to handle this request in order to produce
another event. Generated events are used for
dynamically linking objects within a distributed
system.

Conclusions

The workshop drew up the following conclusions,
which were accepted by all participants:
• Different kinds of specifications (business,

"system," technological) can be written using the
same concepts and constructs (eg RM-ODP) and
have a common foundation

• We are able to rely on existing mathematics (eg
category theory)

• We should avoid reinvention, and make
extensions only if needed (eg for dealing with
inconsistencies)

• It is possible to reuse not only code, but
specifications, proofs, and other things, leading to
reusable precise patterns

• We should formulate specifications in terms of
invariants ("more important and fundamental"
than operations)

• Specifications have to be explicit; and
mathematics can and should be used to do that

• We should try to develop systems using "higher
level" constructs than those of conventional
programming languages

• Practitioners (developers) are helped by
mathematically precise semantics, which improves
their tools and their communications with each
other and with customers

• Specifications are needed in order to analyze and
predict properties of the system that is specified;
and to discover and understand flaws in the
customer’s theory of the world

• An abstract specification may be detailed

Workshop participants

Kenneth Baclawski, Northeastern University,
 kenb@ccs.neu.edu
Bernard Cohen, City University, London, UK,
 b.cohen@city.ac.uk
Lucio Dinoto, Lifia & JP Morgan,
 dinoto_lucio@jpmorgan.com
Janusz Dobrowolski, Lucent Technologies,
 jdobrowolski@lucent.com
Lenny Estrin, MetLife, lestrin@metlife.com
Marc Frappier, Universite de Sherbrooke,
 marc.frappier@dmi.usherb.ca
Kokichi Futatsugi, Japan Advanced Institute of
 Science and Technology (JAIST),
 kokichi@jaist.ac.jp
Joao Gouveia, Oblog Software SA,
 jgouveia@oblog.pt
Gunter Graw, University of Dortmund,
 graw@ls4.informatik.uni-dortmund.de
Radu Grosu, TU Munchen, grosu@in.tum.de
Trevor Hopkins, IBM UK OTP,
 trevor_hopkins@uk.ibm.com
Shusaku Iida, Japan Advanced Institute of Science and
 Technology (JAIST), s_iida@jaist.ac.jp
Haim Kilov, Merrill Lynch, haim_kilov@ml.com
Mitch Kokar, Northeastern University,
 kokar@coe.neu.edu
Chris Marshall, SES Software,
 chris_marshall@sesh.com
Tom Mowbray, Blueprint Technology,
 mowbray@www.serve.com
Darmalingum Muthiayen, Condordia University,
 d_muthi@cs.concordia.ca
Gianna Reggio, University of Genova, Italy;
 reggio@disi.unige.it
Bernhard Rumpe, TU Munich, rumpe@in.tum.de
Richard St-Denis, University de Sherbrooke,
 richard.st-denis@dmi.usherb.ca
Bran Selic, ObjecTime Limited, bran@objectime.com
Ian Simmonds, IBM TJ Watson Research Center,
 simmonds@us.ibm.com
Richard Sinnott, GMD Fokus, sinnott@fokus.gmd.de
Jeff Smith, Sanders / Northeastern University,
 jsmith@coe.neu.edu
Christopher Spottiswoode, Metaset,
 cms@metaset.co.za
Veronica Thurner, Technical University of Munich,
 thurner@in.tum.de

Hei-Chia Wang, University of Manchester Institute of
 Science and Technology (UMIST),
 hcwang@co.umist.ac.uk
References

1. ISO/IEC. Open Distributed Processing - Reference
Model: Part 2: Foundations (IS 10746-2 / ITU-T
Recommendation X.902, February 1995).

2. ISO/IEC. Information Technology - Open Systems
Interconnection - Management Information
Systems - Structure of Management Information -
Part 7: General Relationship Model, ISO/IEC
10165-7, 1995.

3. Object-oriented behavioral specifications, edited
by Haim Kilov and Bill Harvey, Kluwer Academic
Publishers, 1996, ISBN 0-7923-9778-9.

4. OMG Semantics Working Group Green Paper.
OMG Document number ormsc/97-06-10r (Haim
Kilov and Kevin P. Tyson).

5. Object-Oriented Programming Languages and
Applications (OOPSLA’98), Seventh OOPSLA
Workshop on Behavioral Semantics Business and
System Specifications, Vancouver, Canada,
October 19th, 1998. Editors Haim Kilov, Bernhard
Rumpe and Ian Simmonds; Proceedings of Munich
University of Technology, TUM-I9820, August
1998

6. European Conference on Object-Oriented
Programming (ECOOP’97), Workshop on Precise
Semantics for Object-Oriented Modeling
Techniques; Jyväskylä, Finland, June 9th, 1998.
Editors Haim Kilov and Bernhard Rumpe;
Proceedings of Munich University of Technology,
TUM-I9725, Mai 1997

7. Object-Oriented Programming Languages and
Applications (OOPSLA’97), Workshop on Object-
Oriented Behavioral Semantics (with an Emphasis
on Semantics of Large OO Business
Specifications), Atlanta, USA, October 5th, 1997.
Editors Haim Kilov, Bernhard Rumpe and Ian
Simmonds; Proceedings of Munich University of
Technology, TUM-I9737, September 1997

8. European Conference on Object-Oriented
Programming (ECOOP’98), Second ECOOP
Workshop on Precise Behavioral Semantics;
Brussels, Belgium, July 24th, 1998. Editors Haim
Kilov and Bernhard Rumpe; Proceedings of
Munich University of Technology, TUM-I9813,
June 1998

