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Abstract
The graphical description techniques provided by UML-RT
are significant aids in modeling aspects of structure and be-
havior in software architectures for reactive and embedded
real-time systems. Here, we sketch an extension of UML-
RT’s reach from binary communication to broadcasting. To
that end, we introduce sequence diagrams tailored for captur-
ing broadcasting scenarios. Furthermore, we describe sys-
tematic steps for deriving both component structure and be-
havior from the captured broadcasting scenarios.

1 Introduction
One of the key challenges in the development process for
complex distributed and reactive systems is the definition of
an adequate software architecture; important aspects of such
an architecture are the hierarchical structuring of the system
into components, the precise specification of both compo-
nent interfaces and behavior, and the forces and constraints
underlying the chosen decomposition.

UML-RT[SR98, Lyo98], a sequel to ROOM[SGW94], has
been suggested as a notation for representing hierarchical
structural decomposition, asynchronous binary component
interactions via clear interfaces, and individual component
behavior. The corresponding graphical description tech-
niques available in UML-RT are capsule (and class) dia-
grams, sequence diagrams, and a subset of the UML’s stat-
echarts. Clearly, these concepts and description techniques
are significant aids in developing and documenting the men-
tioned architectural aspects based on the binary and asyn-
chronous communication model underlying UML-RT.

However, this binary communication model has its disadvan-
tages in modeling real-world examples in the technical and
embedded systems domain. Consider, for instance, the mul-
ticast and broadcast communication frequently used in au-
tomotive systems, avionics, and in mobile communications.
This raises the question whether UML-RT is also an ade-
quate means for architecture specifications in these applica-
tion domains despite its lack of explicit support for broad-
casting.

To address this question we sketch steps towards a seam-
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less integration of broadcasting into UML-RT’s component
model; we use the running example of Section 2, an au-
tonomous transport system, to illustrate our approach. In the
subsequent sections we focus on two important methodolog-
ical aspects: capturing the broadcasting requirements of the
system under development (Section 3), and deriving both hi-
erarchic component structure, and individual component be-
havior from the captured interaction requirements (Section
4). Section 5 contains our conclusions and an outlook.

2 Running Example: Broadcasting Architecture of an
Autonomous Transport System

As the running example for illustrating our methodological
approach we use an autonomous transport system within a
production plant. The purpose of this system is to ensure
that workpieces are transferred from their present location to
another where the next production step is then carried out.
In the beginning, fresh workpieces reside in an “in store”.
Workpieces whose processing is finished are transported to
an “out store”. Machine tools perform the actual process-
ing of workpieces. Whenever a machine tool is free it re-
quests to obtain a workpiece, which is then delivered by an
autonomous vehicle (termed “holonic transport system”, or
“HTS” for short).

Machine tools and HTSs use broadcasting to negotiate the
delivery of a workpiece: a machine tool broadcasts its re-
quests to all HTSs; the HTSs, in turn, broadcast their offer
(an estimate on how long it takes them to satisfy the request).
Finally, the machine tool broadcasts which HTS has “won
the deal”.

The domain model of Figure 1(a) captures the mentioned
entities, as well as a few additional ones, in the form of a
UML-RT class diagram. The entire production is driven by
a production plan, modeled by class ProdProg. This plan de-
fines, among others, the required daily throughput of work-
pieces. The classes Database and Status model the storage
of information about the HTSs’ and machine tools’ view of
the current state of the production process. Job is the class
for modeling the pick-up tasks negotiated between machine
tools and HTSs. The destination of an HTS to pick up a
workpiece is captured by class Location. We take class Com-
municationSystem as the explicit architectural manifestation
of the requirement to use broadcasting in the binary commu-
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Figure 1: domain model

nication model of UML-RT.

Figure 1(b) shows the internal structure of an HTS in more
detail. In addition toDatabase the HTS contains the
components here captured by classesDisponent, Sin-
gleJobcontrol and IOSystem. Disponent and Sin-
gleJobControl are responsible for the two main tasks of an
HTS: negotiating jobs, and executing an aquired job, respec-
tively. The IOSystem handles the communication between
the CommunicationSystem (for broadcasting) and the other
subcomponents of the HTS. By means of this domain model
we have covered the logical associations between the classes
of the system under consideration. The corresponding com-
munication paths will be identified by developing interaction
scenarios (cf. Section 3). Furhtermore, the domain model is
the starting point for deriving an initial architecture (cf. Sec-
tion 4).

3 Sequence Diagrams for Broadcasting
Of particular importance in defining an adequate architecture
is the precise description of component interaction. Model-
ing component interaction both covers important aspects of
the requirements analysis and is a first design step since it
identifies “active”, communicating components among the
entities defined in the domain model (Fig. 1). The major
modeling technique of the UML employed in this step are se-

quence diagrams (SDs). Yet, these SDs provide no notational
means for dealing with broadcast communication. Further-
more, there is no sufficient methodological integration with
other UML diagrams, such as statecharts. In this section,
we show how SDs can easily be extended to model broad-
cast communication as well as binary communication, and
to express relations to behaviour models. To discuss these
extensions, let us consider an application scenario of the au-
tonomous transport system. Figure 2(a) shows a possible
scenario for the negotiation of a transport task.

Just as in classical SDs labeled, vertical axes represent part of
the behaviour of the corresponding components. By means
of labeled horizontal arrows we indicate communication via
asynchronous communication. Rectangular labeled boxes
denote local actions of a component. Reading the diagram
from top to bottom determines an order on the interactions
occurring among the components over time.

Broadcast communication is modeled by a communication
line without arrow head. An outlined circle marks the origi-
nator of the message and filled circles mark the receivers of
the message. This allows us also to model multicast commu-
nication. The semantics of the new communication construct
can be easily embedded into the semantics of “normal” SDs:
Each broadcast line corresponds to a set of messages, each
directed from the originator to one recipient.

A second extension of SDs are state labels which are de-
picted by labeled hexagons. This notation is taken from the
ITU MSC 96 specification [IT96]. State labels appear on
axes in SDs; they identify control states of the correspond-
ing component. Using state labels we can combine SDs to
more complex scenarios: Different SDs starting with the
same state label can express nondeterministic choice; SDs
starting and ending with the same state label can indicate
repetition1.

In Figure 2(a), a machine tool announces an order using
broadcast communication. Each HTS calculates how long
it takes it to satisfy the request within the locally performed
actioncompute bid. In our example scenario, two HTSs
announce a bid for the order and finally, after the machine
tool ends the negotiation, HTS h has won the deal. After the
negotiation, the HTS components reside in the same state as
they started. Figure 2(b) shows a combination of broadcast
and binary communication which occurs during the execu-
tion of a transport: When the HTS arrives at a machine tool
to pick up a workpiece, it sends a request to the machine
tool, which responds by a release message. Finally, the HTS
announces the picking up of the workpiece by means of a
broadcast message.

4 Deriving Architectural Design from Scenarios
Based on a brief introduction of UML-RT’s component

1Note that both simple and combined scenarios are interpreted as exem-
plary interaction patterns in the sense of [Kr¨u00a, Krü00b]. In particular,
they are not interpreted as a complete behavior specification.
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model2 we now discuss the systematic derivation of compo-
nent structure and behavior from captured broadcasting sce-
narios.

Component Structure
A capsule (graphically denoted by a box labeled with the
capsule’s name) in UML-RT represents a potentially active
component whose communication with its environment pro-
ceeds by means of asynchronous signal exchange via its
ports. A port (graphically denoted by a small filled or out-
lined square on the boundary of a capsule box) is an interface
object defining the role of the capsule it belongs to within a
communication protocol. Connectors (graphically denoted
by a line between two port symbols) establish binary com-
munication links between different ports, and define the pro-
tocol carried out on this link. A protocol in UML-RT con-
sists of a set of signals sent and received along a connector.
The port defined to play the role of the sender or receiver
in the binary protocol is graphically represented by a filled
or outlined square, respectively. The receiver role is some-
times also called theconjugated role wrt. the sender role of
the protocol.

2We refer the reader to [SR98] to obtain a more detailed understanding
of the (syntactic) transfer from ROOM via UML to UML-RT.

Capsules can nest hierarchically to arbitrary depth; an en-
closing capsule communicates with its sub-capsules also via
ports and connectors just as it does with its environment.
There is no means for accessing sub-capsules directly from
the environment of their container. The behavior of each cap-
sule must, in particular, conform to the protocol roles the
capsule commits to via its port definitions.
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Consider the capsule diagram of Figure 3, which displays
capsules for the HTSs, the stores, and the machine tools as
an exemplary subset of the entities contained in Figure 1(a)3.
Each member of this set is a sub-capsule of Communication-
System. Every HTS has connectors to each of the stores,
as well as to every machine tool, with corresponding ports.
Moreover, there exist connectors between the HTSs and their
container; similar connections exist for the machine tools
and the out store. The ports of the container are graphically
indicated by outlined squares containing filled circles.

In the following we suggest a method for developing struc-
ture diagrams using the knowledge about our system gained
during requirements analysis and expressed via the domain
model and the SDs of Section 3. We show how capsules,
connectors and protocols can be derived systematically and
discuss the embedding of broadcast communication using
these concepts. The model we obtain can serve as a start-
ing point for the development of a system design, which can
be completed, generalized and optimized by subsequent re-
finement steps. The advantage of the proposed procedure is
that we obtainconsistency with the requirements analysis by
construction.

We start with an overview of the steps which have to be per-
formed to get a first sketch of a structure diagram. We as-
sume that, starting from the domain model, the active com-
ponents have been identified already during domain analysis.
The procedure consists of three phases: First, the capsules of
the system are defined (steps 1+2, below). Second, protocols
are derived from the SDs (step 3). Third, the protocols are
assigned to ports which are linked by connectors (steps 4+5).
The methodical steps are as follows:

3We have used the syntax of ROOM which deviates only slightly from
that of UML-RT, but is so far better supported by corresponding tools.



1. Create a capsule for each class which appears in the SDs
as an axis.

2. Create a container capsule which contains the capsules
from step 14. This container acts as the mediator for
broadcast messages.

3. (a) Create a binary protocol for each pair of capsules
which exchange messages in SDs and include all
respective messages into this protocol.

(b) If necessary, create an individual protocol for each
capsule which uses broadcast communication.

4. Assign to each capsule its respective ports associated
with the respective protocol roles.

5. Establish a connector between any two ports derived
from binary communication protocols; establish a con-
nector between any port derived for broadcasting and
the container capsule.

Steps 3 through 5 are straightforward for binary communica-
tion: After protocol generation we just need to create a port
for each protocol role and link the conjugated ports by con-
nectors. Unfortunately, we cannot use connectors in such a
straightforward way for broadcast communication, because
in general there are more than two capsules involved5. In-
stead, we handle broadcasting implicitly by the behavior of a
container capsule. Each capsule which is involved in broad-
cast communication is equipped with a port connecting it to
its container capsule. This approach has several advantages.
It enables a compact way of modeling, and it also supports
dealing with changing system configurations gracefully: The
model need not be changed if we change the number of HTS
components in the system, even dynamically.

By means of our running example we illustrate the method-
ological steps introduced above: We derive the capsules
HTS, InStorage, OutStorage and MachineTool
(step 1). These capsules are embedded into a container cap-
sule calledCommunicationSystem (step 2). For the
generation of a protocol, let us consider the handshake com-
munication HTS� MachineTool. From the SDs, the binary
protocolRequest (tab. 1(a)) is created. The correspond-
ing protocol for the machine tool is easily derived by con-
jugation of this protocol, i.e. the exchange of send and re-
ceive messages. Analogously we proceed with other pairs
of communicating capsules (step 3a). For broadcast commu-
nication we consider every capsule and create an individual
binary protocol for each capsule. These protocols contain
the messages which the capsule under consideration sends
and which it can receive, i.e. all broadcast messages. Ta-
ble 1(b) shows the protocolBroadcastHTS as an exam-
ple. As discussed above the ports derived to map broadcast
protocols to sets of binary protocols will be connected to the

4This step can be omitted if the container capsule is predefined already.
5in our example there are three: HTS, MachineTool and OutStorage

Request BroadcastHTS
send: requestWP send: requestProdPrg
receive: releaseWP send: jBid(jobno)
send: requestPlace send: jTransporting(jobno)
receive: releasePlace send: jFinished(jobno)

receive: requestProdPrg

(a)
...

...
receive: jFinished(jobno)

(b)

Table 1: protocols

container capsule which will perform the broadcast message
passing (step 3b). Every capsule gets its ports associated to
base/conjugated roles of appropriate protocols, e.g. capsule
HTS gets ports associated to the base role of Request, Broad-
castHTS and other protocols which we omitted here for sim-
plicity (step 4). Finally the connectors between the related
handshake ports and between broadcast ports and container
capsule are added (step 5). The result is a first prototype of
the system’s structure diagram. Clearly, we have to adjust
the cardinality of the capsule roles HTS and MachineTool to
their required number, as given in a concrete instance of the
system. Figure 3 shows the resulting structure diagram.

We can apply the design method presented so far also in a hi-
erarchical decomposition of the system to be developed. We
give a rough sketch of this by means of the decomposition of
the HTS shown in Figure 1(b). As a first step, we refine the
axish in SD 2(a) with respect to its substructure, as shown in
Figure 4(a). The refined SD shows the internal interactions
within the HTS which are necessary to decide whether a bid
is submitted for an order, and to check whether the negoti-
ation has been successful. On the basis of Figure 4(a) and
refinements of further SDs – such as Fig. 2(b) – we derive
the structure diagram of the capsule HTS shown in Figure
4(b), following the scheme presented above. The ports to the
environment match with ports which the capsule HTS has in
its container capsule communication system (Fig. 3).

Component Behaviour
In this section, we give a rough sketch of how to derive be-
haviour specifications of the system components from the
scenarios collected during the requirements analysis. Again,
this development step can be carried out in a schematic way,
using an algorithm presented in [KGSB99]. This algorithm
takes a set of sequence diagrams as input, and generates an
automaton specification for the component under consider-
ation as output. This algorithm employs the state labels in-
troduced in Section 3 to determine execution orderings be-
tween the specified scenarios. It consists essentially of four
steps: (1)Projection: After having selected the component
for which we want to construct an automaton, we project
each of the given SDs onto this component, (2)Normaliza-
tion: We determine the transition-path segments defined by
the projected SDs, according to the state labels appearing in
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the SDs; if necessary, we add appropriate state labels at the
beginning and at the end of the projected SDs, (3)Trans-
formation into an automaton: We turn every message arrow
appearing in an SD into a transition of the automaton; if nec-
essary, we add intermediate states to link transitions, such
that they correspond to a sequence of messages within a nor-
malized SD, (4)Optimization: We apply heuristics, or use
algorithms known from automata theory for automaton min-
imization.

As an example, let us consider the disponent capsule appear-
ing in Figure 4(b). The input source for the generation of a
statechart of the capsule is the SD in Figure 4(a). The condi-
tions on the axis of the disponent state that the execution ends
in the same state as it started (namedidle. Two further con-
ditions on bids and names of bidders allow the truncation of
the negotiation; they yield a split of the SD into three parts at
this point in step (2) of the transformation procedure. These
state conditions allow us to specify alternatives at this points
which we have omitted here for simplicity. For a detailed
model, we refer the reader to [KPS01]. An automaton result-
ing from the generation which does include choices is shown
in Figure 5. Note that the local actioncompute bid ap-
pears as a state in the automaton. This allows us to preserve
the structure of the automaton in further refinements of sce-

narios. If we specify how this action is performed, we can
plug this into a substatechart of this state.
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Figure 5: an optimized statechart for the disponent

5 Conclusions and Outlook
We have presented an approach at incorporating broadcast
communication into the modeling of architectural design us-
ing UML-RT. In addition, we have shown how to integrate
the notation of broadcasting into architectural modeling with
UML-RT. This notation of broadcast SDs is flexible enough
to model both broadcast and multicast communication and
can easily be embedded into the standard semantics of SDs.

We have also shown that on the basis of a few notational el-
ements taken from ITU MSCs, SDs can be integrated nicely
with diagrams which model other important aspects of ar-
chitecture: structure and behaviour. Prototypical models can
be derived systematically from SDs. The resulting diagrams
provide a high level architecrure description and are ideally
suited to serve as a starting point for the actual design of the
system to be developed, because they guarantee consistency
with the requirements analysis by construction. The initial
architecture can be refined in subsequent development steps:
For example, new messages can be introduced or entire in-
teraction protocols can be reorganized in order to develop
more general capsule interfaces. A structuring of these de-
velopment steps can be based on formal notions of refine-
ment, even supported with guidance given by constructive
rules (see for instance [Kr¨u00a]).

Combined with the Composite design pattern [GHJV95], our
approach of using container capsules to model broadcasting
shows potential for scaling well to more complex applica-
tions. We refer the reader to [KPS01] for a detailed discus-
sion of these concepts.
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