
Formally testing fail-safety
of Electronic Purse Protocols �

Extended Abstract

Jan Jürjens
Computing Laboratory, University of Oxford�

Guido Wimmel
Department of Computer Science, Munich University of Technology�

Abstract
Designing and implementing security-critical
systems correctly is very difficult. In prac-
tice, most vulnerabilities arise from bugs in im-
plementations. We present work towards sys-
tematic specification-based testing of security-
critical systems using the CASE tool AutoFo-
cus.
Cryptographic systems are formally specified
with state transition diagrams, a notation for
state machines in the AutoFocus system. We
show how to systematically generate test se-
quences for security properties based on the
model that can be used to test the implementa-
tion for vulnerabilities. In particular, we focus
on the principle of fail-safety.
We explain our method at the example of a part
of the Common Electronic Purse Specifications
(CEPS), a candidate for an international elec-
tronic purse standard.
Most commonly, attacks address vulnerabili-
ties in the way security mechanisms are used,
rather than the mechanisms themselves. Be-
ing able to treat security aspects with a general

�This work was partially supported by the Studiens-
tiftung des deutschen Volkes, and by the German Ministry
of Economics within the FairPay project

�, tel. +44 1865 284104, fax +44 1865 273839 - Wolf-
son Building, Parks Road, Oxford OX1 3QD, Great Britain

�, tel. +49 89 289 28362, fax +49 89 289 25310 - TU
München, 80290 M¨unchen, Germany

CASE tool within the context of system develop-
ment enables detection of such vulnerabilities.

1 Introduction

Correct design and implementation of
security-critical systems that are part of an open
network is a difficult task. In practice, most
vulnerabilities arise from bugs in implemen-
tations [And01]. It would be highly desir-
able to gain confidence in the protection of im-
plemented security-critical systems against at-
tacks.

Towards this goal we present work for
systematically testing security-critical systems.
The idea is to specify the system (at the ab-
stract design level) using a formal specification
language and to use this specification to gener-
ate test-sequences to find security weaknesses
in an implementation in a systematic way. In
the current work (which is part of a wider effort
reported previously in [J¨ur01b, WW01, JW01c,
JW01b]) we concentrate on one classical prin-
ciple of computer security engineering, namely
that of fail-safety of security-critical systems
[SS75]. This principle postulates that, if a
security-critical system fails, it should do so in
a secure state. What this means exactly in the



system context depends on the system at hand
and the security aspect under consideration.
When considering access control, for example,
fail-safety means to base access decisions on
permission rather than exclusion [SS75]. When
considering payment protocols, as we do here,
it means that interruption of the protocol leaves
the participants in a secure state (eg., no more
funds are given out of the system than are taken
in). More specifically, we use the CASE tool
AUTOFOCUS[HMR�98, HMS�98] developed
for design and formal verification of distributed
systems to formally specify the unlinked load
transaction of the Common Electronic Purse
Specifications (CEPS) [CEP01]. We use this
specification to generate test-sequences for im-
plementations of the protocol. CEPS is a can-
didate for a globally interoperable electronic
purse standard supported by organisations (in-
cluding Visa International) representing 90 per-
cent of the world’s electronic purse cards and
likely to become an accepted standard, making
its security an important goal.

As well-known, testing cannotprove the ab-
sence of implementation errors. It is however
currently the technique most widely used in in-
dustry to gain some confidence in the absence
of major bugs, since mechanically assisted the-
orem proving or model-checking of code have
thus far been perceived as being limited in the
size of treatable systems and as being compar-
atively costly.

The effectiveness of testing depends cru-
cially on the ability to identify adequate test
strategies. This is very difficult when testing
for security requirements, since it is not suf-
ficient to establish that no failures will occur
most of the time, as the remaining, non-tested
situations that lead to failures must be assumed
to be found by motivated attackers and then be
systematically exploited. Rather, one needs to
establish that certain security-critical parts of
the system are indeed free from failures under
all conceivable attack attempts from the system
environment. The current work aims to provide
some guidance on how to do this in a system-
atic way.

In this extended abstract, we can only give
some short remarks about the work undertaken;
for more details, as well as a discussion of re-
lated work, cf. [JW01a].

2 Specification of CEPS Load
Transaction

For an overview over the Common Elec-
tronic Purse Specifications (CEPS) and an ex-
planation of the load transaction cf. [J¨ur01a].
Here we only shortly present our formal spec-
ification, for a more detailed explanation cf.
[JW01a].

We specified the CEPS load transaction
(slightly simplified by leaving out security ir-
relevant details) and its participating compo-
nents with help of the formal CASE tool
AUTOFOCUS/Quest. AUTOFOCUS[HMR�98,
HMS�98] is a tool for graphically specifying
distributed systems. It is based on the formal
method Focus, and the models have a simple
formally defined semantics. AUTOFOCUSsup-
ports different views on the system model, de-
scribing structure, data types, behaviour and in-
teractions. These views are related to UML-
RT diagrams. In addition to modelling, AUTO-
FOCUSoffers simulation, code generation, test
sequence generation and formal verification of
the modelled systems.

The system components involved in the
CEPS Load transaction and their communica-
tion links are shown in Figure 1, as an AUTO-
FOCUS system structure diagram. Here, the
components are depicted as rectangles — in our
model,����, ����, and�		
��.

Components can have input and output ports
(drawn as empty and filled circles) used to send
and receive messages. These ports are con-
nected via communication channels.

To model security-critical systems, a com-
munication channel can be marked with a
“public” tag. This denotes that the commu-
nication over this channel can be manipulated
by another entity. This way, faulty channels
or channels that are subject to attacks can be
modelled — which we will use later for test se-

2



LSAM Card

Issuer

cLog:TMessage

lLog:TMessage

iLog:TMessage

LtoC:TMessage

/* public */

CtoL:TMessage

/* public */

LtoI:TMessage

/* public */

ItoL:TMessage

/* public */

initLSAM:Int

Figure 1. System structure diagram for Load transaction

quence generation. The “public” channels were
introduced in earlier work extending AUTO-
FOCUSfor security modelling (see [WW01]).

The channels between the���� and the
���� and �		
�� components in our case are
public. However, the components also gener-
ate log information (channels���,���,���),
which can not be manipulated. The values
carried by the chanels are of type���		���,
which models the possible messages passed be-
tween the components. AUTOFOCUS supports
hierarchical data types, i.e. a value of type
���		��� can for instance be “�������” with
x being an integer, or “�������	��”, with �

being a key and�	� being a message of type
���		��� itself.

The behaviour of the components is given
as a state transition diagram (STDs). STDs
are extended finite automata (meaning they can
have a data state represented by local vari-
ables). The transitions are annotated with pre-
condition, input statements (reading a value
from the input port, if the pattern in the in-
put statement matches that value), output state-
ments, and assignments to local variables —
separated by colons “:”.

Representatively, the state transition dia-
grams in Figure 3 specifies the behaviour of the
LSAM. The other components can be found in
[JW01a]. Figure 2 shows a message sequence
chart (MSC) describing the interactions for a
successful protocol run. This MSC was gener-

ated from the model using the simulation fea-
ture of AUTOFOCUS.

2.1 Formally deriving test-sequences

With the help of the AUTOFOCUS model,
we can now test the resistance of an imple-
mentation of the CEPS load transaction against
threats. We use the approach of specification-
based testing, as advocated in e.g. [WLPS00,
PLP01]. For this purpose, test case specifica-
tions based on the system model have to be for-
mulated. Test specifications would be, for ex-
ample, that a certain log entry should be gen-
erated, certain data is sent on the channels, or
a component should reach a success or fail-
ure state. The test specification and the model
are translated into logic and their conjunction
is solved. The solutions are all test sequences
of a given maximum length satisfying the test
case specification. These test sequences rep-
resent concrete system executions, and can be
depicted as message sequence charts. To test
the system, the inputs contained in the test se-
quence are fed into the system components and
it is verified if the output is as expected. Test
sequence generation can also be used to val-
idate and correct the specification: if the test
sequence itself contains an unexpected system
run (e.g. there should be no execution fulfilling
the test case specification, but the test sequence
generation computed one), this indicates an er-

3



LSAM Card Issuer

initLSAM.m

LtoC.Init(m)

CtoL.RespI(bal, Mac(KCI, S1Dat(bal, m)), Hash(HlDat(RC_CARD)))

LtoI.Load(bal, m, Mac(KCI, S1Dat(bal, m)), Enc(KLI, Key(R_1)), Mac(R_1, MlDat(m, Mac(KCI, S1Dat(bal, m)), Hash(HlDat(R_LSAM)), Hash(HlDat(R2_LSAM)))), Hash(HlDat(R_LSAM)), Hash(HlDat(R2_LSAM)))

ItoL.RespL(Mac(KCI, S2Dat(bal, Mac(KCI, S1Dat(bal, m)), Hash(HlDat(R_LSAM)))))

LtoC.Credit(Mac(KCI, S2Dat(bal, Mac(KCI, S1Dat(bal, m)), Hash(HlDat(R_LSAM)))), R_LSAM)

CtoL.RespC(Mac(KCI, S3Dat(bal, m)), EmptyKey)

cLog.CLog(m, bal, Mac(KCI, S2Dat(bal, Mac(KCI, S1Dat(bal, m)), Hash(HlDat(R_LSAM)))))

LtoI.Comp(m, Mac(KCI, S3Dat(bal, m)), EmptyKey)

lLog.LLog(bal, m)

iLog.ILog(m, bal, EmptyKey, R_1, Mac(R_1, MlDat(m, Mac(KCI, S1Dat(bal, m)), Hash(HlDat(R_LSAM)), Hash(HlDat(R2_LSAM)))))

Figure 2. MSC for Successful Load Transaction

ror in the model.
For classical specification based testing, the

main emphasis of testing is on normal system
behaviour (e.g., for certain inputs, the correct
result is computed). When security aspects
come into consideration, this is turned around:
the system has to behave in a secure way even
in case it is under attack. Thus, in testing we
have to assume that system components may
act maliciously.

We did this by including a threat model
into the system specification: channels marked
“public” are unreliable, and can be accessed
and manipulated by an intruder. The intruder is
modelled by an additional component, through
which all messages must pass. The correspond-
ing state transition diagram specifies what the
intruder can do. This threat scenario (see Fig.
4) can be generated automatically from the sys-
tem model.

The Smart Card Protection Profile [Gro01]
of the Common Criteria lists the following
threats relevant to fail-safety of a smart-card
scheme:

Forced Reset : An attacker may corrupt Tar-
get of Evaluation Security Function (TSF)
data through inappropriate termination of
selected operations.

Insertion of Faults : An attacker may deter-

mine user and TSF information though
observation of the results of repetitive in-
sertion of selected data.

Invalid Input : An attacker may compromise
the TSF data through introduction of in-
valid inputs.

Environmental Stress : An attacker may in-
troduce errors in the TSF data through ex-
posure of the TOE to environmental stress.

Correspondingly, we consider the following
two threat scenarios:

(1) the attacker can only pass on the messages
or drop message parts (replace them by
�����)

(2) the attacker can pass on the messages, or
replace them by own messages not con-
taining secret keys he does not know in
advance.

The first scenario corresponds to the situ-
ation where the adversary may interrupt the
communication between the different protocol
participants at some point (Forced Reset, e.g.
by pulling out the card). The second scenario
models the case that the adversary may force
one of the involved cards to behave in an arbi-
trary way (byInsertion of Faults, Invalid Input,

4



:fromI?::

Init

WaitRespI

Credit

RespC

LoadSucc

RespI

LoadFail

FailRespC

:initLSAM?m:toC!Init(m):tr_m = m

:fromI?RespL(s2):toC!Credit(s2,R_LSAM):

:fromC?RespC(s3,EmptyKey):toI!Comp(tr_m,s3,EmptyKey); lLog!LLog(tr_m,ri_bal(st_respi)):

is_RespI(respi):fromC?respi::st_respi = respi; st_hl = Hash(HlDat(R_LSAM)); st_h2l = Hash(HlDat(R2_LSAM))

::toI!Load(ri_bal(st_respi),tr_m,ri_s1(st_respi),Enc(KLI,Key(R_1)),Mac(R_1,MlDat(tr_m,ri_s1(st_respi),st_hl,st_h2l)),st_hl,st_h2l):

not((rc == EmptyKey)):fromC?RespC(s3,rc):toI!Comp(0,s3,R2_LSAM); lLog!LLog(0,ri_bal(st_respi)):

True::toC!Credit(Empty,EmptyKey):

:fromC?RespC(s3,rc):toI!Comp(0,s3,R2_LSAM); lLog!LLog(0,ri_bal(st_respi)):

Figure 3. STD for LSAM

LSAM CardIntruder

LtoI:TMessage

ItoL:TMessage

ItoC:TMessage

CtoI:TMessage

Figure 4. Threat Scenario (for LSAM and Card)

or Environmental Stress – such as heat). This
may have the result that the card sends arbitrary
messages instead of the intended ones, which
may involve keys stored on the card, but it is
unlikely that the misbehaving card “guesses”
unknown keys.

The attacker is specified directly in con-
straint logic — taking advantage of the possi-
bility to use unbound variables and predicates
on these to model generation of (a restricted set
of) arbitrary messages by the attacker. The Pro-
log interpreter then automatically finds those
attacker messages corresponding to a given test
scenario.

Now we can generate test sequences from
the specification that correspond to executions
when the system is under attack. The main re-
maining problem is that we now have a very
large number of potential test sequences. As
mentioned before, it is much more difficult to

test systems for the absence of undesired than
for the presence of desired behaviour. There are
very many executions where the system fails —
which should we choose to cover as many dif-
ferent attack situations as possible ?

We can take advantage of the fact that we
know

� firstly, the security requirements (as given
in the CEPS specifications) and

� secondly, we know which parts of the
model (e.g. which states and transitions)
relate to these requirements.

We indicate in the following how to employ this
knowledge in the situation of our example.

Firstly, the CEPS specifications contain the
following requirements on the behaviour of the
protocol participants relevant to fail-safety:

(1) ������ is sent by the card to the LSAM
if the card experiences an error.

5



(2) In case the LSAM experiences an error, ei-
ther�� or������ are sent by the LSAM
to the issuer.

(3) If there is no response to the�� sent to
issuer, the LSAM must send������ .

(4) ������ is not sent out if the card bal-
ance incremented.

(5) The LSAM performs only one of the fol-
lowing two events:

� �� and����� are sent to the card
or

� ������ is sent to the issuer.

The implementation can be checked wrt.
these requirements by generating test se-
quences. For example, for the first requirement
we compute a test sequence from the model so
that������ is sent by the card to the LSAM,
which corresponds to an error at the card. This
test sequence can then be used to verify if the
implementation has the same behaviour.

Secondly, one can consider test case specifi-
cations based on the structure of the model:

(i) Compute a concrete execution where one
of the components reaches the LoadSucc
state. In particular, the test sequence re-
flects the fact that no other component
reaches the LoadFail state (validating the
model), and the implementation can be
tested with respect to this.

(ii) Analogous to the above, one can compute
test sequences where one of the compo-
nent reaches the LoadFail state and verify
that no other components then reach the
LoadSucc state, even in presence of an at-
tacker.

(iii) More specifically, for any of the
security-critical transitions to Load-
Fail or LoadSucc one may compute
test sequences so that this transition is
executed.

(iv) One can compute test sequences with re-
spect to attacker activity. E.g. messages
are manipulated at certain points in time
or a certain number of times.

As an example, Figure 5 shows a test se-
quence derived from the model corresponding
to the class of specifications (5) given above:
the test case is that an�� ���� is sent to the
issuer log because of a failure of the card. In
this case,�� and� ���� are not sent to the
card, and all three components stop together in
their ������� states. The above test sequence
consists of 24 steps (executions of transitions)
and is computed in approximately 10 seconds
by the test sequence generator. Briefly, the
test sequence proceeds as follows:������
is sent to the issuer log because of a fail-
ure. In the computed test sequence, the fail-
ure occurs after the LSAM sent the��� mes-
sage to the issuer. The LSAM sends the mes-
sage�������������� ���������� to the card
to cancel the transaction, and the response
��	�� from the issuer is dropped by the in-
truder (intruder reports����������	���). The
messages��	�� and��� with cancellation
information are sent from the card via the
LSAM back to the issuer, and all three com-
ponents report the failure to their logs.

3 Conclusion and Future Work

We used the distributed systems CASE tool
AUTOFOCUSto generate test-sequences for se-
curity aspects of the currently developed Com-
mon Electronic Purse Specifications (CEPS)
from formal specifications. This gives a sys-
tematic way of doing security testing. Here
we concentrated on the principle offail-safety
from the classical security literature [SS75].
Since security vulnerabilities often arise from
bugs in the implementation, having a system-
atic way to eliminate security-critical bugs is a
worth-while goal.

Future work includes the development of a
test case specification language which can be
compiled “intelligently” into test cases by ap-

6



Card LSAM Issuer Intruder

initLSAM0!10

toC!cInit(10)

outmainCardfromL!cInit(10)

toL!cRespI(0, cMac(cKCI, cS1Dat(0, 10)), cHash(cHlDat(cRC_CARD)))

outmainLSAMfromC!cRespI(0, cMac(cKCI, cS1Dat(0, 10)), cHash(cHlDat(cRC_CARD)))

toI!cLoad(0, 10, cMac(cKCI, cS1Dat(0, 10)), cEnc(cKLI, cKey(cR_1)), cMac(cR_1, cMlDat(10, cMac(cKCI, cS1Dat(0, 10)), cHash(cHlDat(cR_LSAM)), cHash(cHlDat(cR2_LSAM)))), cHash(cHlDat(cR_LSAM)), cHash(cHlDat(cR2_LSAM)))

toC!cCredit(cEmpty, cEmptyKey)

outmainIssuerfromL!cLoad(0, 10, cMac(cKCI, cS1Dat(0, 10)), cEnc(cKLI, cKey(cR_1)), cMac(cR_1, cMlDat(10, cMac(cKCI, cS1Dat(0, 10)), cHash(cHlDat(cR_LSAM)), cHash(cHlDat(cR2_LSAM)))), cHash(cHlDat(cR_LSAM)), cHash(cHlDat(cR2_LSAM)))

toL0!cRespL(cMac(cKCI, cS2Dat(0, cMac(cKCI, cS1Dat(0, 10)), cHash(cHlDat(cR_LSAM)))))

outmainCardfromL!cCredit(cEmpty, cEmptyKey)

toL!cRespC(cMac(cKCI, cS3Dat(0, 0)), cRC_CARD)

cLog0!cCLog(0, 0, cEmpty)

dropI0!cPresent

outmainLSAMfromC!cRespC(cMac(cKCI, cS3Dat(0, 0)), cRC_CARD)

toI!cComp(0, cMac(cKCI, cS3Dat(0, 0)), cR2_LSAM)

lLog0!cLLog(0, 0)

outmainIssuerfromL!cComp(0, cMac(cKCI, cS3Dat(0, 0)), cR2_LSAM)

iLog0!cILog(0, 0, cR2_LSAM, cR_1, cMac(cR_1, cMlDat(10, cMac(cKCI, cS1Dat(0, 10)), cHash(cHlDat(cR_LSAM)), cHash(cHlDat(cR2_LSAM)))))

Figure 5. Test Sequence for Load transaction

plying optimisation depending on the test case
specification in question.

Acknowledgement Part of this work has
been presented in a course “Principles of Se-
cure Systems Design” at the Oxford Univer-
sity Computing Laboratory, Trinity term 2001;
feedback from the participants is gratefully ac-
knowledged.

References

[And01] R. Anderson.Security Engineering: A Guide to
Building Dependable Distributed Systems. Wi-
ley, 2001.

[CEP01] CEPSCO. Common Electronic Purse Speci-
fications, 2001. Business Requirements vers.
7.0, Functional Requirements vers. 6.3, Tech-
nical Specification vers. 2.3, available from
http://www.cepsco.com.

[Gro01] Smart Card Security User Group. Smart card
protection profile. Common Criteria for Informa-
tion Technology Security Evaluation, 21 March
2001. Draft Version 2.1d.

[HMR�98] F. Huber, S. Molterer, A. Rausch, B. Sch¨atz,
M. Sihling, and O. Slotosch. Tool supported
Specification and Simulation of Distributed Sys-
tems. InInternational Symposium on Software
Engineering for Parallel and Distributed Sys-
tems, pages 155–164, 1998.

[HMS�98] F. Huber, S. Molterer, B. Sch¨atz, O. Slotosch,
and A. Vilbig. Traffic Lights – An AutoFocus
Case Study. In1998 International Conference
on Application of Concurrency to System Design,
pages 282–294. IEEE Computer Society, 1998.

[Jür01a] Jan J¨urjens. Object-oriented modelling of au-
dit security for smart-card payment schemes. In
P. Paradinas, editor,IFIP/SEC 2001 – 16th In-
ternational Conference on Information Security.
Kluwer, 2001.

[Jür01b] Jan J¨urjens. Secrecy-preserving refinement. In
Formal Methods Europe, LNCS. Springer, 2001.

[JW01a] J. J¨urjens and G. Wimmel. Formally testing fail-
safety of electronic purse protocols (long ver-
sion), 2001.

[JW01b] Jan J¨urjens and Guido Wimmel. Security mod-
elling for electronic commerce: The Common
Electronic Purse Specifications. InFirst IFIP
conference on e-commerce, e-business, and e-
government (I3E). Kluwer, 2001.

[JW01c] Jan J¨urjens and Guido Wimmel. Specification-
based testing of firewalls. InAndrei Ershov
4th International Conference ”Perspectives of
System Informatics” (PSI’01), LNCS. Springer,
2001. To be published.

[PLP01] A. Pretschner, H. L¨otzbeyer, and J. Philipps.
Model Based Testing in Evolutionary Software
Development. InProc. 11th IEEE Intl. Workshop
on Rapid System Prototyping (RSP’01), Mon-
terey, June 2001.

[SS75] J. Saltzer and M. Schroeder. The protection of
information in computer systems.Proceedings
of the IEEE, 63(9):1278–1308, September 1975.

[WLPS00] G. Wimmel, H. Lötzbeyer, A. Pretschner, and
O. Slotosch. Specification Based Test Sequence
Generation with Propositional Logic.Journal on
Software Testing Verification and Reliability, 10,
2000.

[WW01] G. Wimmel and A. Wißpeitner. Extended de-
scription techniques for security engineering. In
IFIP SEC, 2001.

7


