
1

Security Modelling for Electronic Commerce:
The Common Electronic Purse Specifications*

Jan Jürjens1 and Guido Wimmel2

1Computing Laboratory, University of Oxford, email: jan@comlab.ox.ac.uk
2Dept. of Computer Science, Munich University of Technology, email: wimmel@in.tum.de

Abstract: Designing security-critical systems correctly is very difficult. We present work
on software engineering of security critical systems, supported by the CASE
tool AUTOFOCUS.

Security critical systems are specified with extended structure diagrams,
message sequence charts for the protocols and statecharts for the attacker,
translated into an AUTOFOCUS system model and examined for security
weaknesses using model checking. Additionally, the specifications could be
simulated or tested - which is a first step towards integration of cryptographic
primitives, intuitive graphical modelling, simulation and model checking.

We explain our method at the example of a part of the Common Electronic
Purse Specifications (CEPS), and comment on potential of vulnerability and
consequences for the design.

1. INTRODUCTION

Security aspects have become an increasingly important issue in
developing distributed systems, especially in the electronic business sector.
Because failures of security mechanisms may cause very high potential
damage (e.g., loss of money through fraud), the correctness of such systems
is crucial.

* This work was partially supported by the Studienstiftung des deutschen Volkes, and by the
German Ministry of Economics within the FairPay project

2 Jan Jürjens and Guido Wimmel

Designing security critical systems correctly is difficult. Also, it is easy
to misunderstand assumptions on the environment in which e.g. protocols
are to be used and what their secure functioning may rely on. Security
violations often occur at the boundaries between security mechanisms and
the general system (Gollmann, 1999; Anderson, 2001).

Therefore, the consideration of security aspects has to be integrated into
general systems development (Anderson, 1994). Common modelling
techniques used in industry, such as collaboration diagrams, state charts and
message sequence charts have to be tailored for that purpose. For instance,
(Jürjens, 2001c) presents first work towards that goal by extending the UML
(Unified Modelling Language).

On the other hand, to ensure the correctness of the systems, the models
have to be sufficiently precise, to be able to state security properties in an
unambiguous way and to formally verify their truth or find possible
weaknesses, using mathematical reasoning or automated verification with
model checkers.

In this work, we show how to model and reason about a security-critical
protocol (the purchase transaction) of the Common Electronic Purse
Specifications CEPS (CEPSCO, 2000), supported by the CASE tool
AUTOFOCUS (Huber et al., 1998a; Huber et al., 1998b). CEPS is a candidate
for a globally interoperable electronic purse standard supported by
organisations (including Visa International) representing 90 percent of the
world’s electronic purse cards and likely to become an accepted standard
(Asokan et al., 2000), making its security an important goal.

We specify cryptographic protocols using message sequence charts
(MSCs), in a way similar to the usual informal notation of security protocols.
These specifications can be translated mechanically into an AUTOFOCUS

system model consisting of state transition diagrams (STDs) (Krüger, 2000).
Together with the modelled adversary, this system is checked for security
weaknesses automatically using the model checker SMV connected to
AUTOFOCUS to verify the desired security properties of the protocol.

Our approach has the benefits of combining intuitive graphical
modelling, simulation and model checking, and allows to represent
counterexamples as MSCs. Since the AUTOFOCUS tool is closely related to
the formal development method Focus (Broy et al., 1992), our approach also
supports formal proofs in this framework, allowing to build on results such
as (Lotz, 1997). The intruder model used is rather flexible, the adversary can
switch between acting as one or another party, intercept only certain
messages or learn certain keys etc.

In the following subsection we present some background information
and refer to related work. In Section 2, we give an overview over the
Common Electronic Purse Specifications, specify the part under

Security Modelling for Electronic Commerce 3

consideration and explain the security threat model. In Section 3, we
introduce the notation of AUTOFOCUS and use it to investigate the above
specification. We end with a conclusion and indicate further planned work.

1.1 Security-assurance using formal tools

There has been extensive research in using formal methods to verify
security protocols, following an abstract way to describe protocols in (Dolev
and Yao, 1983). A few examples are (Burrows et al., 1989; Lowe 1996;
Paulson 1998; Pfitzmann and Waidner 2001); an overview is in (Gritzalis et
al., 1999; Ryan et al., 2001). Smart card protocols have been investigated
using formal logic in (Abadi et al., 1993). (Gollmann, 2000) points out the
need to consider the underlying physical layer in formal security
investigations.

While many case-studies consider protocols from the academic literature
(usually presented in a much more tractable form), notable examples of
verifications of smart-card payment system used in practice can be found in
(Anderson, 1999; Stepney et al., 2000).

As an example for the treatment of security in the context of general
systems engineering, (Jürjens, 2001c) presents work towards using the UML
notation in security engineering which is applied to the CEPS load
transaction in (Jürjens, 2001a).

AUTOFOCUS has been used for security in (Wimmel and Wißpeintner
2001), the underlying Focus model in (Lotz, 1997).

2. CEPS

We give an overview over the Common Electronic Purse Specifications
and specify the (simplified) purchase transaction to be investigated.

Stored value smart cards (“electronic purses”) have been proposed to
allow cash-free point-of-sale (POS) transactions offering more fraud
protection than credit cards: Their built-in chip can perform cryptographic
operations which allows transaction-bound authentication1 (whereas credit
card numbers are valid until the card is stopped, enabling misuse). The card
contains an account balance that is adjusted when loading the card or
purchasing goods.

Here we consider the central part of CEPS, the purchase transaction,
which allows the cardholder to use the electronic value on a card to pay for
goods. The participants involved in the transaction protocol are the

1For a discussion of authentication cf. (Gollmann, 1996).

4 Jan Jürjens and Guido Wimmel

customer’s card and the merchant’s POS device. The POS device contains a
Purchase Security Application Module (PSAM) (a smart-card) that is used to
store and process data (and assumed to be tamper-resistant). During the
transaction, the account balance in the card is decremented, and the balance
in the PSAM is incremented by the corresponding amount. The card issuer
later receives transaction logs.

In addition to transactions using public terminals it is intended to use
CEPS-cards for transactions over the Internet (CEPSCO, 2000, Bus. Req.).

2.1 Specification of CEPS Purchase Transaction

Apart from incremental transactions not considered here, security
functionality is provided only by the PSAM (and not the rest of the POS
device). Thus our protocol participants are the CEP card C and the PSAM M
(with public and private keys KC and K

–1
C resp. KM and K

–1
M , where the public

keys are exchanged before the transaction). The protocol consists of the
following steps (see Fig. 3 for a formal specification by AUTOFOCUS MSCs):

1. PSAM → Card: Init({{SKPS}K
–1

M
}KC

)
2. Card → PSAM: Resp({S}SKPS

)
3. PSAM → Card: OK

The PSAM initiates the transaction after the CEP card is inserted into the
POS device, by sending a message containing a freshly created session key
SKPS signed by M and encrypted with C’s public key. Whenever the card
receives a message after being inserted into the POS device, it tries to
decrypt it with its private key and checks its signature with M’s public key.
If this is successful, C responds with a message containing S encrypted under
the received session key (otherwise it waits for the next message). S contains
identification data to authenticate the card and transaction data for logging
purposes (and validation by the card issuer later). We assume that only C can
produce S and that M can verify if a received message is such an S produced
by C (in practice, this is achieved by having C sign the message) and
therefore model S simply as a secret value (to simplify mechanical
verification). Finally, after M receives a message encrypted under SKPS it
stores the contents and ends with a message OK. We leave out some message
parts that are only relevant for logging.

2.2 Security Threat Model

The CEP specifications require the smart card and the PSAM (but not
the POS device (CEPSCO, 2000, Bus Req. p. 13, Funct. req. p. 20) to be
tamper-proof. The purchase transaction is supposed to provide mutual

Security Modelling for Electronic Commerce 5

authentication between the terminal and the card using a chain of certificates
of which the first is issued by a Certification Authority and the last contains
the card’s or PSAM’s public key.

The smart card is inserted into a POS device and can thus communicate
with the PSAM. Since there is no direct communication between the
cardholder and her card, the information displayed by the POS device
regarding the transaction has to be trusted at the point of transaction.
Security for the customer against fraud by the merchant is supposed to be
provided through logging the (signed) transaction details and a posteriori
settlement involving the card issuer. Similarly, security for the merchant
against the customer is supposed to be provided by exchanging the
purchased good only for a signed message from the card containing the
transaction details, for which the merchant will receive the corresponding
monetary amount from the issuer afterwards.

The idea is that risk of fraud is kept small since fraud should be detected
in the settlement later and certificates of cards or PSAMs actively involved
in fraud can be revoked.

In our formal investigation, we will consider the following two threat
scenarios in order to see if they allow an attack: A sufficiently motivated
adversary makes a POS device publicly available (in the case of ATMs, such
cases are reported in (Anderson, 1994)) which only communicates with the
card (to receive transaction information) and then returns the card with an
error message, without actually having completed a transaction.

In the first scenario, the attacker then uses a smart card including the
information obtained from the earlier interaction and tries to attack a
merchant’s POS device by buying goods with transaction messages signed
by the earlier attacked card. If the attack succeeds, the attacker terminal or
card do not show up in the audit trail at all, so the attacker cannot be made
responsible.

This scenario corresponds to an attempted attack (also called “man-in-
the-middle” attack) where the attacker first communicates with the attacked
card (in the role of a PSAM) and then with the attacked PSAM (in the role of
a card).

In the second, more sophisticated scenario the attacker could try to
attack an inserted card as above, and in parallel a PSAM in a POS device set
up by a merchant in an unsupervised place by tampering with the POS
device (not assumed to be tamper-proof) in order to directly communicate
with the PSAM. Via a radio connection the attacker could thus communicate
both with the attacked card and the attacked PSAM (if he succeeds in
synchronising the two events). Thus he could buy goods with transaction
messages signed by the card attacked in parallel. Again the attacker terminal
or card do not show up in the audit trail.

6 Jan Jürjens and Guido Wimmel

This scenario corresponds to an attack where the attacker communicates
with the attacked card and the attacked PSAM in parallel.

This scenario is more realistic when using CEPS for transactions over
the Internet, as intended (CEPSCO, 2000, Bus. Req.). Then, the mentioned
synchronisation is much easier to realise, since the attacker needs to initiate
his purchase over the Internet only when the attacked card is inserted into the
modified terminal and can pay directly with the attacked card. Of course, the
purchase should be anonymous (purchase of access to multimedia content).

3. INVESTIGATING CEPS WITH AUTOFOCUS

In this chapter, we show how to specify security critical systems using
the CASE tool AUTOFOCUS/Quest (Huber et al., 1998a; Slotosch, 1998;
Phillips and Slotosch, 1999) recently developed at Munich University of
Technology with the goal to combine user-friendly graphical system design
using common description techniques such as collaboration diagrams, state
charts and message sequence charts, support of simulation, code generation
and formal verification of correctness.

(Jürjens, 2001b) gives a specification language to represent
cryptographic primitives in Focus (Broy et al., 1992), the formal foundation
of AUTOFOCUS. On the basis of this and an earlier case study — an
AUTOFOCUS model of the Needham-Schroeder public key protocol — we
present a framework for AUTOFOCUS specifications of such systems. The
Focus specification language in (Jürjens, 2001b) and the AUTOFOCUS model
are closely related and can easily be translated into each other, so simulation,
verification, code generation and model checking in AUTOFOCUS are
supported as well as formal proofs using the Focus method.

System specifications in AUTOFOCUS make use of the following views:
– System Structure Diagrams (SSDs) are similar to data flow resp.

collaboration diagrams and describe the structure and the interface of a
system. In the SSD view, the system consists of a number of
communicating components, which have input and output ports to allow
for sending and receiving messages of a particular data type. The ports
can be connected via channels, making it possible for the components to
exchange data. SSDs can be hierarchical, i.e. a component belonging to
an SSD can have a substructure that is defined by an SSD itself. Besides,
the components in an SSD can be associated with local variables.

– Data Type Definitions (DTDs) define the data types used in the model,
with the functional language Quest (Phillips and Slotosch, 1999). In
addition to basic types as integer, user-defined hierarchic data types are
offered that are similar to those in functional programming languages.

Security Modelling for Electronic Commerce 7

– State Transition Diagrams (STDs) represent extended finite automata
and are used to describe the behaviour of a component in an SSD. The
automata consist of a set States of states, and a set
Tr⊆ States×States×PRE_EXP×INP_EXP×OUT_EXP×POST_EXP
of transitions, where

– PRE_EXP are boolean terms on local variables and variables bound
in INP_EXP representing a precondition for transition firing.

– INP_EXP denotes input patterns of the form inp1?x;inp2?y;... (i.e.,
reading values from input channels). The x,y can also be pattern
matching expressions (which will be explained later).

– OUT_EXP denotes output expressions of the form
out1!term1;out2!term2;... (output values of expressions to ports)

– POST_EXP are postconditions of the form
lvar1:=term1;lvar2:=term2;... (sets local variables to the values of termi,
which can include local variables and variables bound in INP_EXP).

– In AUTOFOCUS, a transition (s,t,p,i,o,q) from s to t is annotated with
p:i:o:q. Leaving out components is interpreted as true for pre-conditions,
and as the empty list in the other cases. A transition is executable if the
input patterns match the values at the input channels and the precondition
is true. At each clock tick, one executable transition in each component
fires, outputs the values specified by the output patterns and sets the local
variables according to the postcondition. The values at the output ports
can be read by the connected components in the next clock cycle.

– Extended Event Traces (EETs) finally make it possible to describe
exemplary system runs, similar to MSCs (ITU, 1996).

– The Quest extensions (Slotosch, 1998) to AUTOFOCUS offer various
connections to programming languages and formal verification tools,
such as Java code generation, model checking using SMV, and bounded
model checking and test case generation (Wimmel et al., 2000).

3.1 Specification of Security Critical Systems in
AUTOFOCUS

In this section, we explain how to use AUTOFOCUS to specify security
critical systems so that they can be examined for security weaknesses by
presenting a model for the CEPS purchase transaction.

3.1.1 Abstract System Model

Figure 1 shows an abstract system model (high-level design) of the
CEPS purchase transaction. The system consists of two components Card

8 Jan Jürjens and Guido Wimmel

and PSAM, which are connected via channels. In addition to conventional
system structure diagrams, one can use security tags (Wimmel and
Wißpeintner, 2001) to specify properties relevant for security evaluations. In
this case, the channels are labelled with “public”, which means that they can
be accessed by an intruder. Moreover, the protocol between the two parties
is specified.

Card PSAM

 <<public>>

 <<protocol: CEPSPurchaseTr>>
 <<public>>

 <<protocol: CEPSPurchaseTr>>

Figure 1. Abstract System Model for CEPS

The abstract system model must then be refined into system structure,
behaviour and data type views to allow for concrete security analyses.

3.1.2 System Structure Diagram

PSAM

Card Intruder

ItoC:TExp

CtoI:TExp

MtoI:TExp

ItoM:TExp

rndp1:TStorePos

rndp2:TStorePos
rndp3:TStorePos

Figure 2. System Structure Diagram for CEPS System

Figure 2 shows the system structure diagram of the system. It
corresponds to the system model shown in Fig. 2. However, there is now an
additional component Intruder. As the channel between PSAM and Card
is marked “public”, all messages between PSAM and Card has to pass this
component, which thus can access and manipulate the messages. The
additional channels rndi into the intruder are explained later.

3.1.3 Data Type Definition

The messages that can be sent through the channels are cryptographic
expressions. A cryptographic expressions can be a basic element such as an

Security Modelling for Electronic Commerce 9

empty message, a key or a name, or an encrypted expression (under a certain
key), or a concatenation of two expressions. This is represented by the
following AUTOFOCUS data type definition:

data TKey = KM_ | KM | KC_ | KC | SKPS | SKI | S;

data TExp = Empty | Key(TKey) | Encr(TKey,TExp)

| Concat(TExp,TExp);

The keys given in the definition of TKey correspond to the keys used in
the specification shown in Section 2.1. KC_ denotes K

–1
C , and an additional

secret key SKI was added for the intruder.
However, to be able to use model-checking to examine vulnerabilities,

the data types need to be finite. Therefore the recursive data type TExp must
be replaced by a non-recursive one. This is straightforward to accomplish if
we note that in our system we only have two possible types of valid
messages: a message of the form {x}K1 and a message {{x}K1}K2. We thus
represent these by the new data types TEncr1 and TEncr2. TExp can now
either be Empty or consist of one of these data types:

data TExp = Empty | Exp1(exp1:TEncr1) | Exp2(exp2:TEncr2);

data TEncr1 = Encr1(keyenc1:TKey, expenc1:TKey);

data TEncr2 = Encr2(keyenc2:TKey, expenc2:TEncr1);

Expressions can now be represented by constructor terms. For example,
Exp1(Encr1(SKPS,S)) corresponds to {S}SKPS, and
Exp2(Encr2(KM,Encr1(KC_,SKPS))) corresponds to
{{SKPS}K

–1

C }KM. From the first message (say it is stored in a variable x),
the key can be extracted using selectors: keyenc1(exp1(x)) gives SKPS.

PSAM

Init

Sent

OK

MtoI!Exp2(Encr2(KC,Encr1(KM_,SKPS)))

ItoM?ItoM & (ItoM==Exp1(Encr1(SKPS,S)))

Card

Wait

Wait

CtoI!Exp1(Encr1(x,S))

ItoC?Exp2(Encr2(KC,Encr1(KM_,x)) & isSymmK(x)

PSAM

Init

Init

Figure 3. AutoFocus MSCs for CEPS System

3.1.4 Behaviour of the PSAM

The PSAM and the card execute the protocol CEPSPurchaseTr, which is
specified using message sequence charts (MSCs). Figure 3(a),(b) show the

10 Jan Jürjens and Guido Wimmel

AUTOFOCUS MSCs specifying the behaviour of the PSAM (conf. Fig. 1). In
this Figure, diamond shaped elements denote states. Thus, the PSAM can
either wait in the Init state, or execute the protocol. Figure 4 shows the
state transition diagram generated from this representation. MSCs are
particularly suitable for specifying cryptograpic protocols as they represent
sequential executions and correspond to the usual informal notation.

true::: Init

Sent

OK

::MtoI!Exp2(Encr2(KC,Encr1(KM_,SKPS))):

(ItoM == Exp1(Encr1(SKPS,S))):ItoM?ItoM::

Figure 4. State Transition Diagram for the PSAM

3.1.5 Behaviour of the Card

isSymmK(x):ItoC?Exp2(Encr2(KC,Encr1(KM_,x))):CtoI!Exp1(Encr1(x,S)):

Wait

Figure 5. State Transition Diagram for the Card

Figure 4 shows the state transition diagram for the Card, generated from
the specification in Fig. 3(c). This also demonstrates how input patterns can
be used in AUTOFOCUS to make transition annotations more readable. The
pattern ItoC?Exp2(Encr2(KC,Encr1(KM_,x))) is an abbreviation for
ItoC?ItoC and the precondition

is_Exp2(ItoC) ∧ is_Encr2(exp2(ItoC) ∧ keyenc2(exp2(ItoC))==KC

and binding of the variable x to expenc1(expenc2(exp2(ItoC))).

In addition, the card makes sure that the key sent to it is a symmetric
one. This is done by checking isSymmK(x), which is given as a function
definition, the meaning of which should be obvious:

fun isSymmK(SKPS) = True

| isSymmK(SKI) = True

| isSymmK(x) = False;

Security Modelling for Electronic Commerce 11

3.1.6 The intruder model

The above model specifies the data types, system structure and
behaviour of the involved parties for the CEPS purchase transaction. This
system could now be simulated and tested using AUTOFOCUS.

To be able to investigate vulnerabilities, we use an intruder model
commonly employed in formal reasoning about security protocols. All
messages in the system are sent via the intruder, who can thus intercept
them, learn secrets in the messages, and generate own messages or replay
messages.

:CtoI?CtoI::exp1store = CtoI

generate exp2

::ItoM!exp1store:

generate exp1

:MtoI?MtoI::exp2store = MtoI

::ItoC!exp2store:

SimPSAM

SimCard

LearnSPKS

LearnS

true:::

decode exp2

:::store1 = expenc1(expenc2(exp2(exp2store)))

store to 2

store to 3

decode exp1
:::store1 = expenc1(exp1(exp1store))

store to 2

store to 3

Figure 6. State Transition Diagram for the Intruder

As the intruder model is highly nondeterministic and allows many
different executions, it is best specified by an STD (see Figure 6). For
readability, some transitions are annotated with a text label instead of the full
annotation (which is shown by the CASE tool on a mouse click).

The intruder can store two messages (local variables exp1store and
exp2store), one of each type (Exp1 and Exp2), and three keys (local
variables store1,2,3). It has four states: SimPSAM, SimCard, LearnS, and
LearnSKPS. In state SimPSAM it acts as the PSAM, reading messages from
channel CtoI and storing them. The transition to LearnS labelled decode

exp1 can be executed if the intruder can decrypt the message in the store
(which is of the form Exp1(Encr(k,x))) and learn the secret x contained in
it. This is the case if the intruder has the key k somewhere in his key store.
To model the searching of the store, the input channels rndi

nondeterministically provide the intruder with a store position he can choose

12 Jan Jürjens and Guido Wimmel

a key from, to compare it with the key used for encryption. Altogether, the
decode exp1 transition is given as

(is_Exp1(exp1store) && (keyenc1(exp1(exp1store)) ==

retrkey(store1,store2,store3,p1))):rndp1?p1::

where retrkey is a function choosing one of store1, store2 ,store3
depending on p1. In the transitions back to SimPSAM, the content of the
message is stored in one of the three possible places.

In a similar way, the transition generate exp2 chooses keys from the
store to build up a message of the type TExp2 to be sent to the card. Finally,
the remaining transition just replays an expression stored in exp2store.

The intruder can also nondeterministically move to state SimCard where
he simulates the card, in an analogous way to state SimPSAM.

Note that in this model, the intruder can only first act as the PSAM, and
then as the Card. This restriction can be removed by adding a transition from
SimCard to SimPSAM. The model can also be tailored, e.g. not to allow the
intruder to act as the PSAM at all, or not to learn certain keys or intercept
particular messages etc.

3.2 Model Checking

The system specification described above specifies the behaviour of the
CEPS purchase transaction protocol in presence of a hostile intruder. This
specification can now be simulated or tested. In this paper we concentrate on
model checking to examine the protocol with respect to possible
vulnerabilities.

We consider a vulnerability a behaviour which leads to the PSAM
reaching the OK state without prior having received the transaction
information S created by its immediate communication partner. Note that this
is different from the situation of Internet protocols where communication is
usually passed on by third parties (and possibly the adversary) due to the
physical situation. Here, the holder of the card directly communicating with
the PSAM receives the purchased goods without further authentication,
which motivates the above definition. Since in our model the PSAM
communicates directly only with the adversary, it is sufficient to check if it
ever reaches the OK state.

The intruder first acts as the PSAM, only communicating with the card
(state SimPSAM), and later as as the card (SimCard, only communicating with
the PSAM). When there is an execution such that the PSAM reaches the
state OK, the intruder managed to trick the PSAM into authenticating him.

For this purpose, we use the AUTOFOCUS connection to the model
checker SMV. The property we check is AG¬ (PSAM.State=OK), meaning

Security Modelling for Electronic Commerce 13

that in all reachable states (AG) the PSAM does not reach the stats OK in
presence of the intruder.

If the property is violated, this indicates a vulnerability, and the model
checker outputs a corresponding trace. Such a trace can then be
automatically converted into an MSC and visualized in the tool
AUTOFOCUS.
– Whether or not this situation arises depends on which keys the attacker

possesses initially and how freely he can move between the states
SimCard and SimPSAM. Below, we explain some scenarios we examined.
Model checking of all scenarios took approximately 5 minutes on a SUN
UltraSparc 2 with 1GB of memory and two 200MHz processors.

– If the intruder only possesses the public keys KC, KM and his private key
SKI, the model checker does not find an attack. Thus, we can conclude
that with respect to the chosen attacker model, the CEPS purchase
transaction has been shown to be correct. Due to the restrictions of the
model, this is no full proof of course — further evaluation of the protocol
can be carried out later by more thorough methods as theorem proving
(automatically or by hand).2

– Assuming the private keys KC_ and KM_ leaked somehow, so the intruder
could get hold of them. Then of course he can authenticate himself to the
PSAM. The model-checker correctly indicates this and outputs a
corresponding MSC, which graphically visualizes the behaviour of the
system in this case for the developer. Such execution traces can be
generated by the model checker for many different kinds of specifications
of possible runs (whether security related or not) and make it possible to
test the implementation of the system or find and correct mistakes in the
specification.

– Both private keys have to leak at the same time - if only one key leaks,
the model checker does not find an attack. Thus, in the first threat
scenario described in Section 2.2, no attack is possible without leaking
keys.

– If one allows the intruder to move freely between the states SimCard and
SimPSAM — as in the second threat scenario from Section 2.2 where the
intruder communicates with the attacked card and the attacked PSAM in
parallel — we find that the PSAM can actually reach the state OK. This is
possible even if the intruder does not possess any keys. The
corresponding execution trace is displayed in Figure 7 and shows the
attacker acting as a relay, i.e. waiting for a message from the PSAM (in
the SimCard mode), forwarding it to the card, waiting for the reply (in the
SimPSAM mode) and forwarding it to the PSAM. The dashed lines

2However, these restrictions could be justified with arguments similar as done in (Lowe, 1996)

14 Jan Jürjens and Guido Wimmel

represent time ticks (each tick corresponds to the execution of a transition
in the automata). We can see from the diagram that the intruder takes a
number of ticks to record the messages before he can produce an answer.
If the PSAM and the card wait when receiving messages, this does not
restrict the model. In addition, there is a spurious fake message sent by
the intruder, which is ignored by the card (this message was generated by
the model checker as part of the counterexample — in our model the
intruder can sent any fake messages at any time).

– If we rule out this kind of behaviour (e.g., by not allowing the intruder to
replay both messages), again no attack can be found.

PSAM Intruder Card

Exp2(Encr2(KC,Encr1(KM_,SKI)))

Exp1(Encr1(SKI,S6))

Exp2(KC,Encr1(KM_,SKPS)))

Exp1(Encr1(SKPS,S6))

Exp1(Encr1(SKPS,KM_))

Figure 7. MSC for potential vulnerability in CEPS System

3.3 Interpretation of results

Our model showed that the CEPS purchase transaction is resistant to
attacks of an intruder trying to have itself illegimately authenticated by the
PSAM — except for the second, more sophisticated, threat scenario. As
explained, this is no full proof of the correctness of the protocol.

The indicated potential vulnerability is present since firstly the card
cannot communicate directly with the cardholder during the transaction and
secondly CEPS does not include the entire POS device in the security
perimeter. An intruder being able to attack a card and a PSAM in a remote
place at the same time could therefore carry out purchase transactions with

Security Modelling for Electronic Commerce 15

the attacked PSAM on the account of the attacked card. Given the card
specifications (no own display) to avoid the first cause one would have to
employ a challenge and response between card and user via the terminal, as
suggested in (Abadi et al., 1993), which may however not always be
practical. So the right conclusion may be to increase security by securing the
Card Acceptance Devices (CAD) of (unattended) POS devices so that
communication with the PSAM is only possible with proper smart cards
without contact to the outside of the POS device, and not possible by
bypassing the CAD.

Note that the scenario given in Figure 7 would not at all be considered a
vulnerability in the context of Internet protocols, where it is assumed that an
attacker may act as a relay. This again shows the importance of considering
the underlying physical situation when investigating security of systems
(Gollmann, 2000). Note also that even though the scenario pointed out above
does not require any cryptographic operations on the side of the adversary,
our model does of course perform these (under the usual restrictions
regarding key knowledge) in the general case. Of course, the message
exchange in Figure 8 does not require use of model checking techniques to
be found, however, one of the benefits of formal methods is that they require
the investigator to be very explicit about assumptions made (on the
underlying physical security), which may be why the scenario has gone
unnoticed so far.

Future work includes a more formal justification showing that an
infinite-state adversary is no more powerful than the used finite-state one by
computing the transitive closure of the possible actions.

4. CONCLUSION AND FUTURE WORK

We investigated the security of the currently developed Common
Electronic Purse Specifications (CEPS) using the distributed systems CASE
tool AUTOFOCUS. Benefits of our approach include the possibility to specify
and verify cryptographic protocols in the framework of a general CASE tool,
which enables a treatment in the context of general system development.
Since security violations often occur at the boundaries between security
mechanisms (such as protocols) and the general system (Anderson, 2001),
being able to treat protocols in the context of the system allows an adequate
security assessment.

Apart from these methodological benefits, this work delivers concrete
results on the security of the payment systems that are to be developed and
fielded according to the CEPS. Our investigation exhibited a potential
weakness arising from the fact that according to CEPS, the POS device is

16 Jan Jürjens and Guido Wimmel

not part of the security perimeter and especially from the intended future
employment over the Internet. Due to space constraints we could only
consider one part of the CEP specifications, other parts are left for further
work.

Note that the protocol considered here is relatively simple, as our
motivation is not to push the frontier of what is possible with model
checking technology but to indicate how to incorporate formal techniques
for security engineering into general system development.

This work consitutes only a very first step towards “computer-aided
security engineering”. We intend to go further beyond the scope of formal
methods as it is previously mostly applied in computer security by
considering vulnerabilities arising from the way security mechanisms are
employed in the system context and by employing tools beyond model-
checking and theorem-proving (such as specification-based testing which we
recently applied to firewall design).

REFERENCES

M. Abadi, M. Burrows, C. Kaufman, and B. Lampson. Authentication and delegation with
smart-cards. Science of Computer Programming, 21(2):93–113, 1993.

N. Asokan, P. Janson, M. Steiner, and M. Waidner. The state of the art in electronic payment
systems. Advances in Computers, 53, 2000.

R. Anderson. Why cryptosystems fail. Communications of the ACM, 37(11):32–40,
November 1994.

R. Anderson. The formal verification of a payment system. In Mike Hinchey and Jonathan
Bowen, editors, Industrial-Strength Formal Methods in Practice, pages 43–52. Springer,
1999.

R. Anderson. Security Engineering: A Guide to Building Dependable Distributed Systems.
Wiley, 2001.

M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Proceedings of the Royal
Society of London A, 426:233–271, 1989.

M. Broy, F. Dederich, C. Dendorfer, M. Fuchs, T. Gritzner, and R. Weber. The design of
distributed systems - an introduction to FOCUS. Technical Report TUM-I9202,
Technische Universität München, 1992.

A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In Computer
Aided Verification, LNCS. Springer, 2000.

CEPSCO. Common Electronic Purse Specifications, 2000. Business Requirements vers. 7.0,
Functional Requirements vers. 6.3, Technical Specification vers.2.2, available from
http://www.cepsco.com.

D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2):198–208, 1983.

D. Gollmann. What do we mean by entity authentication ? In IEEE Symposium on Security
and Privacy, 1996.

D. Gollmann. Computer Security. J. Wiley, 1999.

Security Modelling for Electronic Commerce 17

D. Gollmann. On the verification of cryptographic protocols - a tale of two committees. In
Workshop on Security Architectures and Information Flow, volume 32 of Electronical
Notes in Theoretical Computer Science, 2000.

Stefanos Gritzalis, Diomidis Spinellis, and Panagiotis Georgiadis. Security protocols over
open networks and distributed systems: Formal methods for their analysis, design, and
verification. Computer Communications, 22(8):695–707, 1999.

F. Huber, S. Molterer, A. Rausch, B. Schätz, M. Sihling, and O. Slotosch. Tool supported
Specification and Simulation of Distributed Systems. In International Symposium on
Software Engineering for Parallel and Distributed Systems, pages 155–164, 1998.

F. Huber, S. Molterer, B. Schätz, O. Slotosch, and A. Vilbig. Traffic Lights – An AUTOFOCUS

Case Study. In 1998 International Conference on Application of Concurrency to System
Design, pages 282–294. IEEE Computer Society, 1998.

ITU. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS, Geneva,
1996.

Jan Jürjens. Object-oriented modelling of audit security for smart-card payment schemes. In
P. Paradinas, editor, IFIP/SEC 2001 – 16th International Conference on Information
Security. Kluwer, 2001a.

Jan Jürjens. Secrecy-preserving refinement. In Formal Methods Europe, LNCS. Springer,
2001b.

Jan Jürjens. Towards development of secure systems using UML. In H. Hußmann, editor,
Fundamental Approaches to Software Engineering (FASE/ETAPS, International
Conference), LNCS. Springer, 2001c.

I. Krüger. Distributed System Design with Message Sequence Charts. PhD thesis, Technische
Universität München, 2000.

V. Lotz. Threat scenarios as a means to formally develop secure systems. Journal of
Computer Security 5, pages 31–67, 1997.

G. Lowe. Breaking and fixing the Needham-Schroeder Public-Key Protocol using FDR. In
Margaria and Steffen, editors, TACAS, volume 1055 of LNCS, pages 147–166. Springer,
1996.

Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols. Journal
of Computer Security, 6(1–2):85–128, 1998.

J. Philipps and O. Slotosch. The Quest for Correct Systems: Model Checking of Diagramms
and Datatypes. In Asia Pacific Software Engineering Conference 1999, 1999.

Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems and its
applications to secure message transmissions. In IEEE Symposium on Security and
Privacy, 2001.

P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. Analysis and Design of
Security Protocols. Addison Wesley, 2001.

S. Stepney, D. Cooper, and J. Woodcock. An Electronic Purse: Specification, Refinement, and
Proof. Oxford University Computing Laboratory, 2000. Technical Monograph PRG-126.

O. Slotosch. Quest: Overview over the Project. In D. Hutter, W. Stephan, P Traverso, and
M. Ullmann, editors, Applied Formal Methods - FM-Trends 98, pages 346–350. Springer
LNCS 1641, 1998.

G. Wimmel, H. Lötzbeyer, A. Pretschner, and O. Slotosch. Specification Based Test
Sequence Generation with Propositional Logic. Journal on Software Testing Verification
and Reliability, 10, 2000.

G. Wimmel and A. Wißpeitner. Extended description techniques for security engineering. In
P. Paradinas, editor, IFIP/SEC 2001 – 16th International Conference on Information
Security. Kluwer, 2001.

