
BenediktLöwe, FlorianRudolph (eds.),

Foundations of the Formal Sciences

Refereed Papers of a Research Colloquium,

Humboldt–Universit¨at zu Berlin, May 7-9, 1999, p. 101–120

c�1999Kluwer Academic Publishers. Printed in the Netherlands.

GAMES IN THE SEMANTICS OF PROGRAMMING LANGUAGES — AN
ELEMENTARY INTRODUCTION

JAN JÜRJENS

ABSTRACT. Mathematical models are an important tool in the development of software
technology, including programming languages and algorithms. During the last few years,
a new class of such models has been developed based on the notion of a mathematical
game that is especially well-suited to address the interactions between the components of a
system. This paper gives an introduction to these game-semantical models of programming
languages, concentrating on motivating the basic intuitions and putting them into context.

1. INTRODUCTION

The importance of reliability in software products is by now well-known (most com-
monly known example for a source of concern is the “year 2000 bug”). One aim in the
design of new programming languages is to try to minimize the occurrences of mistakes
through appropriate design (classical example is to encourage programmers to program
in a structured way, as achieved through the design of the programming language Pascal
by providing programming constructs such as procedures). More suitable programming
languages enable a more efficient and more secure development of software.

Providing mathematical models for programming languages is an important step in this
direction. Their purpose is to serve as a basis for understanding and reasoning about how
programs behave. On the one hand, they can be used for analysis and verification, on the
other, there have been significant examples of the design of new programming language
principles influenced by the mathematical foundations (for instance the influence of the
lambda-calculus on the development of the functional language ML).

For a long time (ca. 1950-1980) these models were functional in nature: execution of
a program was thought of as computation of a function (as opposed to an interactive pro-
cess). Using this model allowed the development of the notions of correctness of a program
with respect to its specification. These models could be classified asoperational semantics

RECEIVED : August 12th, 1999

This work was supported by the Studienstiftung des deutschen Volkes.

101



102 JAN J̈URJENS

resp.denotational semantics. Different structures also relating inputs to outputs in a func-
tional or relational way (namely Turing machines) were employed to model computational
complexity.

� Operational semantics employs an evaluation relation�: M � c means that the
“program”M converges to the canonical form (“value”)c (“big-step”-semantics).

� In denotational semantics one employs mathematical methods to use one’s intuition
about specific mathematical structures to reason about programming languages. Pro-
grams are interpreted compositionally in the structures that traditionally are order-
theoretic: A termop�M�� � � � �Mn� consisting of an operationop and subtermsMi

is interpreted by composing the interpretations of the operation and of the subterms:

�op�M�� � � � �Mn�� �� �op���M��� � � � � �Mn���

Both kinds of semantics have been very successful, but also have disadvantages: Oper-
ational semantics is syntax-dependent and thus too explicit for a nice mathematical theory.
In denotational semantics, the programs are modeled extensionally (i. e. showing only
input/output-dependencies and no aspects of the actual computation process) which ab-
stracts from their dynamics. While this has been an adequate approach to the traditional
forms of (functional) computation, the rise of interest in distributed systems (of which the
most commonly known is the internet) in recent years has called for a model that takes
account of the interactions between components of a system (or equivalently, between a
system and its environment). Moreover, this approach also models appropriately the real-
ization of functional computation. More speculatively, an intensional model of computa-
tion (i. e. one that reflects some properties of the process of computation) could perhaps
also be used to model computation-related aspects like computational complexity.

These observations beginning in 1992 in [AbrJag92] (and independently in [HylOng92])
led to the construction of very satisfactory game-semantical models for linear logic (a
resource-sensitive logic introduced in [Gir87]; another model had been given in [Bla92],
but with non-associative composition). These model were intensional in nature: thus the
usual completeness results, stating that provability of a formula is reflected in the model,
were strengthened to “full completeness” results where each proof is itself represented.
Another games model for linear logic was given in [Lam94], while the ones in [LafStr91]
or [Mey94] (the latter for predicate logic without contractions) are not intensional.

Subsequently this lead in 1993 to the development of intensional game-theoretical mod-
els in the semantics of programming languages independently by [AbrJagMal94, HylOng�,
Ni96]. These models proved to be very useful and provided e. g. a solution for the proba-
bly best-known open problem in the semantics of programming languages, the “Full Ab-
stractness Problem” for the programming language PCF [Pl77], by giving the first syntax-
independent fully abstract model. PCF is a higher-order functional programming language
that essentially is a fragment of any programming language with higher-order procedures
(for instance any expressive enough object-oriented programming language).

Precursors to these game-theoretical models can be seen in [Jo77], where for the first
time a category of games is defined, and in the work of Kleene on recursive functionals,
and of Berry and Curien on sequential algorithms in [BeCu82].

In another line of research, game-semantical methods have so far had a number of other
applications, including in [AbrJag94] an alternative realization of the “Geometry of inter-
action” program (initiated in [Gir89] and developed in a series of papers).

In this paper we would like to give an accessible introduction to the games model of
PCF while concentrating on motivating the basic intuitions and putting them into context.



GAMES IN THE SEMANTICS OF PROGRAMMING LANGUAGES 103

2. GAMES - INFORMAL DEVELOPMENT

Game theory was founded in the beginning of the century with works by Zermelo, Borel
and von Neumann on parlour games. In the 1950’s John Nash made his famous contribu-
tions to non-cooperative game theory and to bargaining theory that he later received the
Nobel Prize of economics for (together with J.C. Harsanyi and R. Selten).

The use of game-theoretical methods in logic (with the best-known example the Ehren-
feucht-Fraiss´e games used in (finite) model theory) also originated at the beginning of this
century and is still a strong field of research. Similarly game-theoretical methods have been
used in models of concurrency/reactive systems (for an introduction into the latter field
cf. [Me00]), the modeling of interactive protocols, natural language semantics (Hintikka
games [HinSan97]) etc.

2.1. Lorenzen Games.The use of game theory in the semantics of programming lan-
guages is based upon work done by P. Lorenzen in the 1950’s on “dialogue games” [Lor60]
(for a survey cf. [Fel86], however we will here consider a slight variation of the games
considered there in order to make the connection to Game Semantics in the following sub-
section more explicit). There a sentence (of the propositional calculus�) is interpreted via a
two-player game between the “Proponent” trying to prove an assertion and the “Opponent”
trying to disprove it. This is done recursively on the structure of the given formula. It can
be done both for intuitionistic� and classical logic and we will start by giving the rules for
the treatment of the former.

To formulate this more formally, we first need to be a little more precise: The players
are called “1” and “2”, and at each point in the game, each of them can either attack or
defend the (sub-)formula under consideration at that point.

Thus the possible moves are: A player (1 or 2) can

� assert a formula (e. g.A � B) or
� attack a (previously asserted) formula (in the notation employed below this will be

denoted by a “?” under the attacked formula).

A play of a game then is a sequence of moves made in turns by the two players1 and2
according to the following rules.

� 1 starts by asserting a formula and then it is2’s turn to move as the “attacker”.
� If the player whose turn it is to move is currently in the attacker role he can attack

the formula� asserted by the other player in the preceding move in the following
way:

– If the currently attacked formula is of the formA � B he can attack one of the
subformulasA orB (and moreover, he can later attack the other not yet attacked
subformula).

– If the currently attacked formula is of the formA � B, A � B or �A then he
can simply attack the whole formula.

� If in the preceding move one of the players attacked the formula�, the other one can
now make the following moves (in “defense” of�) depending on the structure of�:

atomic: If � is an atomic formula, this depends on which player currently is to
move:2 can assert�, but1 can only assert� if 2 has previously asserted it.

A � B: He can simply assert the whole formulaA � B.

�These are the formulae inductively constructed from atomic propositionsp using the connectives���� �
��.

�In this logic essentially the law of the excluded third is not required to hold.



104 JAN J̈URJENS

� � A � B: He can either assertA orB (under the proviso of the previous case if
the chosen formula is atomic). (Note that however in this intuitionistic case he
does not later have the option to also assert the other disjunct !)

A � B: He can attackA. Instead (or also additionally, at a later point of the
game) he can assertB (under the above proviso).

�A: He can attackA.
� If in each of the subplays the player in turn cannot move then the play stops. If there

is an attack that could not be answered, this can only be an attack by2, since2 can
assert atomic formulae ad libitum, and then2 is the winner, and otherwise1 is.

Note that the asymmetry of the rules wrt. atomic propositions comes from the fact that
in order to show that a formula is valid (semantically), one has to show that it evaluates to
true for any possible valuation of the atomic propositions involved.

These rules are pictured schematically in the following table:

1 A �B 1 A � B

2 � 2 attackA orB
1 choose A or B 1 defend chosen formula
2 attack chosen formula

1 A � B 1 �A

2 � 2 �
1 attackA 1 attackA

or defendB

A player has won a single play of the game corresponding to a formula if he made the
last move that is allowed according to the above rules (i. e. which is “legal”). A strategy
for a playerp (say1) is a function that assigns to every sequence of legal moves ending
with a move of the other player (2) a move of his own (i. e. of1). Thus one can obtain a
play of a game by playing a strategy for1 off against a strategy for2. A strategy is said
to be a winning strategy if this is done in such a way thatp wins every possible play of
the game. It then follows that winning strategies for1 asserting a formula� correspond
exactly to proofs of� in intuitionistic logic (in short we have the slogans “propositions-as-
assertion-moves” and “proofs-as-winning-strategies”).

For illustration we present proofs via games for two formulae (here and in the follow-
ing we present games by showing a typical run instead of all possible runs to increase
readability):

Modus Ponens:

� ��A � B� � A� � B

� �

� �

� �

� �

� A

� A

� B

� B

Identity:

� A � A

� �

� �

� A

� A



GAMES IN THE SEMANTICS OF PROGRAMMING LANGUAGES 105

Let us go through the game for the first formula in detail: Here1 starts by asserting
the formula� � ��A � B� � A� � B. By the rules given above and the structure
of � the only move2 can then do is to attack the whole formula.1 can then defend�
by either attacking the premiss�A � B� � A (and possibly asserting the conclusionB
later), or by assertingB immediately. According to the strategy represented by the above
diagram she chooses the first option, which means that she must actually attack one of the
conjunctsA � B andA, and so she attacks the first (only to attack the second later - in
fact she would also succeed by doing it the other way around). Now2 can either attack
the premissA, or simply assertB (note that the latter option would not exist for1 by the
above rules). In the latter case1 would immediately have the winning move to assert the
conclusionB of � (which is then possible because2 has asserted it first). Thus in this play
2 chooses instead to attackA. Now 1 makes use of her still existing option to attack the
other conjunctA (that she has not attacked before) of the conjunction�A � B� � A that
has previously been under her attack.2 can only defendA by simply asserting it. But then
also1 is allowed to defendA as the premiss ofA � B by asserting it. The only option
left to 2 is to finish off her defense ofA � B by assertingB. But then again1 may assert
B as the conclusion of�. Since there is no move left for2, 1 wins this play, and in fact
from the explanations given above it is clear that1 has a winning strategy for this game.
Thus we have given a proof of� in intuitionistic logic.

We obtain a representation of proofs of classical logic if the above rules are weakened
so that not only both conjuncts of a conjunction can subsequently be attacked, but also both
disjuncts of a disjunction subsequently be defended:

� A � � A

� �

� � A

� �

� �

� A

� A

2.2. Game Semantics.To lead over from Lorenzen Games to games in the semantics of
programming languages we can make use of the Curry-Howard-Isomorphism. The idea is
to view “propositions as types” and proofs for a propositionA as terms of typeA in the�-
calculus (thus a proposition is interpreted as valid iff the corresponding type is inhabited).
Recalling the above slogans this gives us “assertions-as-types” and “winning-strategies-
as-terms” (note that forP ’s strategies to be winning means that the corresponding term
denotes a total function). So for example the natural number� � N is represented by the
following strategy:

� N

� q

� �

Here we change our notation slightly to indicate the change of perspective: Firstly, in-
stead of� we write q. This is now interpreted as a request by the environment for an
element ofN. The difference to the preceding situation is that here our types are usually
inhabited (while there the propositions were not always valid) and so the attention is turned
from provability (the existence ofsomeproof) to a specific proof. This we indicate by nam-
ing the proof (i. e. the element representing it - 3 in the above example) instead of simply



106 JAN J̈URJENS

asserting the proposition. Because of the fundamental difference in the interpretation in
this setting of the first move (which asserts the type of the game) from the others we will
not consider it as a move here, such that the game starts with a question by2 (this player
is here renamed toE for “environment”, while1 becomesS for “system”).

The interpretation of a question and its corresponding answer is then the delivery of the
requested data by the system to the environment. This has the consequence that a player can
repeatedly “attack” the same�-connective (which was not possible in Lorenzen Games)
in order to get different inputs (see the examples below).

Here “system” and “environment” can take several interpretations: for instance, a com-
puter system and its user, a computer and the other computers of its network, or in the
program text a term and its context. The explicit distinction between system and environ-
ment from the beginning is an important difference to most other process models.�

Note also that a value (that in standard denotational semantics is atomic) is here repre-
sented by an interactive process (“splitting the atom of computation”).

Under the Curry-Howard-Isomorphism,������ true� false correspond to the func-
tion space�, the cartesian product	, the disjoint sum�, the singleton	 and the empty
set
 respectively (and so we will adopt the latter notation).

The above example Identity here instantiates to the identity function of typeA � A
(represented by the “copycat-strategy”):

A � A

E q

S q

E a

S a

(Note that for clarity we write the request under the corresponding type, and not under
the connective� as in Lorenzen Games.) Similary, Modus Ponens corresponds to function
application.

To give a few more examples:
Addition:

N � �N � N�

E q

S q

E n

S q

E m

S n�m

�f � N� N.if f�
� � 
 then 1 else 0
�N � N� � N

E q

S q

E q

S 


E
n��

n��
or

S
�

�
or

The first example is a particular run of the strategy that, after being requested an output
by the environment, itself requests the two input arguments, and then returns their sum.
Note that the same function could be modelled by a different strategy, namely by the one
that takes the arguments in the reverse order. This illustrates the intensionality of this

�In CSP, for example, one does have two different operators for internal and external choice. On the other
hand, Hoare takes the view that: “In choosing an alphabet, there is no need to make a distinction between events
which are initiated by the object (perhapschoc) and those which are initiated by some agent outside the object
(for example,coin). The avoidance of the concept of causality leads to considerable simplification in the theory
and its application.” [Hoa85, p.24]



GAMES IN THE SEMANTICS OF PROGRAMMING LANGUAGES 107

model, and it in fact models the situation correctly also if one takes into account features
of actual computation like store and control (see below).

The second one is an example for a higher-order function: it pictures a strategy for the
function

g �� ��f � N� N�if f��� � � then 1 else 0� � �N� N�� N

that takes a functionf � N � N and returns 1 if the function has value 0 at input 0,
otherwise 0. Note thatg receives its input not “all at once” (as a first-order function would
receive its input, e. g. a natural number), but in a “demand-driven” fashion. This is in ac-
cordance with the general way of representation by (finitary) interaction and is necessary
to satisfactorily model programming languages, since on a computer one cannot deal di-
rectly with infinite objects (like functions with infinite domain), but only indirectly through
a finite representation by a term or (as here) finite (but arbitrary) portions of it. Thus after
being requested an output from the environment,g requests a value from its inputf . In
this run of the strategy,f in turn demands fromg a value (its argument) and receives 0,
whereupon it delivers its value at
. If this value equals
, g returns 1, otherwise 0 to the
initial request (for simplification these two cases are depicted in the same diagram, so in
fact the diagram represents to possible runs: the first one is obtained by substituting the
first instancesn � 
 and	 in the last two lines, and the second one by using the second
casesn � 
 and
.

Note that one can also model non-strict� functions: The following function delivers 3
without looking at its input:

N � N

E q

S �

By the above remarks about inputs to higher-order functions, one often requires several
interactions between the function and its argument, as in the following example of the
function�f�f�
� � f�	� � �N� N�� N that takes a functionf � N� N as input and
outputs the valuef�
� � f�	� � N (note that here we deviate from Lorenzen Games by
allowing the same connective to be “attacked” twice, as indicated above):

�N � N� � N

E q

S q

E q

S 


E n

S q

E q

S 	

E m

S n�m

These interactions can also be nested in each other, as in the following example of the
function�f�f�f���� � �N � N� � N that takes a functionf � N � N as input and

�A function is non-strict if it delivers a defined output even for an undefined input (in the domain-theoretic
sense).



108 JAN J̈URJENS

produces the valuef�f���� � N (where we introduce pointers to indicate which question
provided data refer to; this concept is defined more precisely in the next section):

�N � N� � N

E q

S q

��������

E q

��������

S q

��� � � � � �

E q

��������

S �
��

E n

��

S n

��

E m

��

S m

��

Whereas in the example above one would not really need the pointers by instead making
the convention that each delivered data refers to the “pending” question (this is the “well-
bracketing” condition defined below), there are more complicated examples where this is
not possible: For example,�f�f��x�f��y�y�� and�f�f��x�f��y�x�� would be identified
without the use of pointers.

In modelling systems it is conceptually nice (and for more complicated systems even
required in order to make modelling feasible) to model the different components and then
obtain a model of the whole by putting together the models of the parts. In order to do this
one needs to be able to compose the strategy representing one component (which in the
above system/environment-distinction takes on the role of the “system”) with the strategy
representing the joint behaviour of the other components (the “environment” of the former
component).

To visualize composition of (i. e. interaction between) strategies, consider the following
example of the composition of�n��n� �� � N � N 	N (that maps a valuen to �n� ��)
followed by the (uncurryed) addition� � N	N� N:

N � N 	 N � N

q Er

El q Sr

Sl q

El n

Sl n Er

El q Sr

Sl � Er

n� � Sr

The interaction takes place in the following way: The play starts in the right game with
the question fromEr in N. According to the strategy for� this prompts a question from
Sr in the left factor ofN 	N. Now any question bySr in the domain of the strategy on
the right (and thus in the codomain of the strategy on the left) is in the game on the left
interpreted as a move byEl. This corresponds very nicely to the intuitive fact that every



GAMES IN THE SEMANTICS OF PROGRAMMING LANGUAGES 109

component of a whole is part of the environment for any other component. Now according
to the strategy for�n��n� ��, sinceEl asks for the left factor ofN 	N, this results in a
demand of input inN bySl, and the responsen byEl is copied to the left factor ofN	N.
There it is interpreted as a move byEr and the game continues similarly. In the end, the
strategy resulting from the composition is obtained by “hiding” the moves that are not any
longer in interaction with the overall environment (the ones in brackets in the middle). As
expected, the corresponding function is�n�n� �.

Note 1.

� Note that as with composition of functions one can only compose strategies with
matching types: to form�� � , we must have� of the typeA � B and� of the type
B � C for suitableA�B�C.

� In the setting of Lorenzen Games, composition of strategies gives us a natural proof
for the transitivity of�.

� Obviously there is a close relationship of the composition of strategies to the “par-
allel composition + hiding” in the process algebra CSP (because of the way our
strategies are typed it is here possible to put these two constructions together with-
out losing associativity; with the same idea one can also construct typed processes
(cf. e. g.[Abr96], [Jü99b])).

� In addition to associativity we also have (partial) neutral elements wrt. composi-
tion (given by the identity strategies as presented above), so in fact we can form a
category (see below).

As a special case of composition we get the application of strategies to their input:
DefineI to be the empty game with no moves (and one strategy, namely the one that does
nothing). Then we can represent e. g. the element��� �� � N	N by the strategy

I � N 	 N

q

�
q

�

and so� � � becomes in fact 8:

I � N 	 N � N

q Er

El q Sr

Sl � Er

El q Sr

Sl � Er


 Sr

With game semantics one can also model the key ingredients of imperative languages,
namely commands and store, and furthermore one can define control operators that allow
early escape from function evaluation. One of the nicest features of game semantics is
that the abilities to use store resp. control correspond exactly to different kinds of internal
properties of the strategies involved (this will be made more precise below).



110 JAN J̈URJENS

3. DEFINITIONS

To put the above intuitive examples on a more solid foundation, we will now provide
the underlying definitions. They appeared in [McC98] and are essentially an adaption of
[HylOng�], taking account of ideas in [AbrJagMal�].

3.1. Games and Strategies.

Definition 1. Anarenais a structureA � �MA� �A��A� consisting of

� a set ofmovesMA,
� the labelling function�A � MA � fS�Eg	fQ�Ag (call moves labelled�S� l� resp.
�E� l� (for l � fQ�Ag) “ S-moves” resp. “E-moves” and moves labelled�l� Q� resp.
�l� A� (for l � fE� Sg) “questions” resp. “answers”) and

� the enabling relation�A� �MA � f�g� 	MA (with � �� MA; saym enablesn
if m � n — the idea is that during a play moves can be made only when they are
enabled by earlier moves.). Call a move that is enabled by� “initial”.

under the following conditions:

� Initial moves areE-questions, and they are not enabled by any other moves besides
�.

� Answers can only be enabled by questions.
� Enabling alternates betweenE-moves andS-moves (i. e. anE-move can only enable

a S-move and vc. vs. ).

Definition 2.

� A justified sequenceis a sequences of moves together with each a justification
pointer from every non-initial movem to a moven earlier in s such thatn � m.
We say that (this occurrence of) the moven justifiesm and write this asn 
 t
 m

��

(where
 denotes concatenation, and supposing thatt is the subsequence of moves
betweenn andm). Note that justified sequences always start withE-questions.

� For a justified sequences, we define thesystem views and theenvironment views
of s by induction on the length ofs:

	 � 	�

s 
m � s 
m� if m is a S-move.

s 
m � m� if m is initial.

s 
 m 
 t
 n
��

� s 
 m 
 n
��

� if n is anE-move.

	 � 	�

s 
m � s 
m� if m is anE-move.

s 
 m 
 t
 n
��

� s 
 m 
 n
��

� if n is anE-move.

� A justified sequences is a legal positionif
– players alternate (ifs � s� 
m 
 n 
 s� and m is anE-move, thenn is aS-move

and vc. vs. ) and
– for any prefixt 
m of s: if m is a S-move, then its justifier is int and ifm is a

non-initial E-move then its justifier is int.
WriteLA for the set of legal positions ofA.



GAMES IN THE SEMANTICS OF PROGRAMMING LANGUAGES 111

Definition 3.

� Let m be a move in a legal positions. We say thatm is hereditarily justifiedby
an occurrence of a moven in s if there is a subsequence ofs starting withn and
ending inm such that every move is justified by the preceding move in it. For a set
of (occurrences of) initial moves we writesdI for the subsequence ofs consisting of
the moves hereditarily justified by a move ofI .

� A gameis a structureA � �MA� �A��A� PA� where
– �MA� �A��A� is an arena and
– PA is a non-empty, prefix-closed subset ofLA called thevalid positionssuch

that fors � PA andI a set of initial moves ofs we havesdI � PA.
� A (deterministic)strategy� for a gameA is a non-empty set of even-length positions

fromPA satisfying
– s 
 a 
 b � � � s � � and
– s 
 a 
 b� s 
 a 
 c � � � b � c andb andc have the same justifier (determinacy

condition).

3.2. Composition of strategies.Now we would like to model compositionality. It is con-
venient to do this in the framework of category theory, because that way we can make use
of already existing results on models of PCF (or linear logic).

A category consists of objects and morphisms. The objects of our category will be
the games. To define the notion of morphism we first need to consider a construction on
games:

Definition 4. Given gamesA andB, the gameA� B is defined as follows:�

MA�B � MA �MB

�A�B � ���A� �B �

� �A�B m � � �B m

m �A�B n � m �A n �m �B n � �� �B m � � �A n� for m �� �

PA�B � fs � LA�B � s jA� PA � s jB� PBg�

(where��A means�A with theS/E-labels inverted ands jA is the subsequence ofs con-
sisting of moves fromMA).

Now a morphism from a gameA to a gameB is a strategy onA � B. After some
auxiliary definitions we will give the definition of composition of strategies:

Definition 5.

� For a sequenceu of moves from gamesA�B�C with justification pointers define
u jB�C to be the subsequence ofu consisting of moves fromB andC (removing
pointers that point to moves fromA). Similarly defineu jA�B . u is an interaction
sequenceof A�B�C if u jA�B� PA�B andu jB�C� PB�C . Write the set of all
such sequences as int�A�B�C�.

� Supposeu � int�A�B�C�. By definition of�, a pointer from an A-movea can only
point to a B-moveb if b is initial and its pointer points to an initial C-movec. Define
u jA�C to be the subsequence ofu consisting of the moves ofA andC where in the
mentioned case the pointer froma is changed to point toc.

�A� B, as opposed toA� B, is the usual notation for the morphisms sets in models of linear logic.



112 JAN J̈URJENS

� Given strategies� � A� B, � � B� C, define

�k� �� fu � int�A�B�C� � u jA�B� � � u jB�C� �g

and finally the composition of� followed by� to be

�� � �� fu jA�C � u � �k�g�

Proposition 1. We obtain a categoryG whose objects are games and where the morphisms
fromA to B are strategies� � A � B with composition as defined above and identities
the copycat-strategies.

3.3. Restrictions on strategies.In this section we will define certain restrictions on the
sets of strategies that are needed for the game-semantical characterization of programming
disciplines mentioned earlier.

Definition 6. By determinacy of strategies we know that fors 
 a 
 b� t 
 a � LA (where
s 
 a 
 b has even length) withs 
 a � t 
 a, there is a unique (by determinacy) extension
match�s 
 a 
 b� t 
 a� of t 
 a by b (with a justification pointer forb) such thats 
 a 
 b �

match�s 
 a 
 b� t 
 a�. A strategy� on A is called innocentiff in each such situation it
satisfies

s 
 a 
 b � � � t � � � t 
 a � PA � t 
 a � s 
 a � match�s 
 a 
 b� t 
 a� � ��

i. e. a move byS depends only on theS-view.

For an example for a non-innocent strategy consider the following function:�

F �� �f � N� �N� N��

newx �� 
 in f�if x � 
 then�x �� 	� 
� else	�

�if x � 
 then�x �� 	� 
� else	�

Then we have

Ff �

�
f 
 	� if f asks for its first argument first
f 	 
� if f asks for its second argument first

The strategy for this function has the following two runs:

�N �� N �� N� �� N �N �� N �� N� �� N

E q E q

S q

		�����
S q

		�����

E q



������������
E q

		�����

S 


��

S 


��

E q

������������
E q

��

S 	

��

S 	

��

E n

��

E m

��

S n

��

S m

��

This violates innocence: Since

q� 
 q�
��


 q�
��

� q� 
 q�
��


 q�
��

� q� 
 q�
��


 q� 
 

��


 q�

 �

P must do the same in both runs.

�Strictly speaking, the following examples are strategies in the categoryC to be derived fromG in the next
subsection.



GAMES IN THE SEMANTICS OF PROGRAMMING LANGUAGES 113

Definition 7. A strategy� is well-bracketediff for eachs 
 a 
 b � � with b an answer, the
justification pointers ons 
 a 
 b have the form

� � � q 
 q� � � � a�
��

� � � qn � � � an

��

b��

(with an � a and whereai are answers), i. e.S can answer only the most recent unan-
swered question inS’s view.

A counter-example for the well-bracketing condition is provided by the control operator
catch� �N� �N� N��� N which is defined by

catch�f� �

��
�


� if f calls its first argument first,
	� if f calls its second argument first,
n� �� if f returnsn immediately.

The following is a possible run for the corresponding strategy, where clearly the bracketing
condition is violated:

�N �� N �� N� �� N

E q

S q

		�����

E q



����������

S 


��

Proposition 2. We obtain categoriesGi, Gb resp.Gib that are subcategories ofG with
the same objects and morphisms the innocent, well-bracketed resp. innocent and well-
bracketed strategies.

3.4. Cartesian closedness.Models of the lambda-calculus (and so in particular of PCF)
are often given in the framework of cartesian closed categories (ccc’s).

Note that all four defined categories are autonomous, i. e. symmetric monoidal closed
(and this structure is respected by the subcategory inclusions), via the following tensor
product (and the unitI � �
� 
� 
� f	g�):

Definition 8. Given gamesA andB, the gameA�B is defined as follows:

MA�B � MA �MB

�A�B � ��A� �B �

� �A�B m � � �A m � � �B m

m �A�B n � m �A n �m �B n

PA�B � fs � LA�B � s jA� PA � s jB� PBg�

(where��A means�A with theS/E-labels inverted ands jA is the subsequence ofs con-
sisting of moves fromMA).

We will make use of the autonomous structure in order to obtain cartesian closed cate-
gories out of the categories defined above using the Girard translation of intuitionistic logic
into linear logic. First we will define the categorical product.



114 JAN J̈URJENS

Definition 9. Given gamesA andB, the gameA	B is defined as follows:

MA�B � MA �MB

�A�B � ��A� �B �

� �A�B m � � �A m � � �B m

m �A�B n � m �A n �m �B n

PA�B � fs � LA�B � s jA� PA � s jB� 	g � fs � LA�B � s jB� PB � s jA� 	g�

The projections are the obvious copycat strategies.

It is straightforward to generalize the definition from the binary to the set-indexed case
and to show that this actually gives a categorical product.

To define the morphisms in the ccc’s to be constructed we need the exponential of a
game:

Definition 10. Given a gameA, the game�A is defined as follows:

M�A � MA

��A � �A

��A � �A

P�A � fs � L�A j for each initial movem� sdm � PAg�

Intuitively, �A stands for arbitrarily many copies ofA. The use of this operator is neces-
sitated by the fact that the�-calculus, as opposed to linear logic, is not resource-sensitive.

To define composition of morphisms� � A� B in C (which will be strategies�A� B
in G) with � � B � C we will then need for each strategy� ��A � B a “lifting”
�y ��A��B. This, however, can only be defined for a restricted class of games:

Definition 11. A gameA is well-openediff for all sm � PA withm initial, s � 	.
For � ��A� B with well-opened gamesA, B define�y ��A��B by

�y � fs � L�A��B j for all initial m� sdm � �g�

One can show that for well-opened games this construction does not only preserve the
property of being a strategy, but also that of being innocent and well-bracketed.

Now we can construct a ccc from each of the categories defined above using the Girard
translation:

Definition 12. The categoryC has as objects well-opened games and as morphisms� �
A� B strategies for�A� B. The composition�� � � A� C of morphisms� � A� B
and � � B � C is defined to be�y� � . The subcategoriesCi, Cb andCib are defined by
imposing restrictions analogously to the definitions above.

One can show that each of these four categories is cartesian closed and that this addi-
tional structure is respected by the inclusions. As usual in ccc’s let us write�A � B� ��
��A� B�,��f� � A� �B � C� for the morphism obtained by curryingf � A	B � C,
andev � �A � B� 	 A � B for the morphism obtained by uncurrying the identity on
A � B.

In fact there are conceptually very appealing factorization theorems that show that each
strategy can be factored into an innocent (resp. well-bracketed) and a non-innocent (resp.
non-well-bracketed) part.



GAMES IN THE SEMANTICS OF PROGRAMMING LANGUAGES 115

4. FULLY ABSTRACT MODELS FOR PROGRAMMING LANGUAGES

In the following we will present the basic results about game-semantical models for
programming languages. We start by defining the language in question.

4.1. The language PCF.The programming language PCF is a call-by-name functional
language with a base type of expressions denoting natural numbers and constants for arith-
metic and recursion. Its syntax is that of an applied simply-typed�-calculus (for a defini-
tion of�-calculus cf. [Mat00]) with types given by the following grammar:

A ��� exp j A� � A��

Terms are defined as follows:

M ��� x j �x � A�M jM�M�

j n j succM j predM

j condM�M�M� j YAM

(wherex is a variable andn a natural number).
Typing judgements are made using the following rules:

Variables:
x� � A�� � � � � xn � An � xi � Ai

i � f	� � � � � ng

Functions:
�� x � A �M � B

� � �x � A�M � A� B
�
� �M � A� B�� � N � A

� �MN � B

Arithmetic:
� � n � exp

�
� �M � exp

� � succM � exp
�

� �M � exp

� � predM � exp

Conditional and recursion:
� �Mexp�� � N� � exp�� � N�exp

� � condMN�M� � exp
�
� �M � A� A

� � YAM � A

The “big-step” operational semantics of PCF is given by a relationM � V (“M evalu-
ates toV ”) whereM is a closed term (a term with no variables, i. e. so that� M � A can
be derived) andV is acanonical formdefined by the following grammar:

V ��� n j �x�M

This determines a partial function from closed term of typeexp to natural numbers in
the following way (whereM �N�x� is the capture-free substitution of the termN for the
variablex in the termM ):

Canonical forms:
V � V

Functions:
M � �x�M ��M ��N�x� � V

MN � V

Arithmetic:
M � n

succM � n� 	
�
M � n� 	

predM � n
�

M � 


predM � 


Conditional:
M � 
� N� � V

condMN�N� � V
�
M � n� 	� N� � V

condMN�N� � V

Recursion:
M�YM� � V

YM � V
.



116 JAN J̈URJENS

4.2. Game-semantical characterization of programming disciplines.We will first give
the usual interpretation of the simply-typed�-calculus in a cartesian closed category. For
� � x� � A�� � � � � xn � An let us writeJ�K �� JA�K	 � � �	 JAnK.

Each typeA is modelled by an objectJAK: Starting with the definition ofJexpK (see
below), higher types are defined byJA� BK � JAK � JBK.

A term� �M � A is modelled as a morphismJ� �M � AK � J�K � JAK:

Variables: are interpreted by projections:

J� � xi � AiK � 
i � J�K � JAiK�

Abstraction: is modelled by currying:

J� � �x � A�M � A� BK � ��J�� x � A �M � BK� � J�K � JAK � JBK�

Application: is interpreted via the evaluation mapev � �A � B�	A� B:

J� �MN � BK � �J� �M � A� BK� J� � N � AK�� ev�

Thus to obtain a model for PCF in any of the four ccc’s defined above we are left
to interpret the typeexp and the term constantsn, succM , predM , condMN�N� and
YAM :

JexpK is the flat gameN of natural numbers:

MN � fqg � fn j n � �g

�N�q� � OQ

�N�n� � PA (for eachn�

� �N q

q �N n (for eachn�

PN � f	� qg � fqn j n � �g

The strategies forN are� � f	g andJnK � f	� qng for eachn.
The constantsucc is interpreted as

J� � succM � expK � �J� �MK� s� � J�K � JexpK�

using the morphisms � JexpK represented by the following strategy:

�N � N

q

q

����������

n

��

n� 	

��

The operationpred is defined similarly. The conditional is then defined as

J� � condMN�N�K � �J� �MK� J� � N�K� J� � N�K�� c

using the morphismc � N 	N 	N � N represented (via the canonical isomorphism
��N	N	N� ��N��N��N) by the strategy whose two typical plays are depicted below:



GAMES IN THE SEMANTICS OF PROGRAMMING LANGUAGES 117

�N � �N � �N � N

q

q



q

n
n

�N � �N � �N � N

q

q

m �� 


q

n
n

Finally recursion is interpreted in the usual way making use of the fact that the ccc’s
defined above are cpo-enriched.

One can then show that the categoriesCib,Cb andCi (or more precisely, their quotient
by an intrinsic preorder on the hom-sets) via the above interpretations give fully abstract
models for the languages PCF, (a simplified version of) Idealized Algol and (a minor vari-
ant of) SPCF resp. . Here Idealized Algol is viewed as an extension of PCF with the
constructs of a basic imperative language and block-allocated variables. More precisely,
we add the two base typescom (for commands which alter the state and which can be
composed sequentially) andvar (for variables which store natural numbers, that are allo-
cated using an operatornew x in M and that can be written to and read from). SPCF is
an extension of PCF by control operators. More precisely, this variant of it is obtained by
adding to PCF a family of control operatorscatchk. Intuitively,catchk x�� � � � � xk inM
terminates immediately when the termM tries to evaluate the variablexi and returnsi�	.
If M deliversn without using any of thexi, catchk x�� � � � � xk inM returnsn� k.

Thus one obtains the following semantic characterization of programming disciplines
[AbrMcC97, Lai97, AbrHoMcC98, AbrMcC�] (the last casefunctional + store + control
has not been published yet):

Constraints Language

D+I+B purely functional
D+I functional + control
D+B functional + store
D functional + store + control

Here D stands for the subcategory ofC with the same objects and the morphisms re-
strained by the determinacy condition (resp. I by the innocence and B the well-bracketing
condition).

5. FURTHER WORK

By further work the above results have been considerably extended and include recur-
sive types [McC98] and call-by-value [AbrMcC�, HoYo97]. Thus at least in principle
the main features of languages like Scheme or Core ML (except for the ability to test
references for equality) have been taken care of. Also there has been research towards
nondeterminism [HaMcC99].

Very recently there has been developed a new concurrent form of game semantics re-
solving problems posed by the sequentiality of the traditional ones and giving a full com-
pleteness result for multiplicative-additive linear logic [AbrMel99, Abr99c]. Also, game
semantics has been employed to develop a notion of “Process Realizability” [Abr99c].

Applications of game semantics to reasoning about security issues can be found in
[MalHan99]. Some of the work currently in progress addresses subtyping, and in another
line of research, game-semantical ideas are being employed in specification and refinement



118 JAN J̈URJENS

in a way that takes account of program dynamics and the system/environment distinction
[Abr99b, Jü99a] (for an introduction to refinement cf. [Man00]).

Further work will address semantics for object-oriented languages (Java) and logical
principles for structuring protocols.

6. CONCLUSION AND ACKNOWLEDGEMENTS

Since this paper was intended to be an elementary introduction to game semantics and
just to convey the basic intuitions, many details had to be left out. For these the reader is
referred to [Abr97a, AbrMcC98].

The author is very grateful to his supervisor, Prof. Samson Abramsky, for teaching him
the subject of this introduction. Material from [AbrMcC98], [Abr97b] and [Abr99d] was
used extensively for this paper.

Furthermore the author would like to thank Benedikt L¨owe and Florian Rudolph for
organizing the Research Colloquium “Foundations of the Formal Sciences” (where the
talk on which this paper is based was delivered), and R. Matthes, S. Merz and the other
participants for interesting discussions. Further thanks go to Andreas Seidl for comments
on the draft and the anonymous referee for insightful suggestions.

REFERENCES

[Abr96] S.Abramsky, Retracing some paths in process algebra,in:CONCUR ’96: concurrency theory
(Pisa), Springer Verlag, Berlin 1996, p. 1–17,

[Abr97a] S.Abramsky, Semantics of interaction: an introduction to game semantics,in: A. Pitts and
P. Dybjer (eds.), Semantics and logics of computation (Cambridge, 1995), Cambridge 1997,
p. 1–31

[Abr97b] S.Abramsky, Games in the Semantics of Programming Languages, P. Dekker, M. Stokhof
and Y. Venema (eds.), Proceedings of the 11th Amsterdam Colloquium, ILLC, Dept. of Phi-
losophy, University of Amsterdam 1997, p. 1–6

[Abr99b] S.Abramsky, A note on Reactive Refinement, 1999
[Abr99c] S. Abramsky, Process Realizability / Concurrent Games & Full Completeness of Linear

Logic, Lecture notes for the lectures at the Marktoberdorf Summer School, 1999
[Abr99d] S.Abramsky, Game Semantics and full abstraction for sequential programming languages,

Course at LFCS, University of Edinburgh 1999
[AbrHoMcC98] S.Abramsky, K. Honda, G. McCusker, A fully abstract game semantics for general ref-

erences,in: Proceedings of the Thirteenth International Symposium on Logic in Computer
Science, Computer Society Press of the IEEE 1998, p. 334–344

[AbrJag92] S.Abramsky, R. Jagadeesan, Games and full completeness for multiplicative linear logic
(extended abstract),in: R. Shyamsunder (ed.), Foundations of software technology and theo-
retical computer science (New Delhi, 1992), Berlin 1992, p. 291–301.

[AbrJag94] S.Abramsky, R. Jagadeesan, Games and full completeness for multiplicative linear logic,
Journal of Symbolic Logic 59 (1994), p. 543–574

[AbrJagMal94] S.Abramsky, R. Jagadeesan, P. Malacaria, Full abstraction for PCF (extended abstract),
in: M. Hagiya, J.C. Mitchell (eds.), Theoretical aspects of computer software (Sendai, 1994),
Berlin 1994, p. 1–15

[AbrJagMal�] S. Abramsky, R.Jagadeesan, P.Malacaria, Full abstraction for PCF,accepted by:Informa-
tion and Computation

[AbrMcC97] S.Abramsky, G.McCusker, Linearity, sharing and state: a fully abstract game semantics for
IDEALIZED ALGOL with active expressions,in: P. O’Hearn and R. Tennent (eds.), ALGOL-
like languages, Volume 2, Boston 1997, p. 297–329

[AbrMcC98] S. Abramsky, G. McCusker, Game Semantics,in: H. Schwichtenberg, U. Berger (eds.),
Logic and Computation: Proceedings of the 1997 Marktoberdorf Summer School, Berlin
1998, p. ???

[AbrMcC�] S. Abramsky, G. McCusker, Full Abstraction for Idealized Algol with Passive Expressions,
to appear inTheoretical Computer Science



GAMES IN THE SEMANTICS OF PROGRAMMING LANGUAGES 119

[AbrMel99] S. Abramsky, P.-A. Melliès, Concurrent Games and Full Completeness,in: Proceedings of
the Fourteenth International Symposium on Logic in Computer Science, Computer Society
Press of the IEEE 1999, p. 431-442

[BeCu82] G.Berry , P. L.Curien, Sequential algorithms on concrete data structures, Theoretical Com-
puter Science 20 (1982), p. 265–321

[Bla92] A. Blass, A game semantics for linear logic, Annals of Pure and Applied Logic, 56 (1992),
p. 183–220

[Fel86] W. Felscher, Dialogues as a foundation for intuitionistic logic,in: D. Gabbay and F. Guen-
ther (eds.), Handbook of Philosophical Logic, vol. III, D. Reidel Publishing Company, 1986
p. 341–372

[Gir87] J.-Y.Girard , Linear logic, Theoretical Computer Science 50 (1987), p. 1–101
[Gir89] J.-Y. Girard , Towards a geometry of interaction,in: John W. Gray, Andre Scedrov (eds.),

Categories in computer science and logic, Proceedings of the AMS-IMS-SIAM joint summer
research conference held June 14-20, 1987 (University of Colorado, Boulder) with support
from the National Science Foundation, Providence 1989�Contemporary Mathematics 92�,
p. 69–108

[HaMcC99] R.Harmer , G. McCusker, A fully abstract game semantics for finite nondeterminism,in:
Proceedings of the Fourteenth International Symposium on Logic in Computer Science, Com-
puter Society Press of the IEEE 1999

[HinSan97] J.Hintikka , G. Sandu, Game-theoretical Semantics,in: J. van Benthem (ed.), Handbook of
logic and language, Elsevier Science, 1997

[Hoa85] C.A.R.Hoare, Communicating Sequential Processes, Prentice-Hall International, 1985
[HoYo97] K. Honda, N. Yoshida, Game Theoretic Analysis of Call-by-value Computation,in:P.

Degano, R. Gorrieri and A. Marchietti-Spaccamelaeds.Proceedings, 25th International Col-
loquium on Automata, Languages and Programming: ICALP ’97, Berlin 1997�Lecture Notes
in Computer Science 1256�, p. 225–236

[HylOng92] J. M. E.Hyland, C.-H. L. Ong, Fair Games and Full Completeness for Multiplicative Linear
Logic without the Mix-Rule, Unpublished Manuscript, 1993

[HylOng�] J. M. E. Hyland, C.-H. L. Ong, On Full Abstraction for PCF: I, II and III,to appear in:
Information and Computation

[Jo77] A. Joyal, Remarques sur la th´eorie des jeux a deux personnes, Gazette des sciences
mathématiques du Quebec 1,4 (1977), p. ???

[Jü99a] J.Jürjens, Towards Reactive Refinement, contributed talk at the Marktoberdorf Summer
School, 1999

[Jü99b] J.Jürjens, A category of processes, specifications and refinement, talk at the workshop ”Cat-
egorical models of concurrency”, Dresden, October 1999

[LafStr91] Y. Lafont , T. Streicher, Game Semantics for Linear Logic,in: Proceedings of the Sixth
International Symposium on Logic in Computer Science, Computer Society Press of the IEEE,
1991, p. 43–50

[Lai97] J. Laird , Full Abstraction for Functional Languages with Control,in: Proceedings of the
Fourteenth International Symposium on Logic in Computer Science, Computer Society Press
of the IEEE, 1997, p. 58–67

[Lam94] F.Lamarche, Sequentiality, games and linear logic (Announcement),in: Workshop on Cate-
gorical Logic in Computer Science, 1994

[Lor60] P. Lorenzen, Logik und Agon,in: Atti del Congresso Internazionale di Filosofia, Sansoni,
Firenze, 1960, p. 187–194

[MalHan99] P.Malacaria, C. Hankin , Non-deterministic Games and Program Analysis: An application
to security,in: Proceedings of the Fourteenth International Symposium on Logic in Computer
Science, Computer Society Press of the IEEE, 1999, p. 443–452

[McC98] G. McCusker, Games and Full Abstraction for a Functional Metalanguage with Recursive
Types, Berlin 1998�Distinguished Dissertations in Computer Science�

[Man00] H.Mantel, Principles of Refinement,THIS VOLUME

[Mat00] R. Matthes, Tarski’s fixed-point theorem and higher-order term rewrite systems,THIS VOL-
UME

[Me00] S.Merz, Model Checking and Beyond: On the Analysis of Reactive Systems,THIS VOLUME

[Mey94] D. Mey, Finite games for a predicate logic without contractions, Theoretical Computer Sci-
ence 123 (1994), p. 341–349



120 JAN J̈URJENS

[Ni96] H. Nickau, Hereditarily Sequential Functionals: A Game-Theoretic Approach to Sequential-
ity, Dissertation, Universit¨at Gesamthochschule Siegen, 1996

[Pl77] G. D.Plotkin , LCF considered as a programming language, Theoretical Computer Science 5
(1977), p. 223–255

E-mail address: jan@dcs.ed.ac.uk, http://www.dcs.ed.ac.uk/home/jan/

LFCS, DIVISION OF INFORMATICS, UNIVERSITY OF EDINBURGH, GREAT BRITAIN


