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Abstract. Requirements engineering is the Achilles’ heel of the whole
software development process, because requirements documents are of-
ten inconsistent and incomplete. Misunderstandings and errors of the
requirements engineering phase propagate to later development phases
and can potentially lead to a project failure.
A promising way to overcome misunderstandings is to extract and vali-
date terms used in requirements documents and relations between these
terms. This position paper gives an overview of the existing terminology
extraction methods and shows how they can be integrated to reach a com-
prehensive text analysis approach. It shows how the integrated method
would both detect inconsistencies in the requirements document and ex-
tract an ontology after elimination of inconsistencies. This integrated
method would be more reliable than every of its single constituents.

1 Ontology as a Requirements Engineering Product

Requirements engineering is the very first stage of any software project. This
stage is extremely important, because requirements engineering should ensure
that the specification of the product to be built meets customer’s wishes. (Are
we building the right product?) The goal of the later development stages, to
the contrary, is to ensure that a product is being built correctly with respect to
the specification, produced in the RE phase. So, requirements engineering errors
either potentially lead to project failure or must be corrected in later phases,
which is much more expensive than correction in the RE phase.

It is often believed that RE errors are due to forgotten or misinterpreted
requirements. Praxis shows, however, that misunderstandings come into play
much earlier: the same seemingly unambiguous word used in the requirements
document can be interpreted in different ways. Obviously, misinterpretation of
concept meanings is fatal for requirements engineering.

Zave and Jackson [1] give an example of such a concept misinterpretation.
This example handles a hypothetical university information system and the def-
initions of a “student” and the binary relation “enrolled” for this system:

Able: Two important basic types are student and course. There is also
a binary relation enrolled. If types and relations are formalized as pred-



icates, then

∀s ∀c (enrolled(s, c) ⇒ student(s) ∧ course(c)).

Baker: Do only students enroll in courses? I don’t think that’s true.
Able: But that’s what I mean by student !

This example shows that domain concepts must be precisely defined and
that a simple glossary (term list) is insufficient. A more appropriate definition
of domain concepts and relations between them would be an ontology.

According to Tom Gruber an ontology is a specification of a conceptualiza-
tion1. In the context of this paper the ontology is defined as a taxonomy (term
hierarchy), enriched by some general associations. The taxonomy itself consists
of a set of terms and the “is-a”–relation.

The goal of this paper is to propose a comprehensive ontology extraction
approach, based on existing methods. This proposed approach would both de-
tect terminology inconsistencies in documents and extract an ontology from
requirements documents. The paper shows how existing methods can be used
in different stages of ontology building and how they would augment each other
when integrated.

The paper is organized in the following way: Section 2 introduces ontol-
ogy construction steps, without concrete recipes for particular steps. Section 3
presents an ontology construction approach implementing the steps introduced
in Section 2. This approach was proven feasible in case studies. However, there
is always room for improvement. Section 4 gives an overview of other existing
text analysis approaches in RE and sketches their possible place in the ontology
construction process. Section 5 integrates the text analysis methods into the
comprehensive ontology building process, providing both detection of terminol-
ogy inconsistencies and ontology extraction. Section 6 summarizes the integrated
proposal introduced in Section 5.

2 Ontology Construction Steps

Ontology was introduced in artificial intelligence as a communication means for
intelligent agents. Now it was recognized as a universal means to communicate
concept dependencies. As software development involves experts from different
disciplines, an ontology is also a good means to establish a common language in
a software project.

Breitman and Sampaio do Prado Leite [2] see an application ontology as
one of the products of the requirements engineering activity. They list in their
paper several ontology construction methodologies. The listed methodologies all
share the same basic steps, shown in Figure 1.2 These steps include, apart from

1 cited after http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
2 “LEL”, used in the figure, means “Language Extended Lexicon”, a notation used

in [2]

http://www-ksl.stanford.edu/kst/what-is-an-ontology.html


Fig. 1. Steps of Ontology Construction [2]

validation and verification, identification of information sources, identification of
the list of terms, classification of the terms and their description.

All the approaches listed by Breitman & Sampaio do Prado Leite [2] are
rather abstract in the sense that they do not specify how to identify information
sources, how to classify terms, and so on. When ontology construction is con-
sidered as a phase of the requirements engineering process, identification of the
information sources is simple: the primary information source is the requirements
document. Other steps of ontology construction can be done by analyzing this
document. The next section introduces a text analysis approach that performs
these ontology building steps.

3 Ontology Building by Means of Text Analysis

This section is a very short summary of [3]. It shows how text analysis can
be applied to the previously introduced ontology construction steps. Figure 2
shows single steps of the ontology extraction approach. The steps correspond
to those shown in Figure 1: “parsing and subcategorization frames extraction”
corresponds to the identification of the term list, “term clustering & taxonomy
building” and “association mining” correspond to term classification. Term de-
scription, validation and verification have to be done manually and are not shown
in Figure 2.

The approach shown in Figure 2 is interactive, i.e. some decisions must be
made by the analyst. Interactivity is important because fully automatic extrac-



tion procedure could not detect inconsistencies, that are extremely common in
requirements documents. The overall process of ontology construction consists
of four steps: term extraction, term clustering, taxonomy building (as a cluster
hierarchy) and relations mining.
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Fig. 2. Ontology Building Procedure [3]

Extraction of terms from the requirements text: To extract terms, each
sentence is parsed and the resulting parse tree is decomposed. Noun phrases
that are related to the main verb of the sentence are extracted as domain con-
cepts. For example, from the sentence “The control unit sends an alarm
message in a critical situation” “send” is extracted as the main verb,
“control unit” as the subject and “alarm message” as the direct object.

Term clustering: The second phase clusters related concepts. Two concepts
are considered as related and put in the same cluster if they occur in the same
grammatical context. For example, if the requirements document contains
two sentences like
1. “The control unit sends an alarm message in a critical situation”
2. “The measurement unit sends measurements results every 5 seconds”,

the concepts “control unit” and “measurement unit” are considered as
related, as well as “alarm message” and “measurements results”.

Taxonomy building: Concept clusters constructed in the previous step are
used for taxonomy construction by joining intersecting clusters to larger
clusters. The resulting larger clusters represent more general concepts.
For example, the basic clusters {alarm message, measurements results}
and {control message, measurements results} can be joined into the
larger cluster:

{alarm message, control message, measurements results}

representing possible messages. The tool ASIUM [4] is used both to cluster
terms and to build a taxonomy.



During this step the terminology is validated with respect to synonyms3.
Synonyms are often contained in the same cluster. For example, if a cluster
contains both “signal” and “message”, the analyst can identify them as
synonyms.

Associations/relations mining: There is a potential association between two
concepts if they occur in the same sentence. Each potential association again
has to be validated by the requirements engineer. Note that the validation of
the association proposed by the association mining tool automatically implies
a validation of the requirements document. If the tool suggests an association
that can not be valid (i.e., a pair containing completely unrelated concepts),
then we have detected an evidence that the requirements document contains
some inconsistent junk that must be eliminated (see [5] for an in–depth
treatment of association mining).

The remainder of this section presents term extraction in more detail, because
these details will be important for the integrated approach as well (see Sections 4
and 5).

3.1 Term Extraction

Term extraction bases on parsing of each sentence and the representation of
every sentence as a parse tree. To build a parse tree, the parser by Michael
Collins [6] was used. This parser provides for each parse tree node informa-
tion about the head (most important) child. An example parse tree is shown in
Figure 3. Meanings of the tags used in Figure 3 are introduced in the “Brack-
eting Guidelines for Treebank II Style Penn Treebank Project” by Bies et al.
(http://www.cis.upenn.edu/~treebank/home.html). In a nutshell, S marks
complete sentences, V P marks verb phrases, V B marks verbs, MD modal verbs,
NP marks noun phrases, PP marks prepositional phrases and NN marks nouns.

The term extraction algorithm extracts not only the terms, but also the
predicates. The predicates will be used later for term clustering. To extract the
predicate, the extraction algorithm descends from the root node to the head
leaf. That is, it descends to the root’s head child, then to its head child and
so on. This descend process yields the main verb of the sentence. For example,
this method extracts “can” from “can be refined . . . ” (Figure 3). “Can” is not
really interesting for term classification, so it is necessary to correct the extracted
predicate.

The correction algorithm works in the following way: It starts with the
verb node extracted initially, i.e. “MD/can” in the case of Figure 3, and looks
for sibling verb or verb phrase nodes. In the case of Figure 3 the algorithm
finds “VP/be”. It descends from “VP/be” to its head child node “VB/be” and
looks for the sibling verb or verb phrase nodes again. In such fashion it reaches
“VBN/refined”. This node does not have any sibling verb or verb phrase nodes,
so “VBN/refined” is the verb node that is interesting for term classification.

3 different names for the same concept

http://www.cis.upenn.edu/~treebank/home.html


VBN/refined

NN/implementation

Points to the
head child

Node labels:

NPB/implementation

TAG/head word

VP/can

Terminal

Non−Terminal

S/can

NP/specification

NN/specification MD/can VP/be

VB/be VP/refined

PP/to

TO/to

Fig. 3. Parse tree for “Specification can be refined to
implementation.”

To extract the subject, the extraction algorithm starts with the main pred-
icate node, e.g., “VP/can” in Figure 3 and traverses the parse tree to the left
until it finds a noun phrase. In Figure 3 it finds “NP/specification”. Then it
descends to the head child of the noun phrase, which is “NN/specification”. The
objects are extracted in a similar way.

The algorithm described above extracts just concepts consisting of a single
word. There is also an algorithm extension, extracting compound concepts like
“failure of some unit”: It starts with the leaf concept node (“failure”) and goes up
in the parse tree, looking for noun phrases and “of”–constructions. The extension
is not presented here in more detail for the sake of brevity. See [3] for the detailed
description.

The provided information about subjects and objects is used for term clus-
tering, as explained above. It will also be used later for resolution of pronominal
anaphora (see Subsection 4.1).

4 Alternative Text Analysis Approaches

The approach presented in the previous section was tested on several case stud-
ies [3] where it produced good results. However, there is still room for improve-
ment. For example, the method presented above cannot cater for cross–sentence
references and cannot extract terms that occur solely in grammatically incorrect
sentences. The goal of this section is to show other existing approaches that
would augment the original approach and produce even better results, when
integrated.

The whole plethora of the developed text analysis methods can be classified
in three categories. Ben Achour [7] classifies the linguistic methods as either lex-
ical or syntactic or semantic. Lexical methods, as for example AbstFinder [8] are
the most robust ones. AbstFinder extracts the terms (lexica) that occur repeti-
tively in the specification text. This method is extremely robust because it does



not rely on part–of–speech analysis, parsing or something like that. It just con-
siders sentences as character sequences and searches for common subsequences
in different sentences. It does not perform any term classification. Subsection 4.1
describes it in more detail, in order that it can be used in the integrated approach
in Section 5.

Syntactical approaches analyze sentence structure. They are more demand-
ing to the grammatical correctness of the text than lexical approaches, but in
return they extract more information from the text. The approach presented in
Section 3 is a syntactical one. Other syntactical approaches suggest other meth-
ods of term classification and clustering. These methods will be considered in
Subsection 4.2.

Semantical approaches promise more than the other two classes: They inter-
pret each sentence as a logical formula. However, semantical approaches, as for
example [9], are extremely fragile, as they require firm sentence structure. For
this reason they are barely applicable to real world requirements documents and
will not be considered further in this paper.

4.1 Lexical Approaches: Term Identification

The great advantage of the lexical methods as compared to syntactical and
semantical ones is their robustness. This robustness stems form the fact that
they consider each sentence just as a character sequence. AbstFinder by Goldin
and Berry [8] is based on this idea: It finds common character subsequences in
every sentence pair. For example, consider the following two sentences (taken
from one of the case studies discussed in [3]):

The steam-boiler is characterized by the following elements:

and

Above m2 the steam-boiler would be in danger after five seconds, if the
pumps continued to supply the steam-boiler with water without possi-
bility to evacuate the steam.

They contain a common character sequence “steam-boiler”, so “steam-boiler”
is identified as a potential domain concept. AbstFinder is interactive, so the
requirements analyst may decide which of the extracted character sequences
really represent domain–specific terms.

Anaphora Resolution: The term extraction method introduced above as-
sumes that the terms are explicitly present in the text. However, the usage of
pronouns is very frequent, which undermines this assumption. For example, in
the following two sentences, taken from the one of the case studies from [3], the
second sentence does not name the received message explicitly:

The program enters a state in which it waits for the message steam-
boiler-waiting to come from the physical units. As soon as this message
has been received the program checks whether the quantity of steam
coming out of the steam-boiler is really zero.



So, AbstFinder would not identify “message steam-boiler-waiting” as a com-
mon substring of the two sentences. Usage of pronouns poses problems to the
term extraction approach based on parse trees (introduced in Subsection 3.1) as
well: It would extract just “this message” as a subject of “received” from the
second sentence.

This problem can be solved by the means of anaphora resolution [10]. Res-
olution of pronominal anaphora would identify “this message” in the second
sentence with “message steam-boiler-waiting” in the first one. An additional
advantage of applying anaphora resolution would be detection of referential am-
biguities. A referential ambiguity, according to the definition by Kamsties et
al. [11] “is caused by an anaphora in a requirement that refers to more than one
element introduced earlier in the sentence or in a sentence before”. For example,
in the sentences

The controller sends a message to the pump.
It acknowledges correct initialization.

“it” can refer both to the pump and to the controller and to the message. Explicit
anaphora resolution would disambiguate this reference. In the case of wrong
resolution it would make the referential ambiguity visible.

Anaphora resolution, as presented by Judita Preiss [10], depends on the ex-
traction of grammatical roles. The term extraction algorithm, presented in Sub-
section 3.1, extracts subjects and objects from each sentence, so it can be used
as preprocessor for anaphora resolution.

4.2 Syntactical Approaches: Clustering & Taxonomy Building

Syntactical approaches make use of sentence structure to classify the extracted
terms. The definition of a cluster, used in the tool ASIUM [4] described before,
is very simple: A cluster is built by all the subjects or all the objects of some
verb. It is also possible to use other sentence information for the classification
purpose. Nenadić et al. [12] introduce following definitions of related terms:

Contextual Similarity of two terms measures the number of common and
different contexts for the two terms whose similarity should be determined.
For this measure the context is defined as a sequence of particular words
with their Part–of–Speech (POS) tags (noun, verb, etc.) occurring in the
sentence before and after the term. It is up to the analyst to use all the
context words and tags or to define some words or word classes (adjectives,
conjunctions, . . . ) as irrelevant and filter them out. It depends on the text
domain which contexts (POS sequences, lexica, etc.) provide better term
clustering. For this similarity measure to work, the requirements analyst has
to decide which contexts to use. This decision can rely on the quality measure
for contexts, also introduced by Nenadić et al. [12].

Lexical Similarity of two terms measures the presence of common lexical
heads (e.g., “message” in “start message” and “stop message”) and the num-
ber of common modifiers. For example, “first start message” and “second



start message” are more similar according to this measure than “start mes-
sage” and “stop message”. Lexical heads are provided by the parser, used in
Subsection 3.1. So, lexical similarity can be measured on the basis of parse
subtrees for each term, extracted in Subsection 3.1.

Syntactical Similarity checks for the presence of certain standard construc-
tions. For example, in the construction “Xs, such as A, B, and C”, X, A, B
and C are seen as similar. The syntactical similarity measure is discrete: It
can be either 0, if terms are not similar, or 1, if terms are similar.

To decide whether two terms are similar, a linear combination of the three above
measures is calculated. Terms with high net similarity can be grouped to clus-
ters. Subsequent taxonomy building on the basis of term clusters and cluster
intersections can be done in exactly the same way as in Section 3.

5 Integrated Ontology Building Approach

Previous section showed that there are many methods potentially able to improve
the original ontology extraction approach from Section 3. This section shows how
all the approaches can be integrated. The goal of the integration is to join the
strengths and to hide the weaknesses of the isolated methods.

Figure 4 shows an overview of the proposed integrated approach. Just as
the approach shown in Figure 2, it starts with the specification text, written in
natural language, and extracts an ontology. However, it consists of much more
steps and extracts more information from the text. The remainder of this section
presents each step in detail.

Complete term list + 
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Text,
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Term List
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Term clustersTaxonomyTaxonomy+
relations

Elimination of inconsistencies
detected in the corresponding
steps

Parsing +
anaphora
resolution

Elimination
of referential
ambiguities

AbstFinder

Parsing+
subcat. frames

extraction

Comparison of
term lists

Term clustering

Elimination of terminology inconsistencies detected via comparison of terms lists

Relation
minig

Analysis
of cluster
intersections

Fig. 4. Integrated Ontology Extraction Approach



Parsing and anaphora resolution: The goal of this very first step is to get
rid of pronominal cross–sentence references. Anaphora resolution is necessary
for the later steps, because it replaces pronouns by fully-fledged terms, so
that these terms instead of pronouns can be extracted.
The results of anaphora resolution should be examined by the domain ex-
pert. It is possible that some anaphora be resolved incorrectly, either due
to referential ambiguity (several possibilities to resolve an anaphora) or due
to deficiencies of the used parser or resolution algorithm. The manual revi-
sion of the resolution results would make sure that the terms are substituted
correctly.

AbstFinder: AbstFinder considers the sentences just as character sequences
and extracts character sequences that are common for at least two sentences.
The requirements analyst may decide which sequences really represent a
term. The extraction of common character sequences explains the necessity
for anaphora resolution: The resolved pronouns become sensible character
sequences.

Parsing and subcategorization frames extraction: The text with resolved
anaphora should be parsed anew. (Actually, it is necessary to parse only sen-
tences that were changed because of anaphora resolution.) Then, the terms
can be extracted using the technique described in Section 3.1. In this way the
subcategorization frames (verbs and their arguments) are extracted. Verbs
can be used later to cluster terms.

Comparison of term lists: Neither AbstFinder nor the extraction of subcat-
egorization frames can guarantee the extraction of all the terms: AbstFinder
extracts terms that occur at least twice in the text, and subcategorization
frames extraction can extract terms that occur in grammatically correct
sentences only.
Comparison of the two extracted term list can give important information
about the text: It shows which terms are often (at least twice) used in the
text, but solely in grammatically incorrect sentences. It shows also which
terms are used just once. If this term list comparison discovers some omis-
sions in the document, it is up to the requirements analyst to change the
text to correct the flaws.

Term clustering: To build a taxonomy, it is necessary to find related terms
first. The criteria that can be used to cluster related terms were introduced in
Subsection 4.2: contextual, lexical and syntactic term similarity. The weights
of each of the similarity measures can vary depending on the analyzed text.
The produced term clusters should be examined by the requirements analyst.
Unrelated terms put in the same cluster usually signalize either a terminology
inconsistency or inaccurate phrasing somewhere in the text. The sentences
using inconsistent terminology can be found by simple text search: for the
inconsistent cluster it is known which terms, used in which context, caused
the cluster inconsistency. So, it is sufficient to look for the sentences con-
taining the term in the corresponding context. The detected inconsistencies
should be corrected before the analysis continues.



It could be argued that the clustering heuristic itself is a potential source
of cluster inconsistencies. However, the clustering heuristic presented by Ne-
nadić et al. [12], that shall be used in the integrated approach, can be trained
on the particular domain, which minimizes this inconsistency source.

Taxonomy building: To build a taxonomy, it is necessary to determine, which
clusters are related. This can be done for example by analysis of cluster in-
tersections and joining them to larger clusters, representing more general
concepts. This step is the same as in the simpler ontology extraction ap-
proach, described in Section 3.

Relation mining: In the last step the taxonomy is augmented by more general
relations. This step is exactly the same as in the simpler ontology extraction
approach, described in Section 3: There is a potential association between
two concepts if they occur in the same sentence. Each potential associa-
tion again has to be validated by the requirements engineer. The validated
associations are absorbed into the ontology.

The proposed approach requires manual intervention. However, manual in-
tervention is necessary to detect inconsistencies. As Goldin and Berry state [8],
complete automation is not desirable if it could lead to information loss or wrong
results. Thus, interactivity is not a weakness but an important feature of the pro-
posed approach. Due to this interactivity the extracted ontology is validated by
construction. The result of the whole procedure is a validated application domain
ontology and a corrected textual specification, free from terminology inconsis-
tencies. The corrected textual specification is itself as important as ontology
extraction.

6 Conclusion

Requirements engineering is a non–trivial task and the proposed approach is
not able to solve all the requirements engineering problems. However, it tackles
an extremely important step, namely establishing a common language for the
stakeholders. An application domain ontology serves as such a common language.
After the construction of this common language it is also important to validate
the results, which is also achieved by the proposed approach.

This paper showed how the existing text analysis approaches aiming at ontol-
ogy extraction can be combined to produce better results than each approach on
its own. Drawbacks of every single technique are compensated in the proposed
integrated approach by complementary analysis methods: Extraction of subcat-
egorization frames works for grammatically correct sentences only, but it can
be augmented by AbstFinder, analyzing character sequences. For AbstFinder to
provide better results, it is necessary to replace pronouns by the terms they refer
to, and so on. It makes no sense to list here all the interdependencies: this would
lead to complete repetition of the previous section.

The final claim of the paper is that natural language processing is mature
enough to be applied to ontology extraction in the context of requirements en-
gineering, in spite of the necessary manual intervention. Automation is possible



for every ontology construction step and a comprehensive approach is “just” a
matter of integration of the existing techniques. Surely the integrated approach
needs validation on case studies. The simpler approach has already been vali-
dated [3] and, obviously, the integrated approach can be at least as good as the
simpler one.
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