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Abstract

A great deal of work on software maintenance focuses on
source code analysis and manipulation. Code is viewed as
a static entity that is – more or less – separated from the sys-
tem at runtime. Although there are certainly important open
questions in this field, the separation of code and runtime
imposes itself an obstacle for the evolution of continuously
functioning systems. The goal of the work presented in this
paper is to blur the separation between statics and dynam-
ics of a software system on a conceptual level. To achieve
this, we propose a system model that combines space, time
and level of abstraction and a conceptual framework for in-
cremental evolution of systems during execution. Based on
this continuously functioning systems can be maintained in
a highly flexible and conceptually sound way.

1. Extending Software Evolution to Systems

Software evolution often follows the pattern: save, shut-
down, modify, restart, restore. Despite of its simple struc-
ture, this maintenance cycle already raises numerous non-
trivial questions, such as how can the system state be cap-
tured at an arbitrary point in time, and how can quality be
reassured after modification. Independent from these ques-
tions, this static view of evolution assumes that it is possi-
ble – and reasonable! – to shut the system to be maintained
down. In cases of continuous operation, such as large-scale
mission-critical databases or central components within a
network this assumption does not hold. Thus, dynamic evo-
lution, i. e. adapting the system during its runtime without
(or hardly any) disruption of its operation is strongly more
favorable.
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1.1. The Relationship Between Source Code
and Execution

We argue, that the main obstacle for more flexible main-
tenance techniques is the separation of source code1 and
system in execution2. Code is viewed as a static entity with
few conceptually sound links with the system. As a con-
sequence, the important link between the source level pro-
gram and the system is lost. This has several negative con-
sequences. E. g. there is no evolvable representation of the
system if the code is modified while the system is executing
and individual modification of two instancesa andb of class
c, specified by a single piece of code, requires versioning.

Indeed, most contemporary work on system design and
modeling such as the UML concentrates on static proper-
ties of a software system although the separation between
static code and dynamic execution is artificial. It was in-
troduced with the compilation and linking techniques of the
early 1960’s. Interpreters, for example, do not impose a bar-
rier between code and execution. The source code can be
freely modified while the system is executing and changes
take immediate effect.

Obviously, conventional interpreters can as well not be
considered a reasonable choice for system evolution. First,
their performance is unsatisfactory and second, being able
to perform arbitrary modifications of the source code at any
time without control on the semantic effects of the changes
eventually produces chaos.

Our approach to eliminate the boundary between code
and system is based on the vision that each component3

could be transformed into a piece of code and vice versa.
The only difference between code and system is the level
of abstraction. Whereas code is a high-level and human-
readable representation of a component, values in registers
and in main memory provide an identical low-level repre-

1“code” further-on abbreviates source code
2“system” further-on abbreviates system in execution
3“component” refers to any conceptual entity that is part of the execu-

tion of the system; i. e. object instances, data items, functions, etc.



sentation. Thus, code is regarded as the description of state
and behavior of dynamically executing components and ev-
ery component at runtime is described by its own code.
Evolution always affects code and system simultaneously.

1.2. Related Work

We investigated the question of how to dynamically
evolve systems in the context of an effort to develop a gen-
eral purpose, language-based, distributed operating system
(OS) [7, 13, 12, 11].

But what do distributed OS have to do with system evo-
lution? Because of the enormous gap between the speed of
local and remote accesses (≈ 105) performance of a dis-
tributed is usually unacceptable if the OS fails to dynam-
ically switch to an adequate management strategy. A dis-
tributed OS must therefore posses extensive information on
the current state of the system to be able to apply suitable
strategies, such as replication or migration of remote ob-
jects [17]. But this can only be achieved, if the complete
system, including its potential evolution is known to the OS
at any time. To approximate this complete knowledge we
employed an integrated, single system view. The OS and
all applications within the distributed system are regarded
as a single system. Clearly, to be able to introduce new ap-
plications into the single system or to evolve parts of the
OS we needed new concepts for dynamic evolution of the
running system.

The results achieved within this context are obviously
not limited to the scope of distributed systems. The con-
cepts and implementation techniques developed can easily
be transfered to other environments where system evolution
is either needed or desirable.

Due to the broad scope of the OS research project, the
work on system evolution described here, was itself influ-
enced by various fields. Extensible and adaptable OS ker-
nels [1, 4, 15] and incremental linking [5] were of strong in-
terest to the OS community from the mid 80s to the mid 90s.
Among the major results of this research direction are so-
phisticated implementation techniques for limited extensi-
bility of OS kernels. Unfortunately, most of the work within
this field focused strongly on technical issues neglecting se-
mantic aspects of system evolution. We aimed at combining
these implementation techniques with the more conceptual
results achieved within the field of program transformation,
such as in the early CIP project [3] and generative program-
ming approaches [2, 6].

1.3. Outline

Section 2 sketches the STA system model that inte-
grates space, time and level-of-abstraction. In Section 3 we
discuss our notion of flexible incremental evolution based

on the two concepts completion and generalization. Sec-
tion 4 characterizes three different categories of compo-
nents, which is a prerequisite to achieve sound semantics
for system evolution. Based on this framework we are able
to precisely define possible evolution steps during the life-
time of a dynamically evolving system in section 5 before
we conclude in section 6.

2. The Integrated STA System Model

Conceptually sound system evolution requires an inte-
grated system model that allows us to handle the various
components and dependencies within a system in a flexible
yet systematical way. We argue, that conventional models
do not provide the required degree of integration but con-
centrate on specific aspects of a system that are not primar-
ily related with evolution. For example, no system model
known to the author considers both, level of abstraction and
time. But both dimensions are relevant for system evolu-
tion. Some abstract notion of time is needed to record evo-
lution histories and to be able to specify availability inter-
vals for evolvable components. Levels of abstractions are
needed to maintain the relationship between code and sys-
tem in execution.

To improve this situation and to gain a better under-
standing of system evolution, we developed the STA sys-
tem model. It integrates all dimensions relevant for system
evolution within a single, homogeneous system model.

2.1. Dimensions of the STA Model

The STA system model embraces three dimensions:

• s: space

• t: time

• a: level of abstraction

The integration of these three dimensions accommodates
the fact, that all levels of the system and all different rep-
resentations of it – textual or the contents of machine level
registers and main memory – are inherently related with
each other. Usually this interconnections are just not sys-
tematically regarded, which in turn leads to inconsistencies
between code and system and similar phenomenons.

At each point of timet the system is represented by a
complete snapshot within the s/a-plane. This snapshot in-
cludes all artifacts contributing to the execution of the sys-
tem; e. g. language-level classes, objects, instances, OS data
structures, and hardware registers. All operations of the sys-
tem, such as dynamic creation and deletion of data objects
or modifications of the code are performed on t-snapshots.
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Figure 1. STA system model

2.2. Predefined Resources

Within these three dimensions a system is modeled as a
set of interrelatedresources.

Def. 1 H is the set of physical resources such as registers,
machine level instructions, processors, hard disk blocks or
network interface;H ≈ hardware facilities.

Def. 2 L is the set of predefined language level resources,
such as the predefined type integer, conditional statements,
or the grammar rules for the definition of functions;L ≈
available programming language concepts.

H∪L is the set of predefined resourcesD. D predetermines
the set of feasible systems given a hardware platform and a
programming language.H andL furthermore constitute the
two outer levels of the STA model in dimensiona. Clearly,
a software system specified by means ofL is implemented
by mapping itsL resources toH resources. Thus, to com-
prehend a completet-snapshot of a system during execution
we have to regard multilevel bindings betweenL andH in
addition toD.

2.3. Intermediate Resources

For the construction of these bindings we need an ad-
ditional class of resources to model abstract resources that

are neither language nor hardware resources. We call these
resources intermediate resources.

Def. 3 LetR be the set of all resources. An intermediate
resource is either

• a referencepointing to another resourcêr, r ∈ R

• a tupleof resources(r1, . . . , rn), ri ∈ R

• theemptyresourceε

Each resource is an instance of a class of resources and has
a well-defined lifetime. Notice, lifetime establishes depen-
dencies in dimensiont.

This basic set of concepts is sufficient to model any real
or abstract entity of a system, such as a main memory cell,
stack frame or data object.

2.4. Bindings

Reference resources are the means to establish and de-
tach bindings between resources.

Def. 4 A binding between two resourcesr ands exists, ifr
referencess at timet; ρt(r, s) ⇔ r = ŝ at timet

Similar to resources, each binding has a well-defined life-
time, too. The lifetime of a binding is crucial and is called



obligation interval. For example, choosing a long-term up-
per bound for an obligation interval, will impede evolution
steps at this part of the system for a long time whereas a
very short term upper bound delivers greater flexibility for
re-bindings but degrades system performance as bindings
must be established more frequently.

The concepts of intermediate resources and bindings are
powerful instruments. With these concepts efficient transi-
tions between the language level concepts defined byL and
the supply given withH can be constructed in a flexible and
systematic manner.

3. Incremental Evolution

Figure 2 sketches our notion of stepwise evolution.
SystemV1 is developed as a solution to problemP1. After-
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Figure 2. Incremental Evolution

wards,V1 becomes generalized toV2 in stepA1 by perform-
ing an abstraction, i. e. completely specified components are
replaced with incomplete ones. StepC1 completes the gen-
eralized variantV2 according to the requirements of the new
problemP2 forming variantV3, which will be subject to fur-
ther completion and generalization steps over time.

The completion and generalization concept is detailed
in [10]. Here, we give simplified definitions. LetL =
Li∪Lc,Li 6= Lc,Li 6= ∅ andLc 6= ∅. Lc denotes the set of
complete language resources,Li the set of incomplete lan-
guage resources, i. e. resources that need further bindings in
dimensions for complete specification.

Def. 5 A generalizationof a systemV is the replacement of
one ore more bindings of intermediate resourcesr ∈ I to
complete languages resourcesρ(r, c), c ∈ Lc with bindings
to incomplete resourcesρ(r, i), i ∈ Li. The resulting more
incomplete derivateV ′ is a flexibilizedabstractionof V .

Def. 6 The transition from bindingsρ(r, i), i ∈ Lc to bind-
ings ρ(r, c), c ∈ Lc is called a[partial] completionof V .
Degrees of freedom are removed and a more concrete sys-
temV ′ produced.

In fact, the principles of incomplete language resources and
completion and generalization somehow already exist in
practice in several peculiarities. Examples are:

• input of data at runtime

• parameterized subroutines

• substitution by preprocessors, design patterns, etc.

Incomplete specification combined with static or dynamic
completion are integral parts of efforts to construct reusable
and evolvable systems. However, the primary goals and
problems of incremental evolution seem to have taken a
back seat in the past. Although many details, such as fea-
tures of macro substitution were improved (e.g. [8]), we ar-
gue, that the actual characteristics of incremental evolution
have not been systematically investigated, yet. This suppo-
sition is supported by the fact, that the correlation between
statics and dynamics seem to be hardly understood.

Here, completion and generalization are defined at a con-
ceptual level without independent from the conventional
compilation, linking and execution cycle. In addition to
this, our scheme allows to introduce new degrees of free-
dom into an already complete system in a defined way by
means of generalization steps. We believe that this is espe-
cially important for software evolution since future require-
ments are in general unknown and can thus not be expected
to be respected in advance.

4. Component Categories

A component is either an resource or a collection of in-
terrelated resources. For a semantically sound association
of code with dynamic execution three different component
categories must be distinguished:

1. The setXt of incarnationsare procedures, functions,
or data objects executing at timet. An incarnation
a ∈ Xt usually contains other components of possi-
bly varying categories and posses a transient state.

2. Generatorsdefine classes of incarnations, such as a
class of procedure incarnations.Gt denotes the set of
generators within the system at timet. A generatorA
is always considered a local component of an incarna-
tion b; i. e. for each generatorA ∈ Gt :

∃b ∈ Xt : G ∈ L(b),

whereL(b) denotes the set of local components ofb.
Hence, generators are similar to classes in OO lan-
guages [16] but differ in being integrated into the dy-
namics of execution.

3. Generators are not equal to code but dynamic entities
because generators are local components of incarna-
tions. We therefore need a third category of compo-
nents to be able to explain the origin of generators.



We call this categorygenerator-families. Gt denotes
the set of generator-families at timet. Each generator-
family A ∈ Gt describes a class of generators. But
in contrast to incarnations and generators, which are
partially ordered by the flow of control, the set of
generator-families is partially ordered by the nesting
of code.
Thereby, a hierarchy of generator-families may exist
independent of incarnations and generators. Notice,
generators can only exist within incarnations and are
therefore not suitable to model code as part of the dy-
namic system. A result of this consideration is that the
intuitive code-is-class understanding in OO languages
is a misconception and an obstacle for dynamic evolu-
tion.

This briefly sketched framework allows individual com-
pletion and generalization of incarnations, generators and
generator-families. Hence, the properties of an incarnation
a ∈ X need not be identical with the properties of its gen-
eratorG(a)4.

4.1. Dependencies

Obviously, certain restrictions for completion and gener-
alization must apply to ensure consistency and controlled,
comprehensible evolution. The required regulations are de-
fined as life-time and property dependencies between the
components of the system.

Lifetime Dependencies

• Each incarnationa ∈ X is created by executing the
createoperation of the corresponding generatorAa ∈
G (def.: Aa

c⇒ a).

• A generatorA ∈ G emerges in turn of the elabo-
ration of the declaration part of an incarnation. If
the declaration part ofb ∈ X contains a declaration
of a generatorA thenb elaboratesthe corresponding
generator-familyAA ∈ G (def.: AA

e⇒ A). After its
elaborationA can be used byb to create incarnations
a ∈ X. Hence, generators are dynamically elaborated
on the basis of generator-families during the evaluation
of the declaration parts of incarnations. Generators are
deleted with the deletion of the surrounding incarna-
tion.

Analogously to the creation of a component, all incarna-
tions must be deleted before the corresponding generator
can be deleted and all generators must be deleted ahead of
the corresponding generator-family.

4for simplicity, we assume a snapshot at timet and omit indext

Property DependenciesThe lifetime dependency induces
a reasonable order on the creation and deletion of compo-
nents of different categories but it does not define predi-
cates concerning properties of the components. In the pres-
ence of individual component completion and generaliza-
tion we therefore need further regulations to avoid anarchy
and achieve controllable evolution with well-defined and
structured properties. To achieve this, we introduce addi-
tional property dependencies.

• The set of propertiesE(A) of a generator-familyA ∈
G is specified by means of a set of complete language
level conceptsLA ⊆ Lc. E(A) defines invariants for
all generatorsA ∈ G : A e⇒ A.

• The set of propertiesE(A) of a generatorA is speci-
fied by means ofLA ⊆ Lc. E(A) defines invariants
for all incarnationsa ∈ X : A

c⇒ a.

• The set of propertiesE(a) of a generatora is specified
by means ofLa ⊆ Lc.

Hence, leta ∈ X, A ∈ G,A ∈ G be an incarnation, a
generator and a generator-family, withA e⇒ A

c⇒ a, then

E(A) v E(A) v E(a).

This conceptual dependency defines a minimal requirement
for consistent transitions and must hold at all times, inde-
pendent of the degree of completeness of a component. For
example, it is not possible to have incomplete incarnations
of a complete generator, whereas the opposite is possible
and also desirable.

4.2. Example

We illustrate our component and evolution concept with
the aid of the code excerpt shown in figure 3. After intro-
ducing this code as a hierarchy of nested generator-families
into an initial boot process execution starts with the elabo-
ration of the outermost declaration part. Afterwards there
is one incarnationsystem which posses a generatorGa

as a local component. As soon as execution reaches the
call a(42) Ga is used to create an incarnationa1. a1 in
turn owns a generatorGb after elaborating the correspond-
ing generator-family in its declaration part.a1 usesGb to
create an incarnationb1 before recursively creating another
a2 usingGa. Now,a2 elaborates a newgeneratorG′

b, which
will be used to create an incarnationb′1.
The interesting part is, if we assume that the generator-
family Gb is incomplete then we are able to perform dif-
ferent evolutions for the recursive computations ofa1 and
a2, becauseE(Gb) must not be identical withE(G′

b). It is
even possible to chose between either individual evolutions



PROCESS system IS
PROCEDURE a(I : IN INTEGER) IS

PROCEDURE b(J : IN INTEGER) IS
BEGIN

...
END;

BEGIN
b(I);
IF I > 0

THEN a(I-1)
END IF;

END;
BEGIN

a(42);
END;

Figure 3. Evolution & Recursion

of the createdbi incarnations or evolution of the whole set of
upcomingbi incarnations by a completion of the generator-
family Gb.

5. Transitions

The state transition diagram shown in figure 4 summa-
rizes all possible evolution steps of the system, based on
the component category concept and the life-time and prop-
erty dependencies introduced in section 4.1. Assuming the
existence of an incarnationb ∈ X we focus on a generator-
family A and its descendants. Each node of the state di-
agram describes the set of components descended from a
generator-familyA. Horizontal transitions represent the
creation (resp. elaboration) and deletion of components
whereas vertical transitions represent completion and gen-
eralization steps. E. g. starting bottom leftb may elaborate
generatorA on the basis of the complete generator-family
A and later on use generatorA to create an incarnationa
resulting in the state bottom right, with three complete com-
ponentsa, A,A. This sequence of states corresponds to the
conventional execution of non-evolvable system.
Additionally, our flexible conceptual framework also allows
the user to perform controlled incremental evolution dur-
ing execution. Dependent on the current state of the sys-
tem and the property-dependency, it is possible to perform
a generator-family generalization (e. g. from bottom left to
state above), a generator completion onA (e. g. from state
in the middle to state below) or evolution steps on incarna-
tions (from/to top most state).

6. Conclusion and Future Work

This paper presented a radically new vision for the evo-
lution of dynamic systems. We introduced a conceptual
framework, consisting of the three-dimensional STA sys-
tem model that embraces space, time and level of abstrac-
tion. In addition to this we differentiated complete and in-
complete language concepts and three different component
categories to be able to support incremental generalization
and completion of systems during execution in a semanti-
cally sound way. Within this integrated framework, code is
directly attached to components and therefore participates
in the dynamics of the computation.

Obviously, the conceptual STA model raises many new
questions, which could not be answered within this paper
and need further investigations. For example, what degree
of flexibility can be achieved by incompleteness at the lan-
guage level and which new language level concepts are de-
sirable for this purpose? We believe, that the identification
of this and other interesting questions is a major contribu-
tion of the STA model.

Finally, it seems important to mention, that we also im-
plemented this conceptual model. The code excerpt shown
in figure 3 is indeed part of the test suite of this implemen-
tation. [14] shows that the increased flexibility for evolu-
tion described in this paper can be achieved without sig-
nificant constant performance degradation by means of an
incremental dynamic link loader and modifications of the
stack frame layout within the compiler [9].
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