
CloneDetective – A Workbench for Clone Detection Research

Elmar Juergens, Florian Deissenboeck, Benjamin Hummel

Institut für Informatik, Technische Universität München
Boltzmannstr. 3, 85748 Garching b. München, Germany

{juergens,deissenb,hummelb}@in.tum.de

Abstract

The area of clone detection has considerably evolved
over the last decade, leading to approaches with better re-
sults, but at the same time using more elaborate algorithms
and tool chains. In our opinion a level has been reached,
where the initial investment required to setup a clone de-
tection tool chain and the code infrastructure required for
experimenting with new heuristics and algorithms seriously
hampers the exploration of novel solutions or specific case
studies. As a solution, this paper presents CloneDetective,
an open source framework and tool chain for clone detec-
tion, which is especially geared towards configurability and
extendability and thus supports the preparation and con-
duction of clone detection research.

1. Customizable Clone-Detection
Software clones increase maintenance efforts [15] and

have negative effects on program correctness [7]. Con-
sequently, significant research effort has been dedicated
to tools that detect cloned code in large software systems
[10, 15]. Such clone detection tools have been applied
to investigate various code-cloning related research ques-
tions, including its causes and evolution and its effects on
correctness and maintenance efforts. Furthermore, clone
detectors have been applied to a large variety of tasks in
both research and practice, including quality assessment,
software maintenance and reengineering, identification of
crosscutting concerns, plagiarism detection and investiga-
tion of copyright infringement [10, 15].

Each of these tasks imposes different requirements on
the clone detection process and its results [18]. For ex-
ample, the clones relevant for redundancy reduction, i. e.,
clones that can actually be removed, differ significantly
from the clones relevant for plagiarism detection. Similarly,
a clone detection process used at development time, e. g., in-
tegrated in an IDE, has different performance requirements
than a detection integrated in a nightly build. Moreover,
even for a specific task, clone detection tools need a fair

amount of tailoring to adapt them to the peculiarities of the
analyzed projects. Simple examples are the exclusion of
generated code or the filtering of detection results to retain
only clones that cross project boundaries. More sophisti-
cated, one may want to add a pre-processing phase that sorts
methods in source code to eliminate differences caused by
method order or to add a recommender system that analyzes
detection results to support developers in removing clones.

Problem. These examples illustrate that the required cus-
tomization does not only affect the clone detection algo-
rithm itself. Instead, it concerns all phases of the clone
detection process, namely input, pre-processing, detection,
post-processing, and output. In many cases, clone detec-
tion researchers are not concerned with all of these phases
but concentrate on one or two individual phases. To avoid
rebuilding the detection phases they are not primarily in-
terested in, they require a clone detection tool with an
open, flexible architecture that allows to fine-tune individ-
ual processing phases and, importantly, to add novel pro-
cessing steps or disable existing ones. However, most of
the clone detection tools used in research and practice are
either unpublished research prototypes [6, 12] or closed
source [1, 8, 11, 16, 17]. The few remaining open source
clone detectors [2, 5, 13] have not been designed for exten-
sibility. This mostly reduces their application by others to
black-box usage that does not well cater for the mentioned
types of modification required for efficient task-specific tai-
loring. This lack of tailorability forces researchers to create
new tools, which is costly and not always impossible.

Contribution. To alleviate this, we present CloneDetec-
tive, a workbench for clone detection research with exten-
sive tailoring capabilities. CloneDetective treats the distinct
phases of the clone detection process as first class citizens
and, hence, allows to flexibly configure the detection pro-
cess using a declarative configuration mechanism that does
not require actual programming. Furthermore, CloneDe-
tective supports the addition of supplementary processing
steps in all stages of the clone detection process. Users of
CloneDetective also benefit from it being open source as



Figure 1. Clone detection configuration

they can freely alter existing processing steps or use them
as inspiration for novel developments1. CloneDetective has
been used successfully as a research platform and is also
applied in several commercial projects [3, 4, 7].

2. Configurability and Extendability
The clone detection pipeline quite naturally can be split

into several phases. In the input and pre-processing phase,
code is read and the required program representation cre-
ated. During detection, similar code fragments are iden-
tified. Results are then post-processed and presented to
the user in various formats in the output phase. Each of
these phases can be further subdivided, leading to more
fine-grained and complex pipelines. In a token-based clone
detector, input can, e. g., be split into file input, tokenization,
normalization and filtering.

As a single fixed pipeline is unnecessarily restrictive,
CloneDetective is built upon the ConQAT infrastructure [4].
This allows the clone detection pipeline to be specified and
parametrized using ConQAT’s data-flow configuration lan-
guage, where each processing unit (called a processor) is
described by a single Java class. The core of the CloneDe-
tective basically provides a rich set of processors for Con-
QAT. So besides reusing existing configurations for clone
detection, the user may build her own configuration us-
ing ConQAT’s graphical configuration tool, or even provide
new building blocks for a detection by writing Java code.

An example of a (slightly simplified) clone detection
configuration is given in Fig. 1, which is an annotated screen

1http://www.clonedetective.org/

shot from the configuration tool. Initially the source code
is loaded from disk and generated code is excluded. Ad-
ditionally the (lazy) normalization pipeline is prepared and
passed to the clone detector. This example demonstrates,
that both data (source code) and algorithms (the normaliza-
tion pipeline) can be passed to other processors. The State-
mentNormalization also is an example for a so called block,
which is ConQAT terminology for a reusable sub configura-
tion, i. e., the StatementNormalization internally is not writ-
ten in Java, but consists of further processors and blocks.
The detection phase mainly consists of a single processor
performing the core detection algorithm, which might be
parametrized using additional constraints. The detection re-
sult is then filtered and the redundancy free source state-
ments (RFSS) are calculated, before in the output phase
clone coverage reports and statistics are generated as HTML
pages and an XML clone report is written as input for fur-
ther tools in the tool chain. Several settings, such as the
minimal length of detected clones, are given as parameters
to the processors, but are not shown in the screen shot. The
options CloneDetective provides for each of these phases
are detailed further in the next section.

3. Code Clone Detection
We give an overview of the the functionality CloneDe-

tective offers for code clone detection along the detection
phases and report on experiences from their application.

Input. The input components transform source files into
a sequence of normalized program units. CloneDetective
offers language-independent line- or word-based input pro-
cessors. Basic normalization can be specified using regu-
lar expressions. For deeper control, tokenizers for multiple
languages, including Java, C#, C/C++, Visual Basic, Cobol
and PL/I are available. Their token stream can be normal-
ized in order to ignore differences in comments, literal val-
ues or identifier names during detection. Normalization can
be performed in a context-sensitive fashion, allowing, e. g.,
for more conservative normalization of stereotype code re-
gions, such as sequences of getters and setters. Shapers al-
low limitation of detected clones to boundaries of classes,
methods or basic blocks. Since clones in generated code
are uninteresting for most clone detection tasks, generated
code can be filtered based on file names or file content. No-
tably, file fragments can be excluded as well, such as spe-
cific methods inside otherwise hand-written code.

Such tailoring flexibility turned out to be crucial to
achieve recall and precision values required for application
during continuous quality control at our industrial partners.
For example, precision values of 90% could only be reached
by filtering code from multiple generators and performing
context sensitive normalization. In addition, this input pro-
cessing extensibility also supports easy realization of ap-

2



Figure 2. Integration into Eclipse

proaches suggested by others such as the use of region in-
formation for precision improvement [9].

Detection. The detection phase searches for similar sub-
sequences in the program unit sequence created by the in-
put phase. Currently, two different algorithms are available.
Both work on an optimized suffix-tree created from the pro-
gram unit sequence. Ungapped clone detection searches for
identical sub-sequences, thus detecting code fragments that
only differ (depending on normalization settings) in whites-
pace, identifier names, comments or literal values. Detec-
tion is simply performed by suffix tree traversal and runs in
linear time and space. The novel Gapped clone detection
additionally detects clones with statement modifications,
additions or removals. The performance of these algorithms
depends on the analyzed systems and overall detection con-
figuration. Both are capable of analyzing systems of several
MLOC which is sufficient for most industrial systems. The
ungapped detection processes 10 MLOC in about 10 min-
utes on a 2.4 GHz CPU (without I/O time).

Post-processing. Post-processing steps work on clone re-
sult data to perform, amongst others, filtering and metric
computation. Cross-project clone filters can be used to iden-
tify code cloned between different projects. Clone content
filters can, e. g., be used to identify clones containing is-
sue numbers in their duplicated code. Furthermore, clone
blacklisting can be used to exclude individual clones.

Besides filtering, several metrics can be computed.
Clone coverage expresses the ratio of the system affected by
duplication and thus estimates the probability that a change
to an arbitrary program statements needs to be performed
in more than one place. Number of Statement Occurrences
expresses the average number of times a statement is cloned
and thus estimates the number of statements that need to be
touched if an arbitrary statement is modified. Redundancy
Free Source Statements computes the system’s size if re-
dundancy would be removed perfectly, taking overlapping
clones into account. The cloning relationships can also be

represented as a graph. ConQAT’s graph processing capa-
bilities can then be used on the clone graph, e. g., for visu-
alization, clustering or to compute centrality metrics.

We repeatedly relied on the filtering capabilities when
applying clone detection during quality assessments and
maintenance support. Cross-project clone filters allowed
us to inspect inter-product cloning in an industrial soft-
ware product line and thus helped to discover weaknesses
in the applied reuse process. During analysis of a Cobol
system, filters that remove clone classes whose clones are
not in the same file were beneficial to identify candidates
for easy removal, since Cobol provides a simpler mecha-
nism to call a procedure in the same file, than from another
file. Clone fingerprints, that provide identification of a clone
class across different reports and are robust against changes
to non-cloned code, allow developers to permanently ex-
clude false positives that have escaped tailoring efforts. Fur-
thermore, the extensible nature of ConQAT allowed us to
correlate clone metrics with data produced by other static
analyses to provide a comprehensive quality dashboard to
developers.

Output. Output processors prepare clone result data for
use by tools or users. Depending on the use case, different
options are available. An XML clone report can be writ-
ten for use by tools. It’s format is extensible to allow new
processors to store additional information. For easy usabil-
ity or integration into a project dashboard, clone results can
be rendered to HTML. Clone lists give access to detailed
information. Tree maps provide a system-wide overview
of cloning. Furthermore, clone data can be historized and
trend charts can be computed, depicting the development of
cloning metrics over time.

Ecosystem. A stand-alone report viewer and IDE integra-
tion for Eclipse and Visual Studio.NET are available to sup-
port working with clone reports. In combination with the
output processors, the provided visualizations support clone
inspection on various levels of abstraction, ranging from
the code-level compare view to system level cloning tree
maps. Both the stand-alone viewer and the Eclipse plug-in
implement syntax-highlighting for all supported languages.
They provide a dedicated compare-view that shows cloned
code fragments side-by-side, highlighting inconsistencies,
as depicted in Figure 2. A SeeSoft view displays clones
in a bars-and-stripes fashion, providing less detail, but bet-
ter overview. Numerous filters are available to manage
large clone reports without having to re-execute detection.
A plug-in for Visual Studio.NET supports clone detection
from inside the IDE and notifies developers when they are
changing cloned code. Both plug-ins support fingerprint-
based clone blacklisting.

The compare-view and SeeSoft view offered by the
stand-alone viewer substantially increase clone inspection

3



Figure 3. Visualization of clones in Matlab

productivity. From our experience, simple text-based re-
ports are simply too unusable for large scale software sys-
tems. Hence, such tool support is essential to perform em-
pirical studies as presented in [7].

4. Beyond Code
Besides code clone detection, CloneDetective imple-

ments the first clone detection algorithm for graph-based
modeling languages [3]. More specifically, it finds simi-
lar sub-models in Matlab/Simulink files, which are used for
describing control theoretic algorithms in a data-flow fash-
ion. Such models are commonly used in the automotive
domain. An example of such a clone and its visualization
within Matlab is shown in Fig. 3. Analogously to code clone
detection, the phases of input, pre-processing and normal-
ization, detection, post-processing, filtering and output are
supported by a family of reusable processors that ease the
development of clone detectors for other graph-based mod-
eling languages. CloneDetective can thus serve as a work-
bench for both code and model based clone detection re-
search and tool development. Parts of the framework have
already been used as a basis for improved model clone de-
tectors by other researchers [14].

5. Conclusion
This paper introduced CloneDetective, an open source

framework and tool chain for clone detection. Due to its
configurability and extendability we consider it an ideal
platform for research and experimentation in this area,
which is backed up by the results of our group. At the same
time it is more than just a “research toy”, as the algorithms
and their implementation scale well to serious amounts of
code as experienced in various industrial cooperations. For
both academic and commercial users of our tool chain, de-
tection is only the first step. Often more important than the
bare detection results and statistics is a thorough inspection
and evaluation of the results, possibly followed by tailoring
the detection parameters and algorithms to yield more pre-
cise results. All of these steps are supported by individual
parts of our tool chain.

While in our opinion CloneDetective implements the
current state of the art in token-based clone detection, we
are striving to continuously improve and extend it. Future
work of our group will be based upon and extends this tool
chain. We hope that our tool further stimulates clone de-
tection research and invite researchers and practitioners to
both utilize and contribute to CloneDetective.

References
[1] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.

Clone detection using abstract syntax trees. In Proc. of ICSM
’98, Washington, DC, USA, 1998. IEEE.

[2] Copy paste detector. http://pmd.sourceforge.net/cpd.html.
[3] F. Deissenboeck, B. Hummel, E. Juergens, B. Schätz,

S. Wagner, J.-F. Girard, and S. Teuchert. Clone detection
in automotive model-based development. In Proc. of ICSE
’08. ACM, 2008.

[4] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner, B. M.
y Parareda, and M. Pizka. Tool support for continuous qual-
ity control. IEEE Software, 25(5):60–67, 2008.

[5] S. Ducasse, M. Rieger, and S. Demeyer. A language inde-
pendent approach for detecting duplicated code. In Proc. of
ICSM ’99. IEEE, 1999.

[6] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECARD:
Scalable and accurate tree-based detection of code clones.
In Proc. of ICSE ’07, 2007.

[7] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner.
Do code clones matter? In Proc. of ICSE ’09. IEEE, 2009.
To appear.

[8] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a multi-
linguistic token-based code clone detection system for large
scale source code. IEEE Trans. Softw. Eng., 28(0157):654–
670, 2002.

[9] C. Kapser and M. W. Godfrey. Aiding comprehension of
cloning through categorization. In Proc. of IWPSE ’04.
IEEE, 2004.

[10] R. Koschke. Survey of research on software clones. In Du-
plication, Redundancy, and Similarity in Software. Dagstuhl
Seminar Proceedings, 2007.

[11] R. Koschke, R. Falke, and P. Frenzel. Clone detection using
abstract syntax suffix trees. In Proc. WCRE ’06. IEEE, 2006.

[12] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Find-
ing copy-paste and related bugs in large-scale software code.
IEEE Trans. Softw. Eng., 32(3):176–192, 2006.

[13] M. M. Peter Bulychev. Duplicate code detection using anti-
unification. Proc. of SYRCoSE, 2008.

[14] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi,
and T. N. Nguyen. Complete and accurate clone detection in
graph-based models. In Proc. of ICSE ’09. IEEE, 2009. To
appear.

[15] C. K. Roy and J. R. Cordy. A survey on software clone de-
tection research. Technical Report 2007-541, Queen’s Uni-
versity at Kingston Ontario, Canada, 2007.

[16] Simian. http://www.redhillconsulting.com.au/products/
simian/.

[17] Simscan. http://blue-edge.bg/simscan.
[18] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia.

Problems creating task-relevant clone detection reference
data. In Proc. of WCRE ’03. IEEE, 2003.

4


