
Ontology and Model Alignment as a Means for
Requirements Validation

Leonid Kof
Fakultät für Informatik, Technische Universität München,

Boltzmannstr. 3, D-85748, Garching bei München, Germany,
kof@in.tum.de

Ricardo Gacitua, Mark Rouncefield, and Pete Sawyer
Computing Department, InfoLab21, South Drive,
Lancaster University, Lancaster, UK, LA1 4WA,
{r.gacitua|m.rouncefield|p.sawyer}@lancaster.ac.uk

Abstract—This paper reports on work that is investigating
the application of ontology engineering and natural language
processing to software engineering. Our focus is the transition
from requirements to design which remains one of the main
challenges in software engineering. A key reason for why this is so
challenging is that the vast majority of requirements documents
are informal, written in natural language, whereas the final goal
(code) is formal.

System models, as an intermediate step between the re-
quirements and code, help understand requirements. Even a
seemingly precise requirements document typically contains a lot
of inconsistencies and omissions, which become visible when we
model the system. Our hypothesis is that these inconsistencies
become apparent when we compare the project-specific model
with a generic model of the application domain. To test our
hypothesis, we need to transform natural language representa-
tions of requirements information into a form that facilitates
comparison with a domain model. Naturally, we also need a
domain model against which to compare and this presupposes a
means to construct such models.

In the paper, we extract a conceptual model (an ontology)
and a behavioural model from different sources. An ontology
is generated from a generic domain description, and a project-
specific model is generated from requirements documents. For
ontology generation, natural language processing techniques are
used to aid the construction. By comparing the resulting models,
we validate both of them. When inconsistencies are found, we
generate feedback for the analyst. The generated feedback was
validated on a case study and has proven useful to improve both
requirements documents and models.

I. REQUIREMENTS DOCUMENTS SUFFER FROM MISSING
INFORMATION

At the beginning of every software project, some kind of
requirements document is usually written. There are many dif-
ferent modeling notations that support the precise description
of requirements and which support reasoning to help achieve
completeness and consistency in the specified requirements.
However, use of these notations is only feasible if they are
intelligible to the documents’ authors and to the stakeholders
who are required to approve the documents’ contents. In
most cases, they are not and therefore, as the survey by
Mich et al. shows [1], the great majority of requirements
documents are written in natural language. As a consequence,
most requirements documents are imprecise, incomplete, and

This work was supported by a fellowship within the Postdoc-Programme
of the German Academic Exchange Service (DAAD) and by EPSRC grant
EP/F069227/1 MaTREx.

inconsistent, because precision, completeness and consistency
are extremely difficult to achieve using natural language as the
main presentation means.

Document authors are mostly unaware of incompleteness
or inconsistencies of requirements documents. In software
development, the later an error is found, the more expensive
its correction [2]. Thus, it is one of the goals of requirements
analysis, to find and to correct the defects of requirements
documents. A practical way to detect errors in requirements
documents is to convert informal specifications to models. In
this case, errors in documents would lead to inconsistencies
or omissions in models, and, due to more formal nature of
models, inconsistencies and omissions are easier to detect in
models than in textual documents. However, the automatic
generation of models from textual requirements is possible
only if the document authors are constrained to employ a
controlled subset of (e.g.) English, and this constraint is gener-
ally not acceptable in requirements engineering. Nevertheless,
techniques used in semantic computing have the potential to
aid model generation and validation, even for requirements
documents written using uncontrolled natural language.

In the presented paper, we introduce the following means
of requirements validation: first, we extract domain-specific
abstractions and relationships between them from a document
or documents that are representative of the application domain.
These are assembled into an ontology that acts as a conceptual
model of the problem domain. We then take descriptions
of the desired behaviour of the system-to-be, in the form
of scenarios or use case descriptions, and construct a set
of Message Sequence Charts (MSCs). The resulting models
(ontology and MSCs) can then be checked for consistency.
When inconsistencies are found, we generate feedback ques-
tions for the requirements analyst. These questions allow us
to highlight deficiencies of the requirements document, to
improve the document, and to validate both the requirements
and the extracted models. This consistency check, as a means
of validation and feedback generation, is the main contribution
of the presented paper.
Outline: The remainder of the paper is organised as follows:
Section II presents an existing approach to ontology extraction.
Sections III and IV are the technical core of the paper:
Section III presents the proposed method of ontology and
model alignment, and Section IV the evaluation of the method.

Then, Section V presents the lessons learned in the case study.
Finally, Sections VI and VII present the related work and the
summary of the paper.

For the remainder of the paper we use the following
terminology: A scenario is a sequence of natural language
sentences. An MSC consists of a set of actors, a sequence of
messages sent and received by these actors, and a sequence of
assertions (statements about actors or their states) interleaved
with the message sequence.

II. EXTRACTION OF A DOMAIN ONTOLOGY

An ontology represents the most fundamental knowledge
pertinent to the application domain, namely the concepts
constituting the domain and the relationships between them.
An ontology should serve as a common language for all stake-
holders involved in a project [3]. In the ideal case, an ontology
should represent the knowledge that is not specific to a single
project, but provides background for the whole application
domain. This would allow the alignment of project-specific
knowledge with general domain knowledge (see Section III).

In the presented work, we assume that an ontology consists
of three elements: a set of concepts, a classification of these
concepts (taxonomy), and a set of non-taxonomic relationships
between the concepts. Accordingly, we perform the following
steps to extract a domain-specific ontology: First, we extract
the domain-specific concepts from a corpus or a large generic
domain-specific document. Then, we classify the extracted
concepts and produce a taxonomy. Finally, we look for non-
taxonomic relationships between the concepts. Each of these
steps is presented below in detail.

1) Concept extraction: In order to extract domain-specific
concepts from the document, we use the extraction techniques
implemented in OntoLancs [4]. Two techniques are used for
concept extraction:

• Frequency profiling: There exist linguistic corpora, like
the British National Corpus [5] that document the every-
day usage of language. If the frequency of some term in
a domain specific document significantly deviates form
the frequency of the same term in everyday usage, this
can be an indicator that this particular term is domain
specific [6]. Additionally to pure frequency profiling, we
can use part-of-speech (POS) tagging to filter the results.
In this case we obtain the specified part of speech only
(nouns, adjectives, . . .) as suggested terms. OntoLancs
provides a user interface to sort all the extracted concepts
by their relevance (=frequency deviation) and to decide,
which of the concepts should become a part of the domain
ontology.

• Relevance-driven abstraction identification: Corpus-
based frequency profiling technique works well for con-
cepts that are signified by single words, but not for
compound terms. In order to adapt frequency profiling to
compound terms, a new technique called RAI (Relevance-
driven abstraction identification) was recently added to
OntoLancs [7]. The RAI algorithm comprises the follow-
ing steps:

1) Each word in the domain text is annotated with a
part-of-speech tag.

2) The set of words is filtered to remove stop words.
3) The remaining words are lemmatized to reduce them

to their dictionary form, i.e. to collapse inflected
forms of words to a base form or lemma.

4) Each word is assigned a log-likelihood value by
applying the corpus-based frequency profiling.

5) Syntactic patterns are applied to the text to identify
multi-words term.

6) A significance score is derived from the frequency
profiling.

7) The set of terms are ranked according to their
significance score.

As in the case of frequency profiling, the user decides
which of the suggested terms are relevant for the domain
ontology.

2) Concept classification: Based on the lexical form of the
extracted concepts, OntoLancs classifies them and provides
a taxonomy: A concept B is assumed to be a subordinate
concept of A (“every instance of B is also an instance of A”),
if the lexical form of A is a part (substring) of the lexical
form of B. For example, in this manner, OntoLancs suggests
that “potential overseas applicant” is a subordinate concept of
“overseas applicant”, which, in turn, is a subordinate concept
of “applicant”. The taxonomy proposed by OntoLancs can be
reviewed and corrected by a human analyst.

3) Non-taxonomic relationships: In order to extract non-
taxonomic relationships, we consider the occurrences of pre-
viously extracted concepts in the same sentence. The basic
assumption is that, whenever two terms occur in the same
sentence, there is a non-taxonomic relationship between them.
For example, if “applicant” and “admission officer” are previ-
ously extracted concepts, we infer a relationship between them
from the sentence “The applicant sends all the documents to
the admission officer”. For compound sentences, we assume a
non-taxonomic relationship even if the concepts occur in dif-
ferent parts of the sentence. For example, under the assumption
that “applicant”, “admission office”, and “confirmation” are
previously extracted concepts, we extract three relationships
from the sentence “Whenever the applicant sends the docu-
ments to the admission office, he/she receives a confirmation”:
relationship between “applicant” and “confirmation”, “appli-
cant” and “admission office”, and between “admission office”
and “confirmation”. This, rather liberal, definition of a non-
taxonomic relationship allows us to use the same technique to
extract different types of relationships.

III. ALIGNMENT OF ONTOLOGY AND MODELS

The basic idea of our approach is fairly simple: first, we
construct an application model ontology using OntoLancs.
Then, we cut out the parts of the ontology that are relevant for
the scope of the MSCs: we assume that the taxonomy contains
at least three separate branches, with one branch containing ac-
tors, one containing messages, and one containing assertions.

Fig. 1. Analysis procedure

Independently from the ontology extraction, we formalise
application scenarios in Message Sequence Charts (MSCs).
Formalisation of behaviour in MSCs provides more informa-
tion than is explicitly stated in the text, so such formalisa-
tion allows us to go beyond pure comparison of ontologies
extracted from generic domain documentation and require-
ments documents. When the behaviour is formalised, we
check the consistency between the ontology and the MSCs.
If any inconsistencies are found, we generate feedback for the
requirements analyst. This procedure is illustrated in Figure 1.
To extract different types of concepts (actors, messages, and
assertions), we manually classify the concept classes suggested
by OntoLancs.

The consistency check, which is the core of the presented
work, works in two phases:

• Sets of concepts: The consistency check extracts the sets
of actors, messages, and assertions from the MSCs. These
sets are compared with the sets extracted by OntoLancs
from the domain documents. In the ideal case, these sets
should coincide. For every concept present in the sets
extracted by OntoLancs and accepted by the analyst, but
not present in the MSCs, the consistency check generates
a feedback message like “Actor/Message/Assertion X
is present in the ontology but not present in MSCs”.
Concepts that are present in the MSCs but not extracted
by OntoLancs are treated similarly.

• Relationships: Every assertion in the MSC implies sev-
eral relationships: it implies a relationship between the
text of the assertion and every actor involved in the asser-
tion. Similarly, every message implies three relationships:
a communication path between the message sender and
message receiver, and relationships between the message
content and the message sender or receiver.
The consistency check compares these relationships, im-

plied by the MSCs, with the relationships extracted from
the generic document. If a relationship is implied by
some MSC, but not extracted from the generic document,
the consistency check generates three types of feedback
messages:

– “Communication path from actor X to actor Y is not
explicitly specified in the ontology”

– “Relationship between message X and its
sender/receiver is not explicitly specified in
the ontology”

– “Relationship between assertion X and actor Y is not
explicitly specified in the ontology”

If some relationship is present in the ontology but not
in the MSCs, the consistency check generates a feedback
message like “Relationship between concepts X and Y is
present in the ontology, but not in the MSCs”.
In order that the analyst is not overwhelmed with too
many feedback messages, the messages are generated if
and only if both concepts involved in the relationship are
present in the MSCs and in the ontology. Otherwise, the
corresponding inconsistency is already addressed by the
feedback messages about sets of concepts.

The generated feedback messages are presented to the require-
ments analysts. They can be used in many ways: to improve
the ontology and the MSCs, or to rewrite the documents
that lead to inconsistent ontologies/MSCs. In this way, these
feedback messages serve to validate both the requirements and
the models.

IV. EVALUATION

The presented approach was evaluated on a case study, pre-
sented below in Section IV-A. In the case study, we compared
an ontology extracted from a background document describing
the application domain, and a set of MSCs, constructed

manually on the basis of five application scenarios. Here, it
is important to emphasise that the application scenarios used
to construct MSCs were not included in the document used
for ontology extraction, so the ontology and the MSCs really
specified different system aspects. Ontology extraction and
MSC construction are presented in Section IV-B. Then, based
on the consistency check of the ontology and the MSCs, we
generated feedback messages and reviewed our findings in two
interactive session with an application domain expert. This part
of the evaluation is presented in Section IV-C.

A. Case Study: Postgraduate Admission Portal

A specification of a postgraduate admissions portal for a UK
university was used as a case study in the presented work. For
ontology extraction, we used a generic document about the
application domain, approx. 100 pages long.

To construct MSCs, we used five scenarios that were pro-
vided independently from the generic domain document. The
scenarios specify the desired system behaviour in exemplarily
situations, like this:

• Miss X, having completed her undergraduate studies
in the PRC, is interested in studying a professionally-
accredited postgraduate finance course in the UK.

• Mrs Y, a management school (MS) faculty admissions
officer (FAO), logs on to the system and sees an enquiry
from Miss X about local transport options.

• The enquiry also requests that Miss X can book a chat
session with somebody about student accommodation and
funding options.

• . . .
MSCs were chosen as representation means, because they al-
low the specification of both communication between different
actors, as well as statements concerning single actors.

When we construct MSCs for such scenarios, we actually
provide more information than contained in the text: For
example, in the above scenario, it is our interpretation of the
text that the third sentence (“The enquiry also requests. . . ”)
is represented as a message from “system” to “Mrs Y”, as
“system” is not an explicitly specified actor. Such interpre-
tations allow us to model more information than is actually
contained in the text. This, in turn, allows us to go beyond
pure comparison of ontologies (one extracted from the generic
document, and one extracted from scenarios) and to see how
the scenarios can be interpreted in software development.

B. Ontology Extraction and Model Construction

In order to extract a domain-specific ontology, we applied
OntoLancs to the background document. This resulted in the
extraction of different concept classes. For the purpose of the
alignment of this ontology with MSCs, the following concept
classes were considered relevant:

• MSC Actors:
– applicant (prospective applicant, enquirer, UK appli-

cant, EU applicant, overseas applicant, . . .)
– admission staff (departmental admission staff, admis-

sion tutor, admission officer, . . .)

– accommodation service
– PGAO (=postgraduate admission office)

• MSC Messages (information or documents that are ex-
changed between actors):

– application, postgraduate application
– admission information, admission criteria
– accommodation information, department informa-

tion, course information
– offer, rejection
– enquiry (department enquiry, course enquiry, . . .)
– document (supporting document), documentation

(supporting documentation)
– application form

There were no concepts extracted that could be interpreted as
assertions. For this reason, assertions were not considered in
the subsequent consistency checks.

To construct the MSCs from scenarios, we manually in-
terpreted every scenario. When constructing the MSCs, we
did not have access to a domain expert, and this constraint
makes our case study setting similar to real software projects,
where the availability of domain experts is typically limited
too. Nevertheless, from our understanding of the application
domain, the constructed MSCs represent a valid interpretation
of the scenarios.

C. Findings of the Case Study

In order to identify the inconsistencies between the ontology
and MSCs, we aligned them, as described in Section III.
The ontology extracted from the domain document contained
no assertions, so assertions in the MSCs were not taken
into account for the alignment. When aligning the ontology
with the models, we had to take into account that the same
concept can have different lexical forms. For example, we
can have a sentence like “The applicant is rejected due to
insufficient level of English” in the scenario, which results in
a message “rejected due to insufficient level of English” from
the “admission officer” to the “applicant” in an MSC. On the
other side, we had just the “reject” concept in the ontology. To
match the above two concepts, we assumed that a message in
the MSC matches a message from the ontology, if the message
name, as encoded in the ontology, is a substring of the message
representation in the MSC. This allows us to state that the
“reject” concept in the ontology matches the “reject due to
insufficient level of English” message in the MSC. For actors,
however, we required the exact name identity in the ontology
and in the MSC.

With this procedure, 95 inconsistencies between the ontol-
ogy and the MSCs were detected:

• 16 actors present in the ontology, but not in the MSCs
• 8 actors present in the MSCs but not in the ontology
• 12 messages present in the ontology but not in the MSCs
• 59 messages present in the MSCs but not in the ontology
We converted the feedback messages about detected incon-

sistencies into questions of the form “Should actor/message
X, absent in the ontology/MSCs, be included in it?”. An

application domain expert answered these questions in two
sessions, two hours each. The first comment of the domain
expert was that the abstraction levels of the document used for
ontology extraction and for the scenarios/MSCs were different,
so we could not expect perfect consistency between them.

When we went through the generated questions, it turned
out that the questions like “Should message X be present in the
ontology?” could not be answered directly in the most cases.
We had to distinguish the lexical level (“Should the exact
lexical form of message X be present in the ontology?”) and
the semantic level (“Should the concept conveyed by message
X be present in the ontology?”).

At the lexical level, it turned out that most of the detected
inconsistencies are spurious:

• from 16 actors present in the ontology, but not in the
MSCs, 13 should be present in the MSCs (81%)

• from 8 actors present in the MSCs but not in the ontology,
2 should be present in the ontology (25%)

• from 12 messages present in the ontology but not in the
MSCs, 6 should be present in the MSCs (50%)

• from 59 messages present in the MSCs but not in the
ontology, 6 should be present in the ontology (10%)

This implies the overall precision of 27/95≈28% for questions
about messages and actors.

At the semantic level, however, most generated questions
were relevant: they showed connections between the generic
concepts contained in the domain document and their concrete
realisation in MSCs. Here, we could not obtain a 1:1 map-
ping between ontology- and MSC-concepts, so we could not
measure the precision of the question generation. We simply
rely on the statement made by the domain expert, that, at the
semantic level, most generated questions were relevant.

Apart from the questions concerning the sets of ac-
tors/messages, we generated questions about communication
paths: in MSCs, every message implies a communication
path between its sender and its receiver. We expected that,
in the generic domain document, such communication paths
are signified by sentences in which the message sender and
message receiver co-occur. It turned out that this was not
always the case: We identified six communications paths that
were present in the MSCs, but not signified in the domain
document. Our domain expert found that all these paths should
be present in the domain document.

To summarise, even though the presented approach cannot
enforce complete consistency between domain ontologies and
MSCs, it turned out to help bridging the gap between a generic
domain document and application scenarios. This means, in
particular, that we facilitate understanding of the application
domain by the requirements analyst.

V. LESSONS LEARNED

Conducting the case study has revealed a number of impor-
tant lessons that we shall incorporate into our future work, and
which, we believe, have wider relevance for applications of
semantic computing to requirements engineering. The primary
lesson is that different requirements documents have different

purposes. These purposes can affect how inferred semantics
needs to be interpreted. The background document chosen
from which to extract the domain ontology was produced
not only to provide a technology-agnostic description of the
domain of postgraduate student admissions, but also to win
support from a review board comprising senior academics and
university managers to invest in development of new business
processes and support systems. The implications of this are:
(1) different levels of abstraction, (2) reliance on implicit
knowledge, and (3) influence of politics on the documents.
These points are discussed below in detail.

Levels of abstraction. There is an inevitable mismatch
between domain concepts represented in the ontology and
solution concepts represented in the scenarios used to derive
user requirements. The most obvious of these derives from the
ubiquity of the “system” actor in the scenarios, which contrasts
with its absence from the ontology. Explicitly or implicitly,
most interaction in the scenarios takes place between user
actors and the system. Thus, many of the messages that appear
in the MSCs simply do not appear in the ontology.

Implicit knowledge. Both the document used to extract the
domain ontology and the scenarios rely on implicit knowledge
for their interpretation. This manifests itself at several levels.
An example is illustrated in the scenario in Section IV-A
which contains an implicit precondition that Miss X has logged
an enquiry about the availability of professionally-accredited
finance courses. More subtle examples also occur, and these
are even harder to discover. In interpreting the role of the
actor Miss X, we normalized the signifier “Miss X” to the
underlying concept of overseas applicant. Validation of this
step with the domain expert revealed that overseas applicant
was highly nuanced. Depending on context overseas applicant
indicated either:

• Fee status - how much the applicant would pay in tuition
fees, and therefore an attribute of the applicant actor;

• A market segment - different marketing strategies are
used to recruit UK students, students from elsewhere in
the EU, and for students from other parts of the world;

• A strategic goal - the university aims to improve the
rate of conversion of overseas applicants to students who
subsequently enrol.

While these alternative interpretations didn’t impact on the
structure of Miss X’s interactions in the scenario, the semantics
of how those interactions handled may be contingent on
the interpretation. Matching the normalized actor overseas
applicant from the scenarios with occurrences of overseas
applicant in the domain document may be misleading, since
in reality they may represent different interpretations.

Politics. The document used to extract the domain ontology
was not neutral; it reflected the agenda of its authors, which
was to promote investment in process change and, more subtly,
to promote one of several possible process configurations. One
result of this could have been, for example, to suppress other
alternatives or the roles or even existence of process actors.

Sometimes these factors can be mitigated by, for example,
careful selection of the source document(s) from which to

generate the domain ontology. Others are more problematic,
however. In particular, implicit or suppressed description is
very hard to detect automatically and may result in poor
results. The factors highlight the importance of recognizing
that the difficulties facing semantic computing when applied
to the requirements engineering process stem not only from the
properties of language, but also from context and the purpose
for which they are written.

VI. RELATED WORK

Approaches related to our work can be roughly subdivided
into areas of comparison of different versions of the same
basic model, and comparison of different views representing
the same system. The approaches to compare different versions
of the same model were introduced, for example, by Antoun
et al. [8], Bendix and Emanuelsson [9], and Bartelt [10].
These approaches have a different focus from our work, as
we compare different views on the same system.

Theoretical basis for comparison of different views was
provided by Brunet et al. [11], Kelter and Schmidt [12], and
Rubin et al. [13]. These approaches either state requirements
for approaches to model comparison, or provide generic frame-
works to define rules for model comparison. However, they do
not generate feedback for requirements analysts.

Approaches that compare different views on the same
system and generate feedback are most close to our work. The
approach by Sabetzadeh et al. [14] compares models produced
by different stakeholders and provides an integrated model. If
inconsistencies are detected between the source model, they
are explicitly documented in the resulting integrated model.
Van Lamsweerde et al. [15] and Uchitel et al. [16] compare
different views on the behaviour of the system. They take a
set of MSCs, generate new MSCs that potentially represent
further possible system behaviour, and ask the user if the newly
generated MSCs really represent allowed system behaviour.
The input for the above approaches is a set of formal models.
In this sense, these approaches are complementary to our work,
as we ground the models in requirements documents, written
in natural language, and validate initial formal models.

VII. CONCLUSION

In our work, we are trying to mitigate the problems caused
by the ubiquity of natural language as the medium for ex-
pressing user requirements, using techniques from semantic
computing, in particular ontology engineering and natural
language processing (NLP). NLP is not powerful enough for
a full-fledged semantic analysis, so we implement techniques
to assist human analysts with formalisation and validation
of requirements through the construction of models from the
requirements texts. By comparing these models with a generic
domain ontology, we are able to help the analyst uncover
information missing from the requirements documents.

Both requirements modelling and ontology extraction are
non-trivial tasks and the presented approach does not claim to
solve all their problems. However, it provides important links
between behaviour models and ontologies:

• Given an ontology and behaviour models, it checks for
consistency between them, and, on this basis, generates
feedback for analysts.

• Consistency check, in turn, allows to validate and to
improve both textual documents and models.

To summarise, the proposed approach provides valuable feed-
back on model quality and consistency and can be successfully
applied in software engineering.

ACKNOWLEDGMENTS

We are grateful to Paul Holland for his help in the evaluation
and for his valuable feedback on our method.

REFERENCES

[1] L. Mich, M. Franch, and P. Novi Inverardi, “Market research on
requirements analysis using linguistic tools,” Requirements Engineering,
vol. 9, no. 1, pp. 40–56, 2004.

[2] B. W. Boehm, Software Engineering Economics. Prentice-Hall, 1981.
[3] H.-J. Happel and S. Seedorf, “Applications of ontologies in software

engineering,” in International Workshop on Semantic Web Enabled
Software Engineering (SWESE’06), Athens, USA, November 2006.
[Online]. Available: http://fparreiras/papers/AppOntoSE.pdf

[4] R. Gacitua, P. Sawyer, and P. Rayson, “A flexible framework
to experiment with ontology learning techniques,” Knowledge-
Based Systems, vol. 21, no. 3, pp. 192 – 199, 2008, aI
2007, The 27th SGAI International Conference on Artificial
Intelligence. [Online]. Available: http://www.sciencedirect.com/science/
article/B6V0P-4R6B2HC-F/2/549a3ec9b4320c97e5a572e30be5fa97

[5] G. Aston and L. Burnard, The BNC Handbook: Exploring the British
National Corpus with SARA. Edinburgh University Press, 1998.

[6] P. Sawyer, P. Rayson, and K. Cosh, “Shallow knowledge as an aid
to deep understanding in early phase requirements engineering,” IEEE
Trans. Softw. Eng., vol. 31, no. 11, pp. 969–981, 2005.

[7] R. Gacitua, P. Sawyer, and V. Gervasi, “On the effectiveness of ab-
stractions identification in requirement engineering,” in Proceedings of
the 18th IEEE International Conference on Requirements Engineering.
Washington, DC, USA: IEEE Computer Society, 2010, to appear.

[8] M. Abi-Antoun, J. Aldrich, N. Nahas, B. Schmerl, and D. Garlan, “Dif-
ferencing and merging of architectural views,” in ASE ’06: Proceedings
of the 21st IEEE/ACM International Conference on Automated Software
Engineering. Washington, DC, USA: IEEE Computer Society, 2006,
pp. 47–58.

[9] L. Bendix and P. Emanuelsson, “Requirements for practical model merge
— an industrial perspective,” in MODELS ’09: Proceedings of the 12th
International Conference on Model Driven Engineering Languages and
Systems. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 167–180.

[10] C. Bartelt, “Consistence preserving model merge in collaborative devel-
opment processes,” in CVSM ’08: Proceedings of the 2008 international
workshop on Comparison and versioning of software models. New
York, NY, USA: ACM, 2008, pp. 13–18.

[11] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sabet-
zadeh, “A manifesto for model merging,” in GaMMa ’06: Proceedings
of the 2006 international workshop on Global integrated model man-
agement. New York, NY, USA: ACM, 2006, pp. 5–12.

[12] U. Kelter and M. Schmidt, “Comparing state machines,” in CVSM ’2008:
International Workshop on Comparison and versioning of software
models. New York, NY, USA: ACM, 2008, pp. 1–6.

[13] J. Rubin, M. Chechik, and S. M. Easterbrook, “Declarative approach for
model composition,” in MiSE ’08: Proceedings of the 2008 international
workshop on Models in software engineering. New York, NY, USA:
ACM, 2008, pp. 7–14.

[14] M. Sabetzadeh and S. Easterbrook, “View merging in the presence of
incompleteness and inconsistency,” Requir. Eng., vol. 11, no. 3, pp. 174–
193, 2006.

[15] C. Damas, B. Lambeau, and A. van Lamsweerde, “Scenarios, goals, and
state machines: a win-win partnership for model synthesis,” in SIGSOFT
FSE, 2006, pp. 197–207.

[16] S. Uchitel, J. Kramer, and J. Magee, “Synthesis of Behavioral Models
from Scenarios,” IEEE Trans. Softw. Eng., vol. 29, no. 2, pp. 99–115,
2003.

