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Abstract 
 

In this paper, we introduce a simple but formal 
service description language (ForSeL) for model-
based requirements engineering.  

The basic notion in ForSeL is a service representing 
a functional requirement. Each service describes a 
system “re”-action that is triggered by a set of input 
actions – (but only) if an additional precondition 
holds. The functional part of a specification is then 
obtained by the combination of a finite number of 
services. We pay special attention to two kinds of 
preconditions which are often mixed up in practice: 
sufficient and necessary preconditions. Moreover, we 
present refinement concepts for services that enable a 
stepwise development of functional requirements.1 

 
1 Introduction and Related Work 
 

During the requirements engineering phase, (func-
tional) requirements are usually obtained iteratively 
and documented in an informal way, i.e. they are 
described textually or by means of  use cases. This 
often leads to imprecise and contradictory requirement 
specifications. Another problem is the gap between 
informal descriptions of the requirements engineering 
phase and the formal models of the design phase.  

In our opinion, a promising approach to handle 
these intricacies is service orientation. In this paper we 
present our current research on a formal service 
description language (ForSeL) that describes 
functional requirements in terms of formal services. 
Hereby, a service is a system reaction that is triggered 
by a set of input actions if (or only if) an additional 
                                                        

1 The presented work is current research of the Mobilsoft project 
funded by the Bavarian Government (see www.mobilsoft.info). 

precondition holds. We pay special attention to two 
different kinds of preconditions which are often mixed 
up in practice – namely sufficient and necessary 
preconditions. Moreover, we show how services can be 
refined (iteratively) during the development process.  

We give both syntax and semantics for the formal 
service description language, the two types of 
preconditions and their refinement, respectively.  

Related Work. In ForSeL, a set of requirement 
specifications can be alternatively written down as 
tables, as we already presented in [4]. The SCR 
(Software Cost Reduction) method [5] makes use of 
tables for the specification of systems. However, the 
SCR specification is done on a much more concrete 
abstraction level, i.e. implementation details are not 
abstracted away. 

In [6], causal and temporal dependencies between 
actions are caught and represented graphically by so-
called timing diagrams. A semantic foundation is given 
by the mapping to LTL formulas. The focus of [6] is 
centred on the topic of verification. In contrast, our 
approach focuses on the specification of systems. 

In [2], a very formal theory on service-oriented 
development is presented. Services are defined as 
partial stream processing functions. We base our work 
on the concepts of [2] and augment it by a lean 
notation technique and a methodology.  

Outline. The remainder of this paper is structured 
as follows: Syntax and semantics of ForSeL are given 
in Sec. 2. Sec. 3 presents syntactic transformation rules 
of ForSeL. Sec. 4 and 5 contain syntactic rules for 
behavioral refinement of services specified with 
ForSeL. Finally, we give a summary and an outlook in 
Sec. 6. 



2 Syntax and Semantics of System 
Reactions in ForSeL 

 
2.1 Basics 

ForSeL’s semantics are based on stream processing 
functions that describe the system behavior by finite or 
infinite system reactions. The concepts of our approach 
are formally founded on the FOCUS [3] and the 
JANUS theory [2].  In FOCUS, a system is considered 
as a stream processing function on messages. This 
stream processing function relates input messages to 
output messages which are exchanged between the 
environment and the system. Thus, the system 
behavior is described by a black box view on the 
system. Streams of (typed) messages represent the 
communication history within a (finite) time frame. 
Given a set of data messages M (or better “actions” in 
our setting), M* (M∞) denotes the set of finite (infinite) 
streams (=sequences of elements of M). Mω denotes 
M* ∪ M∞. A stream can be represented by a function 

MN:s 0 → , where s(t) contains the message 
processed in the stream s at the point in time t. In 
JANUS, a component is a total behavior (function) 
whereas a service is a partial function. As a 
consequence, a service is only defined for a subset of 
all possible streams.   

In our approach, we are only interested in the 
interaction of the system with its environment as 
observable at the system interface. Hence, the system 
is defined by the set of streams that characterize valid 
system runs. These streams can be represented by 
streams over actions ω∈ Acts , whereas Act denotes the 
finite set of relevant actions for a system (=user-visible 
input or output that can be observed at the system 
border). Thinking of the requirements for an 
automotive power window system for example, actions 
could be “press toggle switch”, “window goes up”, or 
“child safety lock enabled”. 

Formally spoken, an action A is a variable of type 
Action = {0,1,↑,↓}. A can have exactly one of the 
following assignments (at the point in time t): 

• A=1: A is active, i.e. A∈s.t 
• A=0: A is not active, i.e. ¬A∈s.t 
• A=↑: A starts, i.e. A↑∈s.t,   

consequently ¬A∈s.(t-1) and (A∨A↓)∈s.(t+1) 
• A=↓: A stops, i.e. A↓∈s.t,   

consequently A∈s.(t-1) and (¬A∨A↑)∈s.(t+1) 
A↑ and A↓ are called start event and end event, 
respectively. A=0 and A=1 are the states of the action 
A. 

Actions can be clearly divided into environment 
actions Env⊂Act and system reactions Sys⊂Act, 
whereas Act=Env∪Sys and Env∩Sys=∅.  

2.2  Syntax and semantics of system 
reactions 

In our approach, we support the specification 
specialist in defining formal services representing 
functional requirements. A service describes how a 
system is to react on particular inputs if (or only if) an 
additional precondition holds. It is comprised of three 
parts, namely: a precondition P, a triggering event T, 
and a system reaction R. 

Formally, a precondition P is a conjunction of 
assignments of actions, i.e. more precisely for a natural 
number n: 
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Each Ai denotes an action which has an influence on 
the reaction pattern T→R (see later).  

We clearly distinguish between two different kinds 
of preconditions which are often mixed up in practice: 
sufficient and necessary preconditions. A sufficient  
precondition ([P](T→R)) describes the states of the 
system in which a certain triggering event unavoidably 
leads to a certain reaction. In case the precondition P is 
not fulfilled, the system behavior is not specified and 
any behavior is accepted. Therefore, sufficient 
preconditions allow for the specification of partial 
behavior. A necessary precondition (〈P〉(T→R)) 
describes the only possible states of the system in 
which a certain triggering event may cause a certain 
reaction. However, it is not required that the system 
reaction R has to occur at all, even if the precondition 
holds and the triggering event T occurs. The introduced 
patterns can be combined in order to express that if and 
only if the precondition is fulfilled the triggering event 
T causes necessarily the system reaction R 
({P}(T→R)).  

The triggering event T defines which start or end 
events trigger the specified system reaction R. 
Formally, T is a conjunction of start and end events: 
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The Bi are those actions in Act whose start or end 
causes the reaction R. The reaction R denotes which 
start and end events are triggered. Formally, R is a 
conjunction of start and end events of system reactions.  

Each service defines a predicate over streams 
ω∈ Acts  that has to be fulfilled by the system. It 

filters out only the valid streams of all possible 
streams. By the aid of the definitions above, the 
semantics of the abstract service patterns [P](T→R), 
〈P〉(T→R), and {P}(T→R) can be formally define as 
follows: 
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Informally spoken, [P](T→R) means that if at some 
point in time t precondition P is true and triggering 
event T occurs, then reaction S has to occur at some 
later point in time t´>t. 
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〈P〉(T→R) means that if a triggering event T at some 
point in time t causes a reaction R at some later point 
in time t´>t, then precondition P must be true at the 
point in time t. 
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{P}(T→R) means that if a triggering event T occurs at 
some point in time t, then it causes the reaction R at 
some later point in time t´>t, if and only if the 
precondition P is true at the point in time t. 
 
3 ForSeL Calculus 
 

A formal specification Spec is the conjunction of a 
finite number of services: 

n321 S.....SSSSpec ⊗⊗⊗⊗=  
A valid implementation must realize each of the 

services Si. For two services S1 and S2, their 
combination 21 SS ⊗ is simply defined as conjunction 
of their constituting predicates, i.e. formally 21 SS ∩ . 
Consequently, the composition operator is 
commutative and associative. The proof for these rules 
is straightforward [4].  

Applying the composition operator to the different 
service patterns separately, we obtain the following 
definitions:  
[P](T→R): )RT](P[)RT](P[SS 22211121 →⊗→=⊗  
is formally defined as follows: 
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〈P〉(T→R): )RT(P)RT(PSS 22211121 →⊗→=⊗  
is formally defined as follows: 
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{P}(T→R). As mentioned before, the composition of 
two services [P](T→R) and 〈P〉(T→R) results in 
{P}(T→R): )RT(P)RT](P[)RT}(P{ →⊗→=→  
This composition is formally defined as follows: 
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In the sequel, we analyze further properties of the 
composition operator.  
Identical reaction patterns: If two services 
S1=[P1](T→R) and S2=[P2](T→R) describe the same 
reaction pattern RT →  for different sufficient 
preconditions P1 and P2, respectively, the composition 

21 SS ⊗ has to make sure that the reaction pattern 
occurs both under the precondition P1 and P2:  

])]RT](PP[[[])]RT](P[)RT](P[[[ 2121 →∨=→⊗→
The composition 21 SS ⊗  of two services 
S1=〈P1〉(T→R) and S2=〈P2〉(T→R) that describe 
different necessary preconditions P1 and P2 for the 
same reaction pattern T→R has to ensure that the 
reaction pattern occurs only if both preconditions P1 
and P2 are fulfilled, i.e.  

])]RT(PP[[])]RT(P)RT(P[[ 2121 →∧=→⊗→  
Simple considerations show that these properties are 
fulfilled by our composition operator [4].  
Identical precondition and reaction: If two services 
S1=[P](T1→R) and S2=[P](T2→R) have the same 
precondition and reaction, i.e. that under the same 
sufficient precondition the same reaction is triggered 
by a different triggering event T1 and T2, respectively, 
the composition 21 SS ⊗  has to make sure the 
following: if the precondition P is fulfilled, both the 
occurrence of T1 and T2 – independently from each 
other – has to trigger the reaction R, i.e.  

])]R)TT]((P[[[])]RT](P[)RT](P[[[ 2121 →∨=→⊗→  
This property analogously applies for the composition 
of services with necessary or combined preconditions. 
Identical Precondition and identical triggering 
event: If two services S1=[P](T→R1) and 
S2=[P](T→R2) require that under the precondition P, a 
triggering event T causes two different reactions R1 
and R2, the composition 21 SS ⊗  shall make sure that 
both reactions R1 and R2 are caused. However, these 
two reactions can occur at two arbitrary future points in 
time t´ and t´´. It can easily be proven that  

]))]R,R(T](P[[[])]RT](P[)RT](P[[[ 2121 →=→⊗→  
Here (R1, R2) means that both system reactions R1 and 
R2 occur, but independently from each other (as far as 
a concrete point in time is concerned).  
The composition 21 SS ⊗  of two services 
S1=〈P〉(T→R1) and S2=〈P〉(T→R2) that describe that 



both reaction patterns T→R1 and T→R2 implicate the 
necessary precondition P. Thus, the precondition P 
must hold if T triggers R1 just as well as if T triggers 
R2, i.e. it is 

].))]RR(T(P[[])]RT(P)RT(P[[ 2121 ∨→=→⊗→
The combination of two services with combined 
preconditions results in 

].))]R,R(T}(P{[[])]RT}(P{)RT}(P{[[ 2121 →=→⊗→
T triggers both reactions, R1 and R2 (temporarily 
independent of each other) if and only if the 
precondition P holds. 
 
4 Refinement of ForSeL Specifications 
 

This section addresses the deductive design of 
requirements specifications. A specification S2 is a 
behavioral refinement of a specification S1 (or “S2 
refines S1” or briefly S1®S2) if and only if any 
observable behavior of S2 is also an observable 
behavior of S1, formally ]]1S[[]]2S[[ ⊆ . As a 
consequence, under-specification is always expressed 
by non-determinism on the semantic level and 
behavioral refinement is its stepwise reduction. 

We show that the notion of refinement heavily 
depends on the preconditions. This confirms to clearly 
distinguish the different kinds of preconditions. 

First, we show that the addition of a further 
requirement to an existing specification leads to a 
refinement of the specification. This means that the set 
of accepted streams is reduced. It is obvious that 

21 SS ⊗ is a stronger condition than S1 and that 
consequently 121 SSS ⇒⊗  holds [3]. Together with 
the above introduced properties of the composition 
operator, this leads to different refinement rules. . It 
results in an alternating approach for refinement as for 
example known from interface automata [1]: a 
specification refines another specification, if it 
demands weaker input assumptions or stronger output 
guarantees. This can be achieved by: 

(1) Converting a sufficient precondition or a necessary 
precondition into combined precondition: 
[P](T→R) ®{P}(T→R) and  
〈P〉(T→R) ®{P}(T→R). 
However, note that there is no refinement relation 
between necessary and sufficient precondition.  

(2) Enhancing the service domain of a reaction pattern 
by introducing additional sufficient preconditions: 
[P1](T→R) ® [ P1∨ P2 ](T→R) 

(3) Restricting the system behavior by concreting a 
necessary (or combined) precondition:  
〈P1〉(T→R) ® 〈P1∧ P2 〉(T→R) and 
{P1}(T→R) ®{P1∧ P2 }(T→R)  

(4) Enhancing the service domain of a reaction pattern 
by introducing additional triggering events: 
[P](T1→R) ® [P]((T1∨T2)→R), 
〈P1〉( T1→R) ® 〈P1〉((T1∨T2)→R) and 
{P}(T1→R) ®{P}((T1∨T2)→R)  

(5) Restricting/concreting the system reaction by 
defining a stronger reaction, as done with 
[P](T→R) ®[P](T→(R1, R2)) and 
{P}(T→R) ®{P}(T→(R1, R2))  
Again, this rule does not apply for necessary 
preconditions.  

 
5 Summary and Future Work 
 

In this contribution we gave both syntax and 
semantics for the formal service description language 
ForSeL. We paid special attention to two different 
notions of preconditions. Additionally, we presented 
refinement concepts which enable a stepwise 
refinement process. 

As next steps we plan to investigate the transition 
from ForSeL specifications to subsequent design 
activities (e.g. mapping to logical system 
architectures). Moreover, we work on refinement 
concepts allowing for the enlargement also of syntactic 
interfaces. Furthermore, we work on pragmatic 
notation techniques and on a comprehensive 
methodology for ForSeL. A case study of a medium-
scale automotive software system is currently 
performed to validate our concepts. 
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