
Formal incremental requirements specification of service-oriented automotive
software systems

J. Hartmann, S. Rittmann, D. Wild
Software & Systems Engineering
Technische Universität München

Boltzmannstraße 3
D-85748 Garching bei München

{hartmanj, rittmann, wild}@in.tum.de

P. Scholz
Fachbereich für Informatik
Fachhochschule Landshut

Am Lurzenhof 1
D-84036 Landshut

peter.scholz@fh-landshut.de

Abstract

In this paper, we introduce a simple but formal
service description language (ForSeL) for model-
based requirements engineering.

The basic notion in ForSeL is a service representing
a functional requirement. Each service describes a
system “re”-action that is triggered by a set of input
actions – (but only) if an additional precondition
holds. The functional part of a specification is then
obtained by the combination of a finite number of
services. We pay special attention to two kinds of
preconditions which are often mixed up in practice:
sufficient and necessary preconditions. Moreover, we
present refinement concepts for services that enable a
stepwise development of functional requirements.1

1 Introduction and Related Work

During the requirements engineering phase, (func-
tional) requirements are usually obtained iteratively
and documented in an informal way, i.e. they are
described textually or by means of use cases. This
often leads to imprecise and contradictory requirement
specifications. Another problem is the gap between
informal descriptions of the requirements engineering
phase and the formal models of the design phase.

In our opinion, a promising approach to handle
these intricacies is service orientation. In this paper we
present our current research on a formal service
description language (ForSeL) that describes
functional requirements in terms of formal services.
Hereby, a service is a system reaction that is triggered
by a set of input actions if (or only if) an additional

1 The presented work is current research of the Mobilsoft project
funded by the Bavarian Government (see www.mobilsoft.info).

precondition holds. We pay special attention to two
different kinds of preconditions which are often mixed
up in practice – namely sufficient and necessary
preconditions. Moreover, we show how services can be
refined (iteratively) during the development process.

We give both syntax and semantics for the formal
service description language, the two types of
preconditions and their refinement, respectively.

Related Work. In ForSeL, a set of requirement
specifications can be alternatively written down as
tables, as we already presented in [4]. The SCR
(Software Cost Reduction) method [5] makes use of
tables for the specification of systems. However, the
SCR specification is done on a much more concrete
abstraction level, i.e. implementation details are not
abstracted away.

In [6], causal and temporal dependencies between
actions are caught and represented graphically by so-
called timing diagrams. A semantic foundation is given
by the mapping to LTL formulas. The focus of [6] is
centred on the topic of verification. In contrast, our
approach focuses on the specification of systems.

In [2], a very formal theory on service-oriented
development is presented. Services are defined as
partial stream processing functions. We base our work
on the concepts of [2] and augment it by a lean
notation technique and a methodology.

Outline. The remainder of this paper is structured
as follows: Syntax and semantics of ForSeL are given
in Sec. 2. Sec. 3 presents syntactic transformation rules
of ForSeL. Sec. 4 and 5 contain syntactic rules for
behavioral refinement of services specified with
ForSeL. Finally, we give a summary and an outlook in
Sec. 6.

2 Syntax and Semantics of System
Reactions in ForSeL

2.1 Basics

ForSeL’s semantics are based on stream processing
functions that describe the system behavior by finite or
infinite system reactions. The concepts of our approach
are formally founded on the FOCUS [3] and the
JANUS theory [2]. In FOCUS, a system is considered
as a stream processing function on messages. This
stream processing function relates input messages to
output messages which are exchanged between the
environment and the system. Thus, the system
behavior is described by a black box view on the
system. Streams of (typed) messages represent the
communication history within a (finite) time frame.
Given a set of data messages M (or better “actions” in
our setting), M* (M∞) denotes the set of finite (infinite)
streams (=sequences of elements of M). Mω denotes
M* ∪ M∞. A stream can be represented by a function

MN:s 0 → , where s(t) contains the message
processed in the stream s at the point in time t. In
JANUS, a component is a total behavior (function)
whereas a service is a partial function. As a
consequence, a service is only defined for a subset of
all possible streams.

In our approach, we are only interested in the
interaction of the system with its environment as
observable at the system interface. Hence, the system
is defined by the set of streams that characterize valid
system runs. These streams can be represented by
streams over actions ω∈ Acts , whereas Act denotes the
finite set of relevant actions for a system (=user-visible
input or output that can be observed at the system
border). Thinking of the requirements for an
automotive power window system for example, actions
could be “press toggle switch”, “window goes up”, or
“child safety lock enabled”.

Formally spoken, an action A is a variable of type
Action = {0,1,↑,↓}. A can have exactly one of the
following assignments (at the point in time t):

• A=1: A is active, i.e. A∈s.t
• A=0: A is not active, i.e. ¬A∈s.t
• A=↑: A starts, i.e. A↑∈s.t,

consequently ¬A∈s.(t-1) and (A∨A↓)∈s.(t+1)
• A=↓: A stops, i.e. A↓∈s.t,

consequently A∈s.(t-1) and (¬A∨A↑)∈s.(t+1)
A↑ and A↓ are called start event and end event,
respectively. A=0 and A=1 are the states of the action
A.

Actions can be clearly divided into environment
actions Env⊂Act and system reactions Sys⊂Act,
whereas Act=Env∪Sys and Env∩Sys=∅.

2.2 Syntax and semantics of system
reactions

In our approach, we support the specification
specialist in defining formal services representing
functional requirements. A service describes how a
system is to react on particular inputs if (or only if) an
additional precondition holds. It is comprised of three
parts, namely: a precondition P, a triggering event T,
and a system reaction R.

Formally, a precondition P is a conjunction of
assignments of actions, i.e. more precisely for a natural
number n:

.n,,1i},1,0{b,ActAwith
)bA()bA()bA(P

ii
nn2211

…
…
=∈∈

=∧∧=∧==

Each Ai denotes an action which has an influence on
the reaction pattern T→R (see later).

We clearly distinguish between two different kinds
of preconditions which are often mixed up in practice:
sufficient and necessary preconditions. A sufficient
precondition ([P](T→R)) describes the states of the
system in which a certain triggering event unavoidably
leads to a certain reaction. In case the precondition P is
not fulfilled, the system behavior is not specified and
any behavior is accepted. Therefore, sufficient
preconditions allow for the specification of partial
behavior. A necessary precondition (〈P〉(T→R))
describes the only possible states of the system in
which a certain triggering event may cause a certain
reaction. However, it is not required that the system
reaction R has to occur at all, even if the precondition
holds and the triggering event T occurs. The introduced
patterns can be combined in order to express that if and
only if the precondition is fulfilled the triggering event
T causes necessarily the system reaction R
({P}(T→R)).

The triggering event T defines which start or end
events trigger the specified system reaction R.
Formally, T is a conjunction of start and end events:

n,,1i},,{e,ActBwith
)eB()eB()eB(T

ii
nn2211

…
…

=↓↑∈∈
=∧∧=∧==

The Bi are those actions in Act whose start or end
causes the reaction R. The reaction R denotes which
start and end events are triggered. Formally, R is a
conjunction of start and end events of system reactions.

Each service defines a predicate over streams
ω∈ Acts that has to be fulfilled by the system. It

filters out only the valid streams of all possible
streams. By the aid of the definitions above, the
semantics of the abstract service patterns [P](T→R),
〈P〉(T→R), and {P}(T→R) can be formally define as
follows:

))}'t.sR:t't()t.sTt.sP((
:Nt|Acts{]])RT](P[[[

∈>∃⇒∈∧∈
∈∀∈=→ ω

Informally spoken, [P](T→R) means that if at some
point in time t precondition P is true and triggering
event T occurs, then reaction S has to occur at some
later point in time t´>t.

)}t.sP))'t.sR:t't(t.sT((
:Nt|Acts{]])RT(P[[

∈⇒∈>∃∧∈
∈∀∈=→ ω

〈P〉(T→R) means that if a triggering event T at some
point in time t causes a reaction R at some later point
in time t´>t, then precondition P must be true at the
point in time t.

)))}t.sP't.sR:t't(
)t.sP't.sR:t't((t.sT(
:Nt|Acts{]])RT}(P[{[

∈¬∧∈>¬∃∨
∈∧∈>∃⇒∈
∈∀∈=→ ω

{P}(T→R) means that if a triggering event T occurs at
some point in time t, then it causes the reaction R at
some later point in time t´>t, if and only if the
precondition P is true at the point in time t.

3 ForSeL Calculus

A formal specification Spec is the conjunction of a
finite number of services:

n321 S.....SSSSpec ⊗⊗⊗⊗=
A valid implementation must realize each of the

services Si. For two services S1 and S2, their
combination 21 SS ⊗ is simply defined as conjunction
of their constituting predicates, i.e. formally 21 SS ∩ .
Consequently, the composition operator is
commutative and associative. The proof for these rules
is straightforward [4].

Applying the composition operator to the different
service patterns separately, we obtain the following
definitions:
[P](T→R):)RT](P[)RT](P[SS 22211121 →⊗→=⊗
is formally defined as follows:

)))}'t.sR:t't()t.sTt.sP((
))'t.sR:t't()t.sTt.sP(((

:Nt|Acts{
]])RT](P[)RT](P[[[

222
111

222111

∈>∃⇒∈∧∈
∧∈>∃⇒∈∧∈

∈∀∈
=→⊗→

ω

〈P〉(T→R):)RT(P)RT(PSS 22211121 →⊗→=⊗
is formally defined as follows:

))}t.sP)'t.sR:t'tt.sT((
)t.sP)'t.sR:t'tt.sT(((

:Nt|Acts{
]])RT(P)RT(P[[

222
111

222111

∈⇒∈>∃∧∈
∧∈⇒∈>∃∧∈

∈∀∈
=→⊗→

ω

{P}(T→R). As mentioned before, the composition of
two services [P](T→R) and 〈P〉(T→R) results in
{P}(T→R):)RT(P)RT](P[)RT}(P{ →⊗→=→
This composition is formally defined as follows:

))))}t.sP't.sR:t't(
)t.sP't.sR:t't((t.sT(

)))t.sP't.sR:t't(
)t.sP't.sR:t't((t.sT((

:Nt|Acts{
]])RT(P)RT](P[[[

22
222

11
111

222111

∈¬∧∈>¬∃∨
∈∧∈>∃⇒∈
∧∈¬∧∈>¬∃∨
∈∧∈>∃⇒∈

∈∀∈
=→⊗→

ω

In the sequel, we analyze further properties of the
composition operator.
Identical reaction patterns: If two services
S1=[P1](T→R) and S2=[P2](T→R) describe the same
reaction pattern RT → for different sufficient
preconditions P1 and P2, respectively, the composition

21 SS ⊗ has to make sure that the reaction pattern
occurs both under the precondition P1 and P2:

])]RT](PP[[[])]RT](P[)RT](P[[[2121 →∨=→⊗→
The composition 21 SS ⊗ of two services
S1=〈P1〉(T→R) and S2=〈P2〉(T→R) that describe
different necessary preconditions P1 and P2 for the
same reaction pattern T→R has to ensure that the
reaction pattern occurs only if both preconditions P1
and P2 are fulfilled, i.e.

])]RT(PP[[])]RT(P)RT(P[[2121 →∧=→⊗→
Simple considerations show that these properties are
fulfilled by our composition operator [4].
Identical precondition and reaction: If two services
S1=[P](T1→R) and S2=[P](T2→R) have the same
precondition and reaction, i.e. that under the same
sufficient precondition the same reaction is triggered
by a different triggering event T1 and T2, respectively,
the composition 21 SS ⊗ has to make sure the
following: if the precondition P is fulfilled, both the
occurrence of T1 and T2 – independently from each
other – has to trigger the reaction R, i.e.

])]R)TT]((P[[[])]RT](P[)RT](P[[[2121 →∨=→⊗→
This property analogously applies for the composition
of services with necessary or combined preconditions.
Identical Precondition and identical triggering
event: If two services S1=[P](T→R1) and
S2=[P](T→R2) require that under the precondition P, a
triggering event T causes two different reactions R1
and R2, the composition 21 SS ⊗ shall make sure that
both reactions R1 and R2 are caused. However, these
two reactions can occur at two arbitrary future points in
time t´ and t´´. It can easily be proven that

]))]R,R(T](P[[[])]RT](P[)RT](P[[[2121 →=→⊗→
Here (R1, R2) means that both system reactions R1 and
R2 occur, but independently from each other (as far as
a concrete point in time is concerned).
The composition 21 SS ⊗ of two services
S1=〈P〉(T→R1) and S2=〈P〉(T→R2) that describe that

both reaction patterns T→R1 and T→R2 implicate the
necessary precondition P. Thus, the precondition P
must hold if T triggers R1 just as well as if T triggers
R2, i.e. it is

].))]RR(T(P[[])]RT(P)RT(P[[2121 ∨→=→⊗→
The combination of two services with combined
preconditions results in

].))]R,R(T}(P{[[])]RT}(P{)RT}(P{[[2121 →=→⊗→
T triggers both reactions, R1 and R2 (temporarily
independent of each other) if and only if the
precondition P holds.

4 Refinement of ForSeL Specifications

This section addresses the deductive design of
requirements specifications. A specification S2 is a
behavioral refinement of a specification S1 (or “S2
refines S1” or briefly S1®S2) if and only if any
observable behavior of S2 is also an observable
behavior of S1, formally]]1S[[]]2S[[⊆ . As a
consequence, under-specification is always expressed
by non-determinism on the semantic level and
behavioral refinement is its stepwise reduction.

We show that the notion of refinement heavily
depends on the preconditions. This confirms to clearly
distinguish the different kinds of preconditions.

First, we show that the addition of a further
requirement to an existing specification leads to a
refinement of the specification. This means that the set
of accepted streams is reduced. It is obvious that

21 SS ⊗ is a stronger condition than S1 and that
consequently 121 SSS ⇒⊗ holds [3]. Together with
the above introduced properties of the composition
operator, this leads to different refinement rules. . It
results in an alternating approach for refinement as for
example known from interface automata [1]: a
specification refines another specification, if it
demands weaker input assumptions or stronger output
guarantees. This can be achieved by:

(1) Converting a sufficient precondition or a necessary
precondition into combined precondition:
[P](T→R) ®{P}(T→R) and
〈P〉(T→R) ®{P}(T→R).
However, note that there is no refinement relation
between necessary and sufficient precondition.

(2) Enhancing the service domain of a reaction pattern
by introducing additional sufficient preconditions:
[P1](T→R) ® [P1∨ P2](T→R)

(3) Restricting the system behavior by concreting a
necessary (or combined) precondition:
〈P1〉(T→R) ® 〈P1∧ P2 〉(T→R) and
{P1}(T→R) ®{P1∧ P2 }(T→R)

(4) Enhancing the service domain of a reaction pattern
by introducing additional triggering events:
[P](T1→R) ® [P]((T1∨T2)→R),
〈P1〉(T1→R) ® 〈P1〉((T1∨T2)→R) and
{P}(T1→R) ®{P}((T1∨T2)→R)

(5) Restricting/concreting the system reaction by
defining a stronger reaction, as done with
[P](T→R) ®[P](T→(R1, R2)) and
{P}(T→R) ®{P}(T→(R1, R2))
Again, this rule does not apply for necessary
preconditions.

5 Summary and Future Work

In this contribution we gave both syntax and
semantics for the formal service description language
ForSeL. We paid special attention to two different
notions of preconditions. Additionally, we presented
refinement concepts which enable a stepwise
refinement process.

As next steps we plan to investigate the transition
from ForSeL specifications to subsequent design
activities (e.g. mapping to logical system
architectures). Moreover, we work on refinement
concepts allowing for the enlargement also of syntactic
interfaces. Furthermore, we work on pragmatic
notation techniques and on a comprehensive
methodology for ForSeL. A case study of a medium-
scale automotive software system is currently
performed to validate our concepts.

6 References

[1] L. de Alfaro and T. A. Henzinger: Interface automata.
Proceedings of the Ninth Annual Symposium on Foundations of
Software Engineering (FSE), ACM Press, 2001, pp. 109-120.

[2] M. Broy: Service-Oriented Systems Engineering: Specification
and Design of Services and Layered Architectures – The Janus
Approach. In: Engineering Theories of Software Intensive Systems,
pp. 47-81. Springer, 2005.

[3] M. Broy and K. Stølen: Specification and Development of
Interactive Systems: FOCUS on Streams, Interfaces, and Refinement.
Springer, 2001.

[4] J. Hartmann, S. Rittmann, P. Scholz, and D. Wild: A
compositional approach for functional requirement specifications of
automotive software systems. Accepted at the International
Workshop on Automotive Requirements Engineering (AuRE), 2006.

[5] C. Heitmeyer, M. Archer, R. Bharadwaj, and R. Jeffords: Tools
for constructing requirements specifications: The SCR toolset at the
age of ten, International Journal of Computer Systems Science and
Engineering, 20(1), January 2005, pp. 19-35.

[6] R. Schlör and W. Damm: Specification and Verification of
System-level Hardware designs using Timing Diagrams, Proc. IEEE
EDAC-EuroASIC'93, Paris (France), Feb. 1993, pp. 518-524.

