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Abstract 
 

In this paper, we will introduce a simple but formal 
service description language (ForSeL) together with a 
methodology for its application in software 
engineering. ForSeL helps to bridge the gap between 
informal functional requirements and formal models in 
the subsequent design phase. Though its semantics is 
formally defined and therefore well suited for 
development techniques like behavioural refinement, 
code generation and verification, the language is very 
easy to use for software engineers. Using our 
approach, requirements can be formulated precisely 
and without any contradictions. 

The basic notion in ForSeL is an action. A ForSeL 
specification is the composition of a finite number of 
functional requirements. Each (functional) 
requirement describes a system “re”-action that is 
triggered by a set of input actions – but only if an 
additional precondition holds. A pragmatic and at the 
same time adequate notation for this triple is given by 
so-called reaction tables.1  

 
 
1 Introduction 
 

During requirements engineering for embedded, 
interactive systems as often found in the automotive 
industry, (functional) requirements are usually 
obtained in a textual and therefore informal way. This 

                                                           
1 The work presented stems from the MobilSoft- project which is 
partially funded by the Bavarian Government under grant number 
IuK 188/001. 
 
 

often leads to imprecise, ambiguous, and contradictory 
descriptions of the system under consideration. 
Moreover, the transition from the informal 
requirements to the formal models in the design phase 
often causes problems. 

In this article, we will introduce a formal service 
description language called ForSeL (Formal 
Specification Language) which describes functional 
requirements in terms of (formal) services. Here a 
service is a piece of functionality, which is visible for 
the user of the system under development. ForSeL 
together with its methodology is a means to bridge the 
aforementioned gap between the informal requirements 
and the formal design models.  

A specification in ForSeL describes the system on a 
very high level of abstraction, i.e. implementation 
details are not considered yet and the system under 
development is regarded as a black box. Hence, a 
ForSeL specification easily supports reuse and variant 
handling. 

Furthermore, ForSeL allows for the partial 
specification of the system behaviour. The 
specification specialist is not forced to define the 
system totally already at the early phase of 
requirements engineering. Therefore, it is possible to 
concentrate on the characteristic (“most important”) 
behaviour of the system or parts of it. The result then is 
a (partial or total) formal specification which is 
precise, unambiguous, and consistent. 

 
1.1 Related Work 
 

In this subsection we relate our contribution to other 
work.  

The SCR (Software Cost Reduction) method [5] 
also makes use of tables for the specification of 



systems. However, SCR does not aim at specifications 
of such an abstract level that our approach is based on. 
Moreover, as SCR makes explicit use of states, it is 
less black-box oriented. In our approach we focus on 
the system behaviour as it can be observed from the 
outside of the system. 

In [4], causal and temporal dependencies between 
actions are caught and graphically represented in form 
of so-called timing diagrams. A semantic foundation is 
given by the mapping to LTL formulas. The focus of 
[4] is centred on the topic of verification. Our 
approach focuses on the provision of a methodology. 

In [1], a very formal theory on service-oriented 
development is presented. Services are defined as 
partial stream processing functions. We base our work 
on the concepts of [1] and augment it by a lean 
notation technique and a methodology.  

Whereas Statecharts and related approaches [7, 8] 
aim at the system specification during the software 
design phase, ForSeL helps the user in describing the 
system on a more abstract level. ForSeL expressions 
can be seen as  automata fragments which can be 
integrated into automata. Therefore, ForSeL 
expressions can be seen as a more abstract 
specification technique or as a preliminary stage in the 
development process to describe the system behaviour.  

 
1.2 Outline 

 
In this contribution, we introduce syntax and 

semantics of ForSeL, a lean notation technique for 
requirements engineering of automotive software 
systems, and its methodology. A running example of 
the automotive domain, which is introduced in Section 
2, shall help the reader to understand the concepts of 
ForSeL. In Section 3, we focus on the syntax and 
semantics of ForSeL. A convenient notation technique 
based on reaction tables for specifying with ForSeL is 
given in Section 4. The methodology of how to use 
ForSeL is described in Section 5. Finally, we conclude 
in Section 6 and give an outlook about future work. 

 
2 Running Example 
 

In order to introduce both specification concepts 
and methodology, we make use of a running example 
from the automotive domain: power windows as they 
can be found in almost all modern cars. In this section, 
the textually (informally) given requirements of the 
considered system are listed. 

In order to reduce complexity and to improve 
readability we limit ourselves to only one single 
window that is described as follows: 

(1) Opening and closing a window.  
(1.1) On pressing the open toggle switch (close 

toggle switch), the window is moved up 
(down). 

(1.2) The window keeps on moving as long as the 
toggle switch is pressed. It stops as soon as 
the toggle switch is released or if the 
respective end position is reached. 

(2) Crush protection. The crush protection is 
intended to prevent someone/something from 
being clamped and possibly hurt between the 
window and the window frame. 
(2.1) A sensor detects if something is being 

clamped (between the window and the 
window frame) while the window is moving 
upwards. 

(2.2) If a clamped obstacle has been detected, the 
window immediately has to open 
completely.  

(2.3) If the toggle switch is pressed again, the 
window has to go upwards despite the crush 
protection.  

(3) Child safety lock. The child safety lock shall 
prevent children from playing around with the 
back windows. If the child safety lock is enabled 
the window must not move (even) if the respective 
toggle switch is pressed. 

 
3 Syntax and Semantics 
 

Before being able to define the concrete syntax and 
semantics of ForSeL, we first explain some 
preliminaries. 
 
3.1 Basics 
 

ForSeL’s semantics is based on stream processing 
functions that describe the system behaviour by finite 
or infinite system reactions. 
 
3.1.1 Stream processing functions (FOCUS)  

The concepts of our approach are formally founded 
by the FOCUS theory [2]. FOCUS is a formal system 
model which serves very well for specifying reactive, 
distributed systems. In FOCUS, a system is considered 
as a stream processing function on messages. This 
stream processing function relates input messages to 
output messages which are exchanged between the 
environment and the system2. Thus, the system 
behaviour is described by a black box view on the 
system. 

                                                           
2 (and between components within the system) 



In the following we only introduce the concepts of 
the FOCUS theory which are necessary to define the 
semantics of our approach formally.3  

Finite and infinite streams. In FOCUS streams of 
(typed) messages represent the communication history 
of data messages within a (finite) time frame. Given a 
set of data messages M (or better “actions” in our 
setting), M* (M∞) denotes the set of finite (infinite) 
streams (which are sequences of elements of M). Mω 

denotes M* ∪ M∞. Such a stream can be represented 
by the function MN:s 0 → where s(t) contains the 

message processed in the stream s at the point of time 
t.  

For example, let s = <m1,m2,m3,m4> (s is a finite 
stream consisting of the messages m1 to m4). Then 
s(2)=m3 as m3 is the third message which is processed 
in the stream. To improve the readability of formulas 
we often write s.n instead of s(n).  <m,m,m,m,m…> 
would denote the infinite stream consisting of 
infinitely many copies of the message m.  

 
3.1.2 Actions 

In our approach ForSeL, a specification describes a 

system by a set of valid streams ω∈ Acts , whereas 
Act denotes the finite set of relevant actions for a 
system, respectively, i.e. those actions that can be 
observed at the system border. The set of valid streams 
is determined by predicates given by the formal 
requirements. 

Actions are the basic elements out of which a 
formal service specification is comprised. An action is 
a user-visible input or output of the system on a logical 
level. Examples for actions are “press toggle switch”, 
“window goes up”, or “child safety lock enabled”. 

Formally spoken an action A is a variable of type 
Action = {0,1,↑,↓}. Considering a valid stream s, a 
declaration of each action has to be made at each point 
in time. An action A can have exactly one of the 
following assignments (at the point of time t): 

• A=1: A is active at the point of time t, i.e. 
A∈s.t. 

• A=0: A is not active at the point of time t, i.e. 
¬A∈s.t 

• A=↑: A starts at the point of time t, i.e. A↑∈s.t, 
consequently ¬A∈s.(t-1) and (A∨A↓)∈s.(t+1) 

• A=↓: A stops at the point of time t, i.e. A↓∈s.t, 
consequently A∈s.(t-1) and (¬A∨A↑)∈s.(t+1) 

 

                                                           
3 For more information on the comprehensive FOCUS theory, the 

interested reader is referred to [2]. 
 

A↑ and A↓ are called the start event and end event, 
respectively. A=0 and A=1 are called states of the 
action A. 

For example, the child safety lock (CL) can be 
active (CL=1), not active (CL=0), currently activated 
(CL=↑), or deactivated at the moment (CL=↓). 

Actions can be clearly divided into environment 
actions Env⊂Act and system reactions Sys⊂Act, 
whereas  Act = Env ∪ Sys and  Env ∩ Sys =∅. 

Environment actions can not be influenced directly 
by the system as opposed to system reactions which 
are directly influenced by the system. This means that 
the system can start and stop these actions (system 
reactions). System reactions are primarily output 
actions, but can also serve as input actions.  

Considering our running example, the pressing of 
the open toggle switch and the close toggle switch for 
instance, are environment actions which can not be 
influenced by the system. In contrast, the movement of 
the windows (upwards and downwards) are system 
reactions that are controlled by the system. 

 
3.2 Syntax and semantics of ForSeL 
 

3.2.1 Formal Requirements 
In our approach, the system behaviour is described 

by means of formal expressions representing 
requirements. A requirement is given by the triple 

)ST](P[R →= . A formal requirement of this form is 

called a service. The transformation from informal 
requirements into services however is not a 1:1-
mapping, but requires real design work (cf. 5). A 
formal requirement describes how a system is to react 
on particular inputs. It is comprised of three parts, 
namely: 

• the precondition P 
• the triggering event T, and 
• the system reaction S 

 
Precondition P. The precondition describes the 

states of the system in which a certain triggering event 
leads to a certain reaction. Formally, P is a conjunction 
of assignments of actions, i.e. 

n,,1i},1,0{b,ActAwith
)bA()bA()bA(P

ii

nn2211
K

K

=∈∈
=∧∧=∧==  

Here, each Ai denotes an action which has an 
influence on the reaction pattern ST → . Actions not 
influencing the reaction pattern ST →  are not further 
specified. 

Considering again our running example, the 
pressing of the (open or close) toggle switch causes the 



window to move, only if the child safety lock is not 
active at the moment, the switch is pressed (and 
therefore the action is activated). Therefore the 
deactivated child safety lock (CL=0) is a precondition 
for this system reaction. 

Triggering event T. The triggering event T defines 
which start or end events trigger the specified system 
reaction. This time the states of the actions are not 
considered, as it is assumed that only events cause 
system reactions. Formally, T is a conjunction of start 
and end events, i.e. 

n,,1i},,{e,ActBwith
)eB()eB()eB(T

ii

nn2211
K

K
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Actions iB  are those actions in Act whose start or 

end cause the system reaction S. 
In our running example, the start of pressing a 

toggle switch or detecting a clamped obstacle are 
triggering events.  

System reaction S. The reaction S denotes which 
start and end events are triggered. Again, the states of 
the actions are not considered, but only events. 
Formally, S is a conjunction of start and end events of 
system reactions, i.e. 

n,,1i},,{e,SysCwith
)eC()eC()eC(S

ii
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Those actions which are not influenced at all are not 
specified any further. 

In our running example, there are only two actions 
which can be influenced by the system and therefore 
occur as reactions: „window up“ and „window down“. 

Formal requirement [P](T→→→→S). By the aid of the 
definitions above, the semantics of )ST](P[ →  can be 

defined as follows: 

))}'t.sS:t't()t.sTt.sP((
:Nt|Acts{

)]]ST](P[[[

∈>∃⇒∈∧∈
∈∀∈
=→

ω  

Informally spoken, )ST](P[ →  means that if at 

some point in time t precondition P is true and  
triggering event T occurs, then reaction S has to occur 
at some later point in time t’>t. 

Each formal requirement defines a predicate that 
has to be fulfilled by the system. It filters out only the 
valid streams of all possible streams. Examples for 
such service formulas can be found in Section 5. 
3.2.2  Formal Specification  

A formal specification Spec is the conjunction of a 
finite number of formal requirements: 

n321 R.....RRRSpec ⊗⊗⊗⊗=  

A valid implementation has to fulfil each of the formal 
requirements Ri. For two requirements 

)ST](P[R 1111 →=  and )ST](P[R 2222 →= , their 

composition 

)ST](P[)ST](P[RR 22211121 →⊗→=⊗  

is formally defined as follows: 

)))}'t.sS:t't()t.sTt.sP((
))'t.sS:t't()t.sTt.sP(((

:Nt|Acts{
)]]ST](P[)ST](P[[[

222

111

222111

∈>∃⇒∈∧∈
∧∈>∃⇒∈∧∈

∈∀∈
=→⊗→

ω
 

Informally spoken: If P1 is true at a certain point of 
time t and T1 occurs, then the system has to react with 
S1 and if P2 is valid in a point of time t – independently 
of P1, T1, and S1 – and T2 occurs then the system has to 
react with S2. If both of the preconditions are fulfilled 
and both of the triggering events occur, then also both 
of the reactions have to occur; however, not 
necessarily at the same point of time.  

Analogously, the overall specification can be 
created by stepwise conjunction of the single 
requirements. 

In the following we prove some properties of the 
composition operator which show that the formal 
definition of the composition operators goes along 
with the intuitive understanding. 

Identical reaction patterns. If two requirements 

)ST](P[R 11 →=  and )ST](P[R 22 →=  

describe the same reaction pattern ST →  for different 
preconditions P1 and P2, respectively, the composition 

21 RR ⊗  has to make sure that the reaction pattern 

occurs both under the precondition P1 and P2, i.e. it is 

)]]ST](PP[[[)]]ST](P[)ST](P[[[ 2121 →∨=→⊗→  

A simple consideration shows that this is fulfilled 
by our composition operator. 

)]]ST](PP[[[
))}'t.sS:t't())t.sT(

)t.sPt.sP(((:Nt|Acts{
))}'t.sS:t't(

))t.sTt.sP()t.sTt.sP((((
:Nt|Acts{

)))}'t.sS:t't()t.sTt.sP((
))'t.sS:t't()t.sTt.sP(((

:Nt|Acts{
)))}'t.sS:t't()t.sTt.sP((
))'t.sS:t't()t.sTt.sP(((

:Nt|Acts{
)]]ST](P[)ST](P[[[

21

21

21

2

1

2

1

21

→∨=
∈>∃⇒∈

∧∈∨∈∈∀∈=
∈>∃∨

∈∧∈∨∈∧∈¬
∈∀∈=

∈>∃∨∈∧∈¬
∧∈>∃∨∈∧∈¬

∈∀∈=
∈>∃⇒∈∧∈

∧∈>∃⇒∈∧∈
∈∀∈=

→⊗→

ω

ω

ω

ω

 



Identical precondition and reaction. If two 
requirements  

)ST](P[R 11 →=  and )ST](P[R 22 →=  

have the same precondition and reaction, i.e. that under 
the same precondition the same reaction is triggered by 
a different triggering event T1 and T2, respectively, the 
composition 21 RR ⊗  has to make sure the following: 

If the precondition P is fulfilled, both the occurrence of 
T1 and T2 – independently from each other – has to 
trigger the reaction S, i.e.  

)]]S)TT]((P[[[)]]ST](P[)ST](P[[[ 2121 →∨=→⊗→  

An analogous consideration shows that our 
composition operator fulfils this requirement: 

)]]S)TT]((P[[[
))}'t.sS:t't())t.sTt.sT(

t.sP((:Nt|Acts{
)))}'t.sS:t't()t.sTt.sP((
))'t.sS:t't()t.sTt.sP(((

:Nt|Acts{
)]]ST](P[)ST](P[[[

21

21

2

1

21

→∨=
∈>∃⇒∈∨∈

∧∈∈∀∈=
∈>∃⇒∈∧∈

∧∈>∃⇒∈∧∈
∈∀∈=

→⊗→

ω

ω

 

Identical Precondition and identical triggering 
event. If two requirements  

)ST](P[R 11 →=  and )ST](P[R 22 →=  

demand that under the precondition P, a triggering 
event T causes two different reactions S1 and S2, the 
composition 21 RR ⊗  shall make sure that both 

reactions S1 and S2 are caused. However, these two 
reactions do not have to occur at the same time but can 
occur at two arbitrary future points in time t’ and t’’. 
Formally it has to be proven that  

))]]S,S(T](P[[[)]]ST](P[)ST](P[[[ 2121 →=→⊗→  

Here (S1,S2) means that both system reactions S1 
and S2 occur, but independently from each other (as far 
as a concrete point in time is concerned). Again, a 
simple consideration shows that this requirement is 
fulfilled by the composition operator: 

)]]S,S(T](P[[[
)))}''t.sS:t''t()'t.sS:t't((

)t.sTt.sP((
:Nt|Acts{

)))}'t.sS:t't()'t.sS:t't((
)t.sTt.sP((

:Nt|Acts{
)))}'t.sS:t't()t.sTt.sP((
))'t.sS:t't()t.sTt.sP(((

:Nt|Acts{
)))}'t.sS:t't()t.sTt.sP((
))'t.sS:t't()t.sTt.sP(((

:Nt|Acts{
)]]ST](P[)]ST](P[[[
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21

21

2

1

2

1

21

→=
∈>∃∧∈>∃

⇒∈∧∈
∈∀∈=

∈>∃∧∈>∃
∨∈∧∈¬

∈∀∈=
∈>∃∨∈∧∈¬

∧∈>∃∨∈∧∈¬
∈∀∈=

∈>∃⇒∈∧∈
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ω

ω

ω
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No Precondition: Another special case is the 
specification of a ‚pure’ reaction pattern ST →  where 
there is no precondition specified. According to the 
formal definition, we obtain the following semantics: 

))}'t.sS:t't(t.sT(:Nt|Acts{
]]ST[[

∈>∃⇒∈∈∀∈
=→

ω  

 
ST →  means that the occurrence of T causes the 

system to react with S in each situation, no matter in 
what state the system currently is. The specification 
specialist has to be aware of the fact that this is a very 
‚strong’ requirement. If a precondition is added to the 
reaction patter ST →  belatedly, this is not a 
refinement as the requirement is made weaker. 

Besides these special cases of composing 
requirements, the following rules apply as a 
consequence of the Boolean calculation rules:  

Commutative law. The composition operator is 
commutative, i.e. for two arbitrary requirements 1R  

and 2R  the following holds: 

]].RR[[]]RR[[ 1221 ⊗=⊗  

The proof for this rule is rather straightforward.  
Associative law. Analogously, the application of 

the associative law for the Boolean operators proves 
the associativity of the composition operator for 
arbitrary requirements 1R , 2R , and 3R :  

)]].RR(R[[]]R)RR[[( 321321 ⊗⊗=⊗⊗  

In the last part of this sub-section we take a look at 
refinement. To that end, we describe our notion of 
refinement and show that the addition of further 
requirement to an existing specification leads to a 
refinement of the specification. Concretely we show 
that for the requirements )ST](P[R 1111 →=  and 

)ST](P[R 2222 →=  the following holds:  



  121 RRR ⇒⊗ . 

Refinement. The refinement of a specification 
means that the set of accepted streams is reduced. It is 
obvious that 21 RR ⊗  is a stronger condition than 1R  

and that consequently  121 RRR ⇒⊗  holds as 

)]]ST](P[[[
))}'t.sS:t't()t.sTt.sP(((

:Nt|Acts{

)))}'t.sS:t't()t.sTt.sP((
))'t.sS:t't()t.sTt.sP(((

:Nt|Acts{
)]]ST](P[)ST](P[[[

111

111

222

111

222111

→
=∈>∃⇒∈∧∈

∈∀∈
⊆

∈>∃⇒∈∧∈
∧∈>∃⇒∈∧∈

∈∀∈
=→⊗→

ω

ω

 

The chosen notion of refinement can be described 
best by taking a look at the special cases. A refinement 
of a service can be achieved by 

• Enhancing the service domain of a reaction 
pattern by introducing additional preconditions 
and/or triggering events (as done  in the cases 

)ST](PP[)ST](P[)ST](P[ 2121 →∨=→⊗→  

and  

)S)TT]((P[
)ST](P[)ST](P[

21

21
→∨

=→⊗→  

respectively, or by 
• Restricting/concreting the system reaction by 

defining a stronger reaction, as done with 

))S,S(T](P[
)ST](P[)ST](P[

21

21
→

=→⊗→  

 
We hereby use an alternating approach for 

refinement as for example known from interface 
automata [3]: a specification refines another 
specification, if it demands weaker input assumptions 
or stronger output guarantees.   

 
3.2.3 Dependencies between actions 

Besides the possibility to specify single 
requirements and to compose these modular 
requirements to obtain an overall specification, our 
approach also allows for the specification of 
dependencies between actions that are given by the 
environment or that have to be ensured by the system. 
These dependencies already have to be taken into 
account during the specification of the modular formal 
requirements and therefore restrict the set of the 
possible, correct requirements. Examples for such 
dependencies are explained in the following 
paragraphs. 

Concurrency of actions. If two actions A and B 
are in the concurrency relation BA f , A is only 

allowed to occur simultaneously with B. Consequently, 
in each precondition both actions have to be active or 
A must not be active at the same point of time t. 
Analogously, the occurrence of a start (end) event of 
action A demands the start (end) event of the action B 
at the same point of time t. This has to be ensured by 
the specification. Formally this fact can be expressed 
by the equation  

},{e},1,0{bwith
))))eB(S())eA(S(((
)))eB(T())eA(T(((
)))bB(P())bA(P((((

))ST](P[Spec(:)ST](P[]]BA[[

↓↑==
=⇒⇒=⇒

∧=⇒⇒=⇒

∧=⇒⇒=⇒

⇒→⇒→∀=f

 

Mutual exclusion of actions. Analogously, two 
actions can exclude each other mutually ( BA <≠> ), 
i.e. they never occur concurrently. Therefore, the 
concurrent occurrence of both actions can never be 
demanded as precondition, triggering events or 
reactions, for example.  The formalization of this fact 
can be done analogously to the previous example.4  

 
4 Notation 
 

In order to apply our approach in practice, a 
pragmatic, concise notation for the specification is 
inevitable. An adequate notation technique for our 
ForSeL specifications are tables. Their structure is 
described in the following.  

Each table is – like each specification term – 
divided into three parts: the preconditions, the 
triggering events, and the reaction. In each part an 
additional line is inserted for each possibly relevant 
action. As mentioned above, preconditions are 
statements over all actions ActA ∈ . Likewise, all 
actions ActA ∈  have to be taken into consideration 
for the part of the triggering events. In contrast, when 
it comes to the part of the reactions, only those actions 
have to be inserted which are directly influenced by 
the system SysA ∈ . 

The assignments of the actions are inserted in the 
columns. Each column corresponds to a formal 
specification term 1R . For a system specification 

nRRSpec K⊗= 1  having the environments actions 

}E,E{Env n1 K=  and the system reactions 

}S,S{Sys n1 K=  we obtain the following table 

structure:  
 

                                                           
4 Due to the limitation of space the formalization is not considered 
here. 



 R1 … Rn 

Precondition P:    

E1    
…    
En    
S1    
…    
Sn    

Triggering Event T:    

E1    
…    
En    
S1    
…    
Sn    

Reaction S:    

S1    
…    
Sn    

Table 1: Schema of reaction tables 

For example, the formal specification term  
))](1()0[( 111 =↓=↑→=∧= SESE n
 can be inserted in 

the table as follows:  
 

 R1 
Precondition P:  

E1 0 
…  
En  
S1 1 
…  
Sn  

Triggering Event T:  
E1  
…  
En ↑ 
S1  
…  
Sn  

Reaction S:  
S1 ↓ 
…  
Sn  

Table 2: Exemplary ForSeL term in reaction table 

The specification with a notion in table form has the 
following advantages over the specification with 
formal specification terms:  

• The presentation is more concise and easier to 
understand. 

• The table structure supports a systematic 
approach and helps in detecting holes in the 
requirements specification.  

• In particular, the dependencies between the 
single formal specification terms are better 

understood. Therefore, the specification with 
help of tables supports the integration of the 
single specification terms and leads to a precise, 
consistent specification.  

• As all possible actions and reactions are listed, 
the table supports the totalization step (which 
takes place later in the development process, cf. 
Section 5.3) and the transition to the operational 
system model. Cases/States/Behaviours which 
have not been considered can be detected 
automatically and added.  

• The tables can easily be expanded. Both the 
introduction of additional requirements 
(insertion of a new column) and the 
introduction of further actions (insertion of new 
rows) are possible. Therefore, the tables support 
an iterative proceeding for the creation of the 
system specification. 

• The table format services well as a basis for tool 
support; a prototype for this purpose is 
currently being developed. 

 
Concluding it has to be remarked that the 

specification with tables demands a certain general 
knowledge about the system already at the beginning 
of the specification phase. The specification with help 
of tables does not seem to be useful until essential 
actions and basic requirements are identified.  

5 Methodology  
 
5.1 Creation of a formal specification based 

on textual requirements 
 

In this sub-section a method for the systematic 
creation of a formal requirements specification based 
on single informal requirements is introduced. We start 
with a set of functional requirements given in textual 
form and aim at a concise, formal specification of 
these requirements. Basically, five steps have to be 
performed: 

1. Identify the set of actions Act. (cf. 5.1.1) 
2. Classify actions, i.e. divide Act into Sys and Env 

(cf. 5.1.2)  
3. Construct the table structure (cf. 5.1.3). 
4. Fill in the table entries iteratively and perform 

consistency checks (cf. 5.1.4).  
5. Perform plausibility checks (cf. 5.1.5).  

 
In the following these steps are explained with help 

of the previously introduced running example. 
  



5.1.1 Identify the set of actions Act 
First, all relevant actions of the system under 

construction are identified. For our running example 
we obtain the following actions: 

• Switch for closing the window is being pressed 
(SWO) 

• Switch for opening the window is being pressed 
(SWC) 

• Window is closing (WC) 
• Window is opening (WO) 
• Clamped obstacle is detected (CD) 
• Window end stop top (WET) 
• Window end stop bottom (WEB) 
• Child safety lock is on (CL) 

 
Hence, the set of actions is defined as Act = {SWO, 

SWC, WC, WO, CD, WET, WEB, CL). 
 

5.1.2  Classify actions  
The set of actions Act is then divided into the set of 

environment actions Env and the set of system 
reactions Sys:  

• Env={SWO, SWC, CD, WET, WEB, CL} 
• Sys={WC, WO} 

 
Furthermore, the dependencies between the actions 

within  Sys and Env are identified: 

• Env:  SWO <≠> SWC, WET <≠> WEB 
• Sys:  WC <≠> WO 
 

5.1.3  Construct the table structure 
As a next step, the table structure has to be 

determined (see Section 4). 
 

5.1.4  Fill in the table entries iteratively and 
perform consistency checks   

Determine reaction patterns. For each system 
reactions Sys, all triggering events are systematically 
determined that start or stop this system reaction. As 
far as our ForSeL terms are concerned, the 
specification specialist defines terms of the form 
[P](T�S), whereas S is the given system reaction, T is 
the triggering event currently determined, and P is a 
disregarded precondition (which is added later).The 
reaction pattern T�S is then inserted into the table (cf. 
Table 3). 

 1 2 3 4 5 6 7 8 9 

P          
SWO          
SWC          
CD          

CL          
WET          
WEB          
WO          
WC          

T          

SWO ↑  ↓       
SWC      ↑ ↓   
CD  ↑        
CL    ↑    ↑  
WET         ↑ 
WEB     ↑     
WO          
WC          

S          
WO ↑ ↑ ↓ ↓ ↓     
WC      ↑ ↓ ↓ ↓ 

Table 3: Reaction patterns of the running example 

Determine preconditions. The preconditions that 
have been disregarded in the previous step are not 
determined. As it might be too difficult to reveal all 
preconditions for a certain reaction pattern directly, we 
introduce an intermediate step: we consider possible 
preconditions for each triggering event and system 
reaction, respectively. [P]T or [P]S are intermediate 
notations (and not valid ForSeL terms) meaning that P 
is a precondition for the triggering event T or the 
system reaction S. 

 
 2a 2b 2c 2d 

P     
SWO     
SWC     
CD     
CL   WO  
WET     
WEB   WO 0 
WO  0 0 0 
WC   CD 1 

T     

SWO     
SWC     
CD ↑ ↑ ↑ ↑ 
CL     
WET     
WEB     
WO     
WC     
S     
WO ↑ ↑ ↑ ↑ 
WC     

Table 4: Preconditions for one system reaction 

 
For example, [WC]CD denotes that the closing of 

the window (WC) is a precondition for the crush 



detection (CD).  Further examples are [CL]WC, 
[CL]WO, [WET]WC, and [WEB]WO. 

After this intermediate step, the previously 
identified reaction patterns can be enriched with 
preconditions. 

During this step, a possible tool support can help 
the specification specialist by allowing him to only add 
information which is consistent to the prior defined 
system behaviour and by proposing him possible 
preconditions.  

 
 1 2 3 4 5 6 7 8 9 

P          

SWO      0 0   
SWC 0         
CD    0      
CL 0     0    
WET     0 0    
WEB 0 0        
WO 0 0 1 1 1  0 0 0 
WC  1 0 0 0 0 1 1 1 

T          

SWO ↑  ↓       
SWC      ↑ ↓   
CD  ↑        
CL    ↑    ↑  
WET         ↑ 

WEB     ↑     
WO          
WC          

S          

WO ↑ ↑ ↓ ↓ ↓     
WC      ↑ ↓ ↓ ↓ 

Table 5:  Reaction table of the running example 

Exemplary Application. Considering the reaction 
pattern of column 2 of Table 3 (CD↑�WO↑), we 
explain step by step how the interaction with the 
program could look like (cf. Fehler! Verweisquelle 
konnte nicht gefunden werden.):  

1. Column 2a: First, only the reaction pattern 
(disregarding any precondition) is inserted by 
the specification specialist. 

2. Column 2b: In the precondition part CD is 
given a grey background as it is already marked 
as triggering event. As the start of WO is the 
system reaction, WO has to be 0 in the 
precondition part. This step can be tool-
supported.  

3. Column 2c:  At this stage, all possibly relevant 
preconditions have to be checked. In the context 
of our example these are of the form […]CD 
and […]WO. As mentioned above, we 
encounter the following preconditions: 

[WC]CD, [CL]WO, [WEB]WO (cf. column 
2c).  

4. Column 2d: The specification specialist has to 
decide which of the proposed preconditions (of 
column 2c) are really relevant. Accordingly, 0 
or 1 is inserted into the respective fields of the 
table. If no entry is made, the assignment of the 
action does not matter for the precondition 
under consideration. 

Proceeding like this for each column, we obtain 
Fehler! Verweisquelle konnte nicht gefunden 
werden.. This table now contains all system reactions 
with its triggering events that the specification 
specialist knows. It is therefore total in this regard. 
However, it is not total in the sense that (the reaction 
for) all possible input combinations are defined. 

 
5.1.5  Plausibility checks  

For each column which is additionally inserted it 
has to be checked if the column is contradictory to one 
of the other columns. In particular it has to be checked, 
if two (or more) triggering events which are not 
mutually exclusive lead to conflicting system 
reactions. In such a case the conflict might be resolved 
by defining the preconditions appropriately (if not 
already done). 

 
5.2 Extension of specification terms /actions  

 
So far, we assumed that the specification specialist 

already has knowledge about the part of the system to 
be specified. However, our approach also allows for 
changing the specification afterwards. Hereby, we can 
think of two situations: adding/deleting services or 
adding/deleting actions.  

 
Adding formal requirements (services). The 

introduction of additional services corresponds to 
adding columns in the reaction table and can be done 
as explained in Section 4.  

Deleting formal requirements (services). The 
deletion of a service (which corresponds to the deletion 
of a column in the reaction table) does not cause 
problems to the consistency of a specification. As the 
specification is the conjunction of all services 
(columns), a service (column) can be deleted without 
restricting the previously defined behaviour.  

Adding actions. The introduction of actions is 
more complicated. It is assumed that the action to be 
added is already classified and that its dependencies to 
other actions are already defined. First, the new action 
has to be inserted (as a new line) in the part of the 
precondition and the part of the triggering action. If the 



action is a system reaction a new row has to be inserted 
into the part of the system reactions, too. For each 
column it now has to be checked if the introduced 
action is a restriction on the previous specification and 
if it has to be considered in one ore more 
preconditions. Then it has to be checked if the action 
starts or stops one ore more system reactions. If so, 
respective columns have to be inserted as well and 
filled iteratively like discussed in 5.1.4.  If the action is 
a system reaction all the other actions have to be 
looked at in order to find out if they start or stop the 
new action. Hereby, the introduction of additional 
columns might be necessary again.  

Deleting actions. Deleting an action corresponds to 
deleting a row in the part of the preconditions and the 
part of the triggering events, respectively. If the action 
to be deleted is a system reaction, the corresponding 
row has to be deleted in the part of the system 
reactions. In this case it has to be checked for each 
column if there are any actions in the part of the 
triggering events and the system reactions. If not, the 
respective column can be deleted. 
 
5.3 Totalization 
 

As mentioned above, the formal specification is 
total with respect to the textual specification; however 
it is not total with regard to each possible input pattern. 
A tool could offer all cases which are not specified. As 
the amount of these under-specified cases is 
exponentially high, an appropriate algorithm has to be 
chosen which reduces the number of displayed cases.  
Making a specification total is a very important step 
during the requirements engineering phase and has to 
be investigated in detail. However, this is not scope of 
this paper. 

  
6 Conclusion and Future Work 
 

In this paper, we introduced our current work on the 
formal language ForSeL which aims at the 
specification of functional requirements of interactive 
systems. We gave syntax, semantics, and a pragmatic 
notation technique.  Additionally, we introduced a 
methodology for the construction of precise, 
unambiguous, understandable system specifications 
with help of ForSeL. Furthermore, we explained how 
our approach can be supported by a tool. Finally we 
also outlined how a ForSeL specification can be turned 
into a total description of the system behaviour.  

Currently we are concerned with how informal 
requirements can be translated into ForSeL 
expressions. To that end, textual patterns which are 

frequently used in informal requirement specifications 
are analysed and mapped to formal ForSeL 
expressions. Moreover, the transition from our formal 
requirements specification to the operational model of 
the design phase is currently investigated.. 
Additionally, we are working on a way to enrich our 
ForSeL specification with quantitative timing 
information as this is inevitable for the development of 
real time systems. In the line of this timed refinement, 
we are planning to adopt concepts of network planning 
techniques [6] to make statements about the expected 
timing behaviour such as buffer times (slack), critical 
paths, etc. of the system under construction. Case 
studies of medium-scale are being carried out in order 
to evaluate our approach and to investigate questions 
concerning scalability.   
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