
A compositional approach for functional requirement specifications of
automotive software systems

J. Hartmann, S. Rittmann, D. Wild
Software & Systems Engineering
Technische Universität München

Boltzmannstraße 3
D-85748 Garching bei München

{hartmanj, rittmann, wildd}@in.tum.de

P. Scholz
Fachbereich für Informatik
Fachhochschule Landshut

Am Lurzenhof 1
D-84036 Landshut

peter.scholz@fh-landshut.de

Abstract

In this paper, we will introduce a simple but formal
service description language (ForSeL) together with a
methodology for its application in software
engineering. ForSeL helps to bridge the gap between
informal functional requirements and formal models in
the subsequent design phase. Though its semantics is
formally defined and therefore well suited for
development techniques like behavioural refinement,
code generation and verification, the language is very
easy to use for software engineers. Using our
approach, requirements can be formulated precisely
and without any contradictions.

The basic notion in ForSeL is an action. A ForSeL
specification is the composition of a finite number of
functional requirements. Each (functional)
requirement describes a system “re”-action that is
triggered by a set of input actions – but only if an
additional precondition holds. A pragmatic and at the
same time adequate notation for this triple is given by
so-called reaction tables.1

1 Introduction

During requirements engineering for embedded,
interactive systems as often found in the automotive
industry, (functional) requirements are usually
obtained in a textual and therefore informal way. This

1 The work presented stems from the MobilSoft- project which is
partially funded by the Bavarian Government under grant number
IuK 188/001.

often leads to imprecise, ambiguous, and contradictory
descriptions of the system under consideration.
Moreover, the transition from the informal
requirements to the formal models in the design phase
often causes problems.

In this article, we will introduce a formal service
description language called ForSeL (Formal
Specification Language) which describes functional
requirements in terms of (formal) services. Here a
service is a piece of functionality, which is visible for
the user of the system under development. ForSeL
together with its methodology is a means to bridge the
aforementioned gap between the informal requirements
and the formal design models.

A specification in ForSeL describes the system on a
very high level of abstraction, i.e. implementation
details are not considered yet and the system under
development is regarded as a black box. Hence, a
ForSeL specification easily supports reuse and variant
handling.

Furthermore, ForSeL allows for the partial
specification of the system behaviour. The
specification specialist is not forced to define the
system totally already at the early phase of
requirements engineering. Therefore, it is possible to
concentrate on the characteristic (“most important”)
behaviour of the system or parts of it. The result then is
a (partial or total) formal specification which is
precise, unambiguous, and consistent.

1.1 Related Work

In this subsection we relate our contribution to other
work.

The SCR (Software Cost Reduction) method [5]
also makes use of tables for the specification of

systems. However, SCR does not aim at specifications
of such an abstract level that our approach is based on.
Moreover, as SCR makes explicit use of states, it is
less black-box oriented. In our approach we focus on
the system behaviour as it can be observed from the
outside of the system.

In [4], causal and temporal dependencies between
actions are caught and graphically represented in form
of so-called timing diagrams. A semantic foundation is
given by the mapping to LTL formulas. The focus of
[4] is centred on the topic of verification. Our
approach focuses on the provision of a methodology.

In [1], a very formal theory on service-oriented
development is presented. Services are defined as
partial stream processing functions. We base our work
on the concepts of [1] and augment it by a lean
notation technique and a methodology.

Whereas Statecharts and related approaches [7, 8]
aim at the system specification during the software
design phase, ForSeL helps the user in describing the
system on a more abstract level. ForSeL expressions
can be seen as automata fragments which can be
integrated into automata. Therefore, ForSeL
expressions can be seen as a more abstract
specification technique or as a preliminary stage in the
development process to describe the system behaviour.

1.2 Outline

In this contribution, we introduce syntax and

semantics of ForSeL, a lean notation technique for
requirements engineering of automotive software
systems, and its methodology. A running example of
the automotive domain, which is introduced in Section
2, shall help the reader to understand the concepts of
ForSeL. In Section 3, we focus on the syntax and
semantics of ForSeL. A convenient notation technique
based on reaction tables for specifying with ForSeL is
given in Section 4. The methodology of how to use
ForSeL is described in Section 5. Finally, we conclude
in Section 6 and give an outlook about future work.

2 Running Example

In order to introduce both specification concepts
and methodology, we make use of a running example
from the automotive domain: power windows as they
can be found in almost all modern cars. In this section,
the textually (informally) given requirements of the
considered system are listed.

In order to reduce complexity and to improve
readability we limit ourselves to only one single
window that is described as follows:

(1) Opening and closing a window.
(1.1) On pressing the open toggle switch (close

toggle switch), the window is moved up
(down).

(1.2) The window keeps on moving as long as the
toggle switch is pressed. It stops as soon as
the toggle switch is released or if the
respective end position is reached.

(2) Crush protection. The crush protection is
intended to prevent someone/something from
being clamped and possibly hurt between the
window and the window frame.
(2.1) A sensor detects if something is being

clamped (between the window and the
window frame) while the window is moving
upwards.

(2.2) If a clamped obstacle has been detected, the
window immediately has to open
completely.

(2.3) If the toggle switch is pressed again, the
window has to go upwards despite the crush
protection.

(3) Child safety lock. The child safety lock shall
prevent children from playing around with the
back windows. If the child safety lock is enabled
the window must not move (even) if the respective
toggle switch is pressed.

3 Syntax and Semantics

Before being able to define the concrete syntax and
semantics of ForSeL, we first explain some
preliminaries.

3.1 Basics

ForSeL’s semantics is based on stream processing
functions that describe the system behaviour by finite
or infinite system reactions.

3.1.1 Stream processing functions (FOCUS)

The concepts of our approach are formally founded
by the FOCUS theory [2]. FOCUS is a formal system
model which serves very well for specifying reactive,
distributed systems. In FOCUS, a system is considered
as a stream processing function on messages. This
stream processing function relates input messages to
output messages which are exchanged between the
environment and the system2. Thus, the system
behaviour is described by a black box view on the
system.

2 (and between components within the system)

In the following we only introduce the concepts of
the FOCUS theory which are necessary to define the
semantics of our approach formally.3

Finite and infinite streams. In FOCUS streams of
(typed) messages represent the communication history
of data messages within a (finite) time frame. Given a
set of data messages M (or better “actions” in our
setting), M* (M∞) denotes the set of finite (infinite)
streams (which are sequences of elements of M). Mω

denotes M* ∪ M∞. Such a stream can be represented
by the function MN:s 0 → where s(t) contains the

message processed in the stream s at the point of time
t.

For example, let s = <m1,m2,m3,m4> (s is a finite
stream consisting of the messages m1 to m4). Then
s(2)=m3 as m3 is the third message which is processed
in the stream. To improve the readability of formulas
we often write s.n instead of s(n). <m,m,m,m,m…>
would denote the infinite stream consisting of
infinitely many copies of the message m.

3.1.2 Actions

In our approach ForSeL, a specification describes a

system by a set of valid streams ω∈ Acts , whereas
Act denotes the finite set of relevant actions for a
system, respectively, i.e. those actions that can be
observed at the system border. The set of valid streams
is determined by predicates given by the formal
requirements.

Actions are the basic elements out of which a
formal service specification is comprised. An action is
a user-visible input or output of the system on a logical
level. Examples for actions are “press toggle switch”,
“window goes up”, or “child safety lock enabled”.

Formally spoken an action A is a variable of type
Action = {0,1,↑,↓}. Considering a valid stream s, a
declaration of each action has to be made at each point
in time. An action A can have exactly one of the
following assignments (at the point of time t):

• A=1: A is active at the point of time t, i.e.
A∈s.t.

• A=0: A is not active at the point of time t, i.e.
¬A∈s.t

• A=↑: A starts at the point of time t, i.e. A↑∈s.t,
consequently ¬A∈s.(t-1) and (A∨A↓)∈s.(t+1)

• A=↓: A stops at the point of time t, i.e. A↓∈s.t,
consequently A∈s.(t-1) and (¬A∨A↑)∈s.(t+1)

3 For more information on the comprehensive FOCUS theory, the

interested reader is referred to [2].

A↑ and A↓ are called the start event and end event,
respectively. A=0 and A=1 are called states of the
action A.

For example, the child safety lock (CL) can be
active (CL=1), not active (CL=0), currently activated
(CL=↑), or deactivated at the moment (CL=↓).

Actions can be clearly divided into environment
actions Env⊂Act and system reactions Sys⊂Act,
whereas Act = Env ∪ Sys and Env ∩ Sys =∅.

Environment actions can not be influenced directly
by the system as opposed to system reactions which
are directly influenced by the system. This means that
the system can start and stop these actions (system
reactions). System reactions are primarily output
actions, but can also serve as input actions.

Considering our running example, the pressing of
the open toggle switch and the close toggle switch for
instance, are environment actions which can not be
influenced by the system. In contrast, the movement of
the windows (upwards and downwards) are system
reactions that are controlled by the system.

3.2 Syntax and semantics of ForSeL

3.2.1 Formal Requirements
In our approach, the system behaviour is described

by means of formal expressions representing
requirements. A requirement is given by the triple

)ST](P[R →= . A formal requirement of this form is

called a service. The transformation from informal
requirements into services however is not a 1:1-
mapping, but requires real design work (cf. 5). A
formal requirement describes how a system is to react
on particular inputs. It is comprised of three parts,
namely:

• the precondition P
• the triggering event T, and
• the system reaction S

Precondition P. The precondition describes the

states of the system in which a certain triggering event
leads to a certain reaction. Formally, P is a conjunction
of assignments of actions, i.e.

n,,1i},1,0{b,ActAwith
)bA()bA()bA(P

ii

nn2211
K

K

=∈∈
=∧∧=∧==

Here, each Ai denotes an action which has an
influence on the reaction pattern ST → . Actions not
influencing the reaction pattern ST → are not further
specified.

Considering again our running example, the
pressing of the (open or close) toggle switch causes the

window to move, only if the child safety lock is not
active at the moment, the switch is pressed (and
therefore the action is activated). Therefore the
deactivated child safety lock (CL=0) is a precondition
for this system reaction.

Triggering event T. The triggering event T defines
which start or end events trigger the specified system
reaction. This time the states of the actions are not
considered, as it is assumed that only events cause
system reactions. Formally, T is a conjunction of start
and end events, i.e.

n,,1i},,{e,ActBwith
)eB()eB()eB(T

ii

nn2211
K

K

=↓↑∈∈
=∧∧=∧==

Actions iB are those actions in Act whose start or

end cause the system reaction S.
In our running example, the start of pressing a

toggle switch or detecting a clamped obstacle are
triggering events.

System reaction S. The reaction S denotes which
start and end events are triggered. Again, the states of
the actions are not considered, but only events.
Formally, S is a conjunction of start and end events of
system reactions, i.e.

n,,1i},,{e,SysCwith
)eC()eC()eC(S

ii

2n2211

K

K

=↓↑∈∈
=∧∧=∧==

Those actions which are not influenced at all are not
specified any further.

In our running example, there are only two actions
which can be influenced by the system and therefore
occur as reactions: „window up“ and „window down“.

Formal requirement [P](T→→→→S). By the aid of the
definitions above, the semantics of)ST](P[→ can be

defined as follows:

))}'t.sS:t't()t.sTt.sP((
:Nt|Acts{

)]]ST](P[[[

∈>∃⇒∈∧∈
∈∀∈
=→

ω

Informally spoken,)ST](P[→ means that if at

some point in time t precondition P is true and
triggering event T occurs, then reaction S has to occur
at some later point in time t’>t.

Each formal requirement defines a predicate that
has to be fulfilled by the system. It filters out only the
valid streams of all possible streams. Examples for
such service formulas can be found in Section 5.
3.2.2 Formal Specification

A formal specification Spec is the conjunction of a
finite number of formal requirements:

n321 R.....RRRSpec ⊗⊗⊗⊗=

A valid implementation has to fulfil each of the formal
requirements Ri. For two requirements

)ST](P[R 1111 →= and)ST](P[R 2222 →= , their

composition

)ST](P[)ST](P[RR 22211121 →⊗→=⊗

is formally defined as follows:

)))}'t.sS:t't()t.sTt.sP((
))'t.sS:t't()t.sTt.sP(((

:Nt|Acts{
)]]ST](P[)ST](P[[[

222

111

222111

∈>∃⇒∈∧∈
∧∈>∃⇒∈∧∈

∈∀∈
=→⊗→

ω

Informally spoken: If P1 is true at a certain point of
time t and T1 occurs, then the system has to react with
S1 and if P2 is valid in a point of time t – independently
of P1, T1, and S1 – and T2 occurs then the system has to
react with S2. If both of the preconditions are fulfilled
and both of the triggering events occur, then also both
of the reactions have to occur; however, not
necessarily at the same point of time.

Analogously, the overall specification can be
created by stepwise conjunction of the single
requirements.

In the following we prove some properties of the
composition operator which show that the formal
definition of the composition operators goes along
with the intuitive understanding.

Identical reaction patterns. If two requirements

)ST](P[R 11 →= and)ST](P[R 22 →=

describe the same reaction pattern ST → for different
preconditions P1 and P2, respectively, the composition

21 RR ⊗ has to make sure that the reaction pattern

occurs both under the precondition P1 and P2, i.e. it is

)]]ST](PP[[[)]]ST](P[)ST](P[[[2121 →∨=→⊗→

A simple consideration shows that this is fulfilled
by our composition operator.

)]]ST](PP[[[
))}'t.sS:t't())t.sT(

)t.sPt.sP(((:Nt|Acts{
))}'t.sS:t't(

))t.sTt.sP()t.sTt.sP((((
:Nt|Acts{

)))}'t.sS:t't()t.sTt.sP((
))'t.sS:t't()t.sTt.sP(((

:Nt|Acts{
)))}'t.sS:t't()t.sTt.sP((
))'t.sS:t't()t.sTt.sP(((

:Nt|Acts{
)]]ST](P[)ST](P[[[

21

21

21

2

1

2

1

21

→∨=
∈>∃⇒∈

∧∈∨∈∈∀∈=
∈>∃∨

∈∧∈∨∈∧∈¬
∈∀∈=

∈>∃∨∈∧∈¬
∧∈>∃∨∈∧∈¬

∈∀∈=
∈>∃⇒∈∧∈

∧∈>∃⇒∈∧∈
∈∀∈=

→⊗→

ω

ω

ω

ω

Identical precondition and reaction. If two
requirements

)ST](P[R 11 →= and)ST](P[R 22 →=

have the same precondition and reaction, i.e. that under
the same precondition the same reaction is triggered by
a different triggering event T1 and T2, respectively, the
composition 21 RR ⊗ has to make sure the following:

If the precondition P is fulfilled, both the occurrence of
T1 and T2 – independently from each other – has to
trigger the reaction S, i.e.

)]]S)TT]((P[[[)]]ST](P[)ST](P[[[2121 →∨=→⊗→

An analogous consideration shows that our
composition operator fulfils this requirement:

)]]S)TT]((P[[[
))}'t.sS:t't())t.sTt.sT(

t.sP((:Nt|Acts{
)))}'t.sS:t't()t.sTt.sP((
))'t.sS:t't()t.sTt.sP(((

:Nt|Acts{
)]]ST](P[)ST](P[[[

21

21

2

1

21

→∨=
∈>∃⇒∈∨∈

∧∈∈∀∈=
∈>∃⇒∈∧∈

∧∈>∃⇒∈∧∈
∈∀∈=

→⊗→

ω

ω

Identical Precondition and identical triggering
event. If two requirements

)ST](P[R 11 →= and)ST](P[R 22 →=

demand that under the precondition P, a triggering
event T causes two different reactions S1 and S2, the
composition 21 RR ⊗ shall make sure that both

reactions S1 and S2 are caused. However, these two
reactions do not have to occur at the same time but can
occur at two arbitrary future points in time t’ and t’’.
Formally it has to be proven that

))]]S,S(T](P[[[)]]ST](P[)ST](P[[[2121 →=→⊗→

Here (S1,S2) means that both system reactions S1
and S2 occur, but independently from each other (as far
as a concrete point in time is concerned). Again, a
simple consideration shows that this requirement is
fulfilled by the composition operator:

)]]S,S(T](P[[[
)))}''t.sS:t''t()'t.sS:t't((

)t.sTt.sP((
:Nt|Acts{

)))}'t.sS:t't()'t.sS:t't((
)t.sTt.sP((

:Nt|Acts{
)))}'t.sS:t't()t.sTt.sP((
))'t.sS:t't()t.sTt.sP(((

:Nt|Acts{
)))}'t.sS:t't()t.sTt.sP((
))'t.sS:t't()t.sTt.sP(((

:Nt|Acts{
)]]ST](P[)]ST](P[[[

21

21

21

2

1

2

1

21

→=
∈>∃∧∈>∃

⇒∈∧∈
∈∀∈=

∈>∃∧∈>∃
∨∈∧∈¬

∈∀∈=
∈>∃∨∈∧∈¬

∧∈>∃∨∈∧∈¬
∈∀∈=

∈>∃⇒∈∧∈
∧∈>∃⇒∈∧∈

∈∀∈=
→⊗→

ω

ω

ω

ω

No Precondition: Another special case is the
specification of a ‚pure’ reaction pattern ST → where
there is no precondition specified. According to the
formal definition, we obtain the following semantics:

))}'t.sS:t't(t.sT(:Nt|Acts{
]]ST[[

∈>∃⇒∈∈∀∈
=→

ω

ST → means that the occurrence of T causes the

system to react with S in each situation, no matter in
what state the system currently is. The specification
specialist has to be aware of the fact that this is a very
‚strong’ requirement. If a precondition is added to the
reaction patter ST → belatedly, this is not a
refinement as the requirement is made weaker.

Besides these special cases of composing
requirements, the following rules apply as a
consequence of the Boolean calculation rules:

Commutative law. The composition operator is
commutative, i.e. for two arbitrary requirements 1R

and 2R the following holds:

]].RR[[]]RR[[1221 ⊗=⊗

The proof for this rule is rather straightforward.
Associative law. Analogously, the application of

the associative law for the Boolean operators proves
the associativity of the composition operator for
arbitrary requirements 1R , 2R , and 3R :

)]].RR(R[[]]R)RR[[(321321 ⊗⊗=⊗⊗

In the last part of this sub-section we take a look at
refinement. To that end, we describe our notion of
refinement and show that the addition of further
requirement to an existing specification leads to a
refinement of the specification. Concretely we show
that for the requirements)ST](P[R 1111 →= and

)ST](P[R 2222 →= the following holds:

 121 RRR ⇒⊗ .

Refinement. The refinement of a specification
means that the set of accepted streams is reduced. It is
obvious that 21 RR ⊗ is a stronger condition than 1R

and that consequently 121 RRR ⇒⊗ holds as

)]]ST](P[[[
))}'t.sS:t't()t.sTt.sP(((

:Nt|Acts{

)))}'t.sS:t't()t.sTt.sP((
))'t.sS:t't()t.sTt.sP(((

:Nt|Acts{
)]]ST](P[)ST](P[[[

111

111

222

111

222111

→
=∈>∃⇒∈∧∈

∈∀∈
⊆

∈>∃⇒∈∧∈
∧∈>∃⇒∈∧∈

∈∀∈
=→⊗→

ω

ω

The chosen notion of refinement can be described
best by taking a look at the special cases. A refinement
of a service can be achieved by

• Enhancing the service domain of a reaction
pattern by introducing additional preconditions
and/or triggering events (as done in the cases

)ST](PP[)ST](P[)ST](P[2121 →∨=→⊗→

and

)S)TT]((P[
)ST](P[)ST](P[

21

21
→∨

=→⊗→

respectively, or by
• Restricting/concreting the system reaction by

defining a stronger reaction, as done with

))S,S(T](P[
)ST](P[)ST](P[

21

21
→

=→⊗→

We hereby use an alternating approach for

refinement as for example known from interface
automata [3]: a specification refines another
specification, if it demands weaker input assumptions
or stronger output guarantees.

3.2.3 Dependencies between actions

Besides the possibility to specify single
requirements and to compose these modular
requirements to obtain an overall specification, our
approach also allows for the specification of
dependencies between actions that are given by the
environment or that have to be ensured by the system.
These dependencies already have to be taken into
account during the specification of the modular formal
requirements and therefore restrict the set of the
possible, correct requirements. Examples for such
dependencies are explained in the following
paragraphs.

Concurrency of actions. If two actions A and B
are in the concurrency relation BA f , A is only

allowed to occur simultaneously with B. Consequently,
in each precondition both actions have to be active or
A must not be active at the same point of time t.
Analogously, the occurrence of a start (end) event of
action A demands the start (end) event of the action B
at the same point of time t. This has to be ensured by
the specification. Formally this fact can be expressed
by the equation

},{e},1,0{bwith
))))eB(S())eA(S(((
)))eB(T())eA(T(((
)))bB(P())bA(P((((

))ST](P[Spec(:)ST](P[]]BA[[

↓↑==
=⇒⇒=⇒

∧=⇒⇒=⇒

∧=⇒⇒=⇒

⇒→⇒→∀=f

Mutual exclusion of actions. Analogously, two
actions can exclude each other mutually (BA <≠>),
i.e. they never occur concurrently. Therefore, the
concurrent occurrence of both actions can never be
demanded as precondition, triggering events or
reactions, for example. The formalization of this fact
can be done analogously to the previous example.4

4 Notation

In order to apply our approach in practice, a
pragmatic, concise notation for the specification is
inevitable. An adequate notation technique for our
ForSeL specifications are tables. Their structure is
described in the following.

Each table is – like each specification term –
divided into three parts: the preconditions, the
triggering events, and the reaction. In each part an
additional line is inserted for each possibly relevant
action. As mentioned above, preconditions are
statements over all actions ActA ∈ . Likewise, all
actions ActA ∈ have to be taken into consideration
for the part of the triggering events. In contrast, when
it comes to the part of the reactions, only those actions
have to be inserted which are directly influenced by
the system SysA ∈ .

The assignments of the actions are inserted in the
columns. Each column corresponds to a formal
specification term 1R . For a system specification

nRRSpec K⊗= 1 having the environments actions

}E,E{Env n1 K= and the system reactions

}S,S{Sys n1 K= we obtain the following table

structure:

4 Due to the limitation of space the formalization is not considered
here.

 R1 … Rn

Precondition P:

E1
…
En
S1
…
Sn

Triggering Event T:

E1
…
En
S1
…
Sn

Reaction S:

S1
…
Sn

Table 1: Schema of reaction tables

For example, the formal specification term
))](1()0[(111 =↓=↑→=∧= SESE n
 can be inserted in

the table as follows:

 R1
Precondition P:

E1 0
…
En
S1 1
…
Sn

Triggering Event T:
E1
…
En ↑
S1
…
Sn

Reaction S:
S1 ↓
…
Sn

Table 2: Exemplary ForSeL term in reaction table

The specification with a notion in table form has the
following advantages over the specification with
formal specification terms:

• The presentation is more concise and easier to
understand.

• The table structure supports a systematic
approach and helps in detecting holes in the
requirements specification.

• In particular, the dependencies between the
single formal specification terms are better

understood. Therefore, the specification with
help of tables supports the integration of the
single specification terms and leads to a precise,
consistent specification.

• As all possible actions and reactions are listed,
the table supports the totalization step (which
takes place later in the development process, cf.
Section 5.3) and the transition to the operational
system model. Cases/States/Behaviours which
have not been considered can be detected
automatically and added.

• The tables can easily be expanded. Both the
introduction of additional requirements
(insertion of a new column) and the
introduction of further actions (insertion of new
rows) are possible. Therefore, the tables support
an iterative proceeding for the creation of the
system specification.

• The table format services well as a basis for tool
support; a prototype for this purpose is
currently being developed.

Concluding it has to be remarked that the

specification with tables demands a certain general
knowledge about the system already at the beginning
of the specification phase. The specification with help
of tables does not seem to be useful until essential
actions and basic requirements are identified.

5 Methodology

5.1 Creation of a formal specification based

on textual requirements

In this sub-section a method for the systematic
creation of a formal requirements specification based
on single informal requirements is introduced. We start
with a set of functional requirements given in textual
form and aim at a concise, formal specification of
these requirements. Basically, five steps have to be
performed:

1. Identify the set of actions Act. (cf. 5.1.1)
2. Classify actions, i.e. divide Act into Sys and Env

(cf. 5.1.2)
3. Construct the table structure (cf. 5.1.3).
4. Fill in the table entries iteratively and perform

consistency checks (cf. 5.1.4).
5. Perform plausibility checks (cf. 5.1.5).

In the following these steps are explained with help

of the previously introduced running example.

5.1.1 Identify the set of actions Act
First, all relevant actions of the system under

construction are identified. For our running example
we obtain the following actions:

• Switch for closing the window is being pressed
(SWO)

• Switch for opening the window is being pressed
(SWC)

• Window is closing (WC)
• Window is opening (WO)
• Clamped obstacle is detected (CD)
• Window end stop top (WET)
• Window end stop bottom (WEB)
• Child safety lock is on (CL)

Hence, the set of actions is defined as Act = {SWO,

SWC, WC, WO, CD, WET, WEB, CL).

5.1.2 Classify actions
The set of actions Act is then divided into the set of

environment actions Env and the set of system
reactions Sys:

• Env={SWO, SWC, CD, WET, WEB, CL}
• Sys={WC, WO}

Furthermore, the dependencies between the actions

within Sys and Env are identified:

• Env: SWO <≠> SWC, WET <≠> WEB
• Sys: WC <≠> WO

5.1.3 Construct the table structure
As a next step, the table structure has to be

determined (see Section 4).

5.1.4 Fill in the table entries iteratively and
perform consistency checks

Determine reaction patterns. For each system
reactions Sys, all triggering events are systematically
determined that start or stop this system reaction. As
far as our ForSeL terms are concerned, the
specification specialist defines terms of the form
[P](T�S), whereas S is the given system reaction, T is
the triggering event currently determined, and P is a
disregarded precondition (which is added later).The
reaction pattern T�S is then inserted into the table (cf.
Table 3).

 1 2 3 4 5 6 7 8 9

P
SWO
SWC
CD

CL
WET
WEB
WO
WC

T

SWO ↑ ↓
SWC ↑ ↓
CD ↑
CL ↑ ↑
WET ↑
WEB ↑
WO
WC

S
WO ↑ ↑ ↓ ↓ ↓
WC ↑ ↓ ↓ ↓

Table 3: Reaction patterns of the running example

Determine preconditions. The preconditions that
have been disregarded in the previous step are not
determined. As it might be too difficult to reveal all
preconditions for a certain reaction pattern directly, we
introduce an intermediate step: we consider possible
preconditions for each triggering event and system
reaction, respectively. [P]T or [P]S are intermediate
notations (and not valid ForSeL terms) meaning that P
is a precondition for the triggering event T or the
system reaction S.

 2a 2b 2c 2d

P
SWO
SWC
CD
CL WO
WET
WEB WO 0
WO 0 0 0
WC CD 1

T

SWO
SWC
CD ↑ ↑ ↑ ↑
CL
WET
WEB
WO
WC
S
WO ↑ ↑ ↑ ↑
WC

Table 4: Preconditions for one system reaction

For example, [WC]CD denotes that the closing of

the window (WC) is a precondition for the crush

detection (CD). Further examples are [CL]WC,
[CL]WO, [WET]WC, and [WEB]WO.

After this intermediate step, the previously
identified reaction patterns can be enriched with
preconditions.

During this step, a possible tool support can help
the specification specialist by allowing him to only add
information which is consistent to the prior defined
system behaviour and by proposing him possible
preconditions.

 1 2 3 4 5 6 7 8 9

P

SWO 0 0
SWC 0
CD 0
CL 0 0
WET 0 0
WEB 0 0
WO 0 0 1 1 1 0 0 0
WC 1 0 0 0 0 1 1 1

T

SWO ↑ ↓
SWC ↑ ↓
CD ↑
CL ↑ ↑
WET ↑

WEB ↑
WO
WC

S

WO ↑ ↑ ↓ ↓ ↓
WC ↑ ↓ ↓ ↓

Table 5: Reaction table of the running example

Exemplary Application. Considering the reaction
pattern of column 2 of Table 3 (CD↑�WO↑), we
explain step by step how the interaction with the
program could look like (cf. Fehler! Verweisquelle
konnte nicht gefunden werden.):

1. Column 2a: First, only the reaction pattern
(disregarding any precondition) is inserted by
the specification specialist.

2. Column 2b: In the precondition part CD is
given a grey background as it is already marked
as triggering event. As the start of WO is the
system reaction, WO has to be 0 in the
precondition part. This step can be tool-
supported.

3. Column 2c: At this stage, all possibly relevant
preconditions have to be checked. In the context
of our example these are of the form […]CD
and […]WO. As mentioned above, we
encounter the following preconditions:

[WC]CD, [CL]WO, [WEB]WO (cf. column
2c).

4. Column 2d: The specification specialist has to
decide which of the proposed preconditions (of
column 2c) are really relevant. Accordingly, 0
or 1 is inserted into the respective fields of the
table. If no entry is made, the assignment of the
action does not matter for the precondition
under consideration.

Proceeding like this for each column, we obtain
Fehler! Verweisquelle konnte nicht gefunden
werden.. This table now contains all system reactions
with its triggering events that the specification
specialist knows. It is therefore total in this regard.
However, it is not total in the sense that (the reaction
for) all possible input combinations are defined.

5.1.5 Plausibility checks

For each column which is additionally inserted it
has to be checked if the column is contradictory to one
of the other columns. In particular it has to be checked,
if two (or more) triggering events which are not
mutually exclusive lead to conflicting system
reactions. In such a case the conflict might be resolved
by defining the preconditions appropriately (if not
already done).

5.2 Extension of specification terms /actions

So far, we assumed that the specification specialist

already has knowledge about the part of the system to
be specified. However, our approach also allows for
changing the specification afterwards. Hereby, we can
think of two situations: adding/deleting services or
adding/deleting actions.

Adding formal requirements (services). The

introduction of additional services corresponds to
adding columns in the reaction table and can be done
as explained in Section 4.

Deleting formal requirements (services). The
deletion of a service (which corresponds to the deletion
of a column in the reaction table) does not cause
problems to the consistency of a specification. As the
specification is the conjunction of all services
(columns), a service (column) can be deleted without
restricting the previously defined behaviour.

Adding actions. The introduction of actions is
more complicated. It is assumed that the action to be
added is already classified and that its dependencies to
other actions are already defined. First, the new action
has to be inserted (as a new line) in the part of the
precondition and the part of the triggering action. If the

action is a system reaction a new row has to be inserted
into the part of the system reactions, too. For each
column it now has to be checked if the introduced
action is a restriction on the previous specification and
if it has to be considered in one ore more
preconditions. Then it has to be checked if the action
starts or stops one ore more system reactions. If so,
respective columns have to be inserted as well and
filled iteratively like discussed in 5.1.4. If the action is
a system reaction all the other actions have to be
looked at in order to find out if they start or stop the
new action. Hereby, the introduction of additional
columns might be necessary again.

Deleting actions. Deleting an action corresponds to
deleting a row in the part of the preconditions and the
part of the triggering events, respectively. If the action
to be deleted is a system reaction, the corresponding
row has to be deleted in the part of the system
reactions. In this case it has to be checked for each
column if there are any actions in the part of the
triggering events and the system reactions. If not, the
respective column can be deleted.

5.3 Totalization

As mentioned above, the formal specification is
total with respect to the textual specification; however
it is not total with regard to each possible input pattern.
A tool could offer all cases which are not specified. As
the amount of these under-specified cases is
exponentially high, an appropriate algorithm has to be
chosen which reduces the number of displayed cases.
Making a specification total is a very important step
during the requirements engineering phase and has to
be investigated in detail. However, this is not scope of
this paper.

6 Conclusion and Future Work

In this paper, we introduced our current work on the
formal language ForSeL which aims at the
specification of functional requirements of interactive
systems. We gave syntax, semantics, and a pragmatic
notation technique. Additionally, we introduced a
methodology for the construction of precise,
unambiguous, understandable system specifications
with help of ForSeL. Furthermore, we explained how
our approach can be supported by a tool. Finally we
also outlined how a ForSeL specification can be turned
into a total description of the system behaviour.

Currently we are concerned with how informal
requirements can be translated into ForSeL
expressions. To that end, textual patterns which are

frequently used in informal requirement specifications
are analysed and mapped to formal ForSeL
expressions. Moreover, the transition from our formal
requirements specification to the operational model of
the design phase is currently investigated..
Additionally, we are working on a way to enrich our
ForSeL specification with quantitative timing
information as this is inevitable for the development of
real time systems. In the line of this timed refinement,
we are planning to adopt concepts of network planning
techniques [6] to make statements about the expected
timing behaviour such as buffer times (slack), critical
paths, etc. of the system under construction. Case
studies of medium-scale are being carried out in order
to evaluate our approach and to investigate questions
concerning scalability.

7 References

[1] M. Broy: Service-Oriented Systems Eingineering:
Specification and Design of Services and Layered
Architectures – The Janus Approach. In: Engineering
Theories of Software Intensive Systems, pp. 47-81. Springer,
2005.

[2] M. Broy and K. Stølen, Specification and Development
of Interactive Systems: FOCUS on Streams, Interfaces, and
Refinement. Springer, 2001.

[3] Luca de Alfaro and Thomas A. Henzinger, Interface
automata. Proceedings of the Ninth Annual Symposium on
Foundations of Software Engineering (FSE), ACM Press,
2001, pp. 109-120.

[4] R. Schlör and W. Damm, Specification and Verification
of System-level Hardware designs using Timing Diagrams,
Proc. IEEE EDAC-EuroASIC'93, Paris (France), Feb. 1993,
pp. 518-524.

[5] C. Heitmeyer, M. Archer, R. Bharadwaj, and R. Jeffords,
Tools for constructing requirements specifications: The SCR
toolset at the age of ten, International Journal of Computer
Systems Science and Engineering, 20(1), January 2005, pp.
19-35.

[6] Eric Verzuh, The Fast Forward MBA in Project
Management. John Wiley & Sons, 2005.

[7] P. Scholz, Partitioning of Perfect Synchroneous Reactive
Specifications to Distributed Processors using µ-Charts.
Software and Systems Modeling (SoSyM) Journal, Band 5,
Nummer 1, Seite 13-25, Springer, April 2006.

[8] P. Scholz, Incremental Design of Statechart
Specifications. Science of Computer Programming 40
(2001), Seiten 119 – 145, Elsevier Science B.V., 2001.

