A compositional approach for functional requirementspecifications of
automotive software systems

J. Hartmann, S. Rittmann, D. Wild P. Scholz
Software & Systems Engineering Fachbereich fur Informatik
Technische Universitat Minchen Fachhochschule Landshut
Boltzmannstral3e 3 Am Lurzenhof 1
D-85748 Garching bei Miinchen D-84036 Landshut
{hartmanj, rittmann, wildd}@in.tum.de peter.scholz@fh-landshut.de
Abstract often leads to imprecise, ambiguous, and contraigict

descriptions of the system under consideration.

In this paper, we will introduce a simple but folma Moreover, the transiton from the informal
service description language (ForSeL) together with ~ requirements to the formal models in the desigrsgha
methodology for its applicaton in software Often causes problems.
engineering. ForSeL helps to bridge the gap between In this article, we will introduce a formal service
informal functional requirements and formal models ~ description language called ForSeL (Formal
the subsequent design phase. Though its semastics iSpecification Language) which describes functional
formally defined and therefore well suited for requirements in terms of (formal) services. Here a
development techniques like behavioural refinement,service is a piece of functionality, which is visitfor
code generation and verification, the languagegsyv ~ the user of the system under development. ForSelL
easy to use for software engineers. Using our together with its methodology is a means to brithge
approach, requirements can be formulated precisely aforementioned gap between the informal requiresnent
and without any contradictions. and the formal design models.

The basic notion in ForSeL is an action. A ForSeL A specification in ForSeL describes the system on a
specification is the composition of a finite numoér ~ Vvery high level of abstraction, i.e. implementation
functional requirements. Each (functional) details are not considered yet and the system under
requirement describes a system “re”-action that is development is regarded as a black box. Hence, a
triggered by a set of input actions — but only if a ForSeL specification easily supports reuse andamari
additional precondition holds. A pragmatic and ket handling.

same time adequate notation for this triple is gty Furthermore, ForSeL allows for the partial
so-called reaction tables. specification of the system behaviour. The

specification specialist is not forced to definee th
system totally already at the early phase of
1 Introduction requirements engineering. Therefore, it is possible
concentrate on the characteristic (“most imporfant”
behaviour of the system or parts of it. The rethéh is
a (partial or total) formal specification which is
precise, unambiguous, and consistent.

During requirements engineering for embedded,
interactive systems as often found in the autoreotiv
industry, (functional) requirements are usually

obtained in a textual and therefore informal walyisT
1.1 Related Work

! The work presented stems from the MobilSoft- proyeich is . . R
partially funded by the Bavarian Government undangnumber In this subsection we relate our contribution teeot

luK 188/001. work.
The SCR (Software Cost Reduction) method [5]
also makes use of tables for the specification of

systems. However, SCR does not aim at specification (1) Opening andclosinga window.

of such an abstract level that our approach ischase
Moreover, as SCR makes explicit use of statess it i
less black-box oriented. In our approach we foaus o
the system behaviour as it can be observed from the
outside of the system.

In [4], causal and temporal dependencies between
actions are caught and graphically representedrin f

of so-called timing diagrams. A semantic foundai®n (2)

given by the mapping to LTL formulas. The focus of
[4] is centred on the topic of verification. Our
approach focuses on the provision of a methodology.

In [1], a very formal theory on service-oriented
development is presented. Services are defined as
partial stream processing functions. We base ouk wo
on the concepts of [1] and augment it by a lean
notation technique and a methodology.

Whereas Statecharts and related approaches [7, 8]
aim at the system specification during the software
design phase, ForSeL helps the user in describiag t
system on a more abstract level. ForSeL expressions
can be seen as automata fragments which can be
integrated into automata. Therefore,
expressions can be seen as a more abstract
specification technique or as a preliminary stagthe
development process to describe the system behraviou

1.2 Outline

ForSeL (3)

(1.1) On pressing the open toggle switch (close
toggle switch), the window is moved up
(down).

(1.2) The window keeps on moving as long as the
toggle switch is pressed. It stops as soon as
the toggle switch is released or if the
respective end position is reached.

Crush protection. The crush protection is

intended to prevent someone/something from

being clamped and possibly hurt between the
window and the window frame.

(2.1) A sensor detects if something is being
clamped (between the window and the
window frame) while the window is moving

upwards.

(2.2) If a clamped obstacle has been detected, the
window immediately has to open
completely.

(2.3) If the toggle switch is pressed again, the
window has to go upwards despite the crush
protection.

Child safety lock The child safety lock shall

prevent children from playing around with the

back windows. If the child safety lock is enabled
the window must not move (even) if the respective
toggle switch is pressed.

3 Syntax and Semantics

In this contribution, we introduce syntax and
semantics of ForSeL, a lean notation technique for

Before being able to define the concrete syntax and
requirements engineering of automotive software semantics of

ForSeL, we first explain some

systems, and its methodology. A running example of preliminaries.

the automotive domain, which is introduced in Setti

2, shall help the reader to understand the cona®pts 3.1 Basics

ForSeL. In Section 3, we focus on the syntax and
semantics of ForSeL. A convenient notation techaiqu
based on reaction tables for specifying with For&eL

ForSel’s semantics is based on stream processing
functions that describe the system behaviour biefin

given in Section 4. The methodology of how to use oy nfinite system reactions.

ForSeL is described in Section 5. Finally, we cadel
in Section 6 and give an outlook about future work.

2 Running Example

3.1.1
The concepts of our approach are formally founded
by the FOCUS theory [2]. FOCUS is a formal system

Stream processing functions (FOCUS)

model which serves very well for specifying reaetiv

In order to introduce both specification concepts distributed systems. In FOCUS, a system is constbler
and methodology, we make use of a running exampleas a stream processing function on messages. This
from the automotive domain: power windows as they stream processing function relates input messames t
can be found in almost all modern cars. In thigisec output messages which are exchanged between the
the textually (informally) given requirements ofeth environment and the systtmThus, the system
considered system are listed. behaviour is described by a black box view on the

In order to reduce complexity and to improve system.
readability we limit ourselves to only one single
window that is described as follows:

2 (and between components within the system)

In the following we only introduce the concepts of At and Al are called thetart eventandend event,
the FOCUS theory which are necessary to define therespectively. A=0 and A=1 are callestatesof the
semantics of our approach formaily. action A.
Finite andinfinite streams. In FOCUSstreamsof For example, the child safety lock (CL) can be
(typed) messages represent the communication Yistor active (CL=1), not active (CL=0), currently actiget
of data messages within a (finite) time frame. @iee (CL=t), or deactivated at the moment (Q)=
set of data messages M (or better “actions” in our Actions can be clearly divided intenvironment
setting), M* (M") denotes the set of finite (infinite) actions EnvJAct and system reactionsSys$JAct,
streams (which are sequences of elements of M). M whereasAct=Env Sysand Envn Sys=[.
denotes M*0 M”. Such a stream can be represented Environment actions can not be influenced directly
by the functions: N, — M where s(t) contains the by the system as opposed to system reactions which
message processed in the stream s at the poimef t &€ directly influenced by the system. This_mem t
t. the system can start and stop these actions (system
For example, let s = <m1,m2,m3,m4> (s is a finite rea_ctions). System reactions_ are p.rimarily output
stream consisting of the messages m1 to ma4). TherfCtions, but can also serve as input actions. _
s(2)=m3 as m3 is the third message which is precess Considering our running example, the pressing of

in the stream. To improve the readability of foremil e open toggle switch and the close toggle switch
we often write s.n instead of s(n). <m,m,m,m,m...> instance, are environment actions which can not be

would denote the infinite stream consisting of influenced by the system. In contrast, the moveroént
infinitely many copies of the message m. the windows (upwards and downwards) are System
reactions that are controlled by the system.

3.1.2 Actions]
In our approach ForSeL, a specification describes a3-2 Syntax and semantics of ForSeL

system by a set of valid streansé] Act®, whereas
Act denotes the finite set of relevant actions #or
system, respectively, i.e. those actions that can b X .
observed at the system border. The set of valghsts by means of fom?a' ExXpressions represen_tlng
is determined by predicates given by the formal requirements. A requirement is given by the triple
requirements. R =[P)(T - S . A formal requirement of this form is
Actions are the basic elements out of which a called a_service The transformation from informal
formal service specification is comprised. An actie requirements into services however is not a 1:1-

3.2.1 Formal Requirements
In our approach, the system behaviour is described

a user-visible input or output of the system ongidal mapping, but requires real design work (cf. 5). A
level. Examples for actions are “press toggle swjtc formal requirement describes how a system is totrea
“window goes up”, or “child safety lock enabled”. on particular inputs. It is comprised of three part

Formally spoken an action A is a variable of type namely:
Action = {0,11,|}. Considering a valid stream s, a
declaration of each action has to be made at eaicih p
in time. An action A can have exactly one of the
following assignments (at the point of time t):

» the precondition P
« the triggering event T, and
» the system reaction S

e A=1: A is active at the point of time t, i.e. Precondition P. The precondition describes the
Als.t. states of the system in which a certain triggesugnt

« A=0: A is not active at the point of time t, i.e. leads to a certain reaction. Formally, P is a qoctjon
—As.t of assignments of actions, i.e.

* A=1: A starts at the point of time t, i.e.fAs.t, P=(A,=b)C(A,=b,)C...C(A, =b,)
consequently -As.(t-1) and (AA])0s.(t+1) with A, OAct, b, 0{01}, i =1....n

« A=|: A stops at the point of time t, i.e.|As.t,
consequently Als.(t-1) and (-AIA1)Os.(t+1) Here, each A denotes an action which has an

influence on the reaction pattefh — S. Actions not
influencing the reaction patterii - S are not further
specified.

Considering again our running example, the
pressing of the (open or close) toggle switch catise

® For more information on the comprehensive FOCUStj, the
interested reader is referred to.[2]

window to move, only if the child safety lock istho A valid implementation has to fulfil each of theral
active at the moment, the switch is pressed (andrequirements R For two requirements
therefore the action is activated). Therefore the R, =[R](T, - S;) and R, =[R,](T, - S,), their
deactivated child safety lock (CL=0) is a precoiodit composition

for this system reaction.

Triggering event T. The triggering event T defines RiOR; =[RI(T, - S)URIT, - S)
which start or end events trigger the specifiedesys
reaction. This time the states of the actions ae n
considered, as it is assumed that only events cause
system reactions. Formally, T is a conjunction tafts
and end events, i.e.

T=(B,=¢)0(B,=e,)0...0B, =€,)
with B; OAct,g O{1,1},i=1...,n

is formally defined as follows:

[[[RI(Ty - S) O [RI(T, - Sy)ll =
{sOAct® |OtON:

(P, Ost OT, Ost) = (@'> t:S, Ost)) O
(P, Ost OT, Ost) = (&'> t:S, Ost')))}

Informally spoken: If Ris true at a certain point of
. .) time t and T occurs, then the system has to react with
Actions B; are those actions in Act whose start or S, and if R is valid in a point of time t — independently
end cause the system reaction S. of P, T;, and $ — and T occurs then the system has to
In our running example, the start of pressing a react with $. If both of the preconditions are fulfilled
toggle switch or detecting a clamped obstacle areand both of the triggering events occur, then &lsth
triggering events. of the reactions have to occur; however, not
System reaction S.The reaction S denotes which necessarily at the same point of time.
start and end events are triggered. Again, thestait Analogously, the overall specification can be
the actions are not considered, but only events.created by stepwise conjunction of the single
Formally, S is a conjunction of start and end eveft requirements.
system reactions, i.e. In the following we prove some properties of the
S=(C, =€) 0(C, =€,) 0...0(C, =&,) gcé]rc?npigsir':iogf ?rf):rigon: Wh_i(_:h show that the formal
. . position operators goes along
with C; OSyse U{1,4},i=1....n with the intuitive understanding.
Identical reaction patterns. If two requirements

Ry =[RIT -9 andR, =[P,](T -~ 9

Those actions which are not influenced at all ase n
specified any further.

In our running example, there are only two actions
which can be influenced by the system and thereforedescribe the same reaction pattdrn. S for different
occur as reactions: ,window up* and ,window down"“. preconditions Pand B, respectively, the composition

Formal requirement [P](T - S). By the aid of the R, 0OR, has to make sure that the reaction pattern

definitions above, the semantics [Bf(T -~ S) canbe occurs both under the preconditiona®d B i.e. it is

defined as follows: ILP(T ~ 9 0 RI(T — ST =[P CP,I(T -)]

[[[PI(T - 9] =
{sOAct® |OtON:
(POstOT Ost) = ("> t:SOst'))}

A simple consideration shows that this is fulfilled
by our composition operator.

Informally spoken, [PI(T - S means that if at

some point in time t precondition P is true and
triggering event T occurs, then reaction S hasctuo
at some later point in time t'>t.

Each formal requirement defines a predicate that
has to be fulfilled by the system. It filters outlpthe
valid streams of all possible streams. Examples for
such service formulas can be found in Section 5.

3.2.2 Formal Specification

A formal specification Spec is the conjunction of a

finite number of formal requirements:

Spec=R; R, OR;0....0R,

[([[PIT - 9O[RIT - 9]
={sOAct® |OtON:

(P, OstOTOst)= (O'>t:SOst")) O
((P, OstOTOst) = (O'> t:SOst")))}
={sOAct® |OtON:

(P, OstOTOst)0(@'> t:SOst")) O
(- (P, OstOT Ost)O(O'> t:SOst')))}
={sOAct®|OtON:
(-((P,OstOTOst) O (P, OstOT Ost))
O(a'> t:SOst"))}

={sOAct® |OtON: ((P, OstOP, Ost) O
(TOst)) = (O'> t:SOst'))}

=R URI(T - 9]

Identical reaction. If two

requirements

Ry =[PI(Ty » 9 andR, =[P|(T, - 9

precondition and

have the same precondition and reaction, i.e.uhdér
the same precondition the same reaction is trighjeye

a different triggering event;Tand T, respectively, the
compositionR; 0 R, has to make sure the following:
If the precondition P is fulfilled, both the occence of

T, and T — independently from each other — has to
trigger the reaction S, i.e.

[IIPI(Ty -~ 9 O PIT, » N =[PI(TL ET2) - 9

An analogous consideration shows that
composition operator fulfils this requirement:

[[[PI(Ty - 9 O [PIT, - I
={sOAct® |OtON:

((POstOT, Ost)=(O'>t:SOst")) O
((POst OT, Ost)= (O'> t:SOst")))}
={sOAct® |OtON: (POst O

(T, Ost 0T, Ost)) = (O'> t:SOst"))}
=[[PI(TL UT,) ~)

Identical Precondition and identical triggering
event.If two requirements

Ry =[PI(T - &) andR, =[P(T - S;)

our

[[[PI(T - SHIDPIT - S,)lI
={sOAct” |OtON:
((POstOTOst) = ('>t:5,0st")) O
(POstOTOst)= (O'> t:S, Ost")))}

={sOAct® |OtON:

(- (POstOT Ost)O('> t:S, Ost')) O
(- (POstOTOst)O(Q'> t:S, Ost')))}
={sOAct®|OtON:

(-~ (POstOTOst) O

(O'>t:5, 0st)(@'>t:S, Ost))}
={sOAct®|OtON:
(POstOTOst) =

(> t:S, Ost) O > t:S, Ost™)))}
=[[[PIT - &;.S:)]I

No Precondition: Another special case is the
specification of a ,pure’ reaction pattefih . S where
there is no precondition specified. According te th
formal definition, we obtain the following semarstic

([T -Sl=
{sOAct® |OtON:(TOst = (O'> t:SOst')}

T - S means that the occurrence of T causes the
system to react with S in each situation, no matter
what state the system currently is. The specificati
specialist has to be aware of the fact that this very
,strong’ requirement. If a precondition is addedthe
reaction patter T - S belatedly, this is not a

demand that under the precondition P, a triggering refinement as the requirement is made weaker.

event T causes two different reactionsa®d $, the
composition R; R, shall make sure that both
reactions $and $ are caused. However, these two
reactions do not have to occur at the same timedut
occur at two arbitrary future points in time t' atid
Formally it has to be proven that

[{IPI(T ~ S) O[PIT — SN =[[PXT ~ &1,S:))]

Here (S,S) means that both system reactions S

and $ occur, but independently from each other (as far
as a concrete point in time is concerned). Again, a
simple consideration shows that this requirement is

fulfilled by the composition operator:

Besides these special cases of composing
requirements, the following rules apply as a
consequence of the Boolean calculation rules:

Commutative law. The composition operator is
commutative, i.e. for two arbitrary requirementsy

and R, the following holds:
[[R; ORII=[[Rz ORy]l.

The proof for this rule is rather straightforward.
Associative law. Analogously, the application of
the associative law for the Boolean operators [gove
the associativity of the composition operator for

arbitrary requirement®;, R,, and Rj:

[[(Ry OR,) OR3] =[[Ry O (R, ORI

In the last part of this sub-section we take a labk
refinement. To that end, we describe our notion of
refinement and show that the addition of further
requirement to an existing specification leads to a
refinement of the specification. Concretely we show
that for the requirementsR; =[R (T, - S;) and

R, =[R,](T, - S,) the following holds:

R,0R, = R;.

Refinement. The refinement of a specification
means that the set of accepted streams is redlided.
obvious thatR, O R, is a stronger condition thaR;

and that consequenthR; O R, = R; holds as

([RI(Ty - ST RIT, - S =
{sOAct®|OtON:

(R OstOT, Ost)y=> (@'>t:5 0st")) 0
(R, OstOT,0Ost) = (O'>1t:S, Ost)))}
0

{sOAct® |OtON:
(R OstOT, Ost)= (@'>t:5 0Ost'))} =
([[RIC(T ~ S

The chosen notion of refinement can be described
best by taking a look at the special cases. A egfient
of a service can be achieved by

Enhancing the service domain of a reaction
pattern by introducing additional preconditions

and/or triggering events (as done in the cases

PIT -9 0RIT -9 =[RLCRIT -9
and

[PI(T, - OPYT, - =

PI(T, OT3) - 9

respectively, or by

allowed to occur simultaneously with B. Consequgntl
in each precondition both actions have to be adiive
A must not be active at the same point of time t.
Analogously, the occurrence of a start (end) ewént
action A demands the start (end) event of the addio
at the same point of time t. This has to be enshyed
the specification. Formally this fact can be expegs
by the equation

[[A = B]] =0PT - 9 :(Spec= [PI(T - 9)=>
((P=(A=Db)= P=(B=b))0
(T=(A=¢)=(T=(B=¢))0

(5= (A=¢)= S=(B=¢)

with b={01}, e={1,1}

Mutual exclusion of actions. Analogously, two
actions can exclude each other mutually <> B),
i.e. they never occur concurrently. Therefore, the
concurrent occurrence of both actions can never be
demanded as precondition, triggering events or
reactions, for example. The formalization of tfast
can be done analogously to the previous exafhple.

4 Notation
In order to apply our approach in practice, a

pragmatic, concise notation for the specificatien i
inevitable. An adequate notation technique for our

Restricting/concreting the system reaction by pqrge) gpecifications are tables. Their structse i
defining a stronger reaction, as done Wwith yoscribed in the following.

[PIT - ST PUT - Sp) =
PI(T - &1.S2))

Each table is — like each specification term —
divided into three parts: the preconditions, the
triggering events, and the reaction. In each part a

We hereby use an alternating approach for aqdditional line is inserted for each possibly ralev
refinement as for example known from interface action. As mentioned above, preconditions are
automata [3]: a specification refines another statements over all actions OAct. Likewise, all
specification, if it demands weaker input assumsio 4ctions A 0 Act have to be taken into consideration
or stronger output guarantees. for the part of the triggering events. In contragiten
it comes to the part of the reactions, only thage®as

3.2.3 Dependencies between actions _ have to be inserted which are directly influenced b
Besides the possibility to specify single o systemA [1Sys.
requirements and to compose these modular

requirements to obtain an overall specificationr ou The assignments of the actions are inserted in the

approach also allows for the specification of colur_n_ns._ Each column corresponds to a fqrmal
dependencies between actions that are given by thespeuflcatlon termR;. For a system specification
environment or that have to be ensured by the syste Spec R [...R, having the environments actions
These dependencies already have to be taken intogny=(g, ...E.} and the system reactions
account during the specification of the modulanfal Sys= S btain the followi tabl
requirements and therefore restrict the set of the ys={8,,...S,} we obtain the following table
possible, correct requirements. Examples for suchStructure:
dependencies are explained in the following
paragraphs.

Concurrency of actions. If two actions A and B
are in the concurrency relatiod - B, A is only

“ Due to the limitation of space the formalizatienniot considered
here.

Ry R,
Precondition P
=
En
S
S
Triggering Event T:
=
En
Reaction S:
S
S
Table 1: Schema of reaction tables
For example, the formal specification term

[(E,=0) (S, =D](E, =t —» S, =1) can be inserted in
the table as follows:

Ry

Precondition P
=1

E,
S

S
Triggering Event T:
Ey

E,
S

S
Reaction S:

S

Table 2: Exemplary ForSeL term in reaction table

The specification with a notion in table form hhe t
following advantages over the specification with
formal specification terms:

The presentation is more concise and easier to
understand.

The table structure supports a systematic
approach and helps in detecting holes in the
requirements specification.

In particular, the dependencies between the
single formal specification terms are better

understood. Therefore, the specification with
help of tables supports the integration of the
single specification terms and leads to a precise,
consistent specification.

As all possible actions and reactions are listed,
the table supports the totalization step (which
takes place later in the development process, cf.
Section 5.3) and the transition to the operational
system model. Cases/States/Behaviours which
have not been considered can be detected
automatically and added.

The tables can easily be expanded. Both the
introduction of additional requirements
(insertion of a new column) and the
introduction of further actions (insertion of new
rows) are possible. Therefore, the tables support
an iterative proceeding for the creation of the
system specification.

The table format services well as a basis for tool
support; a prototype for this purpose is
currently being developed.

Concluding it has to be remarked that the
specification with tables demands a certain general
knowledge about the system already at the beginning
of the specification phase. The specification viigip
of tables does not seem to be useful until esdentia
actions and basic requirements are identified.

5 Methodology

5.1 Creation of a formal specification based
on textual requirements

In this sub-section a method for the systematic
creation of a formal requirements specificationeolas
on single informal requirements is introduced. \Wats
with a set of functional requirements given in tett
form and aim at a concise, formal specification of
these requirements. Basically, five steps havedo b
performed:

1. Identify the set of actionAct. (cf. 5.1.1)

2. Classify actions, i.e. dividActinto SysandEnv
(cf. 5.1.2)

Construct the table structure (cf. 5.1.3).

Fill in the table entries iteratively and perform
consistency checks (cf. 5.1.4).

Perform plausibility checks (cf. 5.1.5).

3.
4.

5.

In the following these steps are explained wittphel
of the previously introduced running example.

5.1.1 Identify the set of actiong\ct

First, all relevant actions of the system under
construction are identified. For our running exaenpl
we obtain the following actions:

Switch for closing the window is being pressed
(SWO)

Switch for opening the window is being pressed
(SWC)

Window is closing (WC)

Window is opening (WO)

Clamped obstacle is detected (CD)

Window end stop top (WET)

Window end stop bottom (WEB)

Child safety lock is on (CL)

Hence, the set of actions is definedfas= {SWO,
SWC, WC, WO, CD, WET, WEB, CL).

5.1.2 Classify actions

The set of actionactis then divided into the set of
environment actionsEnv and the set of system
reactionsSys

Env={SWO, SWC, CD, WET, WEB, CL}
Sysg{WC, WO}

CL
WET
WEB
WO
wC

SWO
SWC
CD
CL
WET
WEB
WO
WC
S
WO
WC

1 A I

Table 3: Reaction patterns of the running example

Determine preconditions. The preconditions that
have been disregarded in the previous step are not
determined. As it might be too difficult to revesll
preconditions for a certain reaction pattern diyeate
introduce an intermediate step: we consider passibl
preconditions for each triggering event and system
reaction, respectively. [P]T or [P]S are interméslia
notations (and not valid ForSeL terms) meaning Ehat
is a precondition for the triggering event T or the

Furthermore, the dependencies between the actionSYStém reaction S.

within SysandEnvare identified:

Env: SWO <£> SWC, WET <> WEB
Sys: WC <£> WO

5.1.3 Construct the table structure
As a next step, the table structure has to be
determined (see Section 4).

5.1.4 Fill in the table entries iteratively and
perform consistency checks

Determine reaction patterns For each system
reactionsSys all triggering events are systematically
determined that start or stop this system reactn.
far as our ForSeL terms are concerned, the
specification specialist defines terms of the form
[PI(T->S), whereas S is the given system reaction, T is
the triggering event currently determined, and R is
disregarded precondition (which is added later).The
reaction pattern S is then inserted into the table (cf.
Table 3).

SWO
SWC
CD

2a 2b 2c 2d

SWO
SWC
CD
CL
WET
WEB
WO
WC

WO

WO

o

o

CD

SWO
SWC
CD
CL
WET
WEB
WO
WC
S
WO
WC

Table 4: Preconditions for one system reaction

For example, [WC]CD denotes that the closing of
the window (WC) is a precondition for the crush

detection (CD). Further examples are [CL]WC,
[CLIWO, [WET]WC, and [WEB]JWO.

After this intermediate step, the previously
identified reaction patterns can be enriched with
preconditions.

During this step, a possible tool support can help
the specification specialist by allowing him to paldd
information which is consistent to the prior define
system behaviour and by proposing him possible
preconditions.

1

SWO
SWC
CD
CL
WET
WEB
WO
wcC

o

SWOo
e
CD
CL 1 ?
WET
WEB 7
e
wC
S
e
wcC I I

Table 5: Reaction table of the running example

Exemplary Application. Considering the reaction
pattern of column 2 of Table 3 (GBWO?), we
explain step by step how the interaction with the
program could look like (cfFehler! Verweisquelle
konnte nicht gefunden werden):

1. Column 2a: First, only the reaction pattern
(disregarding any precondition$ inserted by
the specification specialist.

. Column 2b: In the precondition part CD is

[WCICD, [CL]WO, [WEBJWO (cf. column
20).

Column 2d: The specification specialist has to
decide which of the proposed preconditions (of
column 2c) are really relevant. Accordingly, 0O
or 1 is inserted into the respective fields of the
table. If no entry is made, the assignment of the
action does not matter for the precondition
under consideration.

Proceeding like this for each column, we obtain
Fehler! Verweisquelle konnte nicht gefunden
werden.. This table now contains all system reactions
with its triggering events that the specification
specialist knows. It is therefore total in this aed)
However, it is not total in the sense that (thectiea
for) all possible input combinations are defined.

5.1.5 Plausibility checks

For each column which is additionally inserted it
has to be checked if the column is contradictorgne
of the other columns. In particular it has to beatted,
if two (or more) triggering events which are not
mutually exclusive lead to conflicting system
reactions. In such a case the conflict might belvesl
by defining the preconditions appropriately (if not
already done).

5.2 Extension of specification terms /actions

So far, we assumed that the specification spetialis
already has knowledge about the part of the system
be specified. However, our approach also allows for
changing the specification afterwards. Hereby, ae ¢
think of two situations: adding/deleting services o
adding/deleting actions.

Adding formal requirements (services). The
introduction of additional services corresponds to
adding columns in the reaction table and can be&don
as explained in Section 4.

Deleting formal requirements (services). The
deletion of a service (which corresponds to thetitat
of a column in the reaction table) does not cause

given a grey background as it is already marked problems to the consistency of a specification.thes

as triggering event. As the start of WO is the
system reaction, WO has to be 0 in the
precondition part. This step can be tool-
supported.

. Column 2c: At this stage, all possibly relevant

specification is the conjunction of all services
(columns), a service (column) can be deleted withou
restricting the previously defined behaviour.

Adding actions. The introduction of actions is
more complicated. It is assumed that the actiobeto

preconditions have to be checked. In the contextadded is already classified and that its dependsrioi

of our example these are of the form [...]CD
and [..]WO. As mentioned above, we
encounter the following preconditions:

other actions are already defined. First, the netio
has to be inserted (as a new line) in the parthef t
precondition and the part of the triggering actibthe

action is a system reaction a new row has to lertied frequently used in informal requirement specificat

into the part of the system reactions, too. Forheac are analysed and mapped to formal ForSeL

column it now has to be checked if the introduced expressions. Moreover, the transition from our farm

action is a restriction on the previous specifmatand requirements specification to the operational madel

if it has to be considered in one ore more the design phase is currently investigated..

preconditions. Then it has to be checked if théoact Additionally, we are working on a way to enrich our

starts or stops one ore more system reactions,If s ForSeL specification with quantitative timing

respective columns have to be inserted as well andinformation as this is inevitable for the developmnef

filled iteratively like discussed in 5.1.4. If tlaetion is real time systems. In the line of this timed refiremt,

a system reaction all the other actions have to bewe are planning to adopt concepts of network plagni

looked at in order to find out if they start or tthe techniques [6] to make statements about the exgbecte

new action. Hereby, the introduction of additional timing behaviour such as buffer times (slack),icait

columns might be necessary again. paths, etc. of the system under construction. Case
Deleting actions Deleting an action corresponds to studies of medium-scale are being carried out deior

deleting a row in the part of the preconditions #mel to evaluate our approach and to investigate questio

part of the triggering events, respectively. If Hation concerning scalability.

to be deleted is a system reaction, the correspgndi

row has to be deleted in the part of the system7 References

reactions. In this case it has to be checked foh ea

column if there are any actions in the part of the [1] M. Broy: Service-Oriented Systems Eingineering:

triggering events and the system reactions. If tic, Specification and Design of Services and Layered

respective column can be deleted. Architectures — The Janus Approath. Engineering

Theories of Software Intensive Systems, pp. 47Sgitinger,

5.3 Totalization 2005.

[2] M. Broy and K. StglenSpecification and Development

As mentioned above, the forma! .spgcification is of Interactive Systems: FOCUS on Streams, Intesfaaad
total with respect to the textual specificationwewer RefinementSpringer, 2001.

it is not total with regard to each possible inpattern.

A tool could offer all cases which are not spedifi@s [3] Luca de Alfaro and Thomas A. Henzingénterface
the amount of these under-specified cases isautomata.Proceedings of the Ninth Annual Symposium on
exponentially high, an appropriate algorithm hagéo Foundations of Software Engineerin§SE), ACM Press,
chosen which reduces the number of displayed cases?001, pp. 109-120.

Making a specification total is a very importangst) I e
during the requirements engineering phase anddas t[4] R. Schior and W. Damn§pecification and Verification
be | . d in detail. H his i f of System-level Hardware designs using Timing Riagy

e Investigated in detail. However, this Is NOYEEOT proc |EEE EDAC-EuroASIC'93, Paris (France), Fe293,
this paper. pp. 518-524.

6 Conclusion and Future Work [5] C. Heitmeyer, M. Archer, R. Bharadwaj, and R. Jef$o
Tools for constructing requirements specificatiobe SCR

In this paper, we introduced our current work aa th toolset at the age of temnternational Journal of Computer
formal language ForSeL which aims at the Systems Science and Engineering, 20(1), Januarg, 2i0

e 19-35.
specification of functional requirements of intdrae
systems. We gave syntax, semantics, and a pragmatifs) gric verzuh, The Fast Forward MBA in Project
notation technique. Additionally, we introduced a ManagementJohn Wiley & Sons, 2005.
methodology for the construction of precise,
unambiguous, understandable system specificationg7] P. Scholz Partitioning of Perfect Synchroneous Reactive
with help of ForSeL. Furthermore, we explained how Specifications to Distributed Processors using |a«@h
our approach can be supported by a tool. Finally we Software and Systems Modeling (SoSyM) Journal, Band
also outlined how a ForSeL specification can baadr ~ Nummer 1, Seite 13-25, Springer, April 2006.
into a total description of the system behaviour. [8] P. Scholz, Incremental Design of Statechart

Currently we are concerned with how informal Specifications. Science of Computer Programming 40

requirements can be translated into ForSelL 5001) Seiten 119 - 145, Elsevier Science B.V0120
expressions. To that end, textual patterns whiegh ar

