
Higher�Order Narrowing with De�nitional Trees

Michael Hanus� and Christian Prehofer�

� Informatik II� RWTH Aachen� D������ Aachen� Germany
hanus�informatik�rwth�aachen�de

� Fakult�at f�ur Informatik� TU M�unchen� D������ M�unchen� Germany
prehofer�informatik�tu�muenchen�de

Abstract� Functional logic languages with a sound and complete opera�
tional semantics are mainly based on narrowing	 Due to the huge search
space of simple narrowing� steadily improved narrowing strategies have
been developed in the past	 Needed narrowing is currently the best nar�
rowing strategy for
rst�order functional logic programs due to its opti�
mality properties w	r	t	 the length of derivations and the number of com�
puted solutions	 In this paper� we extend the needed narrowing strategy to
higher�order functions and ��terms as data structures	 By the use of def�
initional trees� our strategy computes only incomparable solutions	 Thus�
it is the
rst calculus for higher�order functional logic programming which
provides for such an optimality result	 Since we allow higher�order logical
variables denoting ��terms� applications go beyond current functional and
logic programming languages	

� Introduction

Functional logic languages ��� with a sound and complete operational semantics
are mainly based on narrowing� Narrowing� originally introduced in automated
theorem proving ����� is used to solve goals by �nding appropriate values for vari�
ables occurring in arguments of functions� A narrowing step instantiates variables
in a goal and applies a reduction step to a redex of the instantiated goal� The
instantiation of goal variables is usually computed by unifying a subterm of the
goal with the left�hand side of some rule�

Example �� Consider the following rules de�ning the less�or�equal predicate on
natural numbers which are represented by terms built from � and s	

� � X � true

s
X� � �� false

s
X� � s
Y �� X � Y

To solve the goal s
X� � Y � we perform a �rst narrowing step by instantiating Y
to s
Y�� and applying the third rule� and a second narrowing step by instantiating
X to � and applying the �rst rule	

s
X� � Y �fY ��s�Y��g X � Y� �fX ���g true

Since the goal is reduced to true� the computed solution is fX �� �� Y �� s
Y��g�

Due to the huge search space of simple narrowing� steadily improved narrowing
strategies have been developed in the past� Needed narrowing ��� is based on the
idea to evaluate only subterms which are needed in order to compute some result�
For instance� in a goal t� � t�� it is always necessary to evaluate t�
to some head
normal form� since all three rules in Example � have a non�variable �rst argument�
On the other hand� the evaluation of t� is only needed if t� is of the form s
� � ���
Thus� if t� is a free variable� needed narrowing instantiates it to a constructor�
here � or s� Depending on this instantiation� either the �rst rule is applied or the
second argument t� is evaluated� Needed narrowing is the currently best narrowing
strategy for �rst�order functional logic programs due to its optimality properties
w�r�t� the length of derivations and the number of computed solutions ���� More�
over� it can be eciently implemented by pattern�matching and uni�cation due to
its local computation of a narrowing step
see� e�g�� �����

In this paper� we extend the needed narrowing strategy to higher�order func�
tions and ��terms as data structures� We introduce a class of higher�order in�
ductively sequential rewrite rules which can be de�ned via de�nitional trees� Al�
though this class is a restriction of general higher�order rewrite systems� it covers
higher�order functional languages� As higher�order rewrite steps can be expensive
in general� we show that �nding a redex with inductively sequential rules can be
performed as in the �rst�order case�

Since our narrowing calculus LNT is oriented towards previous work on higher�
order narrowing ����� we show in the �rst part that LNT coincides with needed
narrowing in the �rst�order case� For the higher�order case� we show soundness
and completeness with respect to higher�order needed reductions� which we de�ne
via de�nitional trees� Furthermore� we show that the calculus is optimal w�r�t� the
solutions computed� i�e�� no solution is produced twice� Optimality of higher�order
reductions is subject of current research� It is however shown that higher�order
needed reductions are in fact needed for reduction to a constructor normal form�

This strategy is the �rst calculus for higher�order functional logic programming
which provides for optimality results� Moreover� it falls back to the optimal needed
narrowing strategy if the higher�order features are not used� i�e�� our calculus is a
conservative extension of an optimal �rst�order narrowing calculus� Since we allow
higher�order logical variables denoting ��terms� applications go beyond current
functional and logic programming languages� In general� our calculus can compute
solutions for variables of functional type� Although this is very powerful� we show
that the incurring higher�order uni�cation can sometimes be avoided by techniques
similar to ���� Due to lack of space� some details and the proofs are omitted� They
can be found in ����

� Preliminaries

We brie�y introduce the simply typed ��calculus
see e�g� ������ We assume the
following variable conventions	

� F�G�H� P�X� Y denote free variables�
� a� b� c� f� g
function� constants� and

� x� y� z bound variables�

Type judgments are written as t 	 � � Further� we often use s and t for terms and
u� v� w for constants or bound variables� The set of types T for the simply typed
��terms is generated by a set T� of base types
e�g�� int� bool� and the function
type constructor �� The syntax for ��terms is given by

t � F j x j c j �x�t j
t� t��

A list of syntactic objects s�� � � � � sn where n � � is abbreviated by sn� For in�
stance� n�fold abstraction and application are written as �xn�s � �x� � � � �xn�s
and a
sn� �

� � �
a s�� � � �� sn�� respectively� Substitutions are �nite mappings
from variables to terms� denoted by fXn �� tng� and extend homomorphically from
variables to terms� Free and bound variables of a term t will be denoted as FV
t�
and BV
t�� respectively� A term t is ground if FV
t� � fg� The conversions in
��calculus are de�ned as	

� ��conversion� �x�t �� �y�
fx �� ygt��
� ��conversion�
�x�s�t �� fx �� tgs� and
� ��conversion� if x �� FV
t�� then �x�
tx� �� t�

The long ���normal form ���� of a term t� denoted by tl�� � is the ��expanded

form of the ��normal form of t� It is well known ���� that s ���� t i� sl�� �� tl���
As long ���normal forms exist for typed ��terms� we will in general assume that
terms are in long ���normal form� For brevity� we may write variables in ��normal
form� e�g�� X instead of �xn�X
xn�� We assume that the transformation into long
���normal form is an implicit operation� e�g�� when applying a substitution to a
term�

A substitution � is in long ���normal form if all terms in the image of � are in
long ���normal form� The convention that ��equivalent terms are identi�ed and
that free and bound variables are kept disjoint
see also ���� is used in the following�
Furthermore� we assume that bound variables with di�erent binders have di�erent
names� De�ne Dom
�� � fX j �X �� Xg and Rng
�� �

S
X�Dom��� FV
�X��

Two substitutions are equal on a set of variables W � written as � �W ���
if �� � ��� for all � � W � The restriction of a substitution to a set of variables
W is de�ned as �jW� � �� if � � W and �jW� � � otherwise� A substitution
� is idempotent i� � � ��� We will in general assume that substitutions are
idempotent� A substitution �� is more general than �� written as �� � �� if � � 	��

for some substitution 	� We describe positions in ��terms by sequences over natural
numbers� The subterm at a position p in a ��term t is denoted by tjp� A term t
with the subterm at position p replaced by s is written as t�s�p�

A term t in ��normal form is called a higher�orderpattern if every free occur�
rence of a variable F is in a subterm F
un� of t such that the un are ��equivalent
to a list of distinct bound variables� Uni�cation of patterns is decidable and a
most general uni�er exists if they are uni�able ����� Examples are �x� y�F
x� y�
and �x�f
G
�z�x
z����

A rewrite rule ���� is a pair l � r such that l is a higher�order pattern but
not a free variable� l and r are long ���normal forms of the same base type� and

FV
l� � FV
r�� Assuming a rule l � r and a position p in a term s in long
���normal form� a rewrite step from s to t is de�ned as

s ��l�r
p�� t 	 sjp � �l
 t � s��r�p�

For a rewrite step we often omit some of the parameters l � r� p and �� It is
a standard assumption in functional logic programming that constant symbols
are divided into free constructor symbols and de�ned symbols� A symbol f is
called a de�ned symbol or operation� if a rule f
� � ��� t exists� A construc�
tor term is a term without de�ned symbols� Constructor symbols and constructor
terms are denoted by c and d� A term f
tn� is called operation�rooted
respec�
tively constructor�rooted� if f is a de�ned symbol
respectively constructor�� A
higher�order rewrite system
HRS� R is a set of rewrite rules� A term is in
R�normal form if no rule from R applies and a substitution � is R�normalized
if all terms in the image of � are in R�normal form�

By applying rewrite steps� we can compute the value of a functional expression�
However� in the presence of free variables� we have to compute values for these free
variables such that the instantiated expression is reducible� This is the motivation
for narrowing which will be precisely de�ned in the following sections� Narrowing is
intended to solve goals� where a goal is an expression of Boolean type that should
be reduced to the constant true� This is general enough to cover the equation
solving capabilities of current functional logic languages with a lazy operational
semantics� like BABEL ���� or K�LEAF ���� since the strict equality �� can be
de�ned as a binary operation by a set of orthogonal rewrite rules
see ��� �� ��� for
more details about strict equality�� An important consequence of this restriction
on goals is the fact that during the successful rewriting of a goal the topmost
symbol is always an operation or the constant true� This property will be used to
simplify the narrowing calculus�

Notice that a subterm sjp may contain free variables which used to be bound
in s� For rewriting it is possible to ignore this� as only matching of a left�hand
side of a rewrite rule is needed� For narrowing� we need uni�cation and hence we
use the following construction to lift a rule into a binding context to facilitate the
technical treatment� An xk�lifter of a term t away from W is a substitution 	 �
fF ��

F �
xk� j F � FV
t�g where
 is a renaming such that Dom

� � FV
t��
Rng

� �W � fg and
F 	 �� � � � � � �k � � if x� 	 ��� � � � � xk 	 �k and F 	 � �
A term t
rewrite rule l � r� is xk�lifted if an xk�lifter has been applied to t
l
and r�� For example� fG �� G�
x�g is an x�lifter of g
G� away from any W not
containing G��

� First�Order De�nitional Trees

De�nitional trees are introduced in ��� to de�ne ecient normalization strategies
for
�rst�order� term rewriting� The idea is to represent all rules for a de�ned

� The strict equality t � t� holds if t and t� are reducible to the same ground constructor
term	 Note that normal forms may not exist in general due to non�terminating rewrite
rules	

symbol in a tree and to control the selection of the next redex by this tree� This
technique is extended to narrowing in ���� We will extend de�nitional trees to the
higher�order case in order to obtain a similar strategy for higher�order narrowing�
To state a clear relationship between the �rst�order and the higher�order case� we
review the �rst�order case in this section and present the needed narrowing calculus
in a new form� Thus� we assume in this section that all terms are �rst�order� i�e��
��abstractions and functional variables do not occur�

Traditionally ���� a term t is narrowed into a term t� if there exist a non�
variable position p in t
i�e�� tjp is not a free variable�� a variant l � r of a rewrite
rule with FV
t� � FV
l � r� � fg and a most general uni�er 	 of tjp and l
such that t � 	
t�r�p�� In this case we write t �� t�� We write t� ��

� tn if there
is a narrowing derivation t� ��� t� ��� � � � ��n tn with 	 � 	n � � �	�	��
In order to compute all solutions by narrowing� we have to apply all rules at all
non�variable subterms in parallel� Since this simple method leads to a huge and
often in�nite search space� many improvements have been proposed in the past

see ��� for a survey�� A narrowing strategy determines the position where the
next narrowing step should be applied� As shown in ���� an optimal narrowing
strategy can be obtained by dropping the requirement for most general uni�ers
and controlling the instantiation of variables and selection of narrowing positions
by a data structure� called de�nitional tree� T is a de�nitional tree with pattern
� i� its depth is �nite and one of the following cases holds	

T � rule
l � r�� where l � r is a variant of a rule in R such that l � ��
T � branch
�� o� Tk�� where o is an occurrence of a variable in �� ck are di�erent

constructors of the type of �jo
k � ��� and� for i � �� � � � � k� Ti is a de�nitional
tree with pattern ��ci
Xni ��o� where ni is the arity of ci and Xni are new
distinct variables�

A de�nitional tree of an n�ary function f is a de�nitional tree T with pattern
f
Xn�� where Xn are distinct variables� such that for each rule l � r with l � f
tn�
there is a node rule
l� � r�� in T with l variant of l��� For instance� the rules in
Example � can be represented by the following de�nitional tree	

branch
X � Y� �� rule
� � Y � true��
branch
s
X �� � Y� �� rule
s
X�� � �� false��

rule
s
X�� � s
Y ��� X� � Y ����

A de�nitional tree starts always with the most general pattern for a de�ned symbol
and branches on the instantiation of a variable to constructor�headed terms� here
� and s
X��� It is essential that each rewrite rule occurs only once as a leaf of the
tree� Thus� when evaluating the arguments of a term f
tn� to constructor terms�
the tree can be incrementally traversed to �nd the matching rule�

A function f is called inductively sequential if there exists a de�nitional
tree of f such that each rule node corresponds to exactly one rule of the rewrite
system R� The term rewriting system R is called inductively sequential if each
function de�ned by R is inductively sequential�

� This corresponds to Antoy�s notion �� except that we ignore exempt nodes	

A de�nitional tree de�nes a strategy to apply narrowing steps�� To narrow a
term t� we consider the de�nitional tree T of the outermost function symbol of t

note that� by our restriction on goals� the outermost symbol is always a Boolean
function�� If T � rule
l � r�� we apply the rule l � r to t� If T � branch
�� o� Tk��
we consider the subterm tjo� If tjo has a function symbol at the top� we narrow
this subterm
to a head normal form� by recursively applying our strategy to tjo�
If tjo has a constructor symbol at the top� we narrow t with Tj� where the pattern
of Tj uni�es with t� If tjo is a variable� we non�deterministically select a subtree
Tj� instantiate tjo to the constructor of the pattern of Tj at position o� and narrow
this instance of t with Tj� This strategy is called needed narrowing ��� and is
the currently best narrowing strategy due to its optimality w�r�t� the length of
derivations
if terms are shared� and the number of computed solutions�

In order to extend this strategy to higher�order functions� another representa�
tion is required since it is shown in ���� that the direct application of narrowing
steps to inner subterms should be avoided in the presence of ��bound variables�
For this purpose we transform the needed narrowing calculus into a lazy narrow�
ing calculus in the spirit of Martelli�Montanari�s inference rules� In a �rst step� we
integrate the de�nitional trees into the rewrite rules by extending the language of
terms and providing case constructs to express the concrete narrowing strategy� A
case expression has the form

case X of c�
Xn�� 	 X�� � � � � ck
Xnk� 	 Xk

where X is a variable� c�� � � � � ck are di�erent constructors of the type of X� and
X�� � � � �Xk are terms possibly containing case expressions� Using such case expres�
sions� each inductively sequential function symbol can be de�ned by exactly one
rewrite rule� For instance� the rules for the function � de�ned in Example � are
represented by the following rule	

X � Y � case X of � 	 true� s
X�� 	
case Y of � 	 false� s
Y�� 	 X� � Y��

To be more precise� we translate a de�nitional tree T into a term with case ex�
pressions by the use of the function dtc
T � which is de�ned as follows	

dtc
rule
l � r�� � r

dtc
branch
�� o� Tk�� � case �jo of ��jo 	 dtc
T��� � � � � �kjo 	 dtc
Tk�
where �i is the pattern of Ti

If T is the de�nitional tree with pattern f
Xn� of the n�ary function f � then
f
Xn�� dtc
T � is the new rewrite rule for f � A case expression case X of pn 	 Xn
can be considered as a function with arity �n � � where the semantics is de�ned
by the following n rewrite rules	�

case pi of pn 	 Xn � Xi
i � �� � � � � n�

� Due to lack of space� we omit a precise de
nition which can be found in ���	
� To be more precise� di�erent case functions are needed for case expressions with di�er�
ent patterns� i	e	� the case functions should be indexed by the case patterns	 However�
for the sake of readability� we do not write these indices and allow the overloading of
the case function symbols	

Bind

e�� Z�G �� ��G�

if e is not a case term and � � fZ �� eg

Case Select

case c�tn� of pk � Xk �
� Z�G �� ��Xi��

� Z� G

where pi � c�Xn� and � � fXn �� tng

Case Guess

case X of pk � Xk �
� Z�G �� ��Xi��

� Z� ��G�

where � � fX �� pig

Case Eval

case f�tn� of pk � Xk �
� Z�G �� ��X ��� X� case X of pk � Xk �

� Z�G

if f�Xn�� X � R� is a rule with fresh variables�
� � fXn �� tng� and X is a fresh variable

Fig� �� Calculus LNT for lazy narrowing with de
nitional trees in the
rst�order case

In the following� we denote by R an inductively sequential rewrite system� by R�

its translated version containing exactly one rewrite rule for each function de�ned
by R� and by Rc the additional case rewrite rules� The following theorem states
that needed narrowing w�r�t� R and leftmost�outermost narrowing w�r�t� R� Rc

are equivalent� where leftmost�outermost means that the selected subterm is
the leftmost�outermost one among all possible narrowing positions��

Theorem�� Let t be a term with a Boolean function at the top� For each needed

narrowing derivation t��
� true w�r�t� R there exists a leftmost�outermost narrow�

ing derivation t��
�� true w�r�t� R� Rc with 	 �FV�t� 	

�� and vice versa�

As mentioned above� in the higher�order case we need a narrowing calculus
which always applies narrowing steps to the outermost function symbol which is
often di�erent from the leftmost�outermost narrowing position� For this purpose�
we transform a leftmost�outermost narrowing derivation w�r�t� R� Rc into a
derivation on a goal system G
a sequence of goals of the form t �� X� where
narrowing rules are only applied to the outermost function symbol of the leftmost
goal� This is the purpose of the inference system LNT shown in Figure �� The
Bind rule propagates a term to the subsequent case expression� The Case rules
correspond to the case distinction in the de�nition of needed narrowing� where the
narrowing of a function is integrated in the Case Eval rule� Note that the only
possible non�determinism during computation with these inference rules is in the
Case Guess rule� Since we are interested in solving goals by reduction to true�
we assume that the initial goal has always the form case t of true 	 true�� T �
We use this representation in order to provide a calculus with few inference rules�
Note that T �� true if such a goal can be reduced to the empty goal system�

� A position p is leftmost�outermost in a set P of positions if there is no p� � P with
p� pre
x of p� or p� � q � i � q� and p � q � j � q�� and i � j	

Theorem�� Let t be a term with a Boolean function at the top and X a fresh

variable� For each leftmost�outermost narrowing derivation t��
� true w�r�t� R�

Rc there exists a LNT�derivation case t of true 	 true�� X
�
� �� true�� X

w�r�t� R� such that 	� �FV�t� 	� and vice versa�

Theorems � and � imply the equivalence of needed narrowing and the calculus
LNT� Since we will extend LNT to higher�order functions in the next section�
the results in this section show that our higher�order calculus is a conservative
extension of an optimal �rst�order narrowing strategy�

� Higher�Order De�nitional Trees

In the following we extend �rst�order de�nitional trees to the higher�order case�
To generalize from the �rst�order case� it is useful to recall the main ideas	 When
evaluating the arguments of a term f
tn� to constructor terms� the de�nitional tree
can be incrementally traversed to �nd the
single� matching rule� It is essential
that each branching depends on only one subterm
or argument to the function�
and that for each rigid term
non�variable headed�� a single branch can be chosen�
For this purpose� we need further restrictions in the higher�order case� where we
employ ��terms as data structure� e�g�� higher�order terms with bound variables
in the left�hand sides� For instance� we permit the rules

di�
�y�y�X� � �
di�
�y�sin
F
y��� X� � cos
F
X�� � di�
�y�F
y�� X�
di�
�y�ln
F
y��� X� � di�
�y�F
y�� X��F
X�

where di�
F�X� computes the di�erential of F at X�
A shallow pattern is a linear term of the form �xn�v
Hm
xn��� We will use

shallow patterns for branching in trees� In contrast to the �rst�order case� v can
also be a bound variable�

De�nition	� T is a higher�order de�nitional tree
hdt� i� its depth is �nite
and one of the following cases holds	

� T � pf 	 case X of Tn
� T � pf 	 rhs�

where pf are shallow patterns with fresh variables� X is a free variable and Tn are
hdts in the �rst case� and rhs is a term
representing the right�hand side of a rule��
Moreover� all shallow patterns of the hdts Tn must be pairwise non�uni�able�

We write hdts as pf 	 X � where X stands for a case expression or a term� To simplify
technicalities� rewrite rules f
Xn� � X are identi�ed with the hdt f
Xn� 	 X �
With this latter form of a rule� we can relate rules to the usual notation as follows�
The selector of a tree T of the form T � pf 	 X is de�ned as sel
T � � pf � For
a node T � in a tree T � the constraints in the case expressions on the path to it
determine a term� which is recursively de�ned by the pattern function patT
T ��	

patT
T
�� �

�
sel
T �� if T � T �
i�e�� T � is the root�
fX �� sel
T ��gpatT
T

��� if T � has parent T �� � pf 	 caseX of Tn

Each branch variable must belong to the pattern of this node� i�e�� for each node
T � � pf 	 case X of Tn in a tree T � X is a free variable of patT
T

��� Furthermore�
each leaf T � � p 	 rhs of a hdt T is required to correspond to a rewrite rule l � r�
i�e�� patT
T ��� rhs is a variant of l � r� T is called hdt of a function f if for
all rewrite rules of f there is exactly one corresponding leaf in T �

As in the �rst�order case� rewrite rules must be constructor based� This
means that in a hdt only the outermost pattern has a de�ned symbol� An HRS�
for all of which de�ned symbols hdts exits� is called inductively sequential�

For instance� the rules for di� above have the hdt

di�
F�X�� case F of �y�y 	 ��
�y�sin
F �
y�� 	 cos
F �
X�� � di�
�y�F �
y�� X��
�y�ln
F �
y�� 	 di�
�y�F �
y�� X��F �
X�

Note that free variables in left�hand sides must have all bound variables of the
current scope as arguments� Such terms are called fully extended� This important
restriction� which also occurs in ����� allows to �nd redices as in the �rst�order case�
and furthermore simpli�es narrowing� For instance� Flex�Flex pairs do not arise
here� in contrast to the full higher�order case ���� ���� Consider an example for
some non�overlapping rewrite rules which do not have a hdt	

f
�x�c
x��� a
f
�x�H� � b

The problem is that for rewriting a term with these rules the full term must be
scanned� For example� if the argument to f is the rigid term �x�c
G
t��� it is not
possible to commit to one of the rules
or branches of a tree� before checking if
the bound variable x occurs inside t� In general� this may lead to an unexpected
complexity w�r�t� the term size for evaluation via rewriting�

We de�ne the xk�lifting of hdts by schematically applying the xk�lifter to all
terms in the tree� i�e�� to all patterns� right�hand sides� and free variables in cases�

� Narrowing with Higher�Order De�nitional Trees

In the higher�order case� the rules of LNT of Section � must be extended to ac�
count for several new cases� Compared to the �rst�order case� we need to maintain
binding environments and higher�order free variables� possibly with arguments�
which are handled by higher�order uni�cation� For this purpose� the Imitation�
the Function Guess and the Projection rules have been added in Figure �� These
three new rules� to which we refer as the Guess Rules� are the only ones to com�
pute substitutions for the variables in the case constructs� The Case Guess rule of
the �rst�order case can be retained by applying Imitation plus Case Select� The
Imitation and Projection rules are taken from higher�order uni�cation and com�
pute a partial binding for some variable� The Function Guess rule covers the case
of non�constructor solutions� which may occur for higher�order variables� It thus
enables the synthesis of functions from existing ones� Note that the selection of
a binding in this rule is only restricted by the types occurring� For all rules� we
assume that newly introduced variables are fresh� as in the �rst�order case�

Bind

e�� Z�G �fg ��G�
where � � fZ �� eg and e is not a case term

Case Select

�xk�case �yl�v�tm� of �fg �xk���Xi��
� Z�G

pn � Xn �
� Z�G if pi � �yl�v�Xm�xk� yl�� and � � fXm �� �xk � yl�tmg

Imitation

�xk�case �yl�X�tm� of �� ���xk�case �yl�X�tm� of pn � Xn �
� Z�G�

pn � Xn �
� Z�G if pi � �yl�c�Xo�xk� yl�� and � � fX �� �xm�c�Ho�xm��g

Function Guess

�xk�case �yl�X�tm� of �� ���xk�case �yl�X�tm� of pn � Xn �
� Z�G�

pn � Xn �
� Z�G if �xk� yl�X�tm� is not a higher�order pattern�

� � fX �� �xm�f�Ho�xm��g� and f is a de
ned function
Projection

�xk�case �yl�X�tm� of �� ���xk�case �yl�X�tm� of pn � Xn �� Z�G�

pn � Xn �
� Z�G where � � fX �� �xm�xi�Ho�xm��g

Case Eval

�xk�case �yl�f�tm� of �fg �xk� yl���X � �
� X�

pn � Xn �
� Z�G �xk�case �yl�X�xk� yl� of pn � Xn �

� Z�G

where � � fXm �� �xk � yl�tmg� and

f�Xm�xk� yl��� X is a xk� yl�lifted rule

Fig� �� System LNT for needed narrowing in the higher�order case

Notice that for goals where only higher�order patterns occur� there is no choice
between Projection and Imitation and furthermore Function Guess does not apply�
This special case is re�ned later in Section ��

For a sequence ��� � � � ��n of LNT steps� we write
�
� �� where � � �n � � ���� In

contrast to the calculus in Section � not all substitutions are recorded for
�
�� only

the ones produced by guessing are needed for the technical treatment� Informally�
all other substitutions only concern intermediate
or auxiliary� variables similar
to �����

As in the �rst�order case� we consider only reductions to the dedicated constant
true� This is general enough to cover reductions to a term without de�ned symbols
c� since a reduction t

�
�� c can be modeled by f
t�

�
�� true with the additional

rule f
c� � true and a new symbol f � Hence we assume that solving a goal
t�� true is initiated with the initial goal I
t� � case t of true 	 true�� X�

As an example� consider the goal �x�di�
�y�sin
F
x� y��� x� �� �x�cos
x�
w�r�t� the rules for di� and the hdt for the function �	

X � Y � case Y of � 	 X� s
Y �� 	 X �X � Y �

To solve the above goal� we simply add the rule f
�x�cos
x��� true to solve the
following goal� Since each computation step only a�ects the two leftmost goals� we
often omit the others�

case f
�x�di�
�y�sin
F
x� y��� x�� of true 	 true�� X�

�Case Eval

case �x�di�
�y�sin
F
x� y��� x� of cos 	 true�� X��
case X� of true 	 true�� X�

�Case Eval

�x�case �y�sin
F
x� y�� of � � � � �y�sin
G
x� y�� 	 � � � � � � ��� X��
case X� of cos 	 true�� X�� case X� of true 	 true�� X�

�Case Select

�x�cos
F
x� x�� � di�
�y�F
x� y�� x��� X�� case X� of cos 	 true�� X�� � � �
�Bind

case �x�cos
F
x� x�� � di�
�y�F
x� y�� x� of cos 	 true�� X�� � � �
�Case Eval

�x�case di�
�y�F
x� y�� x� of � 	 cos
F
x� x��� � � ��� X�
�� � � �

�Case Eval

�x�case �y�F
x� y� of �y�y 	 �� � � ��� X�� �x�case X�
x� of � 	 cos
F
x� x��� � � �

�
fF ���x�y�yg
Projection

�x�case �y�y of �y�y 	 �� � � ��� X�� �x�case X�
x� of � 	 cos
x�� � � ��� X�
�� � � �

�Case Select

�x���� X�� �x�case X�
x� of � 	 cos
x�� � � ��� X�
�� � � �

�Bind

�x�case � of � 	 cos
x�� � � ��� X�
�� case X

�
� of cos 	 true�� X�� � � �

�Case Select�Bind�Case Select�Bind

case true of true 	 true�� X� �Case Select true�� X� �Bind fg

Thus� the computed solution is fF �� �x� y�yg�

� Correctness and Completeness

As in the �rst�order case� we show completeness w�r�t� needed reductions� We
�rst de�ne needed reductions and then lift needed reductions to narrowing� In the
following we assume an inductively sequential HRS R and assume LNT is invoked
with the corresponding de�nitional trees�

For our purpose it is convenient to de�ne needed reductions via LNT� Then
we show that they are in fact needed� For modeling rewriting� the Guess rules are

not needed	 For LNT we have S
�
�

fg
LNT S� if and only if no Guess rules are used

in the reduction� Hence no narrowing is performed� This can also be seen as an
implementation of a particular rewriting strategy�

In order to relate a system of LNT goals to a term� we associate a position p
with each case construct and a substitution � for all newly introduced variables on
the right� For each case expression T � case X of � � � in a rule T � � f
Xn�� X
we attach the position p of X in the left�hand side of the corresponding rewrite
rule� Formally� we de�ne a function lT such that lT
f
Xn� 	 X � yields the labeled
tree for a rule T � f
Xn�� X 	

� lT
pf 	 case X of Tn� � pf 	 casep X of lT
Tn�
where p is the position of X in patT
pf 	 case X of Tn�

� lT
pf 	 r� � pf 	 r

We assume in the following that de�nitional trees for some inductively sequential
HRS R are labeled�

The following invariant will allow us to relate a goal system with a term	

Theorem�� For an initial goal with case� t of true 	 true�� X�
�
�

fg
LNT S� S is

of one of the following two forms�

�� �x�casepn s of � � ��� Xn� �x�casepn��
�y�Xn
x� y� of � � ��� Xn��� � � � �

�x�casep� �y�X�
x� y� of � � ��� X�� casep� X� of true 	 true�� X�

�� r �� Xn	�� �x�casepn �y�Xn	�
x� y� of � � ��� Xn�
�x�casepn��

�y�Xn
x� y� of � � ��� Xn��� � � � �
�x�casep� �y�X�
x� y� of � � ��� X�� casep� X� of true 	 true�� X�

Furthermore� all Xn	� are distinct and each variable Xi occurs only as shown

above� i�e� at most twice in � � � � e�� Xi� case Xi of � � ��

Notice that the second form in the above theorem is created by a Case Select rule
application� which may reduce a case term to a non�case term� or by Case Eval
with a rule f
Xn� � r� As only the Bind rule applies on such systems� they are
immediately reduced to the �rst form� As we will see� the Bind rule corresponds
to the replacement which is part of a rewrite step� Since we now know the precise
form of goal systems which may occur� bound variables as arguments and binders
are often omitted in goal systems for brevity�

The next goal is to relate LNT and rewriting� For a goal system S� we write
S� for the normal form obtained by applying Case Eval and Case Select�

De�nition� We de�ne an associated substitution for each goal system in�
ductively on

�
�LNT 	

� For an initial goal system of the form S � case� t of true 	 true �� X� we
de�ne the associated substitution �S � fX �� tg�

� For the Case Eval rule on S � �x�casep �y�f
t� of � � ��
� X�G with

S � �x� y�	
X ��� X�� �x�casep �y�X
�
x� y� of � � ��� X�G �	 S�

we de�ne �S� � �S fX� �� �x�
�SX�jpg�

For all other rules� the associated substitution is unchanged�

For a goal system S we write the associated substitution as �S � Notice that the
associated substitution is not a �solution� as used in the completeness result and
only serves to reconstruct the original term�

We can translate a goal system produced by LNT into one term as follows� The
idea is that casep t of � � ��� X should be interpreted as the replacement of the
case term t at position p in �SX� i�e��
�SX��t�p� Extending this to goal systems
yields the following de�nition	

De�nition�� For a goal system S of the form

�r�� X� � �x�casepn s of � � ��� Xn� � � � � casep� X� of true 	 true�� X�

where �r �� X� � is optional� with associated substitution � we de�ne the asso�
ciated term T
S� as
�X���
�X���� � �
�Xn
x����s�pn � � ��p� �p� �

For instance� if we start with a goal system S� � case� t of true 	 true �� X�
then T
S�� � t�

For a goal system S� we write Bind
S� to denote the result of applying the
Case Bind rule� Notice that the substitution of the Bind rule only a�ects the two
leftmost goals�

Lemma�� Let S � I
t�� If S� is of the form of Invariant �� then t � T
S��
is reducible at position p � p� � � �pn� Furthermore� if t ��p t�� then I
t��� �
Bind
S����

Now� we can de�ne needed reductions	

De�nition�� A term t has a needed redex p if I
t�� is of Invariant � with p �
p� � � �pn�

It remains to show that needed reductions are indeed needed to compute a con�
structor headed term�

Theorem�� If t reduces to true� then t has a needed redex at position p and t
must be reduced at p eventually� Otherwise� t is not reducible to true�

The next desirable result is to show that needed reductions are normalizing� This
is suggested from related works ���� ���� but is beyond the scope of this paper�

For a goal system S� we call the variables that do not occur in T
S� dummies�
In particular� all variables on the right and all variables in selectors in patterns of
some tree in S are dummies�

Lemma��� If S
�
� �

LNT fg� then �S
�
�

fg
LNT fg�

Theorem��
Correctness of LNT�� If I
t�
�
� �

LNT fg for a term t� then �t
�
��

true�

We �rst state completeness in terms of LNT reductions�

Lemma��� If �S
�
�

fg
LNT fg and � is in R�normal form and contains no dummies

of S�
 then S
�
� ��

LNT fg with �� � ��

Theorem�	
Completeness of LNT�� If �t
�
�� true and � is in R�normal

form� then I
t�
�
� ��

LNT fg with �� � ��

� Optimality regarding Solutions

We show here another important aspect� namely uniqueness of the solutions com�
puted� Compared to the more general case in ����� optimality of solutions is possible
here� since we only evaluate to constructor�headed terms� For this to hold for all
subgoals in a narrowing process� our requirement of constructor�based rules is also
essential� For these reasons� we never have to chose between Case Select and Case
Eval in our setting and optimality follows easily from the corresponding result of
higher�order uni�cation�

� I	e	� FV��� �FV�S� � FV�T �S��

Theorem��
Optimality�� If I
t�
�
� �

LNT fg and I
t�
�
� ��

LNT fg are two di�er�

ent derivations� then � and �� are incomparable�

It is also conjectured that our notion of needed reductions is optimal
this is
subject to current research ���� ��� ���� Note� however� that sharing is needed for
optimality� as shown for the �rst�order case in ����

	 Avoiding Function Synthesis

Although the synthesis of functional objects by full higher�order uni�cation in
LNT is very powerful� it can also be expensive and operationally complex� There
is an interesting restriction on rewrite rules which entails that full higher�order
uni�cation is not needed in LNT for
quasi� �rst�order goals�

We show that the corresponding result in ��� is easy to see in our context�
although lifting over binders obscures the results somewhat unnecessarily� Lifting
may instantiate a �rst�order variable by a higher�order one� but this is only needed
to handle the context correctly�

A term t is quasi �rst�order if t is a higher�order pattern without free higher�
order variables� A rule f
Xn�� X is calledweakly higher�order� if every higher�
order free variable which occurs in X is in fXng� In other words� higher�order
variables may only occur directly below the root and are immediately eliminated
when hdts are introduced in the Case Eval rule�

Theorem�� If I
t�
�
�LNT S where t is quasi �rst�order w�r�t� weakly higher�

order rules� then T
S� is quasi �rst�order�

As a trivial consequence of the last result� Function Guess and Projection do not
apply and Imitation is only used as in the �rst�order case�

 Conclusions

We have presented an e�ective model for the integration of functional and log�
ic programming with completeness and optimality results� Since we do not re�
quire terminating rewrite rules and permit higher�order logical variables and ��
abstractions� our strategy is a suitable basis for truly higher�order functional logic
languages� Moreover� our strategy reduces to an optimal �rst�order strategy if the
higher�order features are not used� Further work will focus on adapting the explicit
model for sharing using goal systems from ���� to this re�ned context�

References

	 S	 Antoy	 De
nitional trees	 In Proc� of the �rd International Conference on Alge�

braic and Logic Programming� pages �����	 Springer LNCS ���� ���	
�	 S	 Antoy� R	 Echahed� and M	 Hanus	 A needed narrowing strategy	 In Proc� ��st

ACM Symposium on Principles of Programming Languages� pages �������� Portland�
���	

�	 Andrea Asperti and Cosimo Laneve	 Interaction systems I� The theory of optimal
reductions	 Mathematical Structures in Computer Science� ���������� ���	

�	 J	 Avenhaus and C	 A	 Lor��a�S�aenz	 Higher�order conditional rewriting and narrow�
ing	 In Jean�Pierre Jouannaud� editor� �st International Conference on Constraints

in Computational Logics� M�unchen� Germany� September ���	 Springer LNCS ���	
�	 Hendrik Pieter Barendregt	 The Lambda Calculus� its Syntax and Semantics	 North

Holland� �nd edition� ���	
�	 E	 Giovannetti� G	 Levi� C	 Moiso� and C	 Palamidessi	 Kernel LEAF� A logic plus

functional language	 Journal of Computer and System Sciences� ������������ ��	
�	 M	 Hanus	 The integration of functions into logic programming� From theory to

practice	 Journal of Logic Programming� ������������� ���	
�	 M	 Hanus	 E�cient translation of lazy functional logic programs into Prolog	 In

Proc� Fifth International Workshop on Logic Program Synthesis and Transformation�
pages �������	 Springer LNCS ���� ���	

�	 M	 Hanus and C	 Prehofer	 Higher�order narrowing with de
nitional trees	 Technical
report ����� RWTH Aachen� ���	

�	 J	R	 Hindley and J	 P	 Seldin	 Introduction to Combinators and ��Calculus	 Cam�
bridge University Press� ���	

	 Jan Willem Klop	 Combinatory Reduction Systems	 Mathematical Centre Tracts
��	 Mathematisch Centrum� Amsterdam� ���	

�	 Dale Miller	 A logic programming language with lambda�abstraction� function vari�
ables� and simple uni
cation	 J� Logic and Computation� ��������� ��	

�	 J	J	 Moreno�Navarro and M	 Rodr��guez�Artalejo	 Logic programming with functions
and predicates� The language BABEL	 Journal of Logic Programming� ��������
���	

�	 Tobias Nipkow	 Higher�order critical pairs	 In Proc� �th IEEE Symp� Logic in Com�

puter Science� pages �������� ��	
�	 Vincent van Oostrom	 Con�uence for Abstract and Higher�Order Rewriting	 PhD

thesis� Vrije Universiteit� ���	 Amsterdam	
�	 Vincent van Oostrom	 Higher�order families� ���	 In this volume	
�	 Christian Prehofer	 Higher�order narrowing	 In Proc� Ninth Annual IEEE Sympo�

sium on Logic in Computer Science� pages ������	 IEEE Computer Society Press�
���	

�	 Christian Prehofer	 A Call�by�Need Strategy for Higher�Order Functional�Logic Pro�
gramming	 In J	 Lloyd� editor� Logic Programming� Proc� of the ���	 International

Symposium� pages ����	 MIT Press� ���	
�	 Christian Prehofer	 Solving Higher�order Equations
 From Logic to Programming	

PhD thesis� TU M�unchen� ���	 Also appeared as Technical Report I����	
��	 J	R	 Slagle	 Automated theorem�proving for theories with simpli
ers� commutativity�

and associativity	 Journal of the ACM� ������������� ���	

