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Abstract

Isabelle is a generic theorem proving environment which was used
successfully in recent years for many practical applications� In par�
ticular� the model of Input�Output�automata in combination with its
formal meta�theory� abstraction theory and temporal logic has been
embedded in Isabelle�HOLCF� An advantage of Isabelle is� that it can
cope with arbitrary large systems� even in�nite in the number of states�
A disadvantage is the necessary interaction of the user during veri�ca�
tion process� On the other hand� model checkers enable automatical
veri�cation� but their use is usually restricted to small� �nite systems�
In this paper� we present an integrated environment for speci�cation
and veri�cation of distributed systems in Isabelle� Beginning with
the Isabelle formulation of I�O�automata� some additional components
were created by the author and assembled to a consistent tool� Here�
we take a closer look on the integration of the model checker �cke as
an external veri�cation tool for Isabelle�
We also present a direct support of the speci�cation language for I�O�
automata known from literature and we present a proof tactic for im�
plementation relations of I�O�automata in Isabelle� The model checker
�cke� which is used in this tactic� is integrated in Isabelle as an ora�
cle� The usage of the resulting veri�cation environment for reactive
systems is presented by two examples�
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� Introduction

��� Motivation

Reactive systems play an important role in application of information
systems� They have the property that they can observe events in their
environment and may then react by executing some actions� Such systems
may be distributed which means that they consist of several components
which may communicate with each other �e�g� via actions��

A formal model for such systems is that of Input�Output automata ��	�
shortly written as I�O�automata�� An I�O�automaton may be partitioned
into several other automata where for each automaton a set of actions is
speci�ed which are distinguished between input actions and output actions�
Here communication takes place through execution of actions �which may
contain parameters� that is an output action for the sending component and
is an input action for each receiving component�

By describing a system via I�O�automata one can make formal veri�ca�
tion of system properties� This is for example possible with the theorem
prover Isabelle ����� and ����� Theorem provers like Isabelle make it possible
to prove properties interactively� This means that a user must generally
think about the proof step to apply and the theorem prover then executes
this step and gives the new proof state as output and awaits the next proof
steps�
On the other hand model checkers are tools which may in principle auto�
matically verify certain restricted formulas� This means that a user produces
as input only the formula to prove and the model checker tests whether this
formula is valid for each possible state� A disadvantage of model checkers is
that their area of application is restricted typically to �nite�state systems�

In this paper a part of the veri�cation environment of Isabelle�IOA will be
described where these two concepts of theorem proving and model checking
are combined� for a certain property class on I�O�automata proof obliga�
tions in Isabelle are delegated to a model checker whose results Isabelle uses
to verify the property� This usage of the model checker was implemented
in a generic way so that the model checker may be used in Isabelle also for
non�I�O�automaton veri�cation tasks�
Moreover the comfortable input syntax for I�O�automata in the Isabelle
system which is similar to the classical I�O�automaton syntax described in
�	� will be introduced�



� � INTRODUCTION

��� Main Goals and Outline of the Paper

Four items are described in this paper which are listed in a more precise
way as following� As the structure of this paper corresponds strongly with
these items �exactly one section per item� also the corresponding section is
given at each item�

� The syntax of Isabelle theories was extended by a section automaton
which enables the user to give I�O�automata written in the syntax
form for I�O�automata according to �	� as input for Isabelle� This
syntax will be described in section ��

� Implementation relation properties for I�O�automata can be proved in
some cases by translating the problem in another logic �the ��calculus�
and then prove this formula by using the model checker �cke ��� which
is also based on the ��calculus� This translation will be described in
section ��

� The interface between Isabelle and �cke is implemented as an oracle�
A proof tactic is provided in Isabelle where for proving formulas of the
��calculus one can use this oracle� This will be described in section ��

� After introducing this veri�cation environment two applications are
shown in section ��

��� Related Work

This paper describes the results of the authors diploma thesis ��� and relies
also on ���� where the theoretical basis for the here introduced practical
concepts is given� For similar problems on I�O�automata with model checker
use in Isabelle there is a case study in �
�� There the nice input syntax for
I�O�automata was not available and the transfer from Isabelle to the model
checker was done by hand and not automatically� A further combination of
Isabelle and model checker for I�O�automata is described in ���� but again
without automatic coupling of these two tools�
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� The I�O�Automata Syntax for Isabelle

Firstly� the convenient syntax for I�O�automata according to Lynch�Tuttle
��� will be described� Then� its use in Isabelle will be demonstrated�

��� A Short Introduction to Safe I�O�Automata

I�O�automata provide a helpful means to describe reactive systems� An
I�O�automaton consists of a set of possible states and a set of actions which
may be executed on the automaton and cause the automaton to change its
state� Actions may have parameters and each action may be speci�ed by a
precondition �a predicate over the state and action parameters� and a post�
condition �description of the automaton state after action execution�� Each
action is either an input output or internal one� Input actions are input
enabled which means that they are always executable on this automaton
and so must not have any precondition�

Formally a Safe I�O�automaton can be described by subsequent de�nitions�

De
nition� �Signature	
An action signature S is a triple of three mutually disjoint sets� in�S � the
set of input actions out�S � the set of output actions and int�s� the set of
internal actions� The union of in�S � and out�S � is ext�S � the set of external
actions� The union of all three sets is written as acts�S ��

De
nition� �Safe I�O�Automaton	
A Safe I�O�automaton A consists of�

� an action signature sig�A	

� a state set states�A	

� start�A	 a non�empty set of initial states with
start�A� � states�A�

� a transition relation
steps�A	� states�A� � acts�sig�A�� � states�A� where for each
s � states�A� and a � in�sig�A�� there exists some �s� a� t� � steps�A��
For �s� a� t� � trans�A� we will write s �a

A t �

For I�O�automata the operations composition �several automata are par�
allely composed to one automaton� restriction and hiding �the set of ex�
ternal and internal actions of an automaton can be modi�ed� and renaming
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�action names can be renamed� are avialable too� However such de�nitions
will not be given here as they do not play an important role in this presen�
tation of the veri�cation system� The interested reader should consult �	�
or ����� Whenever such operations are used in the examples they will be
further explained there�

��� The I�O�Automata Syntax

A syntax for I�O�Automata is described by the following grammar� A sim�
ilar pattern has been used in ��� and was here modi�ed to comply with the
Isabelle syntax� The syntax is very intuitive and the connection to above
I�O�automaton de�nition should be obvious by examining one of the follow�
ing examples�

�automaton def� ��� automaton �name�
signature
actions �datatype�
�inputs �action list��
�outputs �action list��
�internals �action list��

states �component list�
�initially �predicate��
transitions �transition list�

�action list� ��� �action� j �action� � �action list�

�component list� ��� �component� j �component� �component list�
�component� ��� �name� �� �type�

�transition list� ��� �transition� j �transition� �transition list�
�transition� ��� �action� ��transrel� j �pre�� j �post��

�transrel� ��� transrel �predicate�

�pre�� ��� �pre� ��post��
�pre� ��� pre �predicate�

�post� ��� post �assign list�
�assign list� ��� �assign� j �assign� � �assign list�
�assign� ��� �name� �� �term�



��� Example �

The following conventions apply�

� If the initial condition �initially� is missing any state is permitted as
an initial one �equivalent to initially True��

� If at an action a precondition is speci�ed �pre� but the postcondition
�post� is left out all state components remain unchanged when this
action is executed� Also if in a postcondition an assignment term for
a component is missing this component remains unchanged too�

� If transrel is used for specifying an action the component values
before executing the action are referenced simply with their name and
the values after execution are referenced with the primed component
name �e�g� for component var write var��

��� Example

Imagine a very trivial alarm manager of a helicopter alarm system� It con�
sists of the actions Alarm�a 
 Alarms	 indicating the arrival of alarm a �and
storing it� Info�i 
 Alarms	 indicating that an alarm i is in the store and
Ack�a 
 Alarms	 meaning that an alarm a has been acknowledged by the pi�
lot �and can be deleted from the store�� Subsequent implementation focuses
especially on the so�called Point�of�No�Return alarm and has therefore only
a �ag as memory which indicates whether this alarm is stored�

automatonAut C
signature

inputs
Alarm�a�� a � Alarms
outputs
Info�i�� i � Alarms
internals
Ack�a�� a � Alarms

states
�ag � bool

initially
�ag � False

transitions
Alarm�a�
post �ag �� if �a � Pon� then True else �ag

Info�i�
pre if �i � Pon� then �ag else True

Ack�a�
transrel if �a � Pon� then ��ag � �ag � � False� else ��ag � � �ag�
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When using this kind of syntax in Isabelle the following issues have to be
considered�

� After the line automaton �name� the Isabelle system requires an
equality sign�

� The line actions �datatype� does not appear in standard literature
about I�O�automata �	�� In Isabelle it speci�es the ��nite� datatype
from which the action sets are built�

� The syntax elements �type� and �datatype� must comply with the
the type syntax in Isabelle�

� The syntax elements �action� �predicate� and �term� must be
written as �String� which corresponds to the proper Isabelle term
to be expressed�

A syntax diagram for the use of I�O�automata in Isabelle is given in the
appendix� There also the Isabelle syntax of certain operations on automata
which are also supported by this syntax is given� These operations are
composition of I�O�automata hiding restriction and renaming of actions in
a I�O�automaton�

Example continued To describe above automaton AutC in a Isabelle
theory SimEx the �le SimEx�thy will look like this�

SimEx � IOA �

datatype alarm � Pon � Eng � Fue

datatype ��a�action � Info �a � Ack �a � Alarm �a

automaton Aut�C �

signature

actions �alarm�action

inputs

�Alarm a�

outputs

�Info i�

internals

�Ack a�

states

flag 		 bool

initially
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�flag � False�

transitions

�Alarm a�

post flag 	� ��if �a�Pon� then True else flag��

�Info i�

pre �if �i�Pon� then flag else True�

�Ack a�

transrel �if �a�Pon� then �flag�True 
 flag��False�

else �flag��flag��
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� The Implementation Relation and the ��Calculus

In this section� the implementation relation property between two automata
and the ��calculus will be introduced� Then� a way will be shown to translate
implementation relation properties into the ��calculus� This serves as a base
to use the model checker for veri�cation of implementation relations� The
simple example of preceding section will be continued in this context�

��� The Implementation Relation

In this subsection the implementation relation between two Safe I�O�automata
will be de�ned� For that end we need some auxiliary de�nitions�

De
nition� �Execution Fragment and Execution Sequence	
An execution fragment for an automaton A is a �nite or in�nite sequence
s�a�s�a�s� � � � of alternating states and actions of A where for all i holds�
si �

ai��

A si��� An execution sequence for an automaton A is an execution
fragment with s� � start�A��

De
nition� �Accessibility	
A state s � states�A� is accessible in A i� there exists in A a �nite execution
fragment which ends in s�

De
nition� �Trace and Trace Sequence	
A trace of an execution fragment � written as trace��� is a sequence con�
taining exclusively all external actions of �� � is a trace sequence of an au�
tomaton A i� there exists an execution sequence � of A with � � trace����
The set of all trace sequences of A is written as traces�A��

De
nition� �Step	
Let � be a �nite sequence over ext�sig�A�� and s� t � states�A�� Then
�s� �� t� is a step in automaton A written as s ��

A t  i� there exists in A a
�nite execution sequence � which starts in s ends in t and with trace��� � ��

The following de�nition will explain the implementation relation� Infor�
mally spoken an automaton C implements an automaton A when for each
sequence of actions in C which is externally visible the same sequence is
also possible in A�

De
nition� �Implementation Relation	
For automata C and A with in�sig�C �� � in�sig�A�� and out�sig�C �� �
out�sig�A�� holds the implementation relation C �S A i��
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� traces�C � � traces�A�

Strongly corresponding with the implementation relation is forward simula�
tion�

De
nition� �Forward Simulation	
For two automata C and A with in�sig�C �� � in�sig�A�� and
out�sig�C �� � out�sig�A�� a relation R over states�C � � states�A� is a
forward simulation i��

� If s � start�C � then R�s� � start�A� 	� fg�

� If s is accessible in C and s � � R�s� is accessible in A and s �a
C t 

then there exists a state t � � R�t � with s � ��

A t � where � � �a� if
a � ext�sig�A�� and � � �� else�

If there exists a forward simulation for C and A we write�

C 
F A�

Olaf M�uller proved the following theorem in ���� which shows that for ver�
ifying the implementation relation it su�ces to verify the existence of a
forward simulation� This will be also used by the veri�cation framework
presented later�

Theorem ���
For two automata C and A with in�sig�C �� � in�sig�A�� and
out�sig�C �� � out�sig�A�� holds�

C 
F A� C �S A

��� The ��Calculus

The ��calculus is the underlying logic of the model checker �cke� So a few
words will be used to describe this logic� For a more detailed description
see ����

The ��calculus is an extension of the �rst order predicate logic by intro�
ducing the �x�point operators � and �� We now describe the syntax and
semantics�
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De
nition� �Types and Variables	
Let T be a �nite set of �nite sets with bool � T and bool � ftrue� falseg� Let
X be a �nite set of elements which has a typing function �X � X � T � Let
P be a �nite set of elements which has a typing function �P � P � ��n��T

n �
All t � T  X and P should be mutually disjoint� Based on the sets T  X
and P one can de�ne a ��calculus where the types are the elements of T  the
so�called simple variables are the elements of X and the so called predicate
variables are the elements of P � For p � P  �P �p� is the argument type of
the represented predicate�

De
nition� �Ground Term	
A ground term of type t � T is�

� a c with c � t

� a x with x � fx � X j�X �x � � tg

�X is extended on ground terms by de�ning for each c � t � �X �c� � t �

De
nition� �Formulas	
Formulas are�

� boolean ground terms

� x � y or x 	� y with ground terms x and y  where �X �x � � �X �y�

� �a a  b and �x �a with formulas a and b and x � X

� p�z�� � � � � zn� with a relational term p and �z�� � � � � zn� � �P�p� and all
zi are ground terms of proper types�

Now it remains to de�ne the relational terms�

De
nition� �Relational Terms	
Relational Terms are�

� a p with p � P

� 	z� � � � zn �f with zi � X and formula f

� �z �p and �z �p with z � P  p a relational term which is formally
monotone �see below� in z  and �P �z � � �P �p�

�P is extended on relational terms so that�
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� �P �	z� � � � zn �f � � �
n
i���X �zi �

� �P ��z �p� � �P�z � or �P ��z �p� � �P �z �

De
nition� �Formal Monotonicity	
A relational term P is formally monotone in a predicate variable z  i� each
free occurrence of z in P is enclosed by an even number of negations�

In addition it shall be possible to use � � and � in formulas in their
usual way�

The semantics of ground terms and relational terms will be de�ned by an
assignment function 
 as follows�

De
nition� �Assignment	
An assignment 
 assigns each variable x � X a c � �X �x � and each p � P a
predicate I �p�� which is the characteristic function of a set p� � �P �p��
With 
 given an assignment 
� can be de�ned by�


� �� 
fz� � a�� � � � � zn � ang with zi 	� zj and ai � �X �zi � if
zi � X or ai as the characteristic function of a subset of �P �zi �
if zi � P

Here 
� has following property�

� 
��a� � 
�a� if a 	� fz�� � � � � zng

� 
��a� � ai  if ai � zi

De
nition� �Evaluation of Ground Terms	
Ground terms are evaluated relative to an assignment 
 in the following
way�

� �c�
 � c if c � t � T

� �x �
 � 
�x � if x � X

The evaluation of formulas corresponding to an assignment 
 is de�ned
canonically and will be omitted here� It remains only to de�ne the evaluation
of relational terms� They are evaluated to a predicate with appropriate
argument type�
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De
nition� �Evaluation of Relational Terms	

� �p�
 � 
�p� if p � P

� �	z� � � � zn �f �
 � I �p� with p � f�a�� � � � � an� � �
n

i�� �X �zi �j �f �

�g

and 
� � 
fzi � ai j� 
 i 
 ng

� ��z �p�
 � lfp�Q� with an assignmentQ between predicates of argument
type �P �z � which is de�ned by Q�f � �� �p�
fz � f g

� ��z �p�
 � gfp�Q� with a mapping Q between predicates of argument
type �P �z � which is de�ned by Q�f � �� �p�
fz � f g

Here lfp is the least and gfp is the greatest �x�point of a monotonous
mapping� For calculating these �x�points we refer to ��� and ���� There it
is also proved that for the terms and formulas de�ned here these �x�points
always exist �that was the reason for using the formal monotonicity here��

��� Translating Implementation Relations into the ��Calculus

To prove a given implementation relation by a ��calculus�based model checker
one has to translate the implementation relation respectively the forward
simulation property �see Theorem ���� to a ��calculus formula� The cor�
rectness of following translation process was again proved by Olaf M�uller in
���� and will be described below�

� De�ne on Act the characteristic predicate for internal actions of each
automaton�

� InternalA�a� �� a � int�asig�A��

� InternalC �a� �� a � int�asig�C ��

� De�ne the characteristic predicate of the initial states�

� StartA�s� �� s � start�A�

� StartC �s� �� s � start�C �

� De�ne the characteristic predicate for transitions�

� TransA�s� a� t� �� s �a
A t

� TransC �s� a� t� �� s �a
C t

� The predicate IntStepStarA indicates whether a state t of A is acces�
sible from s via a �nite sequence of actions�
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� IntStepA�s� t� �� �a�InternalA�a� � TransA�s� a� t�

� IntStepStarA �� �P �	 s t ��s � t�  �u�IntStepA�s� u� � P�u� t�

� Following predicate on transitions of A holds i� either the action a is

internal in C and IntStepStarA�s� t� holds or s �
�s�
A t holds�

� MoveA�s� a� t� �� �InternalC �a� � IntStepStarA�s� t�� 
�u� u��IntStepStarA�s� u���TransA�u�� a� u���IntStepStarA�u�� t�

� Then the existence of a forward simulation can be described with the
aid of following predicate�

� isSimCA �� �P �	s� t���a s��TransC �s�� a� s��
� �t��MoveA�t�� a� t�� � P�s�� t��

� Finally the property expressing the forward simulation is�

� �s t �StartC �s� � StartA�t�� isSimCA�s� t�

Due to Theorem ��� the existence of a forward simulation also implies that
the implementation relation holds� So the implementation relation holds if
latter formula holds�

��� Example

Analogously to the simple helicopter alarm system Aut C in section ��� one
can de�ne an automaton Aut A with the same input and output actions as
Aut C which does also have the same preconditions and e�ects but where
the internal action Ack is missing� Let�s assume that both automata were
de�ned in a Isabelle theory �le SimEx�thy� Additionally to the example
of the latter section the theory used by Simex should not be IOA �see
�rst line �SimEx � IOA �� of theory �le there� but MuIOAOracle where
MuIOAOracle is a theory where the veri�cation environment explained in
this paper is de�ned�
So to execute this example proof one has to load the theories MuIOAOracle
and SimEx� To prove that Aut C implements Aut A we simply type into a
running Isabelle session�

Goal �Aut�C ��� Aut�A��

In the ideal case the tactic is sim tac of theory MuIOAOracle manages all
proof work�

by �is�sim�tac aut�simps ���
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Here aut simps is a theorem list which contains all theorems which were
generated� at the de�nition of Aut A and Aut C� These theorems de�ne the
automata and the start states signature and transitions of the automata�
For this example aut simps is de�ned in �le SimEx�ML as follows�

val aut�simps � 	Aut�A�def
Aut�A�asig�def


Aut�A�start�def
Aut�A�trans�def


Aut�C�def
Aut�C�asig�def


Aut�C�start�def
Aut�C�trans�def��

In the �rst part of the proof this tactic veri�es the equality of the sets of
input actions between these two automata and also the equality of the sets
of output actions� Then for proving the implementation relation it only
remains to verify�

Traces�Aut C � � Traces�Aut A�

This is proved by translation to the ��Calculus in the way described above�
The intermediate result of the tactic is a subgoal formula in the Isabelle
theory MuCalculus�

�� 	�Internal�of�A �� � a� a � int Aut A�

Internal�of�C �� � a� a � int Aut C�

Start�of�A �� � s� s � starts of Aut A�

Start�of�C �� � s� s � starts of Aut C�

Trans�of�A �� � �s
t� a� s �a��Aut�A�� t�

Trans�of�C �� � �cs
ct� a� cs �a��Aut�C�� ct�

IntStep�of�A �� � �s
t�� � a� Internal of A a �

Trans of A �s
t� a�

IntStepStar�of�A �� Mu P� �� �s
t�� s � t �

�� u� IntStep of A �s
t� � P �u
t����

Move�of�A �� ��s
t� a� Internal of C a � IntStepStar of A �s
t�

� �� u v� IntStepStar of A �s
u� �

Trans of A �u
v� a � IntStepStar of A �v
t���

isSimCA �� Nu P� �� �cs
s�� � a ct�

Trans of C �cs
ct� a � �� t� Move of A �s
t� a � P �ct
t�����

��� � cs s� Start of C cs � Start of A s � isSimCA�cs
s�

For completion of the proof the tactic still has to use the model checker
�cke which will be described in the following section�

�In case of describing the automata in Isabelle with the syntax introduced in the
preceding chapter�
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� From ��Calculus to �cke

To make the �nal step when proving implementation relations of I�O�automata
in Isabelle� the model checker �cke will be used to prove the remaining for�
mula of the ��calculus� In this section the interface of this model checker
for Isabelle will be introduced� However� this interface is not only useful for
proving implementation relations� but can be used for verifying any given
formula of the ��calculus which is conform to the interface syntax�

��� Description of the Interface and its usage

To prove a formula of the Isabelle theory MuCalculus �where the ��calculus
is de�ned see ����� the formula has to have following structure�

�� The formula may have premises� Then when translating this for�
mula to �cke only the conclusion of the formula will be considered
as proof goal and each premise will be considered as equation which
de�nes a predicate �which may then occur in the conclusion or in
other premises�� Hence each premise has to observe the proper type
and structure constraints� A correct example where f is a predicate
de�ned in the premise is�

f �� � a b� a 
 b ���  a b� f a b

�� The predicate de�nitions occuring in the premises have to bemeta�level
equations of the form f � 	x ��term�� In particular all arguments of
this predicate head have to be bound by ��conversion to the term at the
right hand� Furthermore if an argument is of tuple type its structure
must be fully instantiated� e�g� if x is a variable of type bool � bool  a
function de�nition f �fst�x � must be modi�ed to f � 	�a� b��fst�a� b��

�� The �xed point operators � and � may only occur at the outermost
position of the right hand side of the de�nition equations� An arbitrary
formula can be transformed to ful�ll this requirement by splitting it
into several auxiliary predicate de�nitions�

�� No operators or functions of non�boolean result type may be used�
Before using the interface each occurrence of such an item has to be
removed e�g� by rewriting or simpli�cation�

�� Each type used in the formula must be boolean or a datatype with a
�nite number of elements�


� Besides the abstraction used in the premises to bind predicate argu�
ments to the right�hand�side de�nition term abstraction may only be
used for existential and universial quanti�cation�
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�� Free variables may not occur anywhere in the formula�

Not all the work to meet these requirements has to be done by the user�
For transformations to ful�ll requirements from number � to � solutions
were already available through Robert Sandner�s theory MuckeSyn ���� which
is based on the theory MuCalculus� There the tactic mc mucke tac was
de�ned which will be shortly introduced in the following subsection� Note
that for requirement � theorems to be proved have to ful�ll a di�erent
syntax pattern �see there�� This tactic is however not important for our
I�O�automaton problem as its formula of the ��calculus ful�lls these require�
ments�

Theory MuCalculus was extended to meet also requirement � through ap�
plying some simpli�cations� They are integrated in a tactic call mucke tac

which takes the MuCalculus formula as argument and whose usage will be
explained in the following subsection� Note that mc tac is based on this tac�
tic as call mucke tac manages the model checker call from Isabelle� This
tactic also manages the transformation from Isabelle datatypes to simple
�cke enumeration types and corresponding to requirement � a �niteness
check for each datatype�

Therefore the user only has to take care of the requirements � to ��
However in the context of implementation relation problems treated in this
paper these requirements are generally ful�lled�

��� An example use of the �cke Interface

At �rst we describe the syntax of the tactic mc mucke tac�

by �mc�mucke�tac defs i ��

Here i indicates the number of the subgoal where the tactic is to apply
and defs is a list of de�nitions formulas which are taken as premises of the
subgoal to prove� This syntax di�ers slightly from the requirement � above�
There these de�nitions were already premises of the subgoal whereas here
these de�nitions must be provided as a list parameter defs� Internally this
tactic calls an auxiliary function mk lam defs for the premises to achieve
requirement � and � and an auxiliary function move mus to achieve require�
ment �� Afterwards the tactic call mucke tac is used to let the model
checker prove the subgoal which will be explained in following paragraph�



��� An example use of the �cke Interface ��

We continue the example of the preceding chapter and explain how
is sim tac �nishes the proof of the implementation relation� This is simply
by calling tactic call mucke tac is called and the ��calculus formula at the
end of the preceding chapter is taken as its argument�

In general the tactic call mucke tac is used in the following way�

by �call�mucke�tac i ��

Here i is the number of the subgoal to which this tactic should be applied�
The tactic executes the transformations necessary to use the model checker
�cke �included are simpli�cations to achieve requirement �� and produces
an input �le tmp�mu� which contains the description of the formula to prove
in �cke syntax and which is then executed by the command�

mucke �nb �res tmp�mu

The model checker �cke then veri�ed the given formula and then gave fol�
lowing output�

� value of

� forall bool cs� forall bool s� Start�of�C�cs� � Start�of�A�s�

� �� isSimCA�cs
 s�

� is

� true

������������������������������������������������������������

��� virtual memory size is ���� MB

��� system � user time is ��� seconds ����

Due to successful veri�cation in �cke the proof of the implementation rela�
tion in Isabelle was also considered as successful�

�If variable trace mc in �le HOL�Modelcheck�mucke�oracle�ML is set on true� this �le�
which is written to the Isabelle temporary directory� will not be deleted after use and can
be inspected by an interested user�

�The ML�function extract result in the oracle relies on the output syntax� which
�nishes with three lines about use of resources �see example here� the �rst line is a line
containing equality sign� the second line describes the memory size and the third line
describes the required time�� Therefore� �cke is called with the option �res� Option �nb

suppresses the output of a here useless banner where an ASCII�gram of a mosquito is
displayed�
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� Case Studies

We will demonstrate the capabilities of the presented veri�cation framework�
We will continue a case study of �� where properties of a helicopter alarm
system were proven� The complexity will be signi�cantly increased in the
second case study where we investigate into a Leader Election Algorithm ����
There� we we almost fully exploit the capabilities of this veri�cation method�

��� The Helicopter Alarm System

We consider a helicopter alarm system which stores and manages alarms
which occuring during operation� Incoming alarms are modeled through an
action Alarm� Here an alarm is inserted in the store and the occurrence
of the alarm is transmittable to the pilot through updating an information
display which the pilot watches� This update is modelled by an action Info�
Then the pilot may handle an alarm of the store by executing an action
Ack� All these actions have a parameter of an enumeration type event
which especially contains the elements PonR �corresponds to the Point�of�
No�Return�Alarm� and None �with the meaning that no alarm has occurred
or is treated�� We focus on the alarm PonR so the state of the automaton
is modelled by a boolean variable APonR incl and an information display
info of type event� Together we have following automaton description�

automaton cockpit
signature

inputs Alarm�a�� a � event
outputs
Info�i�� i � event
Ack�a�� a � event

states
APonR incl � bool
info � event

initially APonR incl � False � info � None
transitions
Alarm�a�
post APonR incl �� if �a � PonR� then True elseAPonR incl

info �� if �a � None� then info else a
Info�i� pre i � info
Ack�a�
pre �a � PonR � APonR incl� � �a � None � �APonR incl�
post info �� None

APonR incl �� if �a � PonR� then False elseAPonR incl
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In this model we now prove following three properties�

�� Before the action Ack�PonR� occurs and between two occurrences of
this action the action Alarm�PonR� must have occurred at least once�

�� Action Info�PonR� may occur i� action Alarm�PonR� has occurred
and since then not any other alarm �besides the trivial None� has
occurred�

�� Action Info�None� may occur i� after the latest occurrence of action
Ack not any other alarm has occurred�

As we want to show these properties by proving some implementation re�
lation properties we represent these properties by I���automata� These
I�O�automata should have a simple structure and in each case meet one of
the properties above�

Let us begin with property ��

automatonAl before Ack
signature

inputs
Alarm�a�� a � event
outputs
Ack�a�� a � event

states
APonR incl � bool

initially
APonR incl � False

transitions
Alarm�a�
post APonR incl �� if �a � PonR� then True elseAPonR incl

Ack�a�
pre �a � PonR � APonR incl�
post APonR incl �� if �a � PonR� then False elseAPonR incl



�� � CASE STUDIES

Property � is described by following automaton�

automaton Info while Al
signature

inputs Alarm�a�� a � event
outputs
Ack�a�� a � event
Info�i�� i � event

states info at Pon � bool
initially info at Pon � False
transitions
Alarm�a�
post info at Pon �� if a � PonR then True

else � if a � None then info at Pon else False�
Info�i�
pre �i � PonR � info at Pon�

Ack�a�
post info at Pon �� False

For property � we choose following automaton�

automaton Info before Al
signature

inputs Alarm�a�� a � event
outputs
Ack�a�� a � event
Info�i�� i � event

states info at None � bool
initially info at None � True
transitions
Alarm�a�
post info at None �� � if a � None then info at None else False�

Info�i�
pre �i � None � info at None�

Ack�a�
post info at None �� True

In Isabelle all these automata were de�ned in the theory Cockpit�thy

�see directory HOLCF�IOA�Modelcheck�� Furthermore in Cockpit�ML the
list aut simps is de�ned which contains all de�nitions of these automata�
Cockpit�ML is automatically executed when loading theory Cockpit and
there also following three desired properties are veri�ed�
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�� cockpit hide �S Al before Ack

�� cockpit �S Info while Al

�� cockpit �S Info before Al

Their proofs are started by entering at each case�

�� Goal �cockpit�hide ��� Al�before�Ack��

�� Goal �cockpit ��� Info�while�Al��

�� Goal �cockpit ��� Info�before�Al��

At each case we apply following proof step�

by �is sim tac aut simps ���

Here cockpit hide is de�ned by�

automaton cockpit hide � hide �Info a� in cockpit

For explanations to the usage of this hiding operation in Isabelle see the
appendix� The tactic above was not enough for verifying property �� But
an application of following tactic has led to the solution�

by Auto tac�

Here Auto tac is a tactic which applies automatically all classical rules
and simpli�cations of the logic HOL to the topical proof state�

In this rather simple model �cockpit possesses �
 states and �� actions�
the complexity for veri�cation was still small� The average length of the
produced �cke �les was ��� lines ��� MB of virtual memory was used and
the model checker needed ���� seconds �see next subsection for the properties
of the computing system��
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��� The Leader Election Algorithm

We now take a look at the LeLann�Chang�Roberts algorithm �LCR� which
was already modelled in ��� for I�O�automata� There a �nite number of
processes is arranged to a ring structure and each process has an unique
identi�er� These processes must determine exactly one leader process and
each process may only send messages to its right�hand neighbour�

We are modelling an algorithm where at the beginning each process may
send its own identi�er to its right neighbor� If a process receives an identi�er
higher than its own it then sends the maximum of its own identi�er and of
all received identi�ers� If a process receives its own identi�er it knows that
this identi�er was sent through the whole ring and it may declare itself as
leader�

We show by implementation relation that this algorithm meets the re�
quirement that at least one process declares itself as leader� We model an
I�O�automaton where only three processed are arranged in the ring� The
identi�ers are of following Isabelle datatype�

datatype token � Leader � id� � id� � id� � id� � id�

We de�ne a partial order on token which is similar to the canonical ordering
of the natural numbers �excluding element Leader�� For the three processes
we de�ne automata aut� aut� and aut�� The identi�er of automaton aut�
may be an id� or id� of aut� it may be id� or id� and for aut� it is id��
For communication actions we de�ne following datatype�

datatype Comm � Zero One token � One Two token �

Two Zero token � Leader Zero � Leader One � Leader Two

Here Zero One represents the sending operation of an identi�er from aut�
to aut�� Leader Zero symbolizes the operation where aut� declared itself
to leader� The speci�cations of aut� aut� and aut� are given in the �le
Ring��thy in the directory HOLCF�IOA�Modelcheck� These automata were
then assembled to a ring by composition�

automaton ring � compose aut��aut��aut�

Then we express the property that in automaton ring at least one process
declares itself to leader by following automaton�
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automaton one leader
signature

outputs
Zero One�t�� t � token
One Two�t�� t � token
Two Zero�t�� t � token
Leader Zero
Leader One
Leader Two

states leader � token
initially leader � Leader
transitions
Zero One�t� pre True
One Two�t� pre True
Two Zero�t� pre True
Leader Zero
pre leader � id�  leader � Leader
post leader �� id�

Leader One
pre leader � id�  leader � Leader
post leader �� id�

Leader Two
pre leader � id�  leader � Leader
post leader �� id�

When loading theory Ring� a veri�cation of following proof goal is exe�
cuted in �le Ring��ML�

Goal �ring ��� one�leader��

By executing

by �is�sim�tac aut�simps ���

with subsequent

by Auto�tac�

the veri�cation of the proof goal was successful�

The examples were executed on a Sun ULTRA � with ���� MB RAM and
a ��� MHz processor� The ring size was varied and two slightly di�erent
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Ring size �States Isabelle preprocessing time �cke Time �cke Memory

� ��	
 �� s ���� s ���	 MB

� ���
 ��� s ���� s ���� MB

� � Semaphor ���
� �� s ��	 s ��� MB

� � Semaphor �����
 ��� s ���� s �
� MB

� � Semaphor ��	�		� �	� s � � ��� GB

Table �� Results for the LCR�algorithm

algorithms were investigated� Table � lists all data where the �rst row cor�
responds to the variant chosen in theory Ring��
We see that with increasing number of states in the automaton �second

column� the work to be done by �cke increases �fourth column�� The simpli�
�cation work done by Isabelle �third column� before calling �cke corresponds
to the number of single automata being composed to a ring ��rst column��
Whereas in the case of �ve ring components Isabelle can produce an input
�le for �cke �cke cannot �nish the veri�cation as the main memory lacks
which results into getting a core�dump�

Here we have reached the limits of model checker complexity� Another
more fundamenatal shortcoming of this implementation relation technique
is of logical kind� For proving the e�ectiveness of this algorithm one should
also prove that in fact one automaton declares itself to leader� In our
automaton model we would have to introduce fairness conditions for ac�
tions and the problem remains that this property has to be expressed by a
Safe I�O�automaton where no solution exists as this property is a liveness
property ���
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� Conclusion

We have presented an Isabelle�based veri�cation environment for I�O�automata
consisting of a three layered architecture�

�� The uppermost layer provides the user a comfortable possibility to
input I�O�automata in Isabelle�

�� The middle layer translates implementation relations between automata
into a formula of the ��calculus�

�� In the bottom layer formulas of the ��calculus as described in the
Isabelle theory MuCalculus are transformed into an input for the
model checker �cke and then veri�ed� This interface from Isabelle
to �cke can be used for any formula of the logic MuCalculus when
observing the constraints given in section ����

This veri�cation environment is applicable for proving implementation rela�
tions between automata with �nite state spaces� The implementation rela�
tion means that an automaton ful�lls some properties of another automaton
and therefore implements this automaton� We have also given examples with
a certain complexity�

The veri�cation environment described here may be extended further as
follows� Besides the comfortable input syntax the Isabelle system could
automatically prove some basic properties about well�formedness of I�O�
automata like the disjunctness of input and output actions for each au�
tomaton or the input�enabledness for each input action� Though some con�
straints can be guaranteed by a simple syntax check �e�g� disjointness� one
generally has to prove that in another way� Implementing proof tactics for
that task which are automatically called at an automaton input could be
a task for future works�

Furthermore with the implementation relation it is only possible to de�
scribe properties of sequences of actions� It is primarily suited to describe
relations between two given automaton� To describe a property of a single
automaton by this means on has to describe the desired property through
another automaton and then prove that the automaton implements this
property automaton� As in this work only Safe I�O�automata were used
one is somehow restricted in formulating properties via I�O�automata�
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One possibility to overcome with this restriction is to extend the concept
of implementation relation on Fair I�O�automata� The other possibility is
to formulate properties of I�O�automata directly in a temporal logic e�g TLS
���� which has already been formalized in Isabelle� To extend this temporal
logic to a new veri�cation environment one has again to choose a model
checker that can verify properties of that temporal logic and couple it with
Isabelle�

Together with the here introduced components one would then have a
veri�cation environment for I�O�automata in Isabelle with complementing
techniques� On the one hand abstraction proofs� on I�O�automata and pre�
processig a model checker input are done in Isabelle on the other hand ver�
i�cation of abstract systems is delegated to model checkers� There we have
model checkers like �cke for primarily proving relations between automata
and other model checkers for directly proving properties of automata�

�Abstaction proofs were not discussed here� It means the task to verify that instead
of observing directly a given automaton� a more suitable� abstract version �which is for
example small enough for model checkers� can be observed� For example� the helicopter
alarm system in the here described case study is an abstraction of the real system �see
��	�� Also this process of abstraction proofs can be supported by model checkers �again
��	�� For a detailed formal description� see �
�	�
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A Appendix

A�� How to run the veri�cation environment

Make sure that you have a running Isabelle session with the IOA logic loaded�
It is important that you use an Isabelle version which contains the �les
ioa syn�ML and ioa package�ML in the directory HOLCF�IOA�meta�theory
of its sources� These �les are necessary for using the IOA syntax� For
using the model checker for verifying implementation relations you need
the theory MuIOAOracle whose sources are in the subdirectory HOLCF�IOA�
Modelcheck�

For using the model checker �cke without I�O�automata you only need
to have a running Isabelle session with the theories of HOL�Modelcheck

loaded� It is important that you use an Isabelle version which contains the
�le mucke oracle�ML in this directory� Besides you must have the model
checker �cke installed on your system �see Armin Biere�s home page ����� To
make it useable in Isabelle you have to set an environment variable MUCKE
HOME containing the path of the mucke binary which you can for example
do in the �le etc�settings of your Isabelle version�

A�� The Syntax Diagram for I�O�Automata in Isabelle

The following diagrams present the syntax for I�O�automata in Isabelle�
In section � already a part was shown in a more abstract way� You can
�nd its counterpart in Isabelle if you follow the pattern automatonDef after
beginning at ioaDef� Besides if you begin in ioaDef you can see also the
syntax de�nitions for compositions of automata and hiding restriction and
renaming in an automaton� Following patterns were not speci�ed further
but we will explain what they mean and which syntax to use for them if
they do not correspond directly to an Isabelle syntax element �see ������ For
better understanding see also the example in section ��

� At automatonName you must write a name of an already de�ned
Isabelle I�O�automaton�

� At datatype you must write a name which corresponds to a datatype
already de�ned in Isabelle� At action you must write a term in Isabelle
syntax which is element of its proper datatype and which is embraced
by quotation marks�

� At predicate you have to write a boolean term in quotes� At term
you have to write a term of proper type as quoted string�
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� function has to be an Isabelle function term as quoted string� Here it
occurs at the de�nition of an automaton renaming� Please be careful
about its semantics	�

ioaDef

automaton
�
�

�
�name �

�
�
�
� automatonDef�

� compositionDef

�hidingDef

� restrictionDef

� renamingDef

�

�

�

�

�

automatonDef

autSig autStates autStart autTrans

compositionDef

compose
�
�

�
� automatonName�

� �
�
�
�
�

�

�

hidingDef

hide
�
�

�
�actionlist in

�
�
�
�automatonName

restrictionDef

restrict
�
�

�
�automatonName to

�
�
�
�actionList

renamingDef

rename
�
�

�
�automatonName using

�
�

�
�function

actionList

action�

� �
�
�
�
�

�

�

�In contrast to the usual understanding of a renaming function� we de�ne as renaming
function a partial function of elements of the action type of the result automaton to
elements of the action type of the source automaton� It is the inverse of the usual renaming
operation�
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autSig

signature
�
�

�
�actionType actionsPartition

actionType

actions
�
�

�
�datatype

actionsPartition

�

� inputs

�

�

�

�outputs

�

�

�

� internals

�

�

inputs

inputs
�
�

�
�actionList

outputs

outputs
�
�

�
�actionList

internals

internals
�
�

�
�actionList

autStates

states
�
�

�
� component�

�

�

�

component

name 		
�
�
�
�type

autStart

�

�initially
�
�

�
�predicate

�

�

autTrans

transitions
�
�

�
� transition�

�

�

�
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transition

action transRel�

�pre

�post

�pre post

�

�

�

�

transRel

transrel
�
�

�
�predicate

pre

pre
�
�
�
�predicate

post

post
�
�

�
� assignment�

� �
�
�
�
�

�

�

assignment

name 	�
�
�
�
�term
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