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Abstract. We present a complete formalization of the Hahn-Banach
theorem in the simply-typed set-theory of Isabelle/HOL, such that both
the modeling of the underlying mathematical notions and the full proofs
are intelligible to human readers. This is achieved by means of the Isar en-
vironment, which provides a framework for high-level reasoning based on
natural deduction. The final result is presented as a readable formal proof
document, following usual presentations in mathematical textbooks quite
closely. Our case study demonstrates that Isabelle/Isar is capable to sup-
port this kind of application of formal logic very well, while being open
for an even larger scope.

1 Introduction

The general idea of formalizing mathematics has already a long tradition. The
desire to capture the way of human reasoning can be traced back far into the
past, just consider Leibniz’s calculemus manifest as a classic example. Purely
syntactic formulation of mathematics with mechanical checking of proofs has
finally matured during the 20th century. Roughly speaking, in its first half it has
been demonstrated that mathematics could in principle be completely reduced
to very basic logical principles. In the second half of the century the advent
of computers enabled logicians to build systems for actually doing non-trivial
applications in a fully formal setting. Over the last decades, many successful
mechanized proof checkers and proof assistants have emerged, just consider de
Bruijn’s pioneering AUTOMATH project [21], or major contemporary theorem
proving environments like Coq [12], Isabelle [25], and HOL [15].

This line of development represents tools for actual verification, in the sense
that a very high level of confidence in correctness of the results is achieved. There
is a wider picture of formal tools, though, including the important markets of
symbolic computation (Computer Algebra) and falsification aids. The latter pro-
vide systematic ways to exhibit errors and counterexamples, rather than prove
correctness. This is mainly the area of Model Checking, but general purpose
theorem provers such as PVS [23] are usually positioned here as well.

Getting back to actual verification, we observe that current tactical provers
(e.g. Isabelle [25] or Coq [12]) are usually quite inaccessible to non-specialist
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users. This issue has been addressed in several ways, e.g. by providing graphical
user interfaces to help users putting together tactic scripts (e.g. [1, 2]). Another
major approach is to relate representations of formal proof objects directly with
natural language, e.g. narrating λ-terms in plain English (or even French) [13].
There is also a more general grammatical framework based on type theory to sup-
port multi-lingual formal documents [17]. These efforts would ultimately result
in a complete mathematical vernacular based on natural language (e.g. [9]).

Mizar [26, 29, 19, 35] has pioneered a rather different approach, by providing
a higher-level proof language as its input format in the first place — avoiding the
kind of machine-oriented transformations of tactical proving, which have so little
in common with expressing mathematical ideas. While Mizar proved very suc-
cessful for doing mainstream mathematics [18], it also has some fundamental lim-
itations. The Mizar environment — the theory and proof language, together with
its notion of “obvious inferences” — has been particularly tailored for applica-
tions within a first-order formulation of typed set-theory (Tarski-Grothendieck).
It is unclear how to to change the logical basis, or even just basic proof tools.
Learning how to use Mizar is difficult, because of its batch-mode nature and sev-
eral complications due to first-order logic. Also note that Mizar does not claim
the same level of formal correctness, as established by major proof checkers, such
as Coq or Isabelle. It could be still possible to give fully formal foundations for
Mizar in principle.

DECLARE [27, 28] is another more recent development of combining Mizar
concepts and tactical proving into a “declarative” theorem proving system, suited
for non-trivial meta-theoretical studies such as operational semantics.

Our present work employs the Isabelle/Isar system [32] as an environment for
computer-assisted formal mathematics. Isar (which stands for Intelligible semi-
automated reasoning) offers a generic approach to high-level natural deduction
[31]. From the user’s point of view, formal proof documents are the most funda-
mental concept of Isar. Following the basic structure of mathematical textbooks,
iterating definition — theorem — proof, the actual text is written in a formal
language with semantics firmly based on logic.

Isar provides a fresh start of the general idea of Mizar, while avoiding its
shortcomings. The Isar framework is based on a few basic logical principles only,
with the actual object-logic being left open as a parameter. Thus we gain logical
flexibility, while also supporting the case of fully formal machine-checked proof
with high confidence in the results as actual theorems. The basic mechanism
of Isar proof checking does not depend on automated reasoning, nevertheless
existing proof tools may be plugged in easily.

Interactive proof development, with incremental interpretation of Isar proof
text, is considered an important issue. The Isabelle/Isar implementation [32]
supports a simple model of live document editing that requires very basic user
interface support only. Together with the existing Proof General interface [1],
we already obtain a reasonable working environment for actual applications.

We have chosen the Hahn-Banach Theorem [16, 20] as a realistic case study
of computer-assisted mathematics performed in Isabelle/Isar. The theorem has
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been completely formalized (in two versions), together with any required no-
tions of functional analysis, using Isabelle/HOL set-theory as logical basis [6, 5].
This particular example shall serve as a basis for a general assessment of the
requirements of large-scale formalized mathematics.

Why does intelligible reasoning matter anyway? It is certainly fun to see
computer-assisted mathematics actually work in non-trivial applications, and
show the results to other people. Further, being able to communicate machine-
checkable formal concepts adequately has an important cultural value [3], influ-
encing the way that formal logic is perceived as an issue of practical relevance
in general. The particular case of formal proof in education has been addressed
many times before (e.g. [8]). We even raise the general philosophical principle
that any important (or even critical) piece of formal code (proofs or programs)
should be in itself open for human understanding. Informal explanations (e.g.
comments) and mechanic analysis (e.g. independent proof checking) play an im-
portant role, but also have their limitations (e.g. comments could be misleading
or even inconsistent with the formal code). Having an adequate language of for-
mal discourse available, we are enabled to communicate our reasoning directly in
a format that may be machine-checked later. Thus we achieve a “second source”
for correctness: inspecting the formal source we (hopefully) get convinced of its
plausibility, while knowing that it has passed a trusted proof checker as well.

The rest of this paper is structured as follows. Section 2 explains basic issues
of formal proof in Isabelle/Isar by giving some examples. Section 3 briefly reviews
central aspects of Isar as a working environment for formalized mathematics.
Section 4 discusses a fully formal treatment of the Hahn-Banach Theorem as a
realistic example of mainstream mathematics in Isabelle/Isar.

2 Basic Examples

In order to get a first idea how computer-assisted mathematics may look like
in Isabelle/Isar, we consider basic group theory as a small “practical” example.
We introduce the abstract structure of general groups over some carrier type
α, together with product · and inverse −1 operations, unit element 1, and
axioms stating associativity, and the left inverse and unit properties. As usual,
the right inverse and unit laws may be derived as theorems of group theory.

Below, we start a new theory context Group derived from the plain HOL
basis. Then we introduce constant declarations with Isabelle-style mixfix anno-
tations for concrete syntax. The structure of general groups over some carrier
type is defined by employing Isabelle’s Axiomatic Type Classes [30, 34], which
provide a useful mechanism for abstract algebraic concepts. Finally we establish
the two basic consequences of the group axioms as formally proven theorems.

theory Group = HOL:

consts

prod :: "’a → ’a → ’a" ( infixl " ·" 70)
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inv :: "’a → ’a" ("( −1)" [1000] 999)

unit :: "’a" ("1")

axclass group < "term"

assoc: "(x · y) · z = x · (y · z)"
left inv: "x−1 · x = 1"

left unit: "1 · x = x"

theorem right inv: "x · x−1 = (1::’a::group)" 〈proof 〉

theorem right unit: "x · 1 = (x::’a::group)"

proof -

have "x · 1 = x · (x−1 · x)" by (simp only: left inv)

also have "... = (x · x−1) · x" by (simp only: assoc)

also have "... = 1 · x" by (simp only: right inv)

also have "... = x" by (simp only: left unit)

finally show ?thesis .

qed

end

This text directly represents the input format of Isabelle/Isar, apart from some
simple pretty printing applied in the presentation. Using the Proof General in-
terface [1] one may even achieve a similar display on screen. Our definition of
abstract groups uses axclass (see [34] for more details). Both of the proofs above
are conducted by calculational reasoning, the first one has been suppressed in
the presentation, though.

As is typical for forward-reasoning, the initial proof step does not apply any
reduction yet, which is indicated by “proof -”. The proof body establishes the
main thesis by a sequence of intermediate results (have proven via a single step
of by each1) that are composed by transitivity. The “. . . ” notation refers to
the most recent right-hand side expression. The also element causes the current
calculation to be combined with the latest fact. So does finally, but it also
concludes the calculation by offering the final result to the next statement.

Isar calculations are more general than shown here. Calculational elements
may be even combined with plain natural deduction (e.g. [33, §6]), without
having to subscribe to a fully calculational view of logic in general [14].

In the next example we review slightly more involved logical reasoning:
Smullyan’s Drinkers’ principle (e.g. [3]) is a puzzle of pure classical logic. It
states that there is some individual such that whenever he is getting drunk,
everybody else does so as well (“drunk” may be replaced by any predicate).

Theorem (Drinkers’ Principle). ∃x. Q x→ (∀y. Q y)

Proof. We show Q x→ (∀y. Q y) for some x by case analysis. Assume ∀y. Q y,
then any individual makes the implication true. Assume ¬ (∀y. Q y), then there
is an y such that ¬ Q y holds, which makes the implication true as well.
1 Isabelle’s simplifier is used here to normalize with a single equation only.
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This narration of usual informal mathematics style is turned into a formal
Isabelle/Isar text as follows, while retaining the overall structure of reasoning.

theorem Drinkers’ Principle: "∃ x. Q x → (∀ y. Q y)"

proof cases

assume "∀ y. Q y"

fix any have "Q any → (∀ y. Q y)" ..

thus ?thesis ..

next

assume "¬(∀ y. Q y)"

then obtain y where "¬ Q y" 〈proof 〉
hence "Q y → (∀ y. Q y)" ..

thus ?thesis ..

qed

Isar certainly does require some understanding of the language semantics [31, 32]
in order to appreciate the formal reasoning in detail. Subsequently, we shall point
out the most important aspects of this proof.

The outermost “proof cases” step refers to the propositional case-split rule
(A ⇒ C) ⇒ (¬ A ⇒ C) ⇒ C, thus the body gets divided into two branches,
which are separated by next. The rule admits to introduce an additional local
hypotheses using assume in each case. In order to establish the main thesis, an
existential statement, we prove the goal for some suitable witness. In the first
case, fix augments the context by a new local variable (without any additional
assumptions), and have states the desired implication. The double-dot proof “..”
means that the result is established from the current context by a single standard
structural rule (here →-intro). With this result, the thesis is just another single
step away (apparently via ∃-intro).

Note that idiomatic phrases such as “thus ?thesis ..” are quite typical for Isar.
We have seen a similar one in the group calculation: “finally show ?thesis .”.
Isar avoids specialized language elements as much as possible, reducing anything
to few principles only. The flexible way that the basic entities may be composed
into well-formed proof texts results in a very rich language.

The second case of our proof is similar to the first one, but the witness
element is produced differently: the assumption ¬ (∀y. Q y) classically yields
∃y. ¬ Q y, so we may pick any such y when showing the main goal (by virtue of
the ∃-elim rule). The derived Isar language element obtain arranges this kind
of formal reasoning in a way that is close to usual mathematical practice. In
particular, the existential statement and the actual elimination step are put out
of the main focus, highlighting the resulting context modification instead. Above
we have even suppressed an actual proof, leaving a place holder. Completing this
in terms of basic logical reasoning would be just an exercise on de Morgan’s Law,
turning ¬ (∀y. Q y) into ∃y. ¬ Q y.

Alternatively, the proof for obtain may be finished with some automated
proof tool, say “by blast”, which refers to Isabelle’s tableau prover. How to
proceed in such situations is mainly a question of methodology. It is up to the
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author to determine which parts of the proof are considered relevant for the
intended audience, while the proof language has to offer the structural flexibility.

3 An Environment for Intelligible Formal Mathematics

We discuss some central aspects of the Isar proof language, which is at the heart
of our environment for intelligible formal mathematics. Three stages are con-
sidered: a minimal logical framework for primitive natural deduction, the Isar
primary proof language seen as a logically redundant enrichment, and derived
proof schemes for advanced applications. The resulting architecture fully pre-
serves machine-checkable correctness as provided by the primitive level.

3.1 Logical Foundations

We closely follow Isabelle’s meta-logic [24], which is an intuitionistic ∀/⇒/≡ -
fragment of higher-order logic. Logical syntax is that of simply-typed λ-calculus.
Proof rules are the standard ones for minimal logic, with definitional equality
≡ . Proof objects may be represented within a typed λ-calculus with separate
abstraction and application for simply-typed terms x : τ and propositions a :
A.2 The set H of propositions in Hereditary Harrop Form (HHF) is defined
inductively as H = ∀x. H ⇒ A, where x refers to the set of variables, A to
atomic propositions, and x, H to lists. HHF formulae play a central role in
representing both natural deduction rules and internal proof states [24, 25]. Note
that according to HHF, contexts have the canonical form Γ = x,H.

Common object-logics based on natural deduction (e.g. classical HOL, ZF
set-theory, even type theory) can be expressed within this meta-logic in a con-
venient way [25]. Any such formalization may be directly re-used within the Isar
framework, including theory libraries, definitional packages and proof tools [32].

3.2 Basic Proof Language

The Isar core proof language provides 12 primitive elements, which are inter-
preted on top of the basic logical framework by referring to its primitive infer-
ences (mostly derived rules for back-chaining and proof-by-assumption), together
with some additional book-keeping [31]. The Isar primitives are as follows [32,
Appendix A]: “fix x : τ” and “assume a : A” augment the context, then indi-
cates forward chaining (e.g. to do elimination in the subsequent reduction step),
“have a :A” and “show a :A” claim local statements (the latter includes solving
of some pending goal afterwards), “proof m” performs an initial proof step by
applying some method, “qed m” concludes a (sub-)proof, { } and next manage
block structure, “note a = b” reconsiders facts, and “let p = t” abbreviates
terms via higher-order matching against some pattern.
2 Note that τ is usually suppressed due to type-inference, while a is omitted internally

in implementations following the “LCF-approach”.
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In addition, there are 7 basic defined elements: “by m1 m2” for proofs with
an empty body, “..” for single-rule proofs, “.” for immediate proofs, hence/thus
for claims with forward chaining indicated, and “from a”/“with a” for explicit
forward chaining from (additional) facts.

The most essential ingredient to achieve a well-balanced basis for intelligible
proof is free choice over forward vs. backward reasoning. To see how this works
out in Isar, we relate chunks of proof text to an enriched version of primitive
proof objects (cf. §3.1). We define backward (�) and forward (�) application
operators for lists of λ-terms such that s� t�u ≡ t s u. Now let R be a natural
deduction rule a :A ⇒ b :B ⇒ C, where the premises are separated into two
lists a :A and b :B (for clarity we suppress any contexts of the premises).

The body of Isar (sub)-proofs consists of a sequence of context elements or
proven statements. These may be put into the following standard form:

〈context〉 from a show C proof (rule R) 〈body〉 qed

where 〈body〉 is recursively of the same structure. This is a correct piece of
reasoning, if 〈body〉 proves “show Bi” for each Bi in B, such that a�R�π(B)
establishes C, for some permutation π.

The impact on the overall structure of Isar proofs is as follows. The sub-
problems stemming from rule R are split into parts a and π(B), where the a :A
have been established beforehand and b :B are deferred to sub-proofs at a deeper
level. It is important to note that the two sections are not handled symmetrically:
a refers to facts from the context by symbolic names and in a fixed order, while
in the body sub-problems are stated as explicit propositions in an arbitrary order
π(B). This enables readable proofs, since the A statements can be easily spotted
verbatim in the preceding context, while the members of B appear in the body
below, in an appropriate order to handle the more interesting ones first. Note that
the fixed order of the a specification still admits the corresponding statements to
appear anywhere in the context. On the other hand, this policy improves clarity
and robustness of proof checking, since it makes it easy to determine rule R
automatically from the structure of A and C (for elimination or introduction,
respectively) without any serious search. Consequently, Isar proofs seldom name
R explicitly, but usually decompose according to implicit standard rules.

3.3 Derived Proof Schemes

Large case studies such as the Hahn-Banach Theorem show that realistic math-
ematical applications demand additional proof support, apart from the pure
natural deduction provided so far (cf. §3.2). On the other hand, the basic Isar
proof language turns out to be sufficiently expressive to admit advanced schemes
as further derived elements. Subsequently, we discuss a flexible form of calcula-
tional proof, and generalized reasoning with eliminated existence.

7



Calculational Proof can be understood as iterated reasoning with transitivity
rules, such that the final result emerges from folding a sequence of facts together.
This may involve any suitable “binary” rule, like s = t ⇒ t = u ⇒ s = u, the
same for < and ≤, including any combination of these. Substitution s = t ⇒
P s⇒ P t works as well, then composition means to replace equal sub-terms.

Isar calculations work incrementally, maintaining a secondary result called
calculation by composition with the primary one this, which always refers to the
latest fact. We now just define two new language elements, also and finally.

also0 ≡ note calculation = this
alson+1 ≡ note calculation = trans [OF calculation this]
finally ≡ also from calculation

Here also0 refers to the first, and alson+1 to further occurrences of also within a
calculational sequence, at the same level of blocks. The OF operation combines
logical rules using higher-order resolution (back-chaining). For atomic proposi-
tions, OF indeed coincides with application in λ-calculus. The trans rule above
is determined by higher-order unification from a set of transitivities declared
in the theory library. These rules usually include plain transitivity of =/</≤,
and substitution of =, or even </≤ with monotonicity conditions extracted in
the expected way. Determining rules implicitly by higher-order unification works
very well in practice, without any serious search required.

Another version of calculational elements are moreover and ultimately,
which are even more simple since they only collect facts without applying any
rules yet. This is quite useful to accumulate a number of intermediate results
that contribute to some ultimate result. Thus the proof text is often easier to
read as we avoid explicit naming of intermediate facts.

moreover ≡ note calculation = calculation this
ultimately ≡ moreover from calculation

One may also use also and moreover together within the same calculation, say
if using rules that require more than two facts to yield the intended result.

Eliminated Existence Reasoning means that additional variables with cer-
tain hypotheses are introduced, as justified by a corresponding soundness proof.
Consider the special case of eliminating ∃x. H[x], where an additional x with
assumption H[x] may be obtained. The derived Isar element obtain is defined
as follows (optional 〈facts〉 may be have been indicated for forward chaining).

〈facts〉 obtain x where H[x] 〈proof 〉 ≡
{

fix C
assume ∀x. H[x]⇒ C
from 〈facts〉 have C 〈proof 〉
}
fix x assume? H[x]
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After having finished the soundness proof, the assumptions H[x] are introduced
with an internal hint of being obtained. This tells the Isar interpreter how to
discharge this context element later, whenever a result is exported from its scope.
According to the nature of existential reasoning, parameters x may never occur
in a final conclusion, only in intermediate results within the same context.

The obtain scheme has many virtues in reducing the complexity of formal
proof texts. For example, duplicate occurrences of x and H in the text are
avoided. Furthermore, the soundness proof of obtain is usually straightforward
by using existing facts together with basic automated tools (e.g. rewriting).
Speaking in terms of first-order logic, the proof would basically correspond to
iterated introduction of ∃ and ∧, but obtain in Isar does not even mention any
particular ∃ or ∧ connective of the object-logic. This way we gain both flexibility
and avoid cumbersome automated reasoning with existential quantifiers.

Between the two extremes of basic assume and obtain there are further
derived context elements in Isar: “def x ≡ t” is like “fix x assume x ≡ t”
where the equation is discharged by generalization and reflexivity later, while
presume is just like assume, but leaves the assumption as a new subgoal.

3.4 Addressing Correctness

In order to see how Isar fares in the quest of correctness [3], recall its basic
arrangement of formal concepts: there are two main levels, the primitive logical
core and the primary Isar proof language; these are related by an interpretation
function, providing an operational semantics of Isar proof texts in terms of prim-
itive inferences [31]. First of all, suppose we believe in the basic logical framework
(see §3.1), and know how to implement it at the highest conceivable level of cor-
rectness (cf. the discussion in [3, 4]). Furthermore, we may formulate correctness
(or even completeness) results of Isar proofs related to primitive ones by virtue
of the operational semantics. While this would tell us that the Isar machine
operates adequately, without producing nonsense or failing unexpectedly, it is
not the primary means to achieve ultimate machine-checked correctness: both
the Isar interpreter program and its correctness proof are sufficiently complex
to lower the resulting level of confidence at least by an order of magnitude.

Fortunately we can do better, even with informal proof sketches of the Isar
machine correctness result and an unverified implementation only. The key prop-
erty of the Isar interpretation process is that actual “theorems” can be treated
as non-observable objects that are manipulated abstractly, without ever depend-
ing on the actual structure of internal proofs or propositions. Thus the original
notion of correctness of the primitive level is passed undisturbed to the primary
one of Isar proof text processing.

4 The Hahn-Banach Theorem

The Hahn-Banach Theorem is probably the most fundamental result in func-
tional analysis (e.g. [20]). We will consider an informal proof in a standard
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mathematical textbook [16, §36] where two different versions of the theorem
are presented, one for general linear spaces, and one for normed vector spaces.

We show how the underlying mathematical notions can be expressed in a
very natural way, employing the simply-typed set theory of HOL [11, 15]. We
also present a proof in Isabelle/Isar, which closely follows the original one [16].

4.1 Structure of the Proof

Theorem (Hahn-Banach). Let F be a subspace of a real vector space E, let
p be a semi-norm on E, and f be a linear form defined on F such that f is
bounded by p, i.e. ∀x ∈ F . f x ≤ p x. Then f can be extended to a linear form
h on E such that h is norm-preserving, i.e. h is also bounded by p on E.

Proof Sketch.

1. Define M as the set of norm-preserving extensions of f to subspaces of E.
The linear forms in M are ordered by domain extension.

2. We show that every non-empty chain in M has an upper bound in M .
3. With Zorn’s Lemma we conclude that there is a maximal function g in M .
4. The domain H of g is the whole space E, as shown by classical contradiction:

– Assuming g is not defined on whole E, it can still be extended in a
norm-preserving way to a super-space H ′ of H.

– Thus g can not be maximal. Contradiction!

From this we also get a version of the Hahn-Banach theorem for normed
spaces [16, §36]. The complete formal proof of this corollary is given in [6, 5].

4.2 Formalization in HOL Set Theory

We formalize basic notions of functional analysis in HOL set-theory: vector
spaces, subspaces, and an order of functions by domain extension. Further no-
tions such as normed vector spaces, continuous linear forms and norms of func-
tions are required for the version for normed vector spaces only, see [6, 5].

Note that our development does not require any topological notions. The
interpretation of bounded linear forms as being “continuous” is left informal. In
fact, this treatment follows the usual practice in functional analysis [16].

Vector Spaces. There are several ways of defining abstract mathematical struc-
tures such as vector spaces in HOL. One is to define axiomatic type classes (cf.
the group example in §2). Another general principle is to define structures as
predicates over a carrier set together with operations. We apply a particular
instance of this principle where we use polymorphic operations +, − and 0 on a
generic type α. Further, we introduce an operation · :: IR→ α→ α and define

is-vectorspace :: α set → bool
is-vectorspace V ≡ V 6= {} ∧ (∀x ∈ V . ∀y ∈ V . ∀z ∈ V . ∀a b.

x+ y ∈ V ∧ a · x ∈ V ∧ (x+ y) + z = x+ (y + z) ∧ . . .)
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Alternatively, we could have defined a class of records with components for
the carrier set and corresponding operations. While this closely reflects com-
mon treatment of mathematical structures in theory, it deviates from the usual
practice, since we would have to refer to explicit record selector and update
operations all the time. Our present approach has the advantage of mimicking
informal mathematical usage, by identifying a structure with its carrier.

Subspaces. The way that vector spaces have been modeled above enables sub-
spaces to be described succinctly: just use HOL’s ⊆ relation on the carriers and
express closure wrt. vector space operations as usual [6]. Furthermore, the main
proof will construct chains of vector spaces, with the supremum simply as

⋃
.

Observing these abstract virtues, we shall also validate our notion of sub-
spaces in concrete instances. For example, using type IN → IR for α we would
first define +, −, ·, 0 point-wise on the whole domain. Then any n-dimensional
space IRn would correspond to {f. ∀i ≥ n. fi = 0}. Apparently, any such carrier
set is closed under vector operations — it does not matter that these are defined
on the whole type. Common infinitary vector spaces can be defined as well: l∞

becomes {f. ∃c. ∀i. |fi| < c}, and lp becomes {f. ∃c. ∀k.
∑
i<k |fi|p < c}. Using

IR→ IR for α we could even define the very rich class of Lp spaces, provided we
also have a sufficient base of real analysis and measure theory in HOL.

Partial functions ordered by domain extension. Expressing partial func-
tions in an inherently total setting like HOL requires some care. A standard
technique that always works is to consider the graph of a function. This turns
out to be perfectly adequate for our application. We define graphs as follows:

α graph = (α× IR) set
graph :: α set → (α→ IR)→ α graph
graph F f ≡ {(x, f x). x ∈ F}

When speaking informally we never distinguish a function from its graph.
With the above definition we can now introduce the order on functions by ex-
tension very easily: h is an extension of f iff graph F f ⊆ graph H h.

For the proof of the Hahn-Banach theorem we need the set of all norm-
preserving extensions of a linear form f defined on a vector space F . This can
be expressed in HOL in a very natural way. It is the set of all graphs of linear
extensions of f , to super-spaces H of F , that are bounded by the semi-norm p:

norm-pres-extensions :: α set → (α→ IR)→ α set → (α→ IR)→ α graph set
norm-pres-extensions E p F f ≡ {graph H h. is-linearform H h
∧ is-subspace H E ∧ is-subspace F H
∧ graph F f ⊆ graph H h ∧ (∀x ∈ H. h x ≤ p x)}

The canonical order by inclusion on this set of graphs corresponds to the
order of functions by domain extension.
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Zorn’s Lemma. We follow the informal proof of the Hahn-Banach Theorem
[16] in using Zorn’s Lemma, which can be actually proved in Isabelle/HOL using
Hilbert’s ε choice operator. The following formulation will be used: “Let M be
a non-empty ordered set; if any non-empty chain c in M has an upper bound in
M , then M has a maximal element, i.e. ∃g ∈M. ∀x ∈M. g ≤ x⇒ g = x.”

4.3 The Main Proof in Isabelle/Isar

We present an abstracted version of the actual formal proof in Isabelle/Isar
[6]. The structure of the text follows that of the sketch given in §4.1. Readers
familiar with the Isar semantics should be able to follow the reasoning mostly
from the formal text only. We have augmented the text by comments giving the
corresponding informal reading of each significant step as well.

theory HahnBanach = HahnBanachLemmas:

theorem HahnBanach:

"is vectorspace E ==> is subspace F E ==> is seminorm E p ==>

is linearform F f ==> ∀ x ∈ F. f x <= p x ==>

∃ h. is linearform E h ∧ (∀ x ∈ F. h x = f x)

∧ (∀ x ∈ E. h x <= p x)"

— Let E be a vector space, F a subspace of E, p a seminorm on E,

— and f a linear form on F such that f is bounded by p,

— then f can be extended to a linear form h on E in a norm-preserving way.

proof -

assume "is vectorspace E" "is subspace F E" "is seminorm E p"

and "is linearform F f" "∀ x ∈ F. f x <= p x"

— Assume the context of the theorem.

def M == "norm pres extensions E p F f"

— Define M as the set of all norm-preserving extensions of F .

{
fix c assume "c ∈ chain M" "∃ x. x ∈ c"
have "

⋃
c ∈ M" 〈proof 〉

— Show that every non-empty chain c of M has an upper bound in M :

—
⋃
c is greater than any element of the chain c, so it suffices to show

⋃
c ∈M .

}
hence "∃ g ∈ M. ∀ x ∈ M. g ⊆ x --> g = x" 〈proof 〉
— With Zorn’s Lemma we can conclude that there is a maximal element in M .

thus ?thesis

proof

fix g assume "g ∈ M" "∀ x ∈ M. g ⊆ x --> g = x"

— We consider such a maximal element g ∈M .

obtain H h where "graph H h = g" "is linearform H h"

"is subspace H E" "is subspace F H" "graph F f ⊆ graph H h"

"∀ x ∈ H. h x <= p x" 〈proof 〉
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— g is a norm-preserving extension of f , in other words:

— g is the graph of some linear form h defined on a subspace H of E,

— and h is an extension of f that is again bounded by p.

have "H = E"

— We show that h is defined on whole E by classical contradiction.

proof (rule classical)

assume "H 6= E"

— Assume h is not defined on whole E. Then show that h can be extended

— in a norm-preserving way to a function h′ with the graph g′.

have "∃ g’ ∈ M. g ⊆ g’ ∧ g 6= g’"

proof -

obtain x’ where "x’ ∈ E" "x’ /∈ H" 〈proof 〉
— Pick x′ ∈ E \H.

def H’ == "H + lin x’"

— Define H ′ as the direct sum of H and the linear closure of x′.

obtain xi where "∀ y ∈ H. - p (y + x’) - h y <= xi

∧ xi <= p (y + x’) - h y" 〈proof 〉
— Pick a real number ξ that fulfills certain inequations; this will

— be used to establish that h′ is a norm-preserving extension of h.

def h’ == "λx. let (y,a) = SOME (y,a). x = y + a · x’ ∧ y ∈ H
in h y + a * xi"

— Define the extension h′ of h to H ′ using ξ.

show ?thesis

proof

show "g ⊆ graph H’ h’ ∧ g 6= graph H’ h’" 〈proof 〉
— Show that h′ is an extension of h . . .

show "graph H’ h’ ∈ M" 〈proof 〉
— and h′ is norm-preserving.

qed

qed

hence "¬ (∀ x ∈ M. g ⊆ x --> g = x)" by simp

— So the graph g of h cannot be maximal. Contradiction!

thus "H = E" by contradiction

qed

thus "∃ h. is linearform E h ∧ (∀ x ∈ F. h x = f x)

∧ (∀ x ∈ E. h x <= p x)" 〈proof 〉
qed

qed

end

For the above presentation we have pruned the actual Isabelle/Isar proof [6] at
the outermost level, in order to focus on the main course of reasoning. Never-
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theless, the resulting text still qualifies as well-formed Isar proof, provided that
any omitted 〈proof 〉 does. Note that Isar enjoys compositional proof checking.

The overall structure of the complete Isar proof of this representative exam-
ple is as follows. The topmost proof outline (of a few pages) refers to a number of
special lemmas via some “glue code”, which is expressed using automated proof
tools (e.g. the simplifier). The proofs of the lemmas typically require considerably
more effort, mainly due to gory details usually skipped in informal presentations,
such as [16]. Furthermore, any particular application usually requires some addi-
tional background theory of basic notions. The subsequent numbers give a rough
comparison of three Hahn-Banach proofs, where Heuser’s is with pen-and-paper.

basic notions special lemmas main proof
Heuser [16] ? – 3 pages
Mizar [22] ? 25 pages 8 pages
Isar [6] 35 pages 16 pages 5 pages

While the Mizar proof differs from ours in many details, both have a similar
level of abstraction. Also note that the Mizar version refers to a large library of
formalized mathematics that is hard to pin down exactly.

The complete Hahn-Banach development [6] as distributed with Isabelle99-1
takes 63 pages in total. It includes some additional explanations and an alterna-
tive version of the main theorem. The performance of Isabelle/Isar in processing
this document is quite reasonable: proof checking plus LATEX generation takes
less than 3 minutes on a 300 MHz machine; real memory requirements are about
40 MB. These figures are typical for Isabelle/HOL in general, the overhead for
Isar proof text processing compared to primitive tactic applications is very small.

5 Conclusion

We have evaluated the Isabelle/Isar environment by the case study of the Hahn-
Banach Theorem, as a large example of formalized mathematics. Using simply-
typed classical HOL set-theory, we have been able to model the underlying no-
tions of functional analysis similar to the informal presentation in the textbook
[16]. Furthermore, the high-level Isar proof language has enabled us to provide
a machine-checked proof, with the reasoning arranged at differently conceptual
levels, such that the topmost outline closely resembles an informal proof sketch.

The Hahn-Banach theorem already appears in informal mathematics in a
multitude of formulations, and quite different approaches to its proof (cf. [20]).
There are some machine-checked formalizations as well, notably a Mizar version
[22] (which is based on Tarski-Grothendieck set-theory), and a formulation in
Martin-Löf Type Theory [10] that has been checked with the Agda system. In
contrast to the Mizar and Isar versions, which basically share the same presen-
tation of Hahn-Banach in a classical setting of functional analysis (using Zorn’s
Lemma), the Martin-Löf one is presented quite differently within the setting of
point-free formal topology [10].
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Our case study on Hahn-Banach has shown that Isabelle/Isar is ready for
complex mathematical applications. For future development, we aim at extend-
ing our scope towards further areas in computer science, such as meta-theoretical
studies of programming languages (e.g. type systems and operational semantics).
This will probably demand further derived elements on top of the basic Isar
proof language, such as more compact representations of local contexts stem-
ming from abstract algebraic structures or large case analysis rules. Further-
more, users would certainly appreciate further assistance in constructing Isar
proof documents, such as systematic support for common proof patterns.
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