
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Component Interface Diagrams: Putting
Components to Work

Franz Huber, Andreas Rausch, Bernhard Rumpe

ABCDE
FGHIJ
KLMNO

TUM-I9831
Dezember 98

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-12-I9831-100/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c�1998

Druck: Institut für Informatik der
Technischen Universität München

Component Interface Diagrams�

Putting Components to Work�

Franz Huber� Andreas Rausch� Bernhard Rumpe

email� fhuberf�rausch�rumpeg�informatik�tu�muenchen�de

Technische Universit�at M�unchen
Arcisstr� ��� D������ M�unchen� Germany

Contact	 Andreas Rausch
Tel	
��������������� Fax	 ������

In this paper� we present Component Interface Diagrams as a notation
to describe service access points interfaces� of components� their structure�
and their navigability� We give guidelines that allow to map the component
model presented here to di�erent technologies� like ActiveX� CORBA� and
Java Beans� The framework Frisco OEF� implemented in Java� illustrates
the proposed component concept and proves its usefulness�

Keywords	 Component Interface Diagrams� ActiveX� CORBA� Java Beans�

� Introduction

The goals of ComponentWare are very similar to those of object�orientation� Software
should be reusable in a convenient way� leading to various customization and con�gu�
ration mechanisms� Also� implementation details should be hidden from the client as
much as possible�

ComponentWare takes an even larger leap toward reusability� as components aim at
a granularity much larger than single objects do� However� today the question what
component concepts are� is still under investigation� This paper aims at clarifying the
concept of components and demonstrates these ideas applied in the well structured
framework Frisco that was built using our component concept� The quality of that
framework is considerably improved by the notion of components that we introduced�

To reuse as much as possible from already existing abstraction and encapsulation
concepts� we build the component concept as an extension to object�orientation in Sec�
tion �� The notation of Component Interface Diagrams is introduced and applied to the

� This paper is joint work of the the project SysLab �supported by the DFG under the Leibniz
Program� and by Siemens�Nixdorf�� and the project �A� Methods for Component�Based Software En�
gineering�� supported by Siemens ZT� a part of �Bayerischer Forschungsverbund Software�Engineering
�FORSOFT���

�

Frisco framework in Section �� Finally� in Section
 we discuss a mapping of our com�
ponent concept to di�erent object technologies� like ActiveX �Cha���� CORBA �OHE���
and Java Beans �Mic����

��� A Brief Introduction into Frisco OEF

Frisco is a document�oriented software engineering tool prototype� It is based on
a subset of UML notations �Gro��� but incorporates precisely de�ned re�nement and
transformation rules� Frisco provides a variety of editors combining graphical and
textual parts as well as tables within a single document� An example of a Frisco editor
is given in Figure ��

To achieve �exibility we developed the OEF Open Editor Framework� as an open
approach of nesting document parts into one compound document� The developed frame�
work provides a standardized set of protocols for embedding documents� To structure
these protocols� our notion of component interfaces is used�

For each document element� a speci�c kind of editor� called PartHandler� exists� Each
PartHandler component consists of a possibly large set of internal objects implementing
its functionality� A subset of these objects provides the protocol interface necessary for
embedding it into the enclosing document frame� The interface objects hide the internal
object structure of a PartHandler� They are the only way of communication with the
environment� This framework� which has deliberate similarities to OpenDoc �App����
is implemented in Java� and the PartHandlers are realized as Java Beans�

� A Model for Object�Oriented and Component�Based

Systems

In this section we de�ne an abstract model for object�oriented systems and extend this
model to a component�based one� introducing the concepts of components and their
structure� The model is used to clarify our notion of components and to give the notation
proposed in Section � a semantics�

As a basic assumption� we regard an object to be an instance of a class� In a similar
way we use the terms component instances and component types to refer to instances
and to property descriptions that makes up components� respectively�

��� Properties of a Component�Based Model

The concept of components is built on top of object�oriented concepts� thus allowing to
reuse them for components�

We do not enforce every entity of the system to be a component� but allow indepen�
dent objects to live between components� just like global variables live between objects�
Thus developers are free to choose what they want to be a component� Components
may interact directly� but may also be glued together using independent objects�

Furthermore� the component concept must �t into the type system of the underlying
language� such as in Java �GJS���� As components are intended to be reused across

�

Figure �	 A Sample Screenshot of a Compound Document Editor in Frisco

language boundaries� there should be a mapping of the component infrastructure into
several type systems as� e�g�� found in CORBA�

Components exhibit a characteristics similar to objects�

�

� Their instances can be dynamically created�

� they have a clearly de�ned interface� and

� they have a well structured state�

Beyond objects� they exhibit some additional features� A component has

� hierarchically structured interfaces�

� hierarchically structured states� and

� state and interface structure may change dynamically�

��� A Model for Object�Oriented Systems

In this section we present in an idealized and simpli�ed form a model for an object�
oriented system� Introducing it in a top�down way� we start with the de�nition for
an object�oriented system and end with attributes� methods� and basic types� leaving
out irrelevant details� Please note that this model for object�oriented systems is not
complete� but su�cient for our purposes� It is de�ned in a way such that it �ts di�erent
object�oriented languages�

De�nition � Object Structure

An Object Structure Obj��� is given by

� a set of objects Obj � OB J� and

� a relation �	 Obj � Obj� which denotes existing links between these objects�

In general obj� � obj� describes the existence of an unidirectional link from object obj�
to object obj��

An object structure contains a set of objects Obj and links between them� These
links are an abstraction and do not represent which attribute� parameter� or local vari�
able is responsible� neither are multiple links represented� As links are unidirectional
they describe accessibility� Since object�oriented systems change over time� an object
structure describes a snapshot of a system�

The object structure need not be closed or complete� An object structure may contain
a subset of existing objects and a subset of links� Therefore several object structures
can describe di�erent abstractions from an object�oriented system�

De�nition � Object

An Object id� cl� V al� � OB J can be represented by

� a unique identi�er id for the object�

� the object�s class cl � C LA SS� and

� the valuation V al � VA L for the attributes� local variables� parameters etc�

An object system contains a set of objects that may change over time� as objects
are created or deleted� The valuations can be used to determine the linkage � of the
object structure� This de�nition of objects imposes several requirements� e�g�� an object
structure may not contain more than one object with the same identi�er�

De�nition � Class

A Class name�Meth�Attr� � C LA SS is characterized by

� a unique name for the class�

� a set Meth of public accessible methods� and

� a set Attr of private accessible attributes�

In addition �	 C LA SS� C LA SS is the inheritance relation for classes�

A class has a unique name� a set of public methods� and a set of private attributes�
Public attributes can be simulated by methods� Private methods are used in program�
ming languages to avoid re�writing code in several public methods� Hence there is no
need for private methods or public attributes in our model�

With VA L the set of valuations for attributes and parameters are denoted� They are
in essence mappings of variable names attributes etc�� to values of appropriate type�
characterizing the state of objects�

We do not elaborate on the underlying type system here� but assume an appropriate
one to be given� In addition� to add a precise characterization of behavioral concepts� a
mapping of the above given de�nitions into a system model as given in �KRB��� using
state machines as behavioral entities �PR��� GKRB��� could be de�ned�

��� A Model for Component�Based Systems

Our model for a component�based system is introduced on top of the model for object�
oriented systems�

De�nition � Component

A Component name� os� pr� If� Int� is given by

� a unique name for the component�

� an underlying object structure os � Obj����

� the principal object pr � If of the component�

� a set of interface objects If � Obj� and

� a set of internal objects Int � ObjnIf �

�

A component denotes a snapshot of an object structure os� characterizing the internal
structure� linkage etc� os contains a set of internal objects Int and a set of interface
objects If that are referenced from the environment�

The lifecycle of the component instance is exactly the lifecycle of the the principal ob�
ject pr� Other components and objects can access a component via the principal object�
From the principal object they can receive links to other interfaces of the component�
This way� a complex interface structure to the component can be obtained�

Once a reference of an internal object given to the environment� this object is no
longer internal� but belongs to the interface of the component� Thus� the interface of the
component is dynamically changing� The set of interface objects If denotes an snapshot
of the component interface�

A Component�Based System is now characterized by a set of components� and an
underlying object structure� Each component�s internal object structure is a subset
from that global object structure and objects internal to a component are not referenced
from outside�

De�nition � Component�Based System

A Component�Based System Cp� os� is characterized by

� a set of components Cp � C O M P� and

� an underlying object structure os � OS�

We impose several requirements for meaningful component�based systems	

� Each component c � Cp has an internal object structure osc that is an abstraction
from the underlying object structure	 osc � os�

� Objects internal to a component are not referenced from outside�

Our experiences show that� in many cases� it is not necessary to use concepts of object
migration between components� Since component�based systems usually have a rather
static structure� it is su�cient to allow objects that have been internal to a component
to �emerge� to the interface� thus allowing their access from outside� In general� it is
not necessary for components to be tightly connected�

Objects that are created within a component belong to this component during their
lifetime� We assume that objects are not explicitly destroyed but garbage collected which
allows us to disregard dangling references and related problems�

� Describing Components

So far� we have focused on providing a model for components� Now we introduce no�
tations for describing them� As the UML �Gro��� provides a rich set of techniques for
describing di�erent views� we use and adapt these techniques for our purposes� Espe�
cially useful for describing components are the following notations	

�

Interaction Diagrams describe interactions either between objects in a component� or
between components�

State Machines and hierarchical StateCharts �Har��� characterize the behavior of single
objects within a component� but also of an abstraction of the entire component�s
behavior�

Interface and Class Declarations describe the methods and attributes� together with
their types and access rights�

Class Diagrams are used to describe the possible structure of a system or a component�

Object �Structure� Diagrams de�ne the static part of the internal structure of a com�
ponent�

Our experiences show that a larger subset of the objects within a component has the
same lifecycle as the principal object and does not change its linkage� Thus� the internal
structure of a component is rather static and can be described by an Object Diagram�

Beyond the given UML notations� we propose an adapted version of Class Diagrams
� the Component Interface Diagrams � that allows us to cope with the extended capa�
bilities of component interfaces�

��� Frisco OEF Interfaces

In Frisco OEF several kinds of components are used� We now introduce and brie�y
describe a subset of the interfaces that PartHandler components provides� as Figure �
illustrates�

BasicPartHandler is the principal interface that every PartHandler must provide� It
covers rudimentary content and embedding functionality and allows to access ad�
ditional interfaces of a PartHandler� To allow the enclosing document frame access
to part information relevant for embedding� a number of methods are available to
obtain information about content and size� Please note that this interface does not
provide services for editing documents� since it is desirable that certain document
parts should be displayed read�only�

Edit interfaces can be obtained invoking the getEdit method� This interface is provided
only if the part is editable� It basically provides the services to externalize save�
its content and to activate and deactivate editing capabilities�

Toolbar interfaces allow access to the PartHandler �s toolbar� Two toolbars are allowed
one attached to the part� the other to the frame��

Undo allows a PartHandler to participate in the OEF Undo�Redo mechanism� After
an ActionListener registers at the component� it receives a UndoableAction each
time a change occurs�

�

Connection allows to access the interconnections between PartHandlers in the com�
pound document� e�g�� to propagate changes in order to ensure consistency between
parts�

��� Motivation of Component Interface Diagrams

At the beginning of the lifetime of a component� the principal object in Frisco an
instance of BasicPartHandler� is the only object that is accessible from the environment�
Thus the interface of the component is initially given by the principal object� Over time�
this may change� More objects may be created inside the component� and a reference to
them may be given to the environment� leading to a dynamic extension of the component
interface see Section ����� This provides an important component property	 being able
to provide additional interfaces during runtime if required� The purpose of a Component
Interface Diagram CID� is to give clients a concise knowledge of the possible set of
interfaces they may use�

Due to the requirement of strong typing� these interfaces may be created during
runtime� but their type must be known initially� A CID gives information about the
externally visible interfaces� their inheritance relations� and navigation paths between
these interfaces� Furthermore� methods and multiplicities of these interfaces are shown�

CIDs are adapted from UML Class Diagrams� Figure � shows an extended CID for
the PartHandler component� Let us forget about the arrows� labels for the moment and
talk about the simple variant �rst�

PartHandler

Menu

«principal»
BasicPartHandler

+setDocumentServices()
+...()
+getMenus()
+getConnection()
+getEdit(GUIFrame g)

Connection

Edit

+getUndo()

Undo

+undo(UndoableAction a)
+redo(UndoableAction a)
+addActionListener(a)

UndoableAction

+getUndo()

1 1..2

1

1..n1

0..1

$1->caller

$2->caller

$0..1->g

$1->caller

*1->a
$1->caller

Figure �	 A Frisco Component Interface Diagram

Disregarding labels� a CID contains externally visible classes� their inheritance rela�
tions� visible methods� and� in addition� multiplicities of possible instances� The multi�

�

plicity determines the maximum allowed set of interfaces during runtime� In addition�
navigation paths are introduced as a concept to indicate the possible paths where to
navigate from one interface to another� Such navigation is usually done by calling an
appropriate method� which results in a reference to a new interface see Section ��
��
Please note that these navigation paths are not associations� although an association
might be the component�s internal way to implement navigation�

The PartHandler in Figure � o�ers six externally visible interfaces� among them
the principal interface marked with the appropriate stereotype� It also shows� what
navigation paths between interfaces are possible� but not how navigation is done� It
tells us� e�g�� that from the Edit interface� the Undo interface can be obtained� and each
component provides one or two menus one is context�dependent� the other is optional��

The most important capability of components is the possibility to provide an entire
set of individual and standard interfaces� Therefore� a classi�cation of interfaces is a
point of interest following two main goals	

� Separation of concerns for the component developer ending up with a more modular
implementation than one monolithic interface could provide�

� Clearly separate individual and standard interfaces to give component users a more
natural way of understanding the di�erent purposes of the entire component�

The designer of a CID should structure the interfaces with respect to some method�
ical guidelines� This could be expressed in UML stereotypes for standard interfaces�
For example� special interfaces for storage� printing� the undo�redo�mechanism� secu�
rity� con�guration� online help� testing and debugging are often useful� These standard
interfaces are especially needed for component�based systems supporting plug�in of com�
ponents� like� for instance� editors with exchangeable spell checkers�

The proposed CIDs give a �rst �avor of the interfaces of a component� but their
expressiveness is limited� Therefore� we have enhanced CIDs to allow� e�g�� to describe
which methods are used to obtain new interfaces� However� this makes CIDs more
complex� and it is therefore useful to work with both variants�

We introduce a transition labeling to describe how new interfaces can be obtained�
whether we iteratively receive the same interface� or a new one for each request�

For example� calling getMenus on the principal interface returns one or two menu
interfaces to the caller �������caller�� Iterative calls result in the same interface for
all callers indicated by ����� To indicate the creation of a new interface ��� is replaced
by ��� see method addActionListener��

A call of getEdit does not return an interface to the caller but to the method�s
parameter ����g� via another call� Please note� that such a �call back� need not take
place immediately� but can be delayed e�g� done by another thread�� Furthermore�
repeated �call backs� are allowed� as it is in the Undo interface� that allows to register
UndoActionListeners method addActionListener� that will receive a reference to an
UndoableAction each time an undoable change occurs�

�

��� Precise De�nition of Component Interface Diagrams

We now give a precise characterization of CIDs the set of labels hLabi used here is
de�ned below�	

De�nition � Component Interface Diagram �CID	
A Component Interface Diagram Ifc�v� ���� �� consists of a

� a set of interfaces Ifc � C LA SS�

� an inheritance relation v	 Ifc� Ifc

� a multiplicity mapping� � 	 Ifc� hMultiplicityi� and

� a labeled navigation relation �� Ifc� hLabi � Ifc�

By if�
l

�if� we denote that there is a label l � hLabi in interface type if� � Ifc that
allows clients to obtain an instance of interface if� � Ifc from this component� and the
label tells how�

De�nition
 Labeling of a CID

The labels hLabi of a CID are given by the following grammar	

hLabi 		� M ETH � f hParami k � g� � hDetailsi

hDetailsi 		� �hModifieri� �hMultiplicityi� � �	 hReceiveri�

hModifieri 		� � j �

hMultiplicityi 		� � N � � � fN j n g

hReceiveri 		� VA R j caller

Whenever a modi�er� multiplicity or receiver is missing� no constraint is assumed�
Please note� that in the diagram the M E TH �part of the label is attached to the source
node� as this denotes the interface� where the method belongs to� Some straightforward
context conditions apply and some combinations are useless� e�g�� the multiplicity of the
interface itself must at least equal the multiplicity of the labels of incomming arrows�

CIDs specify� which references to its objects a component can give to the environment�
A careful �ow analysis� as done for other purposes already in Java compilers� could proof
correctness of the component implementation�

There are basic objects� such as Java Strings� that are publicly available see Section
����� It is useful to exclude such basic classes from the component concept� but to let
them �oat through component borders freely� regardless� where they have been created�
However� such exclusion has to be done carefully� being aware of implicit communica�
tion via shared objects which could lead to a behavior that is not derivable through
observation of component interfaces�

Given the technique of Component Interface Diagrams and the already mentioned
notations of UML� we can de�ne di�erent views of components� With CIDs� we can

��

de�ne the Black�Box View of components� Class Diagrams are useful to specify the
internal structure of a component� the so called Glass�Box View� With object diagrams
we can specify run�time behavior of components as a object structure snapshot� The
connection between these views is shown in Figure �� Note that an interface in the CID
can be implemented through several classes in the class diagram as well as an class can
implement several interfaces�

PartHandler - Object Diagram

PartAndConnection

Undo

Edit

Menu
Menu

ComplexUndoableAction

ComplexUndoableAction

PartHandler - Class Diagram

PartAndConnection

Menu

AbstractHandler

UndoableAction

Undo

AbstractAction

Edit
ComplexUndoableAction

PartHandler - Black Box View

Menu

«principal»BasicPartHandler+setDocumentServices()

+...()
+getMenus()+getConnection()
+getEdit(GUIFrame g)

Connection

Edit

+getUndo()

Undo
+undo(UndoableAction a)

+redo(UndoableAction a)

+addActionListener(a)

UndoableAction
+getUndo()

1

1..2

1

1..n

1

0..1

$1->caller

$2->caller

$0..1->g

$1->caller

*1->a

$1->caller

Figure �	 A Mapping between the Glass�Box and Black�Box View

As Figure � indicates� the semantics of a CID can be given as a mapping of the CID
into an embedding Class Diagram� where all component interfaces map to classes� the
inheritance relation and the multiplicities are preserved� and the navigation relation is
mapped to method calls accordingly�

��� Guidelines to Map Components to Objects

Based on our experiences� we suggest the following guidelines for a mapping� In general
there are three kinds of possibilities to implement navigation between interfaces�

We have focused on the preferable method call� But it is also possible to use public
readable attributes for interface access if they are available� or a dynamic cast of a given
interface into another interface� The latter is� e�g�� possible in Java� where failed casts
can be caught by an exception�

Component interface types are mapped either into Java classes or Java interfaces�
The former has the disadvantage that classes are not abstract and thus can be instanti�

��

ated from the environment� the latter cannot be used if attributes are publicly available
in the interface� As we prefer methods for navigation� we suggest to use Java interfaces
to implement CID interfaces�

When the desired multiplicity of an interface is � or a link has modi�er �� then
the interface needs to be stored after creation to be repeatedly exported� Its creation
can either be done when the component is created� or in a lazy manner� upon the �rst
request� Anyhow� these interfaces should be implemented following the singleton pattern
�GHJV�
��

If multiplicity is restricted� at least the number of already created interfaces needs to
be stored� A proper reaction for too many requests is necessary	 either returning nil or
throwing an exception� The standard for too many requests is the latter one� the former
one should be used to cope with optional interfaces�

The creation of a component goes along with the creation of its principal object� For
that purpose� the creator must know the actual class of the principal� It is a good design
principle to use equal names for the component and the pricipal class� Furthermore�
there should be a global name service or an object factory see �GHJV�
� for clients to
instantiate components��

Similar to aggregation of objects� we conceptually allow the hierarchical composition
of components� However� our experiences show� that in practice� components will not
be deeply nested� The composition of components is done by creating and using a
component within another one�

� Mapping the Component Model to Component

Infrastractures

Today� three main component infrastructures are in practical use	 Microsoft�s ActiveX�
based on OLE and DCOM �Cha���� several CORBA implementations �OHE���� and
SUN�s Java Beans �Mic���� Since it is di�cult to estimate at this time which technology
will dominate in the future we subsequently characterize a mapping of CIDs in all three
technologies�

For each technology� we discuss possible implementations of the component�based
system shown in Figure
� This system presents an abstraction of two Frisco com�
ponents	 The PartHandler see Section ���� Figure �� and a new component� the Doc�
Manager� The purpose of the DocManager is to observe its PartHandlers and propagate
changes to related PartHandlers� If the method registerAtPartHandler is called the Doc�
Manager receives a pointer to the Connection interface getConnection� and registers
itself registerDocManager�� Afterwards� if a user edits any diagram� the corresponding
editor component PartHandler� noti�es the DocManager� which then ensures that all
other a�ected PartHandlers are informed of the change� eventually disallowing it� if it
leads to inconsistent documents�

As all three technologies support a composition concept and provide an interface
de�nition language � MS�IDL� IDL� and Java Interfaces � � a CASE tool supporting CIDs
or similar description techniques could generate interface de�nitions for each technology�

��

PartHandler

«principal»
BasicPartHandler

Connection

+registerDocManager()

1..1

$1->caller

getConnection()

DocManager

«principal»
DocManager

+registerAtEditor()
+notifyChanges()

Figure
	 Interacting OEF Components

Hence� a mapping from our component based model to these technologies is basically
possible�

��� ActiveX� OLE and DCOM

ActiveX controls� formerly known as OLE or OCX controls� are DCOM objects support�
ing a couple of standard interfaces� Minimally� OLE controls support two interfaces	 One
to search for additional interfaces� called IUnknown� the second to create new OLE con�
trols� called IClassFactory� An ActiveX control supports several additional interfaces
including initialization security� scripting security� run�time licensing� and digital certi�
�cation �Cha���� Moreover� DCOM o�ers additional standard interfaces� which can be
implemented by DCOM objects� e�g�� persistence interfaces� transaction interfaces� or
drag � drop interfaces�

DCOM speci�es a way of accessing objects via interfaces� Each DCOM object must
provide at least the IUnknown interface� which allows clients to query and get access to
other interfaces of the DCOM object� CID components are directly mapped to DCOM
objects� whereas the DCOM object provides a DCOM interface for each CID interface�
We also suggest to implement the CID navigation methods within the corresponding
DCOM interfaces� Otherwise� DCOM�s query interface mechanism must be used� thus
sacri�cing static type checking�

DCOM interfaces do not o�er a concept for subtyping� Therefore� the subtyping
mechanism for interfaces should not be used in CIDs if the target is DCOM�

In DCOM interface types� have a unique identi�er� but objects do not� To close
this gap� DCOM introduces Monikers which allow to map DCOM objects to names�
However� Monikers are insu�cient for our purpose� as they are a crude way to establish
connections between components cf� �OH����� Hence� we suggest to implement an own
name service on top of DCOM or use standardized implementations� as� e�g�� provided
in CORBA�

��

To implement the example given in Figure
 using DCOM each component is mapped
into a DCOM object� Besides the standard DCOM interfaces IUnknown and IClassFac�
tory each DCOM object has to provide its speci�c DCOM interfaces BasicPartHandler�
Connection� and DocManager�� Clients can create the components by creating the prin�
cipal DCOM interface via the class factory supported by DCOM�

��� CORBA

An ORB is a software bus	 It allows objects to transparently request other objects�
even if the target objects reside on ORBs of di�erent vendors� Besides the distributed
and language�independent� transparent access to objects� ORBs may o�er a rich set of
enhanced services� For instance� standard interfaces are speci�ed for object and interface
browsing� dynamic method invocation� object persistence� transaction management� or
GUI services� which makes CORBA especially suited for our component concept�

CORBA interfaces are described using CORBA�s Interface Description Language
IDL�� A CORBA interface allows multiple inheritance� but a CORBA object cannot
implement more than one interface� Instead� CORBA o�ers a module concept where
interfaces can be grouped together into a specifc namespace� given by the surrounding
module� CID components can have several interfaces� Hence a CID component has to
be mapped to a CORBA module including all CID interfaces and navigation methods�
In CORBA� CID components are thus reduced to simple name spaces�

Since CORBA provides a global name service� links between components and objects
can be implemented in a straightforward fashion�

Mapping the example in Figure
 to CORBA means to write two IDL modules�one
for each component�including the corresponding IDL interfaces BasicPartHandler� Con�
nection� and DocManager� After implementing the interfaces the two principal CORBA
objects have to be registered at the CORBA name service� thus clients can access the
components�

��� Java Beans

According to its creators from JavaSoft �A Java Bean is a reusable software component
that can be manipulated visually in a builder tool� �Mic��� JT���� This covers a wide
range of di�erent possiblities� The scope of functionality reaches from simple GUI parts�
like buttons� up to full�featured database access adaptors�

In technical terms� a bean is a Java object� The speci�c characteristics of beans are	

A Public Interface o�ers Properties� Methods� and Events for clients to access the bean�

Introspection allows a builder tool to explore the bean�s interfaces and present it to
programmers� For that purpose� the Java Re�ection Technique is used�

Customization allows developers to change the properties of beans during design�time�

Persistence is used to store the bean�s state permanently and restore it later�

�

Beans can support additional features� such as� e�g�� security� drag � drop� or remote
invocation� To support several of these features� beans have to obey some conventions�

As beans are just Java objects� beans can implement several Java interfaces� This
�ts directly into our component concept� as we also allow several interfaces for each
component and inheritance between interfaces� Beans also support single inheritance�
which is not yet used for components in our model�

Beans are packaged in so�called JAR �les that include� among code and other re�
sources� optionally serialized bean instances� As the standard Java name service is a
crude circumvention to establish links between bean instances in di�erent JAR �les� it
is again necessary to de�ne an own name service� or to use the new Java Naming and
Directory Interface �Jav���� or even to use a bean�conformant infrastructure supporting
a global name service� like� e�g�� IBM�s ComponentBroker �IBM����

In our example� each CID interface is mapped into a Java interface� Two Java Beans�
one for each component�must be realized� They should be registered at the global name
service to allow clients access to them� particularly to enable other components to obtain
links to them�

� Conclusion

The proposed concept of components was de�ned as a result of designing and implement�
ing the Frisco framework for document editing� The high quality of Frisco shows the
suitability of the component concept� Although several extensions are imaginable� e�g��
allowing object migration or de�ning a notion of inheritance on components not only
its interfaces�� we expect the given notion of components to be su�cient for a large class
of applications�

We feel that it is more important that language and tool support allow to conve�
niently de�ne component types and automatically translate them into object�oriented
implementations� This would considerably boost component technology�

� Biographies

Franz Huber has been working in the area of software engineering tools since ����� He
is heading a project developing a tool for component�based development of distributed
and embedded systems which combines the usage of informal and formal techniques�
Additional research areas include object�oriented system modeling and development as
well as methodical aspects of software and systems engineering�
Andreas Rausch is working on a research project aiming to develop methods for
component�based software engineering� He has been heading in several industrial projects
developing distributed information systems� Additional research areas include software
architecture� distributed and component based systems� object�oriented modeling and
development� and methodical aspects of software engineering�
Dr� Bernhard Rumpe is heading a research project aiming to narrow the gap between
formal methods and practical modeling techniques� He has developed an approach in�

��

cluding precise guidelines for re�nement and composition of diagrams on a graphical
basis� contributed to several papers about bene�ts and ways to formalize UML� and
co�organizes workshops about similar themes e�g� at ICSE� ECOOP and OOPSLA�

References

�App��� Apple Computer Inc� OpenDoc Programmer�s Guide for the MacOS�
Addison�Wesley� �����

�Cha��� D� Chappell� Understanding ActiveX and OLE� Microsoft Press� �����

�GHJV�
� E� Gamma� R� Helm� R� Johnson� and J� Vlissides� Design Patterns� Addison�
Wesley� ���
�

�GJS��� J� Gosling� B� Joy� and G� Steele� The Java Language Speci�cation� Addison�
Wesley� �����

�GKRB��� R� Grosu� C� Klein� B� Rumpe� and M� Broy� State Transition Diagarams�
Technical Report TUM�I����� Technische Universit�at M�unchen� �����

�Gro��� UML Group� Uni�ed Modeling Language� Version ���� Rational Software
Corporation� Santa Clara� CA������� USA� July �����

�Har��� D� Harel� On Visual Formalisms� Communications of the ACM� ����	��
�
���� May �����

�IBM��� IBM� Component Broker Technical Overview� IBM report� �����

�Jav��� JavaSoft� JNDI	 Java Naming and Directory Interface� Version ���� Sun
Microsystems� January �����

�JT��� H� Jubin and Jalapeno Team� Cooking Beans in the Enterprise� IBM report�
�����

�KRB��� C� Klein� B� Rumpe� and M� Broy� A stream�based mathematical model for
distributed information processing systems � SysLab system model � � In J��
B� Stefani E� Naijm� editor� FMOODS��� Formal Methods for Open Object�
based Distributed Systems� pages �������� ENST France Telecom� �����

�Mic��� Sun Microsystems� Java Beans� Version ����� Sun Microsystems� July �����

�OH��� R� Orfali and D� Harkey� Client�Server Programming with JAVA and
CORBA� John Wiley and Sons� �����

�OHE��� R� Orfali� D� Harkey� and J� Edwards� The Essential Distributed Objects
Survival Guide� John Wiley and Sons� �����

�PR��� B� Paech and B� Rumpe� State based service description� In J� Derrick� editor�
Formal Methods for Open Object�based Distributed Systems� Chapman�Hall�
�����

��

