
Modeling Languages�

Syntax� Semantics and All That Stu�

Part I� The Basic Stu�

David Harel and Bernhard Rumpe

August ��� ����

Abstract

The motivation for this paper� the �rst in a planned series of three parts� is
the multitude of concepts surrounding the proper de�nition of complex modeling
languages for systems and software� and the confusion that this often causes�
Particularly relevant is the case of the recently standardized UML� which we
refer to quite extensively as we proceed� Our intention is to discuss and clarify
the notions involved in de�ning modeling languages� The main theme is the
distinction between syntax and semantics� the nature and purpose of each� their
usage and style� and the various means for de�ning and dealing with them�
Underlying the exposition are the dichotomies of textual vs� visual languages�
structural vs� behavioral speci�cation� and requirements vs� system models� We
hope that the paper will be useful to language designers� methodologists� tool
vendors and educators�

� Introduction

With the standardization of the Uni�ed Modeling Language �UML� �UML��� as a large
and complex collection of mostly diagrammatic notations for object�oriented model�
ing and analysis� there is currently an ongoing� vivid discussion about its semantics	
Whereas the OMG is responsible for the standardization of the UML� the semantics
of the language is still undergoing extensive investigation	 There is a large amount of
theoretical work available that discusses subsets and adaptations of the UML� see e	g	�
�BM���� with the goal of giving the UML a precise semantics and extracting results
from it	 However� this work� some of which is useful and important� needs to be care�
fully assessed	 To start with� authors often have quite di
erent things in mind when
they use the term semantics	 Second� implicit assumptions are often made in such

�

work� which in�uence the de�nitions and results	 It is very di
cult to compare papers
written on the semantics of the UML� since the comparison must take into account
the subsets of the notation dealt with� the assumptions on the kind of systems it is
intended for� the relationships between the constructs treated� the levels of detail used
in de�ning the language� and the notations and representations used in the papers
themselves	

This situation was a major motivation in our decision to write these papers	 Un�
doubtedly there is a multitude of concepts surrounding the proper de�nition of complex
modeling languages	 We feel that� to a large extent� there is confusion as to what these
concepts really mean� which of them are crucial and which marginal� how they are to
be understood and used� who needs to know what and who needs to do what	 This
occurs in the UML� which is becoming very popular and has an ever�growing number
of followers� but is true for many other approaches to modeling as well	

We have thus set out to try to clarify some of the notions involved in de�ning
modeling languages	 These notions come in many �avors� some are basic and some
advanced� and many are really hard nuts to crack	

The main theme of this series of papers is the distinction between the syntax of
a language �the notation� and its semantics �the meaning�	 These are of quite di
er�
ent nature and their de�nitions have di
erent purposes� styles and usage	 We discuss
issues arising from the adoption of di
erent variants of semantics� with their bene�ts
and drawbacks	 As the notions unfold� we will repeatedly relate to the duality between
structure and behavior� and the di
erences between textual�symbolic languages and
visual�diagrammatic ones	 We will also clarify the di
erence between the requirements
on the system and the system�s implementation model� the latter� for example� can be
speci�ed in su
cient detail to enable model execution prior to the actual implementa�
tion	

The series is organized into three parts	 This paper constitutes Part I� �The Basic
Stu
�	 It deals with the basic components of language� syntax and semantics	 In�
cluded in the latter are the semantic domain and the semantic function	 We discuss
the representation of these components� their possible levels of formality� and their in�
tended audience	 For illustration� we use simple examples from arithmetic expressions�
basic programming languages and data��ow diagrams	 One interesting question that
arises here is where exactly to place the constraints that are often called �semantic
conditions�	

Part II� �The Advanced Stu
�� will address a number of issues that arise in more
complex circumstances� such as when dealing with composite languages that have dif�
ferent and separately de�ned sublanguages for di
erent parts of the modeling� often
having also multiple semantic domains and mappings	

Part III� �The Really Hard Stu
�� will discuss the more di
cult and complex cases�
the UML being an illustrative example for these	 In addition to di
erent notations or
sublanguages for di
erent things� these also give rise to overlapping� which� put simply�

�

means that there are di
erent notations for the same thing� and the syntax allows these
di
erent views to be present in the model at one and the same time	

Throughout the papers we make a special e
ort to address what we feel are the
central and most important issues� and to present them in a clear and direct fashion	
We do not claim to have the whole story under control or to have all the answers� but we
have done our best	 It is our hope that the papers might help clarify some of the knotty
issues surrounding language de�nition� and that language designers� methodologists�
authors� educators and tool vendors may perhaps �nd them useful in their work� if
only by virtue of the care taken in our attempt to spell out the issues responsibly	

� Syntax

Much has been said about the distinction between the puristic notion of information

and its syntactic representation as data� which is the medium used to transport and
store information	 There is general agreement in the literature that data is used to
communicate and needs an interpretation to extract the information behind it	 An
interpretation is always a mapping assigning a meaning to each �legal� piece of data	

The two notions are often mixed up� thus becoming a major source of confusion	
On the one hand� the same piece of information may be encoded in a variety of pieces
of data	 For example�

�June ��th� �����
and

�The last day of the �rst spring in the second millenium�

denote the same day� although in very di
erent ways	 On the other hand� the same
piece of data may have several meanings and may therefore denote di
erent information
for di
erent people or for di
erent applications	 We thus distinguish between syntax

and semantics� and we shall be discussing the two in some detail	
Data serves to communicate and store information	 People use natural languages to

communicate with each other� and machines use machine readable languages for this	
There is a great variety of data in forms of spoken or written words in natural languages�
or in arti�cial ones like Morse code� �ag signs� or the great variety of machine�based
communication media� such as programming languages or hardware description lan�
guages	 Partners to communication must �rst agree on their communication language�
which �xes the set of data that can be communicated	

A language consists of a syntactic notation �syntax�� which is a possibly in�nite
set of elements that can be used in the communication� together with their meaning
�semantics�	 We often denote a language generically by L	

Various terms are used for the syntactic elements in di
erent kinds of languages�
words� sentences� statements� diagrams� terms� models� clauses� modules� etc	 We will

�

use the rather general term expression for this	 In many languages� complex expressions
can be constructed from basic ones using special composition mechanisms	

One example of a language is that of arithmetic expressions with an additional
function foo� given by a BNF�like grammar� the main composition rule of which is�

hExpi ��� hNumberi j hVariablei
j � hExpi � j � hExpi
j hExpi � � j � j � j � � hExpi
j foo � hExpi � hExpi �

The basic expressions of this language are the arithmetic operations �� �� � and ��
the function symbol foo� and the symbols used in de�ning numbers and variables	

To lead us into graphical�diagrammatic languages� which are one of the central con�
cerns of our papers� here is another example� data��ow�diagrams	 A sample expression
of the language �i	e	� a sample diagram� is depicted in Figure �	

�

n � N

�

add

f�n� � N

div

mult

Figure �� Sample data��ow diagram for f�n� � n�n���
�

Data �ow diagrams have been made popular by �DeM���� have appeared in di
er�
ent versions and have been extended in many ways in various other approaches	 These
include such object�oriented proposals as the OMT �RBP����� and ROOM �SGW���	
The basic constituents of a data �ow diagram are the nodes that denote computational

components� such as add	 These nodes are equipped with input channels and output

channels� where the communication of data with the node�s environment �e	g	� other
components� takes place	 Channels may be typed and can be connected through di�
rected data��ow links in a one�to�many�style� i	e	� one output channel can be �fed� into
more than one input channel	 Components without inputs act as constants� and with�
out output they act as sinks	 To make data��ow diagrams composable� special nodes

�

are used to describe the input and output channels of the overall diagram� leading to
and from the environment of the component that is described by the diagram	

Textual languages are symbolic in spirit� and their basic syntactic expressions are
put together in linear sequences	 Iconic languages are those whose basic expressions are
small pictorial signs that refer to the elements they visually depict	 These languages are
also called diagrammatic or graphical	 An iconic language can be more intuitive than a
textual one� but it can also be confusing if the icons are used in abundance	 The reason
is that such languages often use composition mechanisms taken from textual languages�
such as linear � horizontal or vertical � proximity� which somehow decreases the
language�s visual appeal	 More useful are visual�diagrammatic languages� in which
topological and geometric notions are used� basic expressions would be� for example�
lines� arrows� closed curves and boxes� and composition mechanisms would involve
connectivity� exclusivity� and insideness	 See e	g	� �Har���	 Despite arguments against
diagrams �Dij��� FPB���� such languages can be of great help in software development	

From a theoretical point of view� there is no principal di
erence between textual
and diagrammatic languages	 Unfortunately� practice proves it is much harder to cope
with diagrammatic languages� especially when it comes to the need to be rigorous and
formal� something we are going to return to later on	

We use the term syntax whenever we refer to the notation of the language� and
this includes diagrams too	 Syntactic issues focus purely on the notational aspects
of the language� completely disregarding any meaning	 The meaning of a language is
described by its semantics	 It is interesting to note that� in general� computerized tools
do not allow us to manipulate semantics directly	 Instead� everything we see and work
with on the paper or on the screen is a syntactic representation	 This also holds for
the machine�s internal representation� the so called abstract syntax or meta�model	

For example a programming language must have a rigid syntax to be processable
by a compiler	 Any attempt to stretch this syntax might turn out to be disastrous	
For example� if �K � read��� is written in a language whose input commands are
of the form �K � input���� chances are that the result will be some kind of syntax
error	 And of course� we cannot hope to address the computer with the like of �please
read a value for K from the input�� or �how about getting me a value for K	� These
might result in a long string of obscure error messages	 It is true that nice� talkative
instructions� such as the ones we �nd in recipes� are more pleasant than their terse
and impersonal equivalents	 It is also true that we strive to make computers as user�
friendly as possible	 But since we are still far from computers that can understand
free��owing natural language like English� a formal� concise� and rigid set of syntactic
rules is essential	

An algorithm written in a typical programming language is given in Figure �	 The
intended meaning of this program is �obvious�� It calculates and prints the sum of all
natural numbers up to the input K	 Of course� this is what authors intend this pro�
gram to mean� which is not enough	 The computer �as well as other people� must have

�

K � read���
X � ��
for �Y � � � Y � K � Y		� f

X � X 	 Y �
g
print �X��

Figure �� Program in an ordinary programming language

this very same semantic interpretation� and must therefore somehow be told about the
intended meaning of programs	 This is done by a carefully devised semantics� that as�
signs an unambiguous meaning to each syntactically allowed phrase in the programming
language	 Without this� the syntax is worthless	 Otherwise� severe misinterpretations
become possible� such as readingX � X�Y as �at this particular point X must be equal

to X � Y and the program has to check that�	 Who says that the used keywords for�
print� or read have anything at all to do with their meaning in English� Maybe the
program segment of Figure � means �erase the computer�s entire memory� change the
values of all variables to zero� output �To Hell With Programming Languages��
and stop�� Who says that ��� stands for �assign to�� and that ��� denotes addition�
And on and on	 We might be able to guess what is meant� since the language designer
probably chose keywords and special symbols intending their meaning to be similar to
some accepted norm	 But a computer cannot be made to act on such assumptions	

To be useful in the computer engineering discipline� any language� textual or dia�
grammatic� must come complete with rigid rules that prescribe the allowed form of a
syntactically well�formed program� and also with rules� just as rigid� that prescribe its
semantics	

� Semantics� The semantic domain

Expressions are what we use to communicate information	 It would be nice if any two
communicating participants interpreted expressions of the language in exactly the same
way	 Agreement on the meaning of a language is an important and partly sociological
process� without which the communicated data is worthless	

A semantic de�nition for a language L� or simply a semantics� consists of two parts�
a semantic domain� which we denote generically by SL� or simply S when there is no
confusion� and a semantic mapping from the syntax to the semantic domain� denoted
by ML� or simply M	 Thus a �language� is composed as described in Figure �

Let us explain	 The semantics of a language tells us about the meaning of each
of its expressions	 That meaning must be an element in some well�de�ned domain	

syntax semantics

semantic semantic

=
notation

domain mapping

language
+

+

Figure �� The structure of a language

For example� the meaning of an arithmetic expression in the language hExpi would
be a number	 Thus we use S � N as the semantic domain of hExpi	 The semantic
mapping would thus associate a number with each expression of the language� formally�
M � hExpi � N 	 Semantic mappings can often be de�ned in an inductive fashion� by
providing the meaning of complex expressions of the language in terms of the meanings
of simpler �already understood� expressions	 This situation occurs not only when
semantics is de�ned formally� but also when it is explained informally	

For the language of arithmetic expressions hExpi de�ned earlier� it is quite natural
to use standard mathematics as the basis of the mapping	 For example� the obvious
mapping of the symbol ��� is to the mathematical operation of addition	 Indeed� while
there is much sense in giving meanings that are consistent with accepted conventions�
in principle we could give ��� any meaning we like	 Thus� strange as it may seem� we
might have speci�ed that the expression �x� y� actually means the exponential xy� or
the binomial x�

y��x�y��
	

For the case of data��ow diagrams it is less clear what the appropriate semantic
domain should be	 What properties are really described by a data��ow diagram� Are
the structure and possible �ow relationships between the computational components
in the diagram the only important things� or are we trying to capture behavior too�

One common misconception in the world of system modeling languages is to take
semantics as a synonym for behavior	 Both the behavior and the structure of a system
are important views thereof� both are represented by syntactic concepts and both need
semantics	 Although the behavioral aspects are usually less obvious and are much
harder to de�ne properly� languages focusing on structure only� such as ER�diagrams
for databases or class diagrams in the UML� also need semantics� so that we know
exactly what is being de�ned	 And deciding upon the semantic domain amounts to
deciding upon the kinds of things we want our language to express	

For example� the semantics of data��ow diagrams can be de�ned in more ways than
one	 We can use them to describe structure only� in which case the semantics would
prescribe a �white box� view of the structure of each enclosing component� together
with the data��ow links that show the channels through which information �ows	 This

�

allows a hierarchical decomposition of the system functionality� as in �SGW���� but
nothing is said or meant about whether� when� or why data will actually �ow as the
system actually �behaves�� that is� as it runs� or executes� or progresses	 In this case�
the semantic domain will not refer to the behavior at all	

Alternatively� we might also want to describe actual behavior using data��ow di�
agrams� and then new questions arise	 Are we talking about possible behavior only�
i	e	� about what might happen� or maybe also about what will happen� Does a com�
putational component have a memory� Can it be nondeterministic and thus react in
di
erent ways to the same input� Is the component allowed to react on partial input
by emitting a �partial� result� Can several results be sent as reaction to a single input�
Are we interested in tracking the causality between input and output or is the trace
of messages su
cient� Need the components be greedy� and can they emit messages
spontaneously� Is there a bu
er in the communication lines between components for
storing unprocessed messages� or are messages lost if unprocessed�

Di
erent answers to such questions lead to a variety of quite di
erent kinds of
semantic domains for behavior� traces �Hoa���� trace trees �Maz� �� input�output�
relations �LT���� streams and stream processing functions �BDD����� and many more	

In the most simple case� the data��ow network is deterministic� reacts only to
complete sets of inputs� and has no memory	 It is then usually su
cient to adopt a
function from inputs to outputs as the semantic domain�

IOfunc � I � O

In the data��ow example of Figure � this would be IOfunc � N � N � de�ned by

IOfunc�n� �
n�n���

�
	 However� we could also use a relation of input�output pairs�

IOrel � f�i� o� j i � I� o � Og

This would mean that since several I�O�pairs with the same input may exist� we are
not insisting on determinism	 Extending these pairs to �nite sequences �denoted as I�

and O�� allows us to talk about history�

IOhist � f�i� o� j i � I�� o � O�g

Here� to determine the latest output of such an input�output pair might require the
entire input history� and not only the latest input	 Another semantic domain could be
the set of traces itself� where inputs and outputs are observed in an interleaved manner�

IOtrace � fx j x � �I � O��g

If we want our components to respond to each input with exactly one output� but
still determine output based on the component�s history� we could use the semantic
domain�

�

IOhist� � f�i� o� j i � I�� o � O�� len�i� � len�o�g

As explained in �BDD����� using traces or relations as the semantic domain makes
it di
cult to properly de�ne the composition of data��ow diagrams	 To alleviate this�
the stream processing function IOstf � I� � O� of �BDD���� can be used instead	
Using a mapping of input traces to output traces even allows to specify components
with history	 This is an example of making a subtle change in the semantic domain in
order to improve the convenience of de�ning the semantic mapping for a given notation	

It is worth emphasizing that the semantic domain as the target of a mathematical
function must contain all possible meanings of all syntactic expressions	 Thus� if we
want the semantics of a data��ow diagram to be an I�O function� the semantic domain
is set of all such functions� if we want it to be an I�O relation� the semantic domain
must be the set of all such relations	 Formally� in these cases we need to de�ne the
semantic domain by S � P�IOfunc� or S � P�IOhist�� where P denotes the powerset
construction	 �We sometimes write these without the parentheses� e	g	� PIOfunc	�

The semantic domain is not to be taken lightly� it speci�es the very concepts that
exist in the universe of discourse	 It is an abstraction of reality� describing the important
aspects of the systems that we are interested in developing	 It is also a prerequisite for
comparing di
erent semantic de�nitions	 An explicit de�nition of the semantic domain
is thus crucial	 Although� the semantic domain is de�ned for describing the meaning
of a notation� the de�nition of the semantic domain is normally independent of the
notation	 This allows to �reuse� the semantic domain for other notations	

How does one describe the semantic domain� Well� it can be done in varying degrees
of formality� as the brief examples from the world of arithmetic expressions and data�
�ow diagrams illustrate	 Jumping for a moment to the most complex example we shall
be using� the UML� we note that de�ning its semantic domain is far from being a simple
matter	 It must de�nitely involve combinations of numerous kinds of elements� such
as messages� states� values for variables� boolean values for conditions� etc	 But there
seems to be no obvious way to de�ne this complex semantic domain� so that the result
is precise� clear and readable	 Whereas UML descriptions in the literature are very
detailed when it comes to syntax� de�ning even the semantic domain is much more
di
cult and is usually done very informally� if at all	 Sometimes even the best�written
documents on the UML scatter the information about the semantic domain throughout
the entire description	

Unfortunately� the confusion that often exists between syntax and semantics is
made worse by the fact that we need a syntactic representation for the semantics itself�
To properly de�ne a semantic domain we need some kind of language too	 This will
also be discussed later on	

�

� Semantics� The semantic mapping

Given a syntax L and a semantic domain S� the �nal step in de�ning a semantics
is to relate the syntactic concepts to those of the semantic domain	 Each syntactic
creature is mapped to some semantic element	 As explained earlier� it is important to
say explicitly and clearly that the syntactic operator ��� in any arithmetic expression
is mapped to the addition operator of arithmetic� so that the meaning of the expression
���� ��� will end up being the number ��� which is the sum of the two numbers	 The
reader should not underestimate the importance of de�ning this mapping� although
this particular example might seem trivial	

Often the mapping is explained informally� by examples and in plain English	 But
regardless of the degree of formality of its representation� the semantic mapping itself
should be a function from L to S� i	e	�

M � L � S

Here are some ways of assigning semantics to the language of arithmetic expressions
hExpi and the data��ow diagrams de�ned above	

We have already chosen the semantic domain ShExpi � N � so we should now de�ne
the semantic mapping M � hExpi � N 	 We will be giving expressions in hExpi their
standard interpretation from arithmetic	 The basic cases are arithmetic constants
and variables	 Hence M������ � ��	 If we have been given a variable assignment
� � hVariablei � N by the environment �meaning that we have been told the current
value of each variable�� we will adopt it� simply setting

M�v� � ��v�

for each variable v	
Having handled the basic cases� we now can de�ne the inductive cases� in which

expressions contain simpler expressions	 If an expression has the form a���b� with
subexpressions a� b � hExpi� then we de�ne�

M�a���b� �M�a� �M�b�

To clarify� this de�nition maps the symbol ��� to the operation plus	 �The observant
reader will notice that we have even used a di
erent font for the syntactic ��� of the
language and the mathematical symbol �	� Obviously� seeing this kind of de�nition
can irritate� because it looks so obvious	 However� it is extremely important� especially
for functions that don�t have an obvious interpretation at all	 In our case� the function
foo has been made part of the syntax of hExpi� and it de�nitely needs to be de�ned	
We choose the following�

M��foo��a���b���� �M�a�M�b�

��

which identi�es foo with exponentiation	 Had we de�ned

M��foo��a���b���� �M�a� �M�b�

foo would have been redundant� as it would be identical� as a function� to ���	
Turning to the data��ow example� since we have only used deterministic compo�

nents� we may choose a deterministic history function to represent the behavior of a
data��ow component	 Let M� be used to describe the �nite and in�nite sequences
over a message set M 	

We �rst de�ne the basic components of a diagram� add and the ��component	 We
want add to depict pointwise addition on sequences	 Thus� we de�ne the function Fadd �
N
� � N

� � N
� � by stating that on any pair of input sequences a � �a�� a�� � � � � ak�

and b � �b�� b�� � � � � bl�	 With m � min�k� l�� we have

Fadd�a� b� � �a� � b�� a� � b�� � � � � am � bm�

This is extended to in�nite histories in the obvious way	
Note that this de�nition means that we have chosen to allow inputs on channels

to arrive at di
erent times� thus implicitly modeling bu
ers on the data��ow links	
Furthermore� we do not talk about time explicitly� thus allowing the computation
component to take time to process input	 However� we have modeled add as a greedy
component� since its semantics prescribes that sooner or later it must process its input
without further stimulation	

We now de�ne the semantics of the ��component of a data��ow diagram as a con�
stant� continuously emitting its number	 Thus� we have F� � N

� � with

F� � ��

Having de�ned the basic semantics in such a way� we must now de�ne the way
the meaning of a composite diagram is derived from the meanings of its constituent
parts	 In our example� we compose the semantics according to the structure depicted
in Figure ��

F �n� � Fdiv�Fmult�n� Fadd�n� F���� F���

Using elementary algebra� this can be seen to satisfy

F �n�� n�� � � �� �

�
n��n� � ��

�
�
n��n� � ��

�
� � � �

�

Thus� we have again seen a semantic de�nition for a syntactic construct� that is built
from semantic de�nitions of the construct�s constituents	 When this is done in a gen�
eral way� as we did for the ��� operation in an arithmetic expression� we call it a
compositional semantics� as it allows us to compose the semantics� that is� the meaning
of a composite creature based on the meanings of its parts� see �Old� �	

��

Compositionality is highly desirable� and should be used even on an informal level�
and even for actual code	 Unfortunately� there can be subtle problems with pure black�
box compositionality	 The recent notion of components �Szy��� focuses on composition	

Let us discuss another graphical�diagrammatic language which is of widespread use
� class diagrams� which we shall call hCDi	 This is the central language for speci�
fying structure in object�oriented methods� and is� in particular� the main structure
language in the UML	 Class diagrams have been quite widely studied in an attempt
to provide them with a precise semantics �e	g	� �FBS���� BHH���� HSB����	 Despite
these attempts� there are some subtle issues around hCDi� upon which there is still
no general agreement �for example� the precise di
erences between aggregation and
composition�	 Without getting into the unresolved issues� we would like to illustrate
how such a structural description language can receive its semantics	�

A sample expression of the language is depicted in Figure �	 This simple diagram
contains three classes as boxes and three associations� which we regard as undirected
even though the name indicates that there is a direction	

Suburb

has

1

k

lives-in

0-1

Mayor
1runs1

City

1

Figure �� Sample class diagram

A proper semantic domain for class diagrams should contain snapshots of the run�
ning system� so that a diagram can be interpreted as the set of all possibilities of its
object structures	 Such a structure is a �frozen� situation at any given time during
the system�s execution	 We thus use an object store containing three sets of objects�
one for each of the classes in the example	 As we would like class diagrams to be
�exible and extensible� we do not use a �xed triple �ObjCity� ObjSuburb� ObjMayor�� or
anything similar� but introduce a set of object stores OS� together with the following
three retrieval functions for the objects of the respective classes�

city � OS � PObjCity

suburb � OS � PObjSuburb
�Class diagrams do not talk explicitly about behavior� they are intended to focus on structural

issues� However� composition �strong aggregation� and some other features do impose behavioral
restrictions� Instead of dealing with these here� we will concentrate on the structural aspects and
discuss the behavioral issues of hCDi in Part III of our series� the �Really Hard Stu�� part�

��

mayor � OS � PObjMayor

This approach is rather abstract� as we need not say explicitly what the objects look
like or whether they have a true identity	 Of course� object identity can easily be added�
obtaining a more detailed� implementation oriented semantics for class diagrams	

We use the same kind of abstract approach for the associations between objects�
and introduce the following functions�

runs � OS � P�ObjMayor � ObjCity�

has � OS � P�ObjCity � ObjSuburb�

lives�in � OS � P�ObjMajor � ObjSuburb�

The abstractness here means� for example� that we need not decide whether the infor�
mation about connections can be derived from the objects themselves �through stored
identi�ers� or from other elements in the store representing the associations	

The constraints on the associations now impose a number of restrictions on the
allowed object stores	 For example� if os is an arbitrary object store� we must require
that each city has exactly one mayor running it�

���runs�os�� � mayor�os�

�Here �� denotes projection on the second argument	� Formally� the language hCDi of
class diagrams gets its meaning according to the function�

MCD � hCDi � P�OS�

And we will have os � MCD�cd� if os satis�es all the restrictions imposed by the class
diagram cd	 Note that the functions city� runs� etc	 play a dual role in this context� on
the one hand� they are the representations of syntactic concepts in the context of the
semantic domain	 On the other hand� they are used as auxiliary functions to de�ne
the actual semantic mapping MCD	

� Representation

All elements of a language de�nition� the syntax� the semantic domain and the semantic
mapping� need a representation	 Rigorous and readable mechanisms are necessary in
order to de�ne and represent these elements appropriately	 In a later subsection we
discuss the intended audience of these de�nitions� but for now we wish to concentrate
on the issue of a satisfactory rigorous representation of them	

For conventional textual languages� the syntax is described by an employed set of
characters � the alphabet � and the sequences of characters that are legal� i	e	� those

��

we are allowed to use	 We will typically �rst group characters into words� and then
arrange words into sentences according to precise grammatical rules	 The language
then consists of the set of all these legal sentences	 As stated earlier� in some ways
there is no principal di
erence between textual and visual�diagrammatic languages	
However� in the latter case it is far less easy to make out the words and sentences	

Most languages� textual or visual� have several layers of de�nition	 For most of
the textual languages we �nd not only clearly de�ned and separated layers� but also
standard de�ning techniques for most of them�

�	 A set of characters forms an alphabet	

�	 The characters are grouped into words� denoting keywords� numbers� delimiters�
etc	 This lexical layer is typically de�ned using regular expressions	

�	 A third layer groups these words into sentences� usually by using a context free
grammar	

�	 A fourth and �nal layer constrains the sentences by imposing context conditions	
�For example� requiring that variables are de�ned before they are used� or that
their usage is consistent with their types	�

In compiler theory� the context conditions are often called �semantic conditions�
as they are triggered by semantic considerations	 However� they really just constrain
the syntax and do not contribute to the de�nition of semantics	 In modern languages
a number of conditions are expressed as context conditions for convenience� even so
they could be expressed in the context free grammar as well	 A typical example is the
priority scheme of in�x operators	

For our language of arithmetic expressions� hExpi� we take the usual character set
as the alphabet	 Words include variable names� numbers� and delimiters such as ���	 A
complete sentence then is an expression such as ��� � a�� y�� de�nable using context
free grammars	 Using context conditions� we further restrict the set of well�formed
sentences by disallowing the use of the special name �foo� as a variable or with other
than two parameters	 This makes expressions such as ���foo� and foo��� syntactically
incorrect	 It is important that the context conditions are decidable� as they have to be
checkable by the parser	

As to diagrams� here there is a di
erent way of viewing their syntax	 We need not
think of drawing a diagram as starting with lines or line�segments and then making
boxes and arcs out of them	 Rather� we have layers of topological notions� that are
then specialized using geometry� then put together topologically� and then specialized
once again using geometry	 Here�s how this might go�

�	 The �rst layer consists of two kinds of basic topological elements � open line
segments and closed ones �the latter are just closed Jordan curves�	

��

�	 These are specialized geometrically to several kinds of lines �e	g	� arrows� straight
lines and splines� all with various line styles and colors� etc	�� and closed shapes
�boxes� circles� also with various line styles and colors�	

�	 The geometric shapes are arranged into diagrams by �rst making topologically
meaningful combinations of them� using� e	g	� connectivity� insideness and inter�
section� and then arranging these geometrically into an actual two �or three��
dimensional diagram	

�	 The fourth layer yields the set of legal diagrams by imposing context conditions	

The textual attributes are used in the second layer� e	g	� as class names or expres�
sions	 This textual part can be de�ned using a conventional textual grammar	

The general conclusion of this discussion is that in de�ning the syntax of a language
L we need to use a notation already known� which for now we shall callNL	 For textual
languages� NL will typically contain a combination of the Backus�Naur Form �BNF�
and Chomsky�� context free grammars �CH��� �see the hExpi language example above�	

The use of a notation NL to de�ne the syntax of L often results in more than just
the de�nition of the syntax	 As a side bene�t� it can also provide an abstract version
of L� called the abstract syntax tree� and an algorithm for parsing the concrete into
the abstract version	 Let us now identify the language with its abstract version and
discuss the representation of the semantics	

To de�ne the semantic domain� we need again an underlying notation� NS	 The
variety of notations used for this purpose is much larger than in the case of the syntax	
Besides natural languages such as English� many general purpose formal languages can
be used� such as Z �Spi���� algebraic speci�cation languages �BFG���� Wir���� or pure
mathematics �see the semantic domain for the class diagrams in Example ��	 Later we
will discuss these possibilities and the implications of making a choice between them	

Above� we gave several mathematically de�ned versions of semantic domains for
data��ow diagrams	 We can easily rewrite these domains using a speci�cation lan�
guage like Z or an algebraic speci�cation language� yielding quite di
erent�looking
representations of the same semantic domain	 Thus� the semantic domain S and the
notation NS used to describe it are rather independent	

As to the semantic mapping� the di
erent kinds of NL notations used to describe
syntax and the NS notations used for the semantic domain give rise to a great variety
of ways to de�ne the semantic mapping between the two	 In many attempts to de�ne
semantics� the semantic mapping is given informally� e	g	� by showing speci�c examples
of a mapping from L to S� without explicitly giving the mapping M itself	 However�
when M is to be given explicitly �and this is clearly the preferred way to do things�� a
notation is required for it too� call it NM	 While there is a variety of rigorous notations
for syntax and semantic domain� there are not that many that are appropriate for the
mapping	 On the one hand� we can use pure mathematical notation �WB��� Rum� �

��

RK� � DF���� and on the other hand there is an approach called graph transformations

�SW��� BCMR���	 Interestingly enough� there seems to be no approach that uses Z or
some algebraic speci�cation language to explicitly de�ne the semantic mapping	 This
might be partly due to the fact that a notation for the mapping must somehow include
the notations for the syntax and the semantic domains too	 This works nicely for graph
transformations if both domains are graph structures� so that NL�NS � NM� and it
works well if standard mathematics is used� since all relevant elements can be dealt with
within the generic mathematical framework	 However� using Z or a similar language
as NM would require major additional work to model the syntax of the language L
�which is essentially a context free language or a graph� within Z	 Furthermore� the use
of Z as the semantic domain S makes an explicit de�nition of the mapping M almost
unthinkable	

� De�ning the UML

Even today� with the increasing popularity of graphical�diagrammatic languages� such
as those that constitute the UML� it is unclear what is the best notation for describing
them	 Whereas for textual languages the use of grammars for the syntax is widely
accepted� for diagrammatic languages there exist two competing approaches	 On the
one hand� we have graph grammars �Ehr��� that extend the grammatical ideas from
textual languages to diagrams� and they have indeed been applied to signi�cant parts
of the UML already �SW��� BCMR���	 On the other hand� the very class diagrams of
the UML can be used to model the abstract syntax of a diagrammatic language	

In fact� in the UML standardization documents �UML��� the latter technique� called
meta�modeling� is applied in a �bootstrapping� fashion	 The result is a meta�model
that is essentially a class diagram	 Although class diagrams are more intuitive than
graph grammars� they are less expressive� and many properties of the syntax of the
language have to be de�ned outside the class diagrams� as context conditions	 In
the UML documents many of these context conditions are de�ned using the Object
Constraint Language �OCL� �WK���� which is also part of the UML	 Other context
conditions are stated in English	 In textual languages� these constraints can be stated
more precisely� e	g	� by an appropriate attribution of the abstract syntax tree� which
results from the parsing process via the context free grammar	

It is important to emphasize that whatever parts of the UML are de�ned using the
meta�model� they describe only the syntax� there still remains the problem of de�ning
the semantics	 As mentioned earlier� context conditions are not �semantic conditions��
as some people refer to them � they merely constrain the syntax	 Context conditions
are well�formedness rules �like the one that requires each variable to be de�ned before
it is used� without telling us what a variable is and what its usages mean�	 Semantics
is a synonym to �meaning�	 Just as C�� cannot be understood from its context free

�

grammar and its context conditions �without deep knowledge of similarly structured
languages�� so is the case for the UML	 By constraining the syntax in a way that rules
out problematic syntactic constructs� context conditions are a great aid in �preparing� a
language for a sound semantics	 But they are not the semantics� and therefore terming
them �semantic conditions� is misleading	 In our framework� UML is the language L
to be de�ned� and it must be de�ned in full� syntax� semantics and all	 The part of
the UML containing class diagrams and the OCL can be viewed as the notation NL

used for de�ning the syntax� but that�s all it is	
The recursive� bootstrapping nature of the meta�model approach to the de�nition

of the syntax of the UML is elegant	 From a pragmatic point of view� it is very useful�
since UML users will probably have a basic knowledge of the UML when they get to
look at its detailed de�nition� and they don�t have to learn a new meta�language to be
able to see a good de�nition of the syntax	 Using bootstrapping to describe the UML
syntax can also be practical for newcomers� as they can identify a core part of UML to
be adopted at �rst	 In other realms there are similar situations of such de�nition� but
it is very important to have a solid basis for this	 In particular� class diagrams and the
OCL must have also de�nitions using other techniques	

How is the semantics of the UML de�ned in the standardization documents� Well�
the documents �UML��� do contain a part called the �Semantics of UML�	 However�
it really does not focus on semantics but mainly describes the abstract syntax of the
UML	 The documents do contain many informal descriptions and insights into the
semantics of the UML� and these might be su
cient for experienced users to gain
more knowledge about the purpose of the constructs of UML	 But they are far from
being a satisfactory semantics� and many ambiguities remain	 This has been illustrated
in numerous papers dealing with packages �SW���� class diagrams �BLM��� FEL����
UML statecharts �BCMR��� WB���� and the integration of several kinds of diagrams
�BHH���� PR���	

� The degree of formality

One misconception about formality is the belief that textual languages are a priori

formal and diagrammatic ones are not	 The myth that some people come away believ�
ing� when exposed to the notion of a �formal language�� is that a formal language is
a formal�looking language� that any language that contains lots of Greek letters and
mathematical symbols is formal	 This equality is false in both directions� there have
been highly formal�looking languages that lack severely in true formality� and there are
languages that don�t look very formal at all� but are in fact as formal as anything	 The
degree of formality of a language is independent of its appearance	 Natural languages
are textual� but informal� and some visual languages are fully formal	 Petri Nets and
statecharts� for example� have a precisely de�ned syntax and semantics� even though

��

you don�t see many strange�looking symbols therein	 Obviously� due to the background
of the kinds of people who deal with textual�algebraic languages and the fact that there
is a less accepted theory for the de�nition of diagrammatic languages� there is a corre�
lation between the mathematical appearance of a language and its degree of formality	
Still� it is important to realize that �diagrammatic� and �informal� are by no means
synonymous	 We use the adjectives �formal� and �rigorous� to emphasize that the
language has precise and unambiguous syntax and semantics de�nitions	

There is also another kind of precision relevant here� which is the degree to which
expressions in the language make precise statements	 Precision of the language� as
opposed to its �fuzzyness�� depends on the degree of formality� of course� a language that
is not de�ned in a su
ciently formal way cannot be precise	 However� a language can
be rigorous� yet make imprecise statements	 For example� the term �x is a number of

about ���� is fuzzy and imprecise	 In fact� one can claim that it doesn�t really exclude
any numbers at all� We can make this statement precise by using a mathematical
expression like �� � x � ���	 This expression is given in a formal and rigorous
language �mathematics�� but the statement itself makes a fuzzy statement about x	 A
less fuzzy� but equally precise statement would be �� � x � ��� �see Figure ��	

high

(not possible)
a number of
about ���

precision of
the language

low

high

low

�� � x � �� 		 � x � ���

precision of the statement

Figure �� Precision of the language vs	 fuzzyness of its statements

Carrying this example over to the more complex situation of modeling systems� we
�nd that the degree of formality of the notation used to describe a system is orthogonal
to the degree of precision �detailedness� of the model	 In particular� we could describe
systems with rather abstract and liberal UML models� even if the UML were to have a
precisely de�ned syntax and semantics	 Similarly� we can develop very detailed UML
models even if we possess only a non�rigorous understanding of UML�s actual meaning	

One of the main arguments against a formal foundation for diagrammatic languages
arises from the confusion between these two concepts� i	e	� equating abstraction of the
models with the fuzziness of the language	 One result of this confusion is the incorrect
statement that a precisely de�ned language forces developers to �ll out details they
don�t want to	 Indeed� the latter problem� called overspeci�cation� does not arise from

��

the formality of the language used� but from the failure on part of the developers to
use the right abstractions	 This is sometimes a consequence of the inability of the
language or the tools implementing it to provide appropriate abstraction mechanisms�
while incomplete models are allowed during system development	 The de�nition of a
single number� as in �the number ����� is precise� but it leaves us no freedom in im�
plementation	 Thus� having the right abstraction mechanisms at hand �in our example
above� the use of intervals such as �� � x � ���� prevents overspeci�cation	

Let�s take a closer look at the degree of formality of semantic de�nitions	 An
explicit de�nition of the semantic mapping M allows us to reason about it	 Some
current approaches de�ne M for a diagrammatic language in an e
ective algorithmic
fashion	 The idea behind this is to cater for the software engineer	 It enables the
software engineer to translate expressions of the language L into expressions of the
semantic domain S� e	g	� in order to be able to use proof and analysis techniques on
S	 To illustrate this� let us assume there exists an automatic checker for the predicate

consistent � S � Bool

that states that an element of S is consistent� so that a proper implementation of it can
be found	 The software engineer can apply the checker to expressions in the language�
after applying the mapping from L to S	 A drawback of this approach is the need
for engineers to be willing and able to understand not only the syntax� L� but also
the semantic notation S	 Typically� the engineer is not really interested in an explicit
de�nition of the semantic domain S	 One of the reasons for this is that the semantic
domain needs to be explained in yet another unfamiliar notation NS 	 Instead� the
engineer only wants to deal with L	 It would be better if the de�ner of the semantics
would prove once and for all that for all expressions e � L the resulting semantics is
consistent and therefore implementable	 In other words� that inconsistent expressions
have already been eliminated by a careful de�nition of the language itself	

For example� when compiling a higher level programming language L� the consis�
tency checker �as part of the compiler� typically ensures that the result is correct and
consistent	 Consistency means that the result is either directly executable opcode or
it can be translated to opcode without further possible errors	 The well�formedness
conditions of L should be de�ned in such a way that the software engineer using the
language L can be sure to have consistent expressions without being explicitly exposed
to the formally given semantic domain	 In order to successfully deal with the pro�
vided techniques and tools� one would then need only an informal understanding of the
semantic domain	

The �careful de�nition� alluded to above is necessary for such a consistency proof
to be feasible� and typically context conditions constraining the language are required	
If the language is de�ned in this way� the syntax L would then be restricted to the set

��

of consistent documents� e	g	 by a predicate

consistentL � L � Bool

with the condition that for all syntactically well�formed expressions e � L�

consistentL�e� �� consistent�M�e��

Very often� deep insights are gained from carrying out a rigorous semantic de�nition
of a language� and these can then be used to improve the language itself	 Ideally� the
insights are obtained by the people who provided the semantic de�nition and not the
users of language	 Some questions that are relevant when de�ning the semantics are�

�	 Does the given formalization capture the intuition of the users�

�	 Are the context conditions su
cient to ensure consistency�

�	 Does the notation allow the speci�cation of important properties of the semantic
domain�

�	 If analysis techniques or transformation rules for the language exist� are they
sound with respect to the given semantics�

A tremendous amount of work is necessary so that a semantics can properly ad�
dress these and related questions� but it surely must be done for any serious language
de�nition e
ort	 A necessary prerequisite for success with respect to the forth ques�
tion is an explicit de�nition of the semantic mapping M	 Other questions� like the
�rst� also aim at a consensus between users	 This can only be achieved by a broadly
accepted standardization� based on a clear and complete formalization of both syntax
and semantics	

	 The doodling phenomenon

There is another point worth making here� regarding visual�diagrammatic languages	
Unfortunately� many people take diagrams lightly � much too lightly	 They �nd
it hard to relate to a bunch of graphics as something serious enough to be called a
language� and profound enough to be the �real thing�	 Perhaps this is a result of the
failure of �owcharts to replace conventional high�level programs �and we will not get
into the reasons for this failure�	

In any case� all too often one encounters what we may call the �doodling phe�
nomenon�� whereby diagrams are considered by people to be what an engineer scribbles
down on the side� as a kind of visual aid	 The real work� the rationalization goes� has

��

to be done in textual or symbolic languages	 Sadly� for a long time this view was held
by many language designers and methodologists too	 Many years ago� Martin and
McClure published a book with the title Diagramming Techniques for Analysis and

Programmers �MM���	 It was full of scores of diagrammatic notations� but made little
attempt to convince the reader that the diagrams needed rigorous de�nitions	 At best�
readers came away with a slew of graphical notations for making little side pictures
of things they were working on using a �real� language	 This might be helpful� but it
works against the aim of exploiting the virtues of true visual formalisms	

Some people �nd it hard to understand why you can�t simply add more and more
graphical notations to a visual language	 For example� there have been many cases of
people proposing �in private communication� all kinds of extensions and additions to
the language of statecharts	 These people could not understand why you can�t just add
a new kind of arrow that �means synchronization�� or a new kind of box that �means
separate�thread concurrency� �these are actual quotes from such proposals�	 It seemed
to them that if you have boxes and lines and they mean things� you can add more and
just say in a few words what they are intended to mean	

A good example of how di
cult such additions can really be is the idea of having
overlapping states in statecharts	 This was proposed� in a very preliminary way� as a
possible area for further work in the original statecharts paper �Har���� but it took a
lot of hard work to �gure out a consistent syntax and semantics for such an extension
�HK���	 In fact� the result turned out to be too complex to justify implementation	
Nevertheless� people often ask why we don�t allow overlapping in systems implementing
statecharts� such as Statemate or Rhapsody	 It is very hard to convince them that it is
not at all simple	 One person kept asking this� �Why don�t you just tell your system
not to give me an error message when I draw these overlapping boxes��� as though
the only thing that needs to be done is to remove the error message and you are in
business� This person de�nitely had doodling in mind	

There are other serious di
culties people have when relating to the issue of design�
ing visual languages	 One is non�compositionality� which we have already discussed
somewhat� and the other � perhaps the most severe � is the temptation to provide
a variety of views	 We shall discuss views in the second part of our series	

 The intended audience

The intended audience of the semantic de�nition of a language is an important con�
sideration when selecting the right representation	 Potential reader�groups include
notation developers� language de�ners� methodologists� tool vendors� and users	

If the de�nition is intended for the user� we can forget about using formulas	 This
is de�nitely true if the user does not wish to have a formal de�nition but only an
intuitive� appealing description of the language�s purposes	 As stated earlier� typical

��

users will not be willing to make an e
ort to understand the semantic domain S given
in a notationNS in which they are not trained	 To begin with� they need to understand
the notation NS � which itself is de�ned using yet another formal language	 Even if the
user has skills in formal methods or mathematics� certain resistance to learning NS

usually remains	
Since there is no semantic formalism that is commonly understood by a broad range

of users� it is probably best to use a natural language for explaining the notation and
carefully describing the semantics	 To learn Japanese� many people need a translation
into English� which is the language they know	 A given relationship between English
and Japanese helps them understand Japanese� but a translation from Japanese to
German is of no use� as it would be necessary to learn German before understanding
Japanese	 In the same way� the audience of a semantic de�nition needs to understand
the semantics in order to bene�t from it	

In contrast to a user� a language developer �who ideally also features as the de�ner
of the semantics� would be willing to cope with the notation NS to gather insights for
de�ning the modeling language L	 The same goes for a methodologist� who has to
possess perfect knowledge of the languages about which he�she makes detailed recom�
mendations to users	

Tool vendors should also be exposed to a precise semantics� but it is probably better
to give them detailed descriptions of the �how to deal with� instead of the �why�	 This
would include rules for adding� removing and adapting elements of the notation� as�
e	g	� promoted in �BCMR���� or re�nement and transformation calculi as given� e	g	�
in �Rum� � OJ���	 Tool vendors are often less interested in �what� a notation means�
but in �how� its symbols can be modi�ed� and �how� they can generate code out of
it that is faithful to the original semantics	 However� tool vendors should not forget
that these issues depend on the basic availability of a rigorous� formal and commonly
agreed semantics	

An example of how a complicated semantics can be described in a way that is not
too frightening� yet conveys the rigor of a full de�nition� appears in �HN� �	 This
paper contains an operational�style semantic de�nition of the full statecharts language
in a SA�SD �functional decomposition� framework� as implemented in the Statemate
system	 It can be comprehended by tool vendors and methodologists� and also by
various kinds of users	

�� Extensibility

Until now� we have implicitly assumed that our languages are �xed in advance	 This
is seldom the case in practice	 Most existing languages have a built in extension
mechanism that allows the extension of the used vocabulary	 The most prominent
examples are the natural languages� which through the mechanism of explanation or

��

natural growth of the subject matter conveyed with the language� constantly allow
extensions	 An example of natural language extensibility can be found is this very
paper� where we introduce terms like syntax and semantics by explaining what we
mean by them	

Other examples are programming languages� where the main concern is to introduce
new procedures� methods� types or classes	 These are named� and are then used as
new abstractions	

A language extension must always be explained in terms of the language itself	 This
allows the communication partner to understand the new concept	 Thus� an extension
gets its semantics indirectly through the semantics of the explanation�s semantics	 One
common mechanism of extension relies on binding a subexpression of the language to
a name� where the subexpression has already been given a semantics	 If the new name
is already used within the subexpression that de�nes the same name� the result is
recursion	 Recursion is rather common in de�ning functions and procedures� as well
as types and class structures �whole�part� lists� etc	�	 Although recursion by its very
nature is circular�looking� the classical theory of �xpoints �Kle��� Tar��� has solved its
de�nition problem� allowing us to give a precise semantics for recursive de�nitions that
�ts the intuitive understanding we have of them	

Back to our main example� the UML� which has quite a number of mechanisms
for introducing new elements	 Besides the introduction of classes� methods and other
so�called �rst class citizens� UML allows us to specialize the meaning of certain ele�
ments through stereotypes and tagged values	 Unfortunately� UML does not o
er any
mechanism to describe the meaning of a newly introduced stereotype or tagged value
within the language itself	 Instead� informal English de�nitions are frequently used� or
even de�nitions that appeal to speci�c tools	 UML in its current version thus has a
serious drawback with regards to extensions of this kind	

�� Summary

Syntax is the �front window� of the language	 It contains everything the user of a
notation deals with	 Context conditions are syntactic constraints that further restrict
the syntax	

Beyond a precisely de�ned syntax� each language requires an unambiguously de�ned
meaning� the semantics	 There is no principal di
erence between the use of textual or
visual�diagrammatic languages	 Both kinds require a precisely de�ned syntax� describ�
ing the set of possible expressions in the language� and a similarly precise semantics�
determining the meaning of these expressions	 Semantics can be described in a variety
of ways� depending on the purpose and the intended audience	 The semantics of a
language is usually described in two parts� the semantic domain� that provides the
information on what we are talking about� and the semantic mapping� that maps the

��

context condition constrains the syntax� it describes the set of well
formed
expressions of a language�

expression is a meaningful� well
formed element of a language� the following
are synonyms� word� statement� sentence� document� diagram� model�
term� piece of data� clause� module�

interpretation extracts the information from a piece of data� it is a mapping
of data to a semantic domain�

language is a possibly in�nite set of expressions used to communicate� it is
a synonym to notation� a language allows us to syntactically represent
information�

modeling language is used for specifying and documenting properties of a
system in di�erent abstractions and from di�erent points of view�

notation is a syntactic representation of information� a synonym to language�
what the user deals with�

programming language is used for programming software systems�

semantics de�nes the meaning of a notation� what information do the ex

pressions in the notation describe�

semantic domain is a well understood domain of elements� elements of the
semantic domain describe the important properties of what we are trying
to de�ne using a language �in our context� this means software and
hardware systems and components of such systems��

semantic mapping is a mapping that relates each syntactic construct to a
construct of the semantic domain� it usually explains new constructs in
terms of known constructs�

sub�language is a subset of the syntactic elements� together with an appro

priate adaptation
projection�

textual language is a language consisting of linear strings of characters and
symbols �words� sentences� etc���

visual�diagrammatic language is a language based mainly on graphic
�topological
geometric� elements� it can employ textual elements too�

visual formalism is a diagrammatic language that has formal syntax and
semantics�

Figure � Glossary

��

syntax into the semantic domain	 The semantic domain can be de�ned independently
of the syntax� in fact� we can use completely di
erent languages for describing the same
kinds of systems� so that these languages might all use the same semantic domain	

All three elements� the syntax L� the semantic domain S� and the semantic mapping
M � L � S� need to be denoted by appropriate notations	 The careful choice of these
notations is crucial for gaining useful results from a semantic de�nition	 Formality
of a semantic de�nition depends on the way the syntax� the semantic domain and
the semantic mapping are represented	 A fully formal semantic de�nition includes an
explicit formal de�nition of the semantic mapping	 De�ning the semantic mapping
by examples only does not make a satisfactory semantics	 For example� it does not
allow analysis of the mapping itself to gain a better understanding thereof and better
implementations in tools	

Figure contains a short glossary	

References

�BCMR��� Manfred Broy� Derek Coleman� Tom S	 E	 Maibaum� and Bernhard Rumpe�
editors	 Proceedings PSMT��� Workshop on Precise Semantics for Mod�

eling Techniques	 Technische Universitaet Muenchen� TUM�I����� April
����	

�BDD���� M	 Broy� F	 Dederichs� C	 Dendorfer� M	 Fuchs� T	 F	 Gritzner� and R	 We�
ber	 The Design of Distributed Systems � An Introduction to focus

! revised version !	 SFB�Bericht ���������� A� Technische Universit"at
M"unchen� January ����	

�BFG���� M	 Broy� C	 Facchi� R	 Grosu� R	 Hettler� H	 Hu#mann� D	 Nazareth� F	 Re�
gensburger� O	 Slotosch� and K	 St$len	 The Requirements and Design
Speci�cation Language Spectrum� An Informal Introduction� Version �	��
Part �	 Technical Report TUM�I����� Technische Universit"at M"unchen�
����	

�BHH���� R	 Breu� U	 Hinkel� C	 Hofmann� C	 Klein� B	 Paech� B	 Rumpe� and
V	 Thurner	 Towards a Formalization of the Uni�ed Modeling Language	
In M	 Aksit and S	 Matsuoka� editors� ECOOP��� Proceedings	 Springer�
Verlag� LNCS ����� ����	

�BLM��� J	 Bicarregui� K	 Lano� and T	 Maibaum	 Objects� associations and subsys�
tems� A heirarchical approach to encapsulation	 In Proceedings of ECOOP
��� LNCS ����	 Springer�Verlag� ����	

��

�BM��� J	 B%ezivin and P	�A	 Muller	 Proceedings of the Uni�ed Modeling Language

Conference	 hhUML���ii
 Beyond the Notation	 Lecture Notes in Computer
Science � ��	 Springer Verlag� ����	 Mulhouse� France	

�DeM��� Tom DeMarco	 Structured Analysis and System Speci�cation	 Yourdon
Press� Englewood Cli
s� ����	

�DF��� R	 Diaconescu and K	 Futatsugi	 Logical Semantics of CafeOBJ	 In� PSMT
� Workshop on Precise Semantics for Software Modeling Techniques	 Tech�
nical Report TUM�I����� Technische Universit"at M"unchen� ����	

�Dij��� E	 Dijkstra	 On the Economy of doing Mathematics	 In J	 Woodcook�
C	 Morgan� and R	 Bird� editors� The Mathematics of Program Construc�

tion	 Springer Verlag� ����	

�Ehr��� H	 Ehrig	 Introduction to the Algebraic Theory of Graph Grammars	 In
V	 Claus� H	 Ehrig� and G	 Rozenberg� editors� Proc	 Int	 Workshop Graph�

Grammars and Their Application to Computer Science and Biology� LNCS
��	 Springer Verlag� ����	

�FBS���� R	 France� J	�M	 Bruel� M	 Saksena� E	 Grant� and M	 Larrondo�Petrie	
Towards a rigorous object�oriented analysis and design method	 In IEEE
Computer Society Press� editor� Proceedings of the �st ICFEM Interna�

tional Conference on Formal Engineering Methods� ����	

�FEL��� R	 France� A	 Evans� and K	 Lano	 OOPSLA��� Workshop on OO Be�
havioral Semantics	 Technical Report TUM�I����� Technische Univerit"at
M"unchen� ����	

�FPB��� Jr F	 P	 Brooks	 No Silver Bullet� Essence and Accidents of Software
Engineering	 Computer� �������!��� ����	

�Har��� D	 Harel	 Statecharts� A Visual Formalism for Complex Systems	 Sci	

Comput	 Programming� �����!���� ����	

�Har��� D	 Harel	 On Visual Formalisms	 Comm	 Assoc	 Comput	 Mach	� ��������!
���� ����	

�HK��� D	 Harel and H	�A	 Kahana	 On Statecharts with Overlapping	 ACM

Trans	 on Software Engineering Method	� �������!���� ����	

�HN� � D	 Harel and A	 Naamad	 The STATEMATE Semantics of Statecharts	
ACM Trans	 on Software Engineering Method	� �������!���� ��� 	

�Hoa��� A	 Hoare	 Communicating Sequential Processes	 Prentice Hall� ����	

�

�HSB��� Brian Henderson�Sellers and Frank Barbier	 Black and White Diamonds	
LNCS ����	 Springer Verlag� ����	

�Kle��� S	 Kleene	 Introduction to Metamathematics	 Van Nostrand� ����	

�LT��� N	 Lynch and M	 Tuttle	 An introduction to input�output automata	 CWI

Quarterly� ��������!�� � ����	

�Maz� � Antoni Mazurkiewicz	 Trace Theory	 In W	 Brauer� W	 Reisig� and
G	 Rozenberg� editors� Petri Nets
 Application and Relationship to Other

Models of Conucrrency� pages ���!���	 Springer� ��� 	 LNCS ���	

�MM��� J	 Martin and C	 McClure	 Diagramming Techniques for Analysis and

Programmers	 Prentice Hall� ����	

�OJ��� W	 F	 Opdyke and R	 E	 Johnson	 Creating Abstract Superclasses by
Refactoring	 Technical report� Department of Computer Science� University
of Illinois and AT&T Bell Laboratories� ����	

�Old� � E	�R	 Olderog	 Semantics of concurrent processes� the search for structure
and abstraction� Part I and II	 Bulletin of the EATCS� �� and �����!���
� !���� ��� 	

�PR��� J	 Philipps and B	 Rumpe	 Re�nement of information �ow architectures	
In M	 Hinchey� editor� ICFEM���	 IEEE CS Press� ����	

�RBP���� J	 Rumbaugh� M	 Blaha� W	 Premerlani� F	 Eddy� and W	 Lorensen	
Object�Oriented Modeling and Design	 Prentice Hall� ����	

�RK� � B	 Rumpe and C	 Klein	 Automata with Output as Description of Ob�

ject Behavior� pages � �!�� 	 Kluwer Academic Publishers� Norwell� Mas�
sachusetts� ��� 	

�Rum� � B	 Rumpe	 Formale Methodik des Entwurfs verteilter objektorientierter

Systeme	 Herbert Utz Verlag Wissenschaft� ��� 	 PhD thesis� Technische
Universit"at M"unchen	

�SGW��� B	 Selic� G	 Gulkeson� and P	 Ward	 Real�Time Object�Oriented Modeling	
John Wiley and Sons� ����	

�Spi��� J	 Spivey	 Understanding Z	 Cambridge University Press� ����	

�SW��� A	 Sch"urr and A	J	 Winter	 Formal De�nition and Re�nement of UML�s
Module�Package Concept	 In J	 Bosch and S	 Mitchell� editors� Object�
Oriented Technology � ECOOP ��� Workshop Reader� volume ���� of

��

Lecture Notes in Computer Science� pages ���!���� Berlin� ����	 Springer
Verlag	

�Szy��� Clemens Szypersky	 Component Software
 Beyond Object�Oriented Pro�

gramming	 Addison Wesley� ����	

�Tar��� A	 Tarski	 A lattice�theoretical �xpoint theorem and its application	 Paci�c
Journal of Mathematics� �����!���� ����	

�UML��� Taskforce UML	 Uni�ed modeling language	 Version �	�� OMG� ����	

�WB��� R	 Wieringa and J	 Broersen	 Minimal Transition System Semantics for
Lightweight Class and Behavior Diagrams	 Technical Report TUM�I�����
Technische Universit"at M"unchen� ����	

�Wir��� M	 Wirsing	 Algebraic Speci�cation	 In J	 van Leeuwen� editor� Handbook
of Theoretical Computer Science� pages ��!���	 Elsevier Science Publish�
ers B	 V	� ����	

�WK��� J	 Warmer and A	 Kleppe	 The Object Constraint Language	 Addison
Wesley� Reading� Mass	� ����	

��

