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Abstract� We present a fully abstract� denotational model for mobile�
timed� nondeterministic data��ow networks whose components commu�
nicate in a point�to�point fashion
 In this model components and net�
works of components are represented by sets of stream processing func�
tions
 Each stream processing function is required to be strongly guarded�
generic and point�to�point
 A stream processing function is strongly
guarded if it is contractive with respect to the metric on streams
 This
property guarantees the existence of unique �x�points
 Genericity is a
privacy requirement speci�c to mobile systems
 It guarantees that a func�
tion never accesses� depends on or sends a port whose name it does not
already know
 The point�to�point property guarantees that no port is
known to more than two components� the sender and the receiver
 Our
model allows the description of a wide variety of networks 
 in particu�
lar� the description of mobile� unbounded nondeterministic networks
 We
demonstrate some features of our model by specifying a communication
central


� Introduction

One of the most prominent theories for interactive computation is the theory
of data��ow networks� In this theory� an interactive system is represented by
a network of autonomous components communicating solely by asynchronous
transmission of messages via directed channels�

A very elegant model for static� deterministic data��ow networks� whose com�
ponents communicate in a point�to�point fashion� was given by Kahn in �Kah����
Despite of its elegant foundation� this class of networks is� however� too restric�
tive for many practical applications� In this paper we extend Kahn	s model in
two directions�

Firstly� contrary to �Kah���� we model nondeterministic behavior� Like Park
�Par
��� Broy �Bro
�� and Russell �Rus�
�� we represent nondeterministic data�
�ow networks by sets of stream processing functions� However� in contrast with
�Par
�� and �Bro
��� our model is fully abstract� This is achieved by considering
only sets of functions which are closed with respect to the external observations�
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The closure idea was used by �Rus�
� for the same purpose� However� contrary
to �Rus�
�� we use a timed model and a di�erent notion of observation� This
allows us to describe a considerably greater class of networks which includes all
the fair merge components described in �PS���� In fact� we can describe any live�
ness property that can be expressed in standard property�oriented speci�cation
languages for distributed systems �CM

� Lam��� BDD����� Moreover� since our
model is fully abstract� we obviously avoid the expressiveness problem known as
the Brock�Ackermann anomaly �BA
���

Secondly� contrary to �Kah���� and also contrary to �Par
��� �Bro
�� and
�Rus�
�� we describe dynamically recon�gurable or mobile networks� The formal
modeling of mobility has been a very popular research direction in recent years�
However� most models published so far have been formalized mainly in oper�
ational terms� Examples of such models are the Actor Model �HBS���� the ��
Calculus �EN
�� MPW���� the Chemical Abstract Machine �BB�
�� the Rewrit�
ing Logic �Mes��� and the Higher Order CCS �Tho
��� On the contrary� our
model gives a denotational formalization of mobility� As in the above models�
this formalization is based on two assumptions� Firstly� ports are allowed to be
passed between network components� Secondly� the components preserve pri�
vacy� their behavior cannot depend on ports they do not know� Although it is
well understood how to express privacy operationally� there is less denotational
understanding� Our solution is to require each stream processing function to be
generic� This requirement can be thought of as an invariant satis�ed by any
mobile system� Informally speaking� the genericity property makes sure that a
function never receives on� sends along or sends a port whose name �it does not
already know�� By �the ports it does not already know� we basically mean any
port which is not in its initial interface� it has not already received� and it has
not already created itself� Any port created by the function itself is assigned a
�new� name taken from a set that is �private� to the component in question�

Our semantic framework is powerful enough to allow the modeling of both
point�to�point and many�to�many communication� In �GS��a� we model many�
to�many communication� In this paper we concentrate on point�to�point com�
munication� By point�to�point communication we mean that no port is known
to more than two components� the sender and the receiver� Some readers may
wonder why we at all �nd point�to�point communication interesting� After all�
point�to�point communication is only a special case of many�to�many commu�
nication� The main reason is that point�to�point communication allows a tight
control of channel interference� In a point�to�point model the default situation is
no interference at all or a very restricted form of interference� Unrestricted inter�
ference is only simulated by introducing explicit fair merge components for those
channels where this is desirable� In a many�to�many model there is unrestricted
interference by default� The tight control of interference in a point�to�point set�
ting simpli�es both speci�cation �programming� and formal reasoning� Thus� our
interest in point�to�point communication is methodological� we want to combine
the power of nondeterminism and mobility with the simplicity of point�to�point
communication�



There are basically two di�erent variants of point�to�point communication�
In the �rst case� the sender and the receiver of a channel remain the same during
the whole lifetime of the channel� In the second case� the sender and the receiver
of a channel may change� However� at any point in time a channel has not more
than one sender and one receiver� In the �rst case there is no interference at all
� two di�erent components cannot send along the same channel� In the second
case only a restricted type of interference may occur � two di�erent compo�
nents may send on the same channel� but never simultaneously� The advantage
of the �rst alternative is its simplicity with respect to formal reasoning and un�
derstanding� The advantage of the second alternative is that many things can be
expressed more directly� However� the price to pay is a more complicated model�
In this paper we concentrate on the �rst alternative� The second alternative is
investigated in �GS��b��

To keep the model simple components are not allowed to forward ports they
receive on their input channels� Thus� we cannot change the communication
partners of a component� However� we can build up new connections between
components that are already connected� These new connections can be in the
opposite directions of the already existing ones� In our opinion� this facility of
building up new connections is the basic building block of mobility� It allows us
to dynamically change the interfaces of components�

Although we could have formulated our semantics in a cpo context� we de�
cided to base it on the topological tradition of metric spaces �dBZ
��� Firstly�
we wanted to understand the exact relationship between our approach and those
based on metric spaces� Secondly� the use of metric spaces seems more natural
since our approach is based on in�nite streams� and since our strong guarded�
ness constraint� guaranteeing the existence of a unique �x�point� corresponds
straightforwardly to contractivity�

Because of the space limitations� we assume basic knowledge of metric spaces�
For more details on metric spaces we refer to the full version of the paper �GS����
The full version also provides detailed proofs�

The rest of the paper is organized as follows� Section � introduces basic
notions like communication histories and stream processing functions� Section
� formalizes the privacy invariants of mobile point�to�point systems� Section
� introduces mobile components� Section � is devoted to composition� Section
� gives an example� Section � contains a discussion� Finally� there is a short
appendix containing a metric formalization of streams and named stream tuples�

� Basic Notions

We model interactive systems by networks of autonomous components commu�
nicating via directed channels in a time�synchronous and message�asynchronous

way� Time�synchrony is achieved by using a global clock splitting the time axis
into discrete� equidistant time units� Message�asynchrony is achieved by allowing
arbitrary� but �nitely many messages to be sent along a channel in each time
unit�



��� Communication Histories

We model the communication histories of directed channels by in�nite streams
of �nite streams of messages� Each �nite stream represents the communication
history within a time unit� The �rst �nite stream contains the messages trans�
mitted within the �rst time unit� the second the messages transmitted within the
second time unit� and so on� Since time never halts� any complete communication
history is in�nite�

A message is either a port or a data element � A port is a channel name

together with an access right� which is either a receive right� represented by ��
or a send right� represented by �� Let N be the set of all channel names and let
C � N � Then �C � f�c j c � Cg is the corresponding set of receive ports and
�C � f�c j c � Cg is the corresponding set of send ports� We also write ��C for
�C � �C� A data element is any message not contained in ��N � Let D be the
set of all data elements� The set of all complete�� and partial communication
histories for a channel are then characterized by ��D� ��C��� and ��D� ��C�����
respectively� When no ambiguity occurs we use �C�� and �C��� as short�hands�
This is justi�ed by the convention that D is �xed�

Since ports are exchanged dynamically between network components� each
component can in principle access any channel in N � For that reason we model
the complete and partial input and output histories of a component by named
stream tuples contained in N � �C�� and N � �C���� respectively� In the sequel
we refer to named stream tuples of these signatures as named communication

histories � Thus� each named communication history assigns a communication
history to each channel name in N � The use of named communication histories
is inspired by �BD����

��� Guarded Functions

A mobile� deterministic component is modeled by a stream processing function

f � �N � �C�
��� � �N � �C�

���

mapping complete named communication histories for its input channels to com�
plete named communication histories for its output channels� Note that if no
message is communicated along an input channel within a time unit then the
empty stream� represented by �� occurs in the communication history for that
channel� The lack of this information causes the fair merge anomaly �Kel�
��

The functions process their input incrementally � at any point in the time�
their output is not allowed to depend on future input� Functions satisfying this
constraint are called weakly guarded� If the output they produce in time unit t�
is not only independent of future input� i�e�� the input received during time unit
t � � or later� but also of the input received during time unit t� then they are
called strongly guarded� Intuitively� the strongly guarded functions introduce a

� For an arbitrary set S� S� denotes the set of all �nite streams over S� and �S� denotes
the set of all in�nite streams over S
 See also the appendix




delay of at least one time unit between input and output� The weakly guarded
functions allow in addition zero�delay behavior�

For any named communication history �� let ��j represent the pre�x of � of
length j� i�e�� the result of cutting � after the jth time unit� Then weak and
strong guardedness can be formalized as below�

De�nition �� �Guarded functions� A function f � �N � �C�
��� � �N � �C�

���
is weakly guarded if

��� � � �N � �C�
���� j � N � ��j � ��j � f����j � f����j

and strongly guarded if

��� � � �N � �C�
���� j � N � ��j � ��j � f����j�� � f����j��

We use the arrow � to characterize sets of strongly guarded functions� The
actual formulation of guardedness has been taken from �Bro��a��

A weakly guarded function is non�expansive and a strongly guarded function
is contractive with respect to the metric on stream�tuples� This metric is de�
�ned in the appendix� As a consequence� by Banach	s �x�point theorem� strong
guardedness not only replaces the usual monotonicity and continuity constraints
of domain theory but also guarantees unique �x�points of feedback loops�

In the following sections we introduce two important operators on named
communication histories�

��� Sum

A sum operator takes two named communication histories as input and delivers
their �sum� as output� We de�ne both a partial �disjoint� sum and a total sum�
For any � � �N � �C���� let

act��� � fi � N j ��i� �� ��g

be the set of active channels of �� The partial sum � � � is de�ned if act��� is
disjoint from act����

De�nition �� �Partial sum� Given two named stream tuples � � �N � �C�
���

and � � �N � �C�
��� such that act���� act��� � 	� We de�ne their partial sum

� � � to be the element of N � ��C� � C��
�� such that for all i � N

�� � ���i� �

�
��i� if i �� act���
��i� if i � act���

Note that the partial sum has no syntactic conditions assuring its well�de�nedness�
We therefore also de�ne a total version �
��� This simpli�es the use of Banach	s
�x�point theorem� Totalisation is achieved by de�ning ��
� ���i� to consist of
only �	s from the �rst moment in which both ��n and ��n are active� i�e�� di�er�
ent from �n� the stream consisting of n �	s� For any stream s� by s�n� we denote
its nth element�



De�nition �� �Total sum� Given two named stream tuples � � �N � �C�
���

and � � �N � �C�
���� We de�ne their total sum �
� � to be the element of

N � ��C� � C��
�� such that for all i � N � n � N

��
� ���i��n� �

��
�
��i��n� if ��i��n � �n

��i��n� if ��i��n �� �n � ��i��n � �n

� if ��i��n �� �n � ��i��n �� �n

Note that �
�� has a hiding e�ect if act����act��� �� 	� and that �
�� is equal
to � � �� otherwise�

Theorem�� The total sum operator is weakly guarded�

Proof� The sum ��
� ���i��n� depends only on ��n and ��n�

��� Projection

The domain of any named communication history � � N � �C�� is N � the set of
all channel names� However� in connection with generic functions and network
composition� we often need to restrict the visible messages in � with respect to
a history of known channel names O � �P�N��� To achieve this we introduce a
projection operation �jO which� for each time unit k� replaces the �nite stream
of messages received during time unit k on each channel contained in N n O�k�
by ��

De�nition �� �Projection� For any named communication history � � �N �
�C���� we de�ne its projection �jO on O � �P�N�� to be the element of N � �C��
such that for all i � N� k � N

�jO�i��k� �

�
��i��k� if i � O�k�
� otherwise

Theorem�� The projection operator is weakly guarded�

Proof� �jO�i��k� depends only on ��k and O�k�

� Privacy Invariants

A stream processing function f � �N � �C�
��� � �N � �C�

��� used to model a
component is not only required to be strongly guarded� but also to be generic

and point�to�point � In this section we formalize these additional properties� As
already explained� they can be thought of as privacy invariants satis�ed by any
mobile point�to�point system�



��� Genericity

The genericity constraint requires a function to access only ports contained in the
function	s initial� static interface ports already created by the function itself or
ports already received by the function� Genericity can be described with respect
to Figure �� as follows�
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Fig� �� Generic Stream Processing Function

Initially� each generic function receives on a designated set of input channels I
and sends along a designated set of output channels O� disjoint from I � These two
sets name the static channels or the initial wiring� To make sure that the dynamic

channels created by the di�erent components in a network have di�erent names�
each generic function is assigned a set of private names P � Obviously� this set
should be disjoint from the static interface� Thus� we require that �I�O��P � 	�

During computation the sets of accessible ports gradually grow� For example�
if the function receives a receive port �i then it may receive on the channel i�
and if it receives a send port �o then it may send along the channel o� Simi�
larly� whenever the function sends a send port �j� whose channel j � P it has
created itself� it may later receive what is sent along j� and whenever it sends
a receive port �p� whose channel p � P it has created itself� it may itself send
messages along p which eventually are received by the component which receives
the receive port�

For a given point in time n and a named input history �� the sets of accessible
input and output channels are represented by respectively domI�O��� f�����n�
and rngI�O��� f�����n�� The functions domI�O and rngI�O are formally de�ned at
the end of the next section�

��� Point�to�Point Communication

To ensure the form of point�to�point communication investigated in this paper�
the networks have to maintain the following invariant� each channel is used
by at most two components� the sender and the receiver� As a consequence�
the sender and the receiver of a channel cannot change during the lifetime of
channel� This type of point�to�point communication can be captured by a few



simple constraints given that we do not allow forwarding of ports� Firstly� the
creator of a channel is allowed to send only one of the channel	s ports� If it sends
a receive port then it keeps the send port� and the other way around� Secondly�
we also insist that the same port is not sent more than once� Since we also restrict
received ports from being forwarded� and di�erent components to have disjoint
sets of private channels� there is no way in which more than two components
can gain access to the same channel�

BB
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Fig� �� Forwarding and Point�to�Point Privacy

To explain why we do not allow forwarding� let us have a careful look at a small
example� Given a mobile system consisting of three components A� B and C�
Assume there is a channel connecting A to B and a channel connecting B to
C� but no channel connecting C to A� Now� suppose the component A creates a
channel i it keeps the receive port and sends the send port �i to the component
B� which again forwards �i to C� We then obtain the network on the left�hand
side of Figure �� In �GS��b�� where we model the more general form of point�
to�point communication� we allow forwarding by constraining the functions to
�forget� ports as soon as they are sent� A similar technique could have been used
here� However� this would make the model more complicated� In fact� the whole
advantage gained through the very restrictive communication paradigm would
be lost� Since the emphasis in this paper is on a simple model we have chosen
not to include forwarding� Nevertheless� we are able to express a nontrivial class
of mobile networks�

Forwarding can be simulated straightforwardly� as indicated by the network
on the right�hand side of Figure �� The component B does not forward �i� but
a send port �j for a new channel j created by B� Thereafter� any data element
B receives on j is forwarded along i� Hence� B �does not receive or send on i

itself� � it only forwards the data elements sent by C along j� The component
B in the network to the right simulates the �forget�constraint� required for the
component B in the network to the left�

One may ask� how do we impose the point�to�point requirement in our model�
We do that by imposing an invariant on the named communication histories�
The important point to realize is that in a network� where all components have
disjoint sets of private names� and where all components behave in accordance
with the communication constraints imposed above� we may restrict ourselves



to named communication histories in which the same port occurs only once
and where two di�erent ports are assigned di�erent channel names� We use the
arrow

u
� to distinguish named communication histories satisfying these two

port uniqueness constraints from other named communication histories�
Port uniqueness is preserved by projection and summation on stream tuples

whose sets of channel names are disjoint� More precisely� for � � N
u
� �C��� � �

N
u
� �C�� � and � � N

u
� �C�� � such that C� � C� � 	� we have that �jO �

N
u
� �C�� and that �
� � � N

u
� ��C� � C��

���
As a consequence of the forwarding restriction� any port sent by a function has

to belong to a channel created by the function� Moreover� since static channels
are used for the initial wiring� their corresponding ports cannot be transmitted�
For simplicity we split the set of names N into two disjoint sets � a set of static
channel names S and a set of dynamic channel names A� Because of the above
restrictions� it is enough to consider functions of the following signature

�N
u
� �P

�
�� � �N

u
� �P ���

where P � A and P � A n P �
We are now ready to give the formal de�nitions of domI�O and rngI�O� In this

de�nition� the operator � is overloaded to test for containment in a list

De�nition 	� �Domain and range� Given �I� O� � S�S� P � A� I �O � 	� � �

�N
u
� �P

�
�� and � � �N

u
� �P ���� We de�ne

D� � I

R� � O

Dn�� � Dn �
S
i�Dn

fp � A j �p � ��i��n�g �
S
i�Rn

fp � A j �p � ��i��n�g
Rn�� � Rn �

S
i�Dn

fp � A j �p � ��i��n�g �
S
i�Rn

fp � A j �p � ��i��n�g

The de�nitions of domI�O��� �� and rngI�O��� �� follow immediately

domI�O��� ���n� � Dn� rngI�O��� ���n� � Rn

Theorem
� The functions domI�O and rngI�O are strongly guarded�

Proof� domI�O��� ���n�� rngI�O��� ���n� depend only on ��n�� and ��n���

Theorem�� The functions domI�O and rngI�O have the following properties

domI�O��� �� � domI�O��jdomI�O������ �� � domI�O��� �jrngI�O������

rngI�O��� �� � rngI�O��jdomI�O������ �� � rngI�O��� �jrngI�O������

Proof� By induction on the recursive de�nitions of domI�O and rngI�O�

Genericity can then be formalized as below�

De�nition ��� �Generic functions� A function f � �N
u
� �P

�
�� � �N

u
� �P ���

is generic with respect to the initial wiring �I� O� i�

�� � f��� � f��jdomI�O���f����� � f���jrngI�O���f����



We use the decorated arrow
I�O
� to denote sets of strongly guarded functions that

are generic with respect to the initial wiring �I� O�� In the following we refer to
such functions as mobile�

� Mobile Components

We model a mobile� nondeterministic component by a set of mobile functions
F � Any pair ��� f����� where f � F � is a possible behavior of the component�
Intuitively� for any input history each mobile function f � F represents one
possible nondeterministic behavior� For any set of functions F we de�ne O�F �
to be the set of all behaviors of F � i�e�� O�F � � f�x� f�x�� j f � Fg�

Di�erent sets of mobile functions may have the same set of behaviors� The
reason is that for some sets of mobile functions we may �nd additional mobile
functions which can be understood as combinations of the functions already in
the set� For example� we may �nd a mobile function g which for one input his�
tory behaves as the function f � F and for another input history behaves as
the function f � � F � and so on� This means� a model in which a nondetermin�
istic component is represented by an arbitrary set of mobile functions� is too
distinguishing and� consequently� not fully abstract� To achieve full abstraction

we consider only closed sets� i�e�� sets F � where each combination of functions in
F � which gives a mobile function� is also in F �

De�nition ��� �Mobile components� A mobile component� with initial wiring
�I� O� � S � S and private names P � A� where I � O � 	� is a nonempty set
of mobile functions

F � �N
u
� �P

�
��

I�O
� �N

u
� �P ���

that is closed in the sense that for any mobile function f � �N
u
� �P

�
��

I�O
�

�N
u
� �P ���

��� � N
u
� �P

�
� � 
f � � F � f��� � f ����� � f � F

It follows straightforwardly that if F� and F� are mobile components then
F� � F� i� O�F�� � O�F��� Thus� our notion of a component is fully ab�
stract with respect to the corresponding set of behaviors� Note the relationship
to �Rus�
�� That our semantics is fully abstract with respect to O is of course
trivial� Nevertheless� this notion of observation characterizes the expectations
we have to a semantics dealing with time�

� Point�to�Point Composition

We now introduce a composition operator � which allows us to compose mo�
bile components into networks of mobile components� When observed from the
outside these networks can themselves be understood as mobile components�
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Fig� �� Point�to�Point Composition

In the formal de�nition given below we use the operator for total sum� This
operator allows us to exploit Banach	s �x�point theorem� We later show that
this operator can be replaced by the operator for partial sum�

De�nition ��� �Point�to�point composition� Given two mobile components

F� � �N
u
� �P�

�
��

I��O�

� �N
u
� �P �� ��� F� � �N

u
� �P�

�
��

I��O�

� �N
u
� �P �� ��

such that I� � I� � O� � O� � P� � P� � 	� Let

I � �I� nO�� � �I� nO��� O � �O� n I�� � �O� n I��� P � P� � P�

The point�to�point composition of F� and F� is de�ned as follows

F� � F� � ff � �N
u
� �P

�
��

I�O
� �N

u
� �P ��� j �� � 
f� � F�� f� � F� �

f��� � ��
� ��jrngI�O������ �� where

� � f���
� ��� � � f���
� ��� � � �jdomI�O������ ��g

Note the close correspondence between this de�nition and Figure �� Any input
channel of F� which is also an output channel of F�� and any input channel of
F� which is also an output channel of F�� are connected and hidden�

Note also the role of domI�O and rngI�O in maintaining privacy� If F� sends a
private port �p on a feedback channel� then only F� should send along p and only
F� should receive on p� F� can receive on p because domI��O�

is automatically
enlarged with p� Only F� can receive on p because rngI�O automatically hides
from the environment what F� sends along p� F� can send along p because
rngI��O�

is automatically enlarged with p� Only F� can in�uence F� via p because
domI�O automatically hides what the environment sends along p�



Similarly� if F� sends a private port �p on a feedback channel� then only
F� should receive on p and only F� should send along p� F� can receive on p

because domI��O�
is automatically enlarged with p� Only F� can receive on p

because rngI�O automatically hides from the environment what F� sends along
p� F� can send along p because rngI��O�

is automatically enlarged with p� Only F�
can in�uence F� via p because domI�O automatically hides what the environment
sends along p�

Theorem��� F� � F� is a mobile component�

Proof� That F� � F� �� 	 follows from Banach	s �x�point theorem and Theorem
�� Closedness follows straightforwardly�

The de�nition of � depends on the operator for total sum� This operator
is a bit strange since it results in hiding when the arguments are active on the
same channels� Our composition operator �� on the other hand� should only
hide the feedback channels� This means that all messages sent or received by
the components along the external channels should be visible also after the
composition� As a consequence� in the de�nition of � it should be possible to
replace the operator for total sum by the partial one�

Theorem��� The operator 
� can be replaced by � in the de�nition of ��

Proof� With respect to De�nition ��� we have to show that

act��� � act��� � act��� � act��� � act��� � act��� � 	

Since the genericity of f� and f� implies that

� � �jrngI��O�
���� ����� � � �jrngI��O�

���� ����

it is enough to show that the sets rngI��O�
��
��� ���n�� rngI��O�

��
��� ���n� and
domI�O��� �
� ���n� are mutually disjoint� for all n � N� The proof is by induc�
tion on the recursive de�nition of domI�O and rngI�O� The induction hypothesis
requires both the above disjointness condition and the mutual disjointness of
domI��O�

��
� �� ���n�� domI��O�
��
� �� ���n� and rngI�O��� �
� ���n��

� Communication Central

As an example we specify a communication central �see Figure ��� Its task is to
build up connections between station� and station�� The initial �wires� are a�
and a�� Station� can send ports to be connected �both receive and send� along
a� station� can send ports to be connected �both receive and send� along a��



1 station 2station
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Fig� �� Communication Central

Let �n be the jth receive port sent along a� by station�� The central is allowed
to receive on n as soon as this port is received� Moreover� let �n� be the jth
send port sent along a� by station�� The central is allowed to send along n�

as soon as this port is received� The central �connects� these two channels by
forwarding each data element in D it receives on the channel n along the channel
n�� Symmetrically� if �m� is the kth receive port sent along a� by station�� and
�m is the kth send port sent along a� by station�� then the data elements in D

received on m� are forwarded along m�
In order to model this component� we introduce three basic operators� The

�rst one is a �lter operator� for any set of messages M and stream of messages
s� M c�s denotes the stream we obtain by removing any message in s that is not
contained in M � The second one is a length operator� for any stream s� !s yields
its length� This means that !s � � if s is in�nite� Finally� we need a time ab�

straction operator� for any named communication history �� b� denotes the result
of removing all time information in �� For any i� this is achieved by concate�
nating all the �nite streams in ��i� into one stream� Thus� each communication
history consisting of in�nitely many �nite streams of messages is replaced by
the result of concatenating its �nite streams into one stream of messages� The
timing information is thereby abstracted away�

Central � ff � �N
u
� �A���

fa��a�g��
� �N

u
� �	��� j

�	 � f�	� � � where

��n� n�� � acon � b��n�� � D c�b	�n� �� the forwarding mechanism
acon � con�a�� a�� � con�a�� a�� �� the set of all connections
con�a� b� � f�n� n�� j � � the connections from �a to b�

k � ��

minf!rr�a��!wr�b�g� �

rr�a��k� ��n � wr�b��k� ��n�g
rr�a� � �N c� b	�a� �� the set of receive ports from a

wr�b� � �N c� b	�b� �� the set of send ports from b

g



Note that this expression does not say anything about the timing of the output�
It may be argued that the same behavior could have been obtained in a static
network� where an in�nite number of channels connect the stations with the
central� However� in that case both the central and the stations would be allowed
to observe anything that is sent along the channels� This should be contrasted
with our model� where the components are allowed to access only the channels
whose ports they have received or created themselves� In our opinion� it is exactly
this privacy that� not only captures the essence of mobility� but also simpli�es
the conceptual reasoning about mobile recon�guration�

� Discussion

The main contribution of this paper is that we have extended a denotational
model for timed� point�to�point� nondeterministic data��ow networks to handle
a notion of mobility� Our model is fully compositional� It allows us to reason
about mobility at a very abstract level� In fact� we believe our semantics is well�
suited as a foundation for a method for the speci�cation and development of
mobile systems� The exact relationship between our model and other models
like for instance the ��calculus �MPW��� and actor�based approaches �AMST���
is a interesting area for future research� For example� we believe that the model
for many�to�many communication �GS��a� can be used to give a denotational
semantics for the asynchronous ��calculus� We also believe that the actor lan�
guages can be smoothly integrated within our formalism�

Our approach is related to the work of Kok �Kok
�� Kok
��� The major
di�erence is that Kok does not deal with mobility� Moreover� his handling of
nondeterminism di�ers from ours� In �Kok
��� where he uses a metric on rela�
tions� he can basically handle only bounded nondeterminism� In �Kok
��� which
is not based on metric spaces� an automaton is used to generate the behaviors of
basic agents� This guarantees the existence of �x�points� We use sets of strongly
guarded functions for the same purpose�

�Gro��� Bro��b� give equational characterizations of dynamic recon�guration
with respect to stream processing functions�
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A Streams and Named Stream Tuples

A stream is a �nite or in�nite sequence of elements� For any set of elements E�
we use E� to denote the set of all �nite streams over E� and �E� to denote the set
of all in�nite streams over E� For any in�nite stream s� we use s�j to denote the
pre�x of s containing exactly j elements� We use � to denote the empty stream�

We de�ne the metric of streams generically with respect to an arbitrary
discrete metric �E� ���

De�nition ��� �The metric space of streams� The metric space of streams
��E�� d� over a discrete metric �E� �� is de�ned as follows

�E� �
Q

i�NE

d�s� t� � inff��j j s�j � t�jg

This metric is also known as the Baire metric �Eng����

Theorem��� The metric space of streams ��E�� d� is complete�

Proof� See for example �Eng����

A named stream tuple is a mapping � � �I � �E�� from a set of names to
in�nite streams� � is overloaded to named stream tuples in a point�wise style�
i�e�� ��j denotes the result of applying �j to each component of ��

De�nition �	� �The metric space of named stream tuples� The metric space
of named stream tuples �I � �E�� d� with names in I and elements in �E� �� is
de�ned as follows

d�s� t� � inff��j j s�j � t�jg

where I � �E� is the set of functions from the countable set I to the metric �E��

Theorem�
� The metric space of named stream tuples �I � �E�� d� is complete�

Proof� This metric is equivalent to the Cartesian product metric
Q

i�I �E� which
is complete because �E� is �Eng����
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