
The Semantics of Spectrum
�

Radu Grosu and Franz Regensburger

Fakult�at f�ur Informatik� Technische Universit�at M�unchen
����� M�unchen� Germany

E�Mail� spectrum�informatik	tu
muenchen	de

Abstract� The Spectrum project concentrates on the process of devel

oping well
structured� precise system speci�cations	 Spectrum is a spec

i�cation language� with a deduction calculus and a development method

ology	 An informal presentation of the Spectrum language with many
examples illustrating its properties is given in ��� �	 The purpose of this
article is to describe its formal semantics	

� Introduction

The Spectrum speci�cation language is axiomatic and borrows concepts both
from algebraic languages �e�g� LARCH ����� as well as from type theoretic lan�
guages �e�g� LCF �	��� An informal presentation with many examples illustrating
its properties is given in ��
 ��� We brie�y summarize its principal characteristics�

In�uences from algebra� In Spectrum speci�cations the in�uence of algebraic
techniques is evident� Every speci�cation consists of a signature and an axioms
part� However
 in contrast to most algebraic speci�cation languages
 the seman�
tics of a speci�cation in Spectrum is loose
 i�e� it is not restricted to initial
models or even term generated ones� Moreover
 Spectrum is not restricted to
equational or conditional�equational axioms
 since it does not primarily aim at
executable speci�cations� One can use full �rst order logic to write very abstract
and non�executable speci�cations or only use its constructive part to write spec�
i�cations which can be understood and executed as programs�

Loose semantics leaves a large degree of freedom for later implementations�
It also allows the simple de�nition of re�nement as the reduction of the class of
models� This reduction is achieved by imposing new axioms which result from
design decisions occurring in the stepwise development of the data structures
and algorithms�

Since writing well�structured speci�cations is one of our main goals
 a �exible
language for structuring speci�cations has been designed for Spectrum� This

� This work is sponsored by the German Ministry of Research and Technology �BMFT�
as part of the compound project �KORSO
 Korrekte Software� and by the German
Research Community �DFG� project SPECTRUM	

structuring is achieved by using so�called speci�cation building operators which
map a list of argument speci�cations into a result speci�cation� The language for
these operators was originally inspired by ASL ���� The current version borrows
concepts also from Haskell ����
 LARCH and PLUSS ����

In�uences from type theory� The in�uence from type theory is twofold� On the
type level Spectrum uses shallow predicative polymorphism with type classes
in the style of Isabelle ����� The theory of type classes was introduced by Wadler
and Blott ���� and originally realized in the functional programming language
Haskell� Type classes may be used both to model overloading ��
 ��� as well as
many instances of parameterized speci�cations� Like in object oriented languages
type classes can be organized in hierarchies such that every class inherits prop�
erties from its parent classes� This gives our language a weak object oriented
�avor�

The other in�uence of type theory can be seen in the language of terms
and their underlying semantics� Spectrum incorporates the entire notation for
typed ��terms� The de�nition of the semantics and the proof system was heav�
ily in�uenced by LCF� Therefore Spectrum supports a notion for partial and
non�strict functions as well as higher�order functions in the sense of domain
theory� The models of Spectrum speci�cations are assumed to be certain con�
tinuous algebras� All the statements about the expressiveness of LCF due to its
foundation in domain theory carry over to Spectrum�

Beside type classes there are also two features in the Spectrum logic which
distinguish Spectrum from LCF� Spectrum uses three�valued logic and also
allows in a restricted form the use of non�continuous functions for speci�cation
purposes� These non�continuous functions are an extension of predicates� They
allow the speci�er to express facts in a functional style which otherwise he would
have to encode as a relation� The practical usefulness of these features has to be
proved in case studies�

In conclusion
 all the above features make Spectrum a very powerful general
purpose speci�cation language� It can be used successfully in data base appli�
cations
 computationally intensive applications or even distributed applications
since it can easily incorporate a theory for streams and stream processing func�
tions ����

The purpose of this article is to describe the formal semantics of the language
Spectrum� This semantics incorporates in a uniform and coherent way the
properties already mentioned� In comparison with other logics for higher order
functions �e�g� LCF family� our main contributions are�

� a denotational semantics based on order sorted algebras for type classes �we
are only aware of an operational semantics for Haskell�

� the use of non�continuous functions for speci�cation purposes

� the identi�cation of predicates with �strong� boolean functions in the context
of a three valued logic�

The paper is organized as follows� In section � we present some examples that
show the use of the speci�cation language Spectrum� In sections � and 	 we
introduce the polymorphic signatures and the well�formed terms� In section �
we describe the polymorphic algebras� Section � is devoted to the interpretation
of terms in these algebras and to the notions of satisfaction and model� Finally
we draw some conclusions in section ��

Note that space limitations caused us to leave out the treatment of generation
constraints and of constructs related to specifying in the large �e�g� signature
morphisms
 reducts and logical relations between algebras�� A full treatment is
given in �����

� Some Motivating Examples

Before discussing the more involved technicalities of Spectrum we present some
motivating examples� They will help to better appreciate the design decisions
made in Spectrum and to get more intuition about its syntax and semantics�
We start by giving a polymorphic speci�cation of lists�

LIST � f

sort List �� ��Sort constructor List

nil� List �� ��Constructors
cons� ��List ��List ��

�rst� List ���� ��Selectors
rest� List ��List ��

cons� �rst� rest strict� ��Strictness � Totality

cons total�

List � freely generated by nil� cons� ��Generation

axioms � a � �� l � List � in
�rst�nil� � ��
�rst�cons�a�l�� � a�

rest�nil� � ��
rest�cons�a�l�� � l�

endaxioms� g

The signature of this speci�cation consists of the sort constructor List
 the value
constructors nil and cons and the selectors �rst and rest� The sort variable � is
used both to indicate the unarity of the sort constructor and to abstract from
a concrete element sort� As a consequence
 all functions in the signature are
de�ned polymorphically i�e� they can be used on all lists List � where � is an
instance sort of �� Similarly
 the use of the sort variable in the axioms part
indicates their validity for all instantiations � of this variable�

Although not explicitly in the axioms part
 the strict and total declarations
as well as the freely generated by declaration are actually �rst and respec�
tively second order axioms� They have a signi�cant in�uence on the structure of

lists and their associated limits� Making cons strict we have obtained the �nite
ML lists� Had we not declared cons strict
 we had obtained the Haskell lazy lists
which can be in�nite or �nite�

Beside the explicitly declared signature
 each speci�cation also has an im�
plicit
 prede�ned one� This contains for example the non�continuous polymor�
phic strong equality function �or mapping� � � ��� to Bool� Note the use of
to instead of� to mark this distinction�

A class is used in Spectrum to group together sorts which own a given set
of functions which in turn satisfy a given set of axioms� For example the class
EQ of all sorts owning a weak equality �predicate� �� can be de�ned as follows�

Equality � f

class EQ�

���� � � �� EQ � ����Bool�
���� strict total�

axioms � �� EQ � � a� b � � in
�a �� b� � �a � b��

endaxioms� g

For each sort constructor �and in particular a nullary one� one can declare the
domain and range classes� For example the following speci�cation�

EqInstances � f

enriches Equality � LIST � NAT�

Nat �� EQ�
List �� �EQ�EQ� g

declares that the sort Nat belongs to the class EQ� It also states that each sort in
the class EQ is also mapped by List into a sort from EQ� The keywords enriches
and� are �specifying�in�the�large� constructs� The enriches construct includes
the signature and the axioms of the argument speci�cation into the current
de�nition� The � construct takes the union �on signatures and axioms� of the
argument speci�cations�

Classes are used to restrict the range of the sort variables� For example
suppose that we want to extend the speci�cation LIST with a �predicate� ���

testing whether an element is contained in a list� This can be done by using the
above class EQ as follows�

LISTI � f

enriches LIST � Equality�

��� � � �� EQ � ��List ��Bool�
��� strict total�

axioms � �� EQ � �a� x � �� l � List � in
��a � nil��
a � cons�x�l� � �a �� x� � a � l�

endaxioms� g

The use of the class EQ is vital here� On the one hand a total ��� function
is not monotonic and as a consequence not a continuous function on non��at
sorts� On the other hand it is implicitly declared as a continuous function in
the signature� Hence
 allowing � to range over all possible sorts would make the
above speci�cation inconsistent� A similar problem occurs in ML where equality
sorts are syntactically distinguished from the ones ranging over all possible sorts�

Classes can be built hierarchically� For example we can reuse the de�nition of
the class EQ in de�ning a more restrictive class TOrder of total orders as follows�

TOrder � f
enriches Equality�

class TO subclass of EQ�

���� � �� TO � ����Bool�
��� strict total�

axioms � �� TO � � a� b� c� � in
a � a� ��re�exivity
a � b � b � c � a � c� ��transitivity
a � b � b � a � a �� b� ��antisymmetry

a � b � b � a� ��totality
endaxioms� g

Each sort in TOrder is required by the subclass of declaration to be also con�
tained in the class EQ�

By allowing arbitrary class de�nitions we can achieve a certain degree of func�
tion overloading and of speci�cation parameterization similar to OBJ� Moreover

since we can tune the extent of polymorphism for each function separately
 we
achieve a considerable degree of speci�cation reuse� For example
 we can easily
extend the speci�cation LISTI with a function min which takes the minimum of
a list provided the elements are totally ordered as follows�

LISTM � f
enriches LISTI � TOrder�

min � � �� TO � List ����
min strict�

axioms � �� TO � � e � �� s � List � in
s 	� nil � min�s� � s � �e � s � min�s� � e��

endaxioms� g

This ends the section with examples about Spectrum� Now we present the
technical details of the core language of Spectrum�

� Signatures

As an abstraction from the concrete syntax a speci�cation S � ���E� is a pair
where � � ���F�O� is a polymorphic signature and E is a set of ��formulae�

The de�nitions for � and for its components ��F and O are sketched in the
text below� For a detailed presentation we refer to �����

De�nition� Sort Signature�
A sort�signature � � �K��� SC� is an order sorted signature�
 where

� �K��� is a partial order on kinds

� SC � fSCw�kgw��Knfmapg���k�K is an indexed set of sort constructors with

monotonic functionalities i�e��

�sc � SCw�k
 SCw��k�� � �w � w��� �k � k��

A sort�signature must satisfy the following additional constraints�

� It is regular� coregular and downward complete� These properties� guarantee
the existence of principal kinds�

� It includes the standard sort�signature �see below��
� All kinds except map and cpo
 which are in the standard signature
 are below
cpo with respect to �� In other words
 cpo is the top kind for all kinds a user
may introduce�

De�nition� The standard �prede�ned� sort�signature�
The standard sort�signature

�standard � � fcpo�mapg� ��
ffBoolgcpo�
f�gcpo cpo� cpo�
ftogcpo cpo� map�
f�ngcpo���cpo� �z �

n times

� cpo

g
�

contains two kinds and four sort constructors �actually
 we have for each n a
sort constructor �n��

� cpo represents the kind of all complete partial orders
 map represents the
kind of all full function spaces�

� Order kinded would be more precise� see ��� �� for order sorted algebras	
� Regularity guarantees least kinds for every sort term	 Coregularity and downward
completeness guarantee unitary uni�cation of sort terms	 See ���� ��� for details	

� Complete partial orders are used to model continuous functions and full function
spaces are used to model non
continuous functions	 The latter ones are never imple

mented but are extremely useful for speci�cation purposes	 An alternative approach
is to use only full function spaces in the semantics and to encode continuity of func

tions in the logic	 In ���� HOLCF a higher order version of LCF is embedded into
the logic HOL using the generic framework of Isabelle	 In this thesis it is shown that
the full function space and its subspace of continuous functions over cpo�s can live
together in one type frame without problems	

� Bool is the type of booleans
 � is the constructor for lifted continuous
function spaces
 to is the constructor for full function spaces and �n for
n � � is the constructor for Cartesian product spaces�

The sort�signatures together with a disjoint family� of sort variables indexed
by kinds �a sort context� allows us to de�ne the set of sort terms�

De�nition� Sort Terms�
T���� is the freely generated order kinded term algebra over ��

Example � Some sort terms� Let Set � SCcpo� cpo� Then the following terms are
valid sort terms�

Set �� Bool� Bool � Bool � T��f�gcpo�

The idea behind polymorphic elements is to describe families of non�polymorphic
elements� In the semantics this is represented with the concept of the general�
ized cartesian product� For the syntax however there are several techniques to
indicate this fact� E�g� in HOL ����� the type of a polymorphic constant in the
signature is treated as a template that may be arbitrarily instantiated to build
terms� This technique is also used for the concrete syntax of Spectrum� In the
technical paper ���� we decided to make this mechanism explicit in the syntax

too
 and introduced a binding operator � for sorts and an application mecha�
nism on the syntactic level� For a system with simple predicative polymorphism
this is just a matter of taste� For a language with local polymorphic elements
�ML�polymorphism� or even deep polymorphism such binding mechanisms are
essential�

De�nition	 � � Sort Terms�
��� � k�� � � � � �n � kn�e � T�

� if�

� e � T����
� Free�e� f��� � � � � �ng
� ki � cpo for ki � K
 � � i � n

Note that the third condition rules out bound sort variables of kind map�

Example � A � � Sort Term�

�� � cpo�Set ��Bool � T�
�

The idea of the template and its instantiation is made precise by ��abstraction
and application of such ��sorts to non�polymorphic sorts s � T�����

In a signature every constant or mapping will have a sort without free sort
variables� This motivates the following de�nition�

De�nition
 Closed Sort Terms�

T� � T����
T closed
� � T� � T�

�

Note that T closed
��cpo will contain valid sorts for constants while T closed

��map will contain
valid sorts for mappings�
Now we are able to de�ne polymorphic signatures�

De�nition� Polymorphic Signature�
A polymorphic signature � � ���F�O� is a triple where�

� � � �K��� SC� is a sort�signature�
� F � fF�g

��T closed
��cpo

is an indexed set of constant symbols�

� O � fO�g
��T closed

��map
is an indexed set of mapping symbols�

It must include the standard signature
�standard � ��standard� Fstandard� Ostandard� which is de�ned as follows�

� Prede�ned Constants �Fstandard��
� ftrue� falseg FBool
 f�g FBool�Bool

f�����g FBool�Bool�Bool are the boolean constants and connec�
tives�

� f�g F�� � cpo� � is the polymorphic bottom symbol�
� f�xg F

�� � cpo� ������� is the polymorphic �xed point operator�

� Prede�ned mappings �Ostandard��
� f��vg O

�� � cpo� ��� to Bool are the polymorphic equality and

approximation predicates�
� f	g O

�� � cpo� � to Bool is the polymorphic de�nedness predicate�

� The language of Terms

In the previous section we introduced the polymorphic signatures which serve
to construct terms in the object language� The construction itself is the purpose
of this section�
Like in ���� the core language used to de�ne the semantics of Spectrum is
explicitly typed i�e� the application of polymorphic constants to sort terms is
explicit and the ��bounded variables are written together with their sorts� This
assures that every well formed term has a unique sort in a given context and that
the semantics of this term
 although given with respect to one of its derivations

is independent from the particular derivation if the sorts of the free variables are
the same in all derivation contexts�

For convenience
 the concrete language of Spectrum is like ML
 HOL
 LCF
and Isabelle implicitly typed i�e� the type information is erased from terms� How�
ever
 like all the above languages
 Spectrum has principles types i�e� every im�
plicitly typed term t has a corresponding explicitly typed term t� such that
erasing all type information from t� yields again t and for every other explicitly
typed term t�� having the above property
 the type of t�� is an instance of the type
of t� for some special notion of instance� Having principles types guaranteed
 the
semantics of an implicitly typed term t is simply de�ned to be the semantics

of t��� The set of well formed terms is de�ned in two steps� First we de�ne the
context free syntax of pre terms via a BNF like grammar� In the second step we
introduce a calculus for well formed terms that uses formation rules to express
the context sensitive part of the syntax�

	�� Context Free Language �Pre Terms�

term� ��� � �Variables�
j
id� �Constants�
j
�id� �f
sortexp� ��g�� �Polyconstant�Inst�

j
map�
term� �Mapping application�
j
�map� �f
sortexp� ��g��
term� �Polymapping�Inst�

j hf
term� ��g��i �Tuple n � ��

j �
pattern� �
term� ���abstraction�
j
term�
term� �Application�
j Q
tid� �
term� �Q � f�����g�
j �
term� � �Priority�

tid� ��� � �
sortexp�
sortexp� ��� T� ���

pattern� ���
tid� j hf
tid� ��g��i

id� ��� FT�� cpo

map� ��� OT��map

�id� ��� F
T�
�� cpo

�map� ��� O
T�
��map

In addition all object variables x � � are di�erent from sort variables � � � and
all variables are di�erent from identi�ers in F and O�

	�� Context Sensitive Language

With the pre terms at hand we can now de�ne the well formed terms� We
use a technique similar to ���� and give a calculus of formation rules� Since
for sort variables there is only a binding mechanism in the language of sort
terms but not in the language of object terms
 we need no dynamic context for
sort variables� The disjoint family � of sort variables �the sort context� carries

� The advantage of this technique is that the problem of de�ning and �nding �rsp	 de

ciding� the principal type property is separated from the de�nition of the semantics	
The drawback is the introduction of two languages namely the one with implicit typ

ing and the one with explicit types	 An alternative would be to de�ne the semantics
directly on well formed derivations for implicitly typed terms avoiding the introduc

tion of an explicitly typed language	 However� since the type system of Spectrum
is an instance of the type system of Isabelle� we preferred to use an explicit type
system and refer to ���� ��� for results about principal typings	

enough information� For the object variables
 however
 there are several binders
and therefore we need an explicit variable context�

De�nition� Sort Assertions�
The set of sort assertions � consists of tuples ��� � e� � � where�

� � is a sort context�
� � fx� ���� � � � � xn ��ng is a set of sort assumptions �a variable context�
 such

that �i � T��cpo��� and no xi occurs twice in the sort assumptions contained
in �valid context condition�� This prohibits overloading of variables in one
scope�

� e is the pre term to be sorted�
� � � T��cpo��� is the derived sort for e�

We de�ne�
��� � e� � � � � if and only if there is a �nite proof tree D for this fact according
to the natural deduction system below�

When we write �� e �� � in the text we actually mean that there is a proof tree
�sort derivation� for ��� � e� � � � �� If we want to refer to a special derivation D
we write D � �� e �� � � The intuitive meaning of the sort assertion ��� � e� � �
with � fx� � ��� � � � � xn � �ng is that if the variables x�
 � � �
 xn have sorts ��

� � �
 �n then the pre term e is well formed and has sort � �

Formation rules for well formed terms

Axioms�

�var�
x �� �� x �� �

�const�
� �� c �� �

�
c � F�

���inst�
� �� f ���� � � � � �n� �� � ������� � � � � �n��n�

�
f � F����k�������n�kn��

�i � ki � �i � ki

Note that in the above axiom f ���� � � � � �n� is part of the syntax
whereas � ������� � � � � �n��n� is a meta notation for this presentation of the cal�
culus� The axiom states that given a polymorphic constant f � F����k�������n�kn ��

every instance of f via the sort expressions �i � ki yields an explicitly typed term
f ���� � � � � �n� of sort � ������� � � � � �n��n� which is � after simultaneous replace�
ment of all sort variables �i by sort expressions �i of appropriate kind�

Inference Rules�

�weak�
 �� e �� �

 � fx� ���� � � � � xn ��ng �� e �� �

The �valid context condition� in the rule �weak� prevents us from building con�
texts with x ��� x �� � and � 	� �

�map�appl�
 �� e �� ��
 �� oe �� ��

�
o � O��to��

��map�appl�
 �� e �� ��������� � � � � �n��n�

 �� o���� � � � � �n�e �� ��������� � � � � �n��n�
f�

where

� �

�
o � O����k�������n�kn�	�to	�

�i � ki � �i � ki

The rules �map�appl� and ��map�appl� are the formation rules for application
of �polymorphic� mappings to terms� They ensure that a symbol for a mapping
alone is not a well formed term which means that mappings may only occur in
application context�

�tuple�
 �� e� �� �� � � � �� en �� �n
 �� he�� � � � � eni �� ��� � � ���n

�
n � �

�abstr�
� x ��� �� e �� ��

 �� �x ����e �� �����
fe y x

�patt�abstr�
� x� ���� � � � � xn ��n �� e �� �

 �� �hx� ���� � � � � xn ��ni�e �� ��� � � ���n��

�
e y xi
� � i � n

where e y x is a property of pre terms� A calculus for e y x is presented below�

�appl�
 �� e� �� ����� �� e� �� ��

 �� e�e� �� ��

Note that formations for �map�appl� ��map�appl� and �appl� use implicit but
di�erent application mechanisms� There is no problem in determining the last
step in a derivation for a term e�e�� If e� is not a constant then rule �appl�
must be used since there are no variables or composed terms for mappings� If on
the other hand e� is a constant then the choice is also clear since F and O are
disjoint� Of course there remains the problem of guessing the right type �� for
the term e� in rule �appl� if e� is a composed term� But this is another problem
of type inference not concerning the distinction between mappings and functions
in application context�

�quanti�er�
� x �� �� e �� Bool

 �� Qx ���e �� Bool

�
Q � f�����g

�priority�
 �� e �� �

 �� �e� �� �

This concludes the de�nition of sort derivations� We now present the calculus
for eyx� The purpose of this side condition is to prohibit the building of ��terms
that do not have a continuous interpretation� Consider the term�

�x �Bool���Bool�hx� xi

In our semantics the interpretation of the symbol � is the polymorphic iden�
tity which is by de�nition not monotonic� If we allowed the above expression as a
well formed term its interpretation would have to be a non�monotonic function�

The property e y x is recursively de�ned on the structure of the pre term e�
It�s reading is �e dagger x� and means �e is continuous in x�� In the calculus below
the set ��e� represents the set of free variables with respect to the binders ��

�� and � with the obvious de�nition�

�y � var�
x y x

�y � notfree�
x 	� ��e�

e y x

�y � tuple�
e� y x � � � en y x

he�� � � � � eni y x

�y � abstr�
e y x e y y

�y ���e y x

�y � patt�abstr�
e y x e y x� � � � e y xn

�hx� ���� � � � � xn ��ni�e y x

�y � appl�
e� y x e� y x

e�e� y x

�y � quant�
e y x e y y

Qy ���e y x

�
Q � f�����g

�y � prio�
e y x

�e� y x

As we will see later in section � the quanti�ers get a three valued Kleene
interpretation� If e is continuous in x and y also ��y � ��e and ��y � ��e are
continuous in x� Therefore we can allow terms like �x �����y � ��e provided the
dagger test ��y ���e y x succeeds� For example the test ��y ���	y�e y x will fail
since 	y�e y y fails�

In the report ��
 �� we used the phrase �where x is not free on a mappings
argument position� as a context condition for the formation rules �abstr� and
�patt�abstr�� Looking at the example �x �����y � ��	y�e we see that this is too
weak for terms with quanti�ers inside�

	�� Well formed Terms and Sentences

With the context sensitive syntax of the previous paragraph we are now able to
de�ne the notion of well formed terms over a polymorphic signature� Since we
use an explicitly typed system
 a well formed term is a pre term e together with
a sort context �
 a variable context and a sort � �

De�nition� Well formed terms�
Let � be a polymorphic signature� The set of well formed terms over � in sort
context � and variable context with sort � is de�ned as follows�

T
�� ��� � � f��� � e� � � j �� e �� �g

The set of all well formed terms in context ��� � is de�ned to be the family

T
��� � � fT
�� ��� �g��T����

In addition we de�ne the following abbreviations�

T
��� � T
��� �� �closed object terms�

T
 � T
��� �non�polymorphic closed object terms�

Considering a well formed term ��� � e� � � � T
�� ��� � we see that all the
sort derivations D � �� e �� � for this term can only di�er in the applications
of the formation rule �weak�� Due to the vast type information contained in our
pre terms e there are no other possibilities for di�erent sort derivations�

In section � we will de�ne the interpretation of a well formed term ��� � e� � �
in set T
�� ��� � with respect to the inductive structure of some sort derivation
for this term� To guarantee the uniqueness of our de�nition we now distinguish
the unique and always existing normal form of a sort derivation�

De�nition� Normal Sort Derivation�
Let ��� � e� � � � T
�� ��� � be a well formed term� The Normal Sort Derivation
ND � �� e �� � is that derivation where introductions of sort assumptions via
the formation rule �weak� occur as late as possible�

A formal de�nition of the normal form together with a proof for the exis�
tence and uniqueness result is pretty obvious� A thorough discussion of a slightly
di�erent technique containing all the de�nitions and proofs can be found in ��	��
Next we de�ne formulae Form����� � and sentences Sen����� over a poly�
morphic signature � and sort context �� In Spectrum the set of formulae
Form����� � is the set of well formed terms in context ��� � of sort Bool�
This leads to a three valued logic� The sentences are as usual the closed formu�
lae�

De�nition�� Formulae and Sentences�

Form����� � � T
�Bool��� �

Sen����� � Form����� �� �closed formulae are sentences�

Sen��� � Sen��� �� �non�polymorphic sentences�

Example 	 Some formulae�

��x �������hx� xi � Sen��� f�g�

��x �Nat���Nat�hx� xi � Sen���

De�nition�� Speci�cations�
A polymorphic speci�cation S � ���E� is a pair where � � ���F�O� is a
polymorphic signature and E Sen����� is a set of sentences for some sort
context ��

� Algebras

The following de�nitions are standard de�nitions of domain theory �see ������
We include them here to get a self�contained presentation�

De�nition�� Partial Order�
A partial order A is a pair �A��� where A is a set and ��� A�A is a re�exive

transitive and antisymmetric relation�

De�nition�� Chain Complete Partial Order�
A partial order A is ��chain complete i� every chain a� � � � � � an � � � � � n � IN
has a least upper bound in A� We denote it by ti�INxi�

De�nition�	 Pointed Chain Complete Partial Order �PCPO��
A chain complete partial order A is pointed i� it has a least element� In the
sequel we denote this least element by uuA�

De�nition�
 Monotonic Functions�
Let A � �A��A� and B � �B��B� be two PCPOs� A function	 f � BA is
monotonic i�

d �A d� � f�d� �B f�d��

De�nition�� Continuous Functions�
A monotonic function f between PCPOs A and B is continuous i� for every
��chain a� � � � � � an � � � � in A�

f�
G
i�IN

ai� �
G
i�IN

f�ai�

Since f is monotonic and A and B are PCPOs the least upper bound on the right
hand side exists�

De�nition�� Product PCPO�
If A � �A��A� and B � �B��B� are two PCPOs then the product PCPO
A � B � �A �B��A�B� is de�ned as follows�

� We write BA for all functions from A to B	

� A �B is the usual cartesian product of sets

� �d� e� �A�B �d�� e�� iff �d �A d� � �e �B e��

� uuA�B � �uuA� uuB�

This de�nitions may be generalized to n�ary products in a straight forward way�

De�nition�� Function PCPO�
If A � �A��A� and B � �B��B� are two PCPOs then the function PCPO

A
c
�B � �A

c
�B��

A
c

�B
� is de�ned as follows�

� A
c
�B is the set of all continuous functions from A to B

� f �
A

c

�B
g iff �a � A�f�a� �B g�a�

� uu
A

c

�B
� �x �A�uuB

De�nition�� Lift PCPO�
If A � �A��A� is a PCPO then the lifted PCPO A lift � �A lift��A lift� is
de�ned as follows�

� A lift � �A � f�g� � fuuA liftg where uuA lift is a new element which is not
a pair�

� �x� �� �A lift �y� �� iff x �A y

�z � A lift�uuA lift �A lift z
� We also de�ne an extraction function � from A lift to A such that

� uuA lift � uuA � � �x� �� � x

We will call the PCPOs also domains �note that in the literature domains are
usually algebraic directed complete po�s ������

�� The Sort Algebras

De�nition�� Sort�Algebras�
Let � � �K��� SC� be a sort�signature� An ��algebra SA is an order sorted
algebra
 of domains i�e��

� For the kind cpo � K we have a set of domains cpoSA� For the kindmap � K
we have a set of full functions spaces mapSA�

� For all kinds k � K with k � cpo we have a nonempty subset kSA cpoSA�
� For all kinds k�� k� � K with k� � k� we have kSA� kSA� �
� For each sort constructor sc � SCk� ���kn�k there is a domain constructor
scSA � kSA� � � � ��kSAn � kSA such that if sc � SCw�s
SCw��s� and w � w�

then
scSAw��s� jwSA� scSAw�s

In other words overloaded domain constructors must be equal on the smaller
domain wSA � kSA� � � � �� kSAn where w � k� � � �kn�

� See ��� ��	

We further require the following interpretation for the sort constructors occurring
in the standard sort�signature�

� BoolSA � �fuuBool� ff� ttg��Bool� is the �at three�valued boolean domain�
� For�SAn � cpoSA � � � �� cpoSA � cpoSA�

�SAn �d�� � � � � dn� � d� � � � �� dn� n � �

is the n�ary cartesian product of domains�
� For�SA � cpoSA � cpoSA � cpoSA�

�SA�d�� d�� � �d�
c
�d��lift

is the lifted domain of continuous functions� We lift this domain because we
want to distinguish between � and �x� ��

� For toSA � cpoSA � cpoSA � mapSA

toSA�d�� d�� � dd��

is the full space of functions between d� and d��

De�nition�� Interpretation of sort terms�
Let � � �� SA be a sort environment and �� � T���� � SA its homomorphic
extension� Then SA������ is de�ned as follows�

� SA��e��� � ���e� if e � T����
� SA����� � k�� � � � � �n � kn�e�� �

ff j f������� � � � � ���n�� � SA��e��� for all �g

For closed terms we write for SA��e�� also eSA�

Sort terms in T�
� are interpreted as generalized cartesian products �depen�

dent products�� By using n�ary dependent products we can interpret ��terms
in one step� This leads to simpler models as the ones for the polymorphic ��
calculus�

�� Polymorphic Algebras

De�nition�� Polymorphic Algebra�
Let � � ���F�O� be a polymorphic signature with � � �K��� SC� the sort�
signature� A polymorphic ��algebra A � �SA�F�O� is a triple where�

� SA is an � sort algebra

� F � fF�g

��T closed
��cpo

is an indexed set of constants �or functions�
 with�

F� � ffA � �SA j f � F�g

such that if f � F� is not the constant � � �� � cpo�� then its interpretation
fA is di�erent from uu in �SA� If f is polymorphic then all its instances must
be di�erent from the corresponding least element�

� O � fO�g
��T closed

��map

is an indexed set of mappings
 with�

O� � foA � �SA j o � O�g

We further require a �xed interpretation for the symbols in the standard sig�
nature� In order to simplify notation we will write fAd������dn for the instance

fA�d�� � � � � dn� of a polymorphic function and oAd� �����dn for the instance of a poly�

morphic mapping oA�d�� � � � � dn��

� Prede�ned Mappings �Ostandard��
� f��vg O���cpo� ��� to Bool are interpreted as identity and partial order �
More formally
 for every domain d � cpoA and x� y � d�

x �A
d y ��

�
tt if x is identical to y
ff otherwise

xvAd y ��

�
tt if x �d y
ff otherwise

� f	g O���cpo� � to Bool is the polymorphic de�nedness predicate� For ev�
ery d � cpoA and x � d�

	Ad �x� ��

�
tt if x is di�erent from uud
ff otherwise

� Prede�ned Constants �Fstandard��
� ftrue� falseg FBool are interpreted in the BoolSA domain as follows�

trueA � tt � falseA � ff

� The interpretations of f�g FBool�Bool
 f�����g FBool�Bool�Bool are
pairs in the lifted function spaces such that the function components
behave like three�valued Kleene connectives on BoolSA as follows�

x y �� �A��x� x�� �A�y x�� �A�y x�� �A�y
tt tt ff tt tt tt
tt ff ff ff tt ff
ff tt tt ff tt tt
ff ff tt ff ff tt

uu tt uu uu tt tt
uu ff uu ff uu uu
uu uu uu uu uu uu
tt uu ff uu tt uu
ff uu tt ff uu tt

� f�g F���cpo� � is interpreted in each domain as the least element of
this domain� For every d � cpoSA�

�Ad �� uud

� f�xg F���cpo� ������� is interpreted for each domain d as a pair

�xAd � �d �SA d��SA d such that the function component behaves as
follows�

�� �xAd ��f� ��
G
i�IN

fn�uud�

where�

f��uud� �� uud

fn���uud� �� �� f��fn�uud��

Note that � uu
�d

c

�d� lift
� uu

�d
c

�d�
and therefore the above de�nition is

sound�

� Models

��� Interpretation of sort assertions

In this section we de�ne the interpretation of well�formed terms� The interpre�
tation of ��� � e� � � � T
�� ��� � is de�ned inductively on the structure of the
normal sort derivation ND � �� e �� � � The technique used is again due to
�����

De�nition�� Satisfaction of a variable context�
Let � � ���F�O� be a polymorphic signature with � � �K��� SC� and let
A � �SA�F �O� be a a polymorphic ��algebra�

If is a variable context and

� � f�k � �k � kSAgk�Knfmapg sort environment �order�sorted�
� � � �

S
d�cpoSA

d object environment �unsorted�

then � satis�es in sort environment � �in symbols � j�� � i�

� j�� � for all x �� � ���x� � ���� �

De�nition�	 Update of object environments�

��a�x��y� ��

�
a if x � y
��y� otherwise

Now we de�ne an order sorted meaning function A�������� that maps normal
sort derivations ND � �� e �� � to elements in A� Since normal sort derivations
always exist and are unique this leads to a total meaning function A�������� �
T
��� ��A�

De�nition�
 Meaning of a sort derivation�
The meaning of a normal sort derivation ND � �� e �� � in a polymorphic
algebra A in sort context � and variable context such that � j�� is given
by A��ND � �� e �� � ����� which is recursively de�ned on the structure of ND�
The de�ning clauses are given below�

Base cases�

�var� A��x �� �� x �� � ����� � ��x� �const� A��� �� c �� � ����� � cA

���inst�

A��� �� f ���� � � � � �n� �� � ����� �

fA�������� � � � � �
���n��

Inductive cases�
�weak�

A�� � fx� ���� � � � � xn ��ng �� e �� � ����� � A�� �� e �� � �����

�map�appl�

A�� �� oe �� ������� � oA�A�� �� e �� ��������

��map�appl�

A�� �� o���� � � � � �n�e �� ������� �

oA�������� � � � � �
���n���A�� �� e �� ��������

�tuple�

A�� �� he�� � � � � eni �� ��� � � ���n����� �

�A�� �� e� �� �������� � � � �A�� �� en �� �n������

�abstr��

A�� �� �x ����e �� ���������� �

the unique pair �f� �� � ��������� with

�a � �������f�a� � A��� x ��� �� e �� �������ax�

�patt�abstr�

A�� �� �hx� ���� � � � � xn ��ni�e �� ��� � � ���n�� ����� �

the unique pair �f� �� � ������ � � ���n�� � with

�a� � ������� � � � � an � ����n��f��a�� � � � � an�� �

A��� x� ���� � � � � xn ��n �� e �� � �����a�x������anxn �

� the y
test ensures that the clauses for �abstr� and �patt
abstr� are well de�ned	

�appl�

A�� �� e�e� �� ������� �� �A�� �� e� �� ������������A�� �� e� �� ��������

�universal quanti�er�

A�� �� �
�x ���e �� Bool����� �

�

�����
����
tt if �a � ���� ���A��� x �� �� e �� Bool�����ax� � tt�

ff if �a � ���� ���A��� x �� �� e �� Bool�����ax� � ff �

uu otherwise

�existential quanti�er�

A�� �� �
�x ���e �� Bool����� �

�

�����
����
tt if �a � ���� ���A��� x �� �� e �� Bool�����ax� � tt�

ff if �a � ���� ���A��� x �� �� e �� Bool�����ax� � ff �

uu otherwise

��� Satisfaction and Models

In this subsection we de�ne the satisfaction relation for boolean terms and sen�
tences �closed boolean terms� and also the notion of a model�

De�nition�� Satisfaction�
Let

A � �SA�F�O� ��Algebra
� � f�k � �k � kSAgk�Knfmapg sort environment �order�sorted�
� � � �

S
d�cpoSA

d object environment �unsorted�

and a variable context with � j�� then�
A satis�es ��� � e�Bool� � Form����� � wrt� sort environment � and object

environment � �in symbols A j���� ��� � e�Bool�� i�

A j���� ��� � e�Bool��A�� �� e �� Bool����� � tt

A special case of the above de�nition is the satisfaction of sentences� Let
��� �� e�Bool� � Sen����� and �� an arbitrary environment
 then�

A j�� ��� �� e�Bool��A��� �� e �� Bool������ � tt

A j� ��� �� e�Bool��A j�� ��� �� e�Bool� for every �

Now we are able to de�ne models A of speci�cations S � ���E��

De�nition�� Models�
Let S � ���E� be a speci�cation� A polymorphic ��algebra A is a model of S
�in symbols A j� S� i�

A j� S � �p � E� A j� p

� Conclusions

We have presented the semantics of the kernel part of the Spectrum language�
Our work di�ers in many respects from other approaches� In contrast to LCF
we allow the use of type classes� Moreover arbitrary non�continuous functions
can be used for speci�cation purposes� This also permits to handle predicates
and boolean functions in a uniform manner� In contrast with other semantics
for polymorphic lambda calculus �e�g� ����� we did not provide an explicit type
binding operator on the object level� This is not a restriction for languages
having an ML�like polymorphism but allows a more simple treatment of the
sort language� More precisely we used order sorted algebras instead of the more
complex applicative structures� Order sorted algebras were also essential in the
description of type classes�

� Acknowledgment

For comments on draft versions and stimulating discussions we like to thank
M� L�owe
 B� M�oller
 F� Nickl
 B� Reus
 D� Sannella
 T� Streicher
 A� Tarlecki

M� Wirsing and U� Wolter�
Special thanks go also to our colleagues H� Hussmann
 C� Facchi
 R� Hettler and
D� Nazareth to Tobias Nipkow whose work inspired our treatment of type classes
and to Manfred Broy whose role was decisive in the design of the Spectrum
language�

References

�	 M	 Broy	 Requirement and Design Speci�cation for Distributed Systems	 LNCS�
������ ����	

�	 M	 Broy� C	 Facchi� R	 Grosu� R	 Hettler� H	 Hussmann� D	 Nazareth� F	 Regens

burger� O	 Slotosch� and K	 St�len	 The Requirement and Design Seci�cation Lan

guage Spectrum	 An Informal Introduction	 Version �	�	 Part I	 Technical Report
TUM
I���� Technische Universit�at M�unchen	 Institut f�ur Informatik� May ���	

	 M	 Broy� C	 Facchi� R	 Grosu� R	 Hettler� H	 Hussmann� D	 Nazareth� F	 Regens

burger� O	 Slotosch� and K	 St�len	 The Requirement and Design Seci�cation Lan

guage Spectrum	 An Informal Introduction	 Version �	�	 Part II	 Technical Report
TUM
I���� Technische Universit�at M�unchen	 Institut f�ur Informatik� May ���	

�	 R	 Milner C Wadsworth M	 Gordon	 Edinburgh LCF� A Mechanised Logic of Com�
putation� volume �� of LNCS	 Springer� ����	

�	 J	 Camilleri	 The HOL System Description� Version � for HOL ��	�	��	 Technical
report� Cambridge Research Center� ����	

�	 L	 Cardelli and P	 Wegner	 On Understanding Types� Data Abstraction� and Poly

morphism	 ACM Computing Surveys� ������������� December ����	

�	 M	
C	 Gaudel	 Towards Structured Algebraic Speci�cations	 ESPRIT ����� Status
Report of Continuing Work �North�Holland�� pages ������� ����	

�	 M	 Gogolla	 Partially Ordered Sorts in Algebraic Speci�cations	 In B	 Courcelle�
editor� Proc	
th CAAP �
��� Bordeaux	 Cambridge University Press� ����	

�	 J	A	 Goguen and J	 Meseguer	 Order�Sorted Algebra Solves the Constructor�
Selector� Multiple Representation and Coercion Problems	 In Logic in Computer
Science� IEEE� ����	

��	 R	 Grosu and F	 Regensburger	 The Logical Framework of spectrum	 Techni

cal Report TUM
I����� Institut f�ur Informatik� Technische
Universit�at M�unchen�
����	

��	 C	 A	 Gunter	 Semantics of Programming Languages� Structures and Techniques	
MIT Press� ����	

��	 J	V	 Guttag� J	J	 Horning� and J	M	 Wing	 Larch in Five Easy Pieces	 Technical
report� Digital� Systems Research Center� Paolo Alto� California� ����	

�	 P	 Hudak� S	 Peyton Jones� and P	 Wadler� editors	 Report on the Programming
Language Haskell� A Non�strict Purely Functional Language �Version �	�	 ACM
SIGPLAN Notices� May ����	

��	 J	 C	 Mitchell	 Introduction to Programming Language Theory	 MIT Press� ���	
��	 J	C	 Mitchell	 Type Systems for Programming Languages	 In Handbook of The�

oretical Computer Science� chapter �� pages ������	 Elsevier Science Publisher�
����	

��	 T	 Nipkow	 Order
Sorted Polymorphism in Isabelle	 In G	 Huet and G	 Plotkin�
editors� Logical Environments� pages �������	 CUP� ���	

��	 Tobias Nipkow and Christian Prehofer	 Type checking type classes	 In Proc	 �th
ACM Symp	 Principles of Programming Languages� pages �������� ���	

��	 F	 Regensburger	 HOLCF� Eine konservative Erweiterung von HOL durch LCF	
PhD thesis� Technische Universit�at M�unchen� ����	 to appear	

��	 D	 Sannella and M	 Wirsing	 A Kernel Language for Algebraic Speci�cation and
Implementation	 Technical Report CSR
��
�� University of Edinburgh� Edin

burgh EH� JZ� September ���	

��	 G	 Smolka� W	 Nutt� J	 Goguen� and J	 Meseguer	 Order
Sorted Equational Com

putation	 In Resolution of Equations in Algebraic Structures	 Academic Press�
����	

��	 C	 Strachey	 Fundamental Concepts in Programming Languages	 In Lecture Notes
for International Summer School in Computer Programming� Copenhagen� ����	

��	 P	 Wadler and S	 Blott	 How to Make Ad
hoc Polymorphism Less Ad hoc	 In ��th
ACM Symposium on Principles of Programming Languages� pages ������ ����	

This article was processed using the LaTEX macro package with LLNCS style

