
Hybrid Sequence Charts

Radu Grosu, Ingolf Kr¨uger and Thomas Stauner�

Institut für Informatik, Technische Universit¨at München

D-80290 München, Germany

Email: �grosu,kruegeri,stauner�@in.tum.de

Abstract

We introduce Hybrid Sequence Charts (HySCs) as a vi-
sual description technique for communication in hybrid sys-
tem models. To that end, we adapt a subset of the well-
known MSC syntax to the application domain of hybrid sys-
tems. The semantics of HySCs is different from standard
MSC semantics. Most notably, we use a shared variables
communication model and assume the existence of a con-
tinuous, global clock. Similar to their classic counterpart
HySCs can be advantageously used in the early phases of
the software development process. In particular, in the re-
quirements capture phase, they improve the dialog between
customers and application experts. They complement exist-
ing formalisms like hybrid automata by focusing on the in-
teraction between the system’s components. We outline the
key concepts and the usage of HySCs along an example, the
specification of an electronic height control system. Then
we define the formal semantics of their basic elements.

1. Introduction

Designing software for embedded systems usually re-
quires to take the characteristics of the system’s environ-
ment into consideration, e.g. in order to derive timing re-
quirements. Often the environment is, to a large extent,
determined by continuous processes. Sometimes the sys-
tem itself also exhibits discreteand continuous behavior.
The description of the embedded system together with its
environment therefore necessitateshybrid description tech-
niques, i.e. techniques which are adequate for mixed dis-
crete and continuous systems. Hybrid systems generalize
real time systems by considering further physical quantities
apart from time.

In recent years a considerable number of description

�This work was supported with funds of the Deutsche Forschungsge-
meinschaft under the Leibniz program within project SysLab, and under
reference number Br 887/9 within the priority programDesign and design
methodology of embedded systems.

techniques has been developed for the specification of hy-
brid systems. Some of them are based on Petri nets [17],
others use logic [11] and yet others are based on some
kind of automata [1, 12, 9]. However, little work has been
done to visualize the behavior of a hybrid system together
with the communication between its components. Yet, a
thorough integration of interaction-based and state-based
description techniques is essential if we wish to support
and improve today’s development processes for hybrid and,
more generally, embedded systems.

We regard a hybrid system as consisting of a set of time-
synchronously operating components, each encapsulating a
private state and communicating with the other components
over directed channels. The behavior of a component is
characterized, as intuitively shown in Fig. 1, top left, by
periods where the values on the channels change smoothly
and by time instants at which there are discontinuities. In
our approach the discontinuities are caused by discrete ac-
tions. The smooth periods are caused by analog activities.
Two attempts at visualizing the evolution of the values of a
hybrid system’s channel- and private variables are trajecto-
ries and timing diagrams. Their deficiencies motivate our
introduction of Hybrid Sequence Charts, below.

TRAJECTORIES.Trajectoriesare a straightforward vi-
sualization approach that directly depicts the evolution of a
system’s variables over time (Fig. 1, top left). While this ap-
proach is simple and effective it can only depict one special
case, namely the one in which all variables evolve as in the
diagram. It cannot highlight qualitative differences between
system states. Visualization by trajectories is supported by
development tools like MATLAB [16].

TIMING DIAGRAMS. A first step from single trajec-
tories to an abstract description of sets of trajectories is
obtained by partitioning for each variable the time period
under consideration into qualitatively equivalent intervals
and by only giving a predicate specifying the variable’s
evolution within the respective interval. In the diagram of
Fig. 1, bottom left, for example, it is only important to know
whether variable������� is inside or outside a given toler-
ance interval. Therefore, the concrete trajectory����������

[

[

)[

[
)

[

[

[[[[[[
))))))
[w

time

)fHeight

dReset

aHeight

decrease

greater

constant

constant

i. inside

c. constant

increase increase

aHeight

fHeight

dReset

w

Filter D Control

set

t_o

reset
dReset

inTol

down

inside

greater a_dec

inside a_const

d2i

hysc d2i

Figure 1. Description techniques for the behavior of hybrid systems.

from Fig. 1, top left, can be abstracted to the sequence of
intervals with the predicates������� , meaning that�������

is outside the tolerance interval,�	
��� , which is abbrevi-
ated by�� in the figure and means that������� is inside the
tolerance interval, the unlabeled interval, meaning that the
value of������� is arbitrary, and�	
��� again.1 Note that
the resulting diagram has some similarity with timing dia-
grams [3], which are widely used in hardware design, and
the constraint diagramsintroduced in [6]. Causality can
be indicated in the diagram by drawing vertical arrows be-
tween the abstract time axes of two variables if a change in
the first variable is relevant, i.e. may provoke a qualitative
change, for the evolution of the second one.

HYBRID SEQUENCE CHARTS. In this paper we go a
step further and also abstract from the individual variables
in the graphical representation of system behavior. Thus,
instead of partitioning and giving predicates for individual
variables, we project the trajectories of all variables of one
system component on a single abstract time axis. One axis
for each component is appropriate, because we are inter-
ested in the sequence of qualitative states that each com-
ponent traverses. Such a qualitative state of a component
is usually characterized by a predicate over all its variables
(see Fig. 1, right). This projection was motivated by no-
tations for component interaction that have gained increas-
ing popularity in the domain of telecommunication systems
(cf. [10]), and, more generally, in object-orientation (cf.
[13, 5, 4]). We are aware, of course, that the semantic
models – if existent – of such notations do not necessar-
ily match the time-synchronous hybrid system model with

1Label�� is used as abbreviation for�������� in the figure.

communication proceeding over shared channels that we
have sketched above. Yet, we believe that by adapting nota-
tion from, say, MSCs (cf. [10]) to the application domain we
consider here, we can carry over much of the intuition that
has contributed significantly to the popularity of sequence
charts in general. In fact, we consider capturing interaction
sequences among system components an important step of
any development process. Therefore, we borrow a subset
of the syntax of MSC-96 (cf. [10]) for the specification of
interaction sequences within hybrid systems2; we call the
resulting notation “Hybrid Sequence Charts (HySCs)”. In
particular, we use arrows to denote events; arrows are di-
rected from the originator of the event to its destination.
Angular boxes denote conditions on the component’s vari-
ables; they may span a single instance axis (local condi-
tions), or multiple axes (non-local condition), and even all
component axes (global condition). The remaining syn-
tactic elements in Fig. 1, right, are introduced later. Ev-
ery HySC specifies a typical evolution, orscenario, of the
system under consideration in connection with its environ-
ment over some finite time interval. If the environment does
not behave as depicted in the HySC, no statement is made
about the system’s evolution. By composing such typical
evolutions appropriately, we can achieve a specification of
the system’s behavior upon different inputs from the envi-
ronment. Even a complete specification covering all possi-
ble inputs is possible. We useHigh-level HySCs(HHSCs),
whose syntax we also borrow in part from MSC-96, to spec-
ify the composition of HySCs. To make HHSCs applicable
in the context of hybrid systems we provide notation for

2This has the further advantage that developers can use standard syntax-
directed graphic editors for their specifications.

1

1q
p n

mq

p

...

A

...
...

...

C

...
...

Cond

...
...

B

Figure 2. Basic segment of a HySC.

expressing preemption, which is an important concept for
embedded systems.

HySCs IN THE DEVELOPMENT OF HYBRID SYS-
TEMS. Just as MSCs [10] or sequence diagrams [13]
in the discrete case, HySCs can be used for requirements
specification, interface specification, test-case specification,
validation, and documentation. Due to their intuitive ap-
pearance they are particularly well-suited for capturing and
specifying system requirements in the dialog among engi-
neers from different disciplines, as well as among engineers
and customers.

OVERVIEW. The rest of this paper is organized as fol-
lows. In Section 2 we introduce HySCs informally and ex-
plain our understanding of them. In Section 3 we present
an example hybrid system; in particular, we discuss the key
parts of its formal specification with HySCs in Section 3.2.
Section 4 contains the formal semantics of the basic ele-
ments of HySCs. We summarize our work, and draw con-
clusions in Section 5.

2. Hybrid sequence charts – HySCs

We start with a short introduction to the syntax and infor-
mal semantics of basic HySCs that consist of interactions,
conditions, and coregions only. Then we cover HHSCs,
which allow us to specify hierarchic “roadmaps” through
sets of HySCs.

Basic HySCs. Basic HySCs contain one vertical axis,
an abstract time axis, for each component, orinstance, un-
der consideration. Time advances from top to bottom. Se-
quences of incoming and outgoing arrows partition the time
axis of each component into intervals. According to our
view of hybrid systems, which we have sketched in Section
1, we require the existence of a global clock, and assume
that communication occurs without delay. We assume fur-
ther that thecomponentsoccurring in the HySC are con-
nected bychannelsalong which message exchange occurs.
Hence, a HySC is built up from sequences of segments of
the form given in Fig. 2. Each such segment denotes the

execution of anactionby component�. The action is trig-
gered by the occurrence of all events�� through��; we say
that theaction guardbecomes true. The result of executing
theaction bodyis that� simultaneously emits the events��
through��, and changes its state to the one specified in the
condition labeled�	� in Fig. 2. Actions in hybrid systems
usually depend on the values of continuous variables; there-
fore, we consider action guards and action bodies carefully,
below.

Before we regard the actions in detail, it is necessary
to explain our classification of variables. In our view each
component has a set ofinputvariables, which are written by
the environment or by other components and a set ofcon-
trolled variables that are written by the component itself.
The set of controlled variables of a component is further
partitioned into a set ofprivate variables, whose elements
are only visible to the component, and a set ofoutputvari-
ables, whose elements may be read by the other components
or the environment. The input and the output variables are
theobservablevariables.

Theaction guard�� � � � �� �� is a conjunction of predi-
cates��. Each predicate�� that labels an arrow from a com-
ponent, say�, to � may depend on the old and current
values of the output variables of� that are input by� and
optionally on the old values of some other private variables
of �3. The arrow indicates the moment of time (the event)
when�� becomes true. A similar arrow must be drawn if
�� becomes false again, before the action is executed. How-
ever, no second arrow needs to be drawn if the predicate
possibly only holds for a single point in time, i.e. if the pred-
icate depends on the occurrence of an event or on the exact
value of a continuous variable.

The action body�� � � � � � �� is also a conjunction of
predicates��. Each predicate�� that labels an arrow from
� to, say,� specifies the current values for the output vari-
ables of� that are input by�. These values may depend
on the current value of all input variables and on the old and
current value of all controlled variables of sender�.

As soon as all conjuncts of the action guard are true, the
action body is executed. All the changes that it causes on
the output variables simultaneously become visible to those
other components which read these variables. Simultaneity
is expressed graphically by acoregion, i.e. by drawing a re-
gion of the time axis of one component as a dashed line; all
the predicates in this coregion are evaluated simultaneously
(see Fig. 2).

We allow the use of predicates as condition labels to in-
dicate a component’s state, and adopt the convention that no
new condition symbol is drawn if the control-state does not
change. Conditions ranging over a set of components are
also allowed, and express a global state of the referenced

3Actually, the old values of the output variables of� that are input by
� are kept in private variables of�.

components. A local as well as such ahierarchiccondition
�	� remains valid up to the next condition symbol that
references the same or a superset of the components refer-
enced by�	� .

Events can be expressed in terms of (event) predicates by
toggling boolean variables. For example, we write��� for
�� � �� meaning that the current value of� (denoted by� �)
is the negation of the old value (denoted by�) [2, 9]. The
old value of a variable� at a time� is defined as the limit
from the left��	�����
� for this variable, i.e. as the value
just before�.

Note that an arrow from� to� can in general be labeled
with the conjunction of a part of an action body� � of � and
a part of an action guard�� of a different action of�. This
may be the case if the current values specified for the output
from� to� are relevant for�� .

A qualitative state in a hybrid system is characterized by
a set of trajectories that are allowed for the variables in that
state. Therefore, the condition after an action in a HySC not
only determines the next qualitative state, but it also speci-
fies how input and controlled variables of the component are
expected to evolve in this qualitative state. Controlled vari-
ables may only evolve continuously, because in our view
discontinuities may only be caused by qualitative changes,
which in turn result from actions.

HySCs can also be used to specify timing requirements
like “at least time�� passes between the arrows� and�”, as
proposed in [14] for timed MSCs. Basically, this is achieved
by local variables which evolve in pace with global time
and which measure durations. For instance, a timeout can
be specified by using a private variable, which evolves in
pace with global time, and an action guard that becomes true
when the variable has reached a certain threshold. Setting
the variable to a certain value corresponds to resetting the
timer. We therefore use the set-timer and timeout symbols
borrowed from MSC-96 to denote this (see Section 3.2).

HIGH-LEVEL HySCs (HHSCs). HySCs can be used
within HHSCs to specify thecompletebehavior of a system.
For this complete behavior description HHSCs provide op-
erators for the concatenation of HySCs, the choice between
HySCs and the iteration of HySCs. The choice is controlled
by global conditions, i.e. by conditions ranging over all
components. A branch of a choice in the HHSC may be
taken iff the condition guarding it is currently true. The sys-
tem behavior is then determined by the HySC following the
branch operator. It must start with the same condition as
the selected branch. Syntactically, the starting point in an
HHSC is represented by an outlined, downward triangle, an
end-point (if it exists) by a filled, upward rectangle. Refer-
ences to other HySCs appear in rounded boxes. Conditions
are depicted as in basic HySCs. Lines (or arrows) determine
the “road-map”, i.e. the sequence in which the interactions
appearing in the referenced HySCs may occur (see Section

EHC

Filter

bend

sHeight

aHeight

fHeight

resetdReset

Control

D

Figure 3. Architecture of the EHC.

3.2 for examples).
In this paper we introduce the additional concept of pre-

emption to HySCs, which is not supported by the popu-
lar notations for component interaction, like [10] or [13].
Graphically preemption is depicted as a labeled, dashed ar-
row between two HySC references in an HHSC. Its meaning
is that the system behavior is as determined by the HySC
reference that is the arrow’s source, as long as thepreemp-
tive predicate, to which the arrow’s label refers, is false. As
soon as the predicate becomes true, the system behavior is
as specified by the HySC reference to which the arrow is
pointing. Preemption is widely used in the programming of
embedded systems. We believe that this is a highly impor-
tant concept.

3. HySCs in practice

3.1. An electronic height control system

To explain the capabilities and usage of HySCs, we for-
mally specify an electronic height control system (EHC),
taken from a former case study carried out together with
BMW, and discuss the key parts of this specification. The
purpose of the EHC is to control the chassis level of an au-
tomobile by a pneumatic suspension. The abstract model of
this system, which regards only one wheel was first pre-
sented in [15]. It basically works as follows: whenever
the chassis level
������ is below a certain lower bound,
a compressoris used to increase it. If the level is too high,
air is blown off by opening anescape valve. The chassis
level is measured bysensorsandfiltered to eliminate noise.
The filtered value������� is read periodically by thecon-
troller, which operates the compressor and the escape valve
and resets the filter when necessary. A further sensor��	�

informs the controller whether the car is going through a
curve. Periodical sampling of������� occurs in depen-
dence of a timer, which is local to the controller. Besides the
environment, the basic components of the system are the fil-
ter and the controller (see Fig. 3). The escape valve and the
compressor are modeled within the controller. The compo-
nent labeled introduces a delay and ensures that the feed-
back between the filter and the controller is well-defined. A
specification of the EHC with HyCharts, a state-based de-
scription technique for hybrid systems, can be found in [9].

3.2. Specification with HySCs

We specify behavior required by the EHC by using
HySCs. First, we present HHSCs for the top-level require-
ments. Then, we consider one of the basic HySCs in detail.

3.2.1. High-level HySCs (HHSCs).The top-level descrip-
tion of the EHC is given by an HHSC, as shown in Fig. 4,
left. On this abstraction level, we distinguish between two
scenarios: the car is either inside a curve or going straight.
The behavior inside a curve is characterized by the HySC
inBend. The behavior outside a curve is characterized by
the HySCoutBend.

PREEMPTION. The EHC switches between these two
behaviors each time the boolean value provided by the vari-
able��	� , which is controlled by the environment, is tog-
gled. In other words, toggling��	� is apreemptionevent.
To describe this situation we use the preemption mecha-
nism outlined in Section 2. Recall that we use a special
kind of arrows,preemption arrows, to denote preemption
in HHSCs, which is represented visually by adashed ar-
row connecting a source HySC reference to a destination
HySC reference, and labeled by thepreemptive predicate.
Intuitively, any prefix of the traces described by the source
HySC reference may be followed by a time instant at which
the preemptive predicateis true and then by a trace of the
destination HySC reference. The labelsinBend andout-
Bend in the rounded HySC boxes refer to further HySCs.
The labelsinBendC andoutBendC in the angular con-
dition boxes refer to the condition predicates��	� �����

and��	� ����
� , where variable��	� signals whether the
car is in a curve. The labels��� and��� both stand for the
event predicate�������� ��	���, i.e. for the occurrence
of an event which toggles the value of��	� .

(NONDETERMINISTIC) CHOICE. As long as the car
is outside a curve the behavior of the EHC is descibed by
HHSCoutBend (Fig. 4, right). On this level we use the
nondeterministic choice operator, graphically depicted as
branching arrows, to distinguish between two cases. In the
first case, the compressor and the escape valve are off, be-
cause the value of������� , which was read last, was inside
the tolerance interval. A further choice operator splits this
case into two sub-cases: If������� remains inside the inter-
val, the behavior is given by the HySCi2i. If the chassis
level gets outside the interval, then we have a behavior as
described by the HySCi2o. The second case describes the
behavior if compressor or escape valve are on, because of
the last value of������� being outside the tolerance inter-
val. This part of the HySC is symmetric to the first one.

The labelsinTol andoutTol in the HySC refer to
the predicates�

��
������� � � and �

��
������� �� �, re-

spectively, which characterize global states of the system.
Variable������� (actuator height) models how the chassis

level is influenced by the compressor and the escape valve.
If the derivative of������� is zero, i.e.������� remains
constant, then the chassis level is not modified by the com-
pressor or the escape valve.

FEEDBACK. After the behavior specified by the HySCs
i2i, i2o, o2i ando2o is finished, a new cycle starts in
which we again have to distinguish the cases from above.
This is modeled by thefeedback arrowsin the HySC lead-
ing from the bottom of it up to those points in the HySC
from where the following behavior must continue. Thus,
feedback allows us to specify infinite behavior.

FINITE BEHAVIOR. The HHSCsi2o ando2i are
examples for HySCs that do not specify infinite behavior.
Instead of feedback arrows, an arrow leading to a black tri-
angle is drawn in them to mark their end. As they are fairly
straightforward, we omit them in this paper and refer the
reader to [7].

3.2.2. Basic HySCs.All the basic HySCs referenced di-
rectly or indirectly by HHSCoutBend describe the be-
havior of the EHC in the interval between two expirations
of the Controller’s timer. In the following we will analyze
HySCi2d in detail. This HySC describes the scenario in
which the chassis level increases from within the tolerance
interval to a value above the upper bound (Fig. 5, left). It is
referenced by HHSCi2o.

CONDITION PREDICATES. HySCi2d starts with the
condition box labeledinTol. As mentioned in the previ-
ous section this label refers to predicate�

��
������� � �.

Because the condition box ranges over all components of
the diagram it is a global condition. The following con-
ditionsinside anda const range over only one com-
ponent. Hence, they are local conditions. They add some
more detail on the evolution of the variables. Labelin-
side refers to predicate������� � ���� ���, where�� and
�� are constants denoting the lower and upper bound of the
tolerance interval. Labela const stands for�

��
������� �

� � � � �� � �
��
� � �. The first conjunct of this

condition means that the chassis level is not modified by
������� , the second conjunct means that variable� is less
than constant��, the sampling period, and the third con-
junct provides that� evolves in pace with the global time,
i.e. it is a clock variable or a timer. No local predicate is
given for component. By convention this means that it
implicitly has local predicate����.

EVENTS. The very moment������� reaches the up-
per bound of the tolerance interval is given by the horizon-
tal arrow labeled byabv, which stands for event predicate
������� � ��. After the eventabv has occurred, the chas-
sis level is above the tolerance interval. Again, this property
(or interval invariant) is given by a local condition predi-
cate, the condition predicategreater, which stands for
������� � ��.

n2bb2n

inBend

inBendC

outBend

outBendC

hysc EHCroot

outBendC

i2i i2o o2o

inTol

o2i

outTol

hysc outBend

Figure 4. The HySCs EHCroot and outBend.

Filter D Control

inTol

down

inside

t_o

setgreater

a_const

abv

hysc i2d

Filter D Control

inTol

down

inside

abv

greater

a_const

t+s

hysc i2d

Figure 5. The HySC i2d and its reduction without timeout arrows.

TIMERS. The control component senses that the chassis
level is too low, only when the timer has expired, i.e., with
some delay. As a consequence, neither the escape valve, nor
the compressor are actuated before the expiration. Corre-
spondingly, the local conditiona const continues to hold
for the controller.

In the diagram we draw the timeout and set-timer arrows
t o andset borrowed from MSC-96 to represent an event
the control component sends to itself. Predicatet o stands
for � � ��, i.e. the timer has reached the threshold, and
set stands for�� � � which starts a new sampling period
by resetting the timer. On the level of semantics these ar-
rows can be reduced to a single arrow labeledt+s pointing
from the axis of the control component to itself (see Fig. 5,
right). The label refers to event predicate� � �� � �� � �.

SCOPING OF CONDITIONS. As mentioned previ-
ously, conditions remain valid until the next condition on
the same or on a higher level of hierarchy is given. Thus,
before the timer has expired, the overall behavior of the
EHC still has to satisfy the global conditioninTol, be-
cause no other global condition occurred up to that point.
Correspondingly, the set of behaviors characterized by the
conjunction of the predicates������ � � �	��
 and by

����
�� � � �	��
 is a subset of the behaviors character-
ized byinTol.

4. Semantics of HySCs

Suppose we are given a set of HySCs with the compo-
nents (or instances)��� � � � � ��. For each component��,
we assume its interface, i.e. the set of input and controlled
variables, to be given. In the following let� � be the data
space associated with the controlled variables of compo-
nent��. For uniformity, let�� be the data space associ-
ated with the variables controlled by the environment and
� � ��	� � �	��. Then we define the semantics of a HySC
� to be a set��� ��
 ��� 	 �

�
� of pairs ��� �� where

� � ���� is a piecewise smoothfunction (also calleda
dense communication historyor dense stream) that exhibits
the behavior required by� inside the time interval��� ��. If
� � � then the behavior of� is constrained by� along
the whole time axis, i.e., the HySC� never terminates.
�
�
� is defined as the set of the nonnegative real num-

bers,�� , plus the special element�. We say that a func-
tion � � ���� is piecewise smooth iff every finite inter-
val on�� can be partitioned intofinitely many left closed

and right open intervals such that on each such interval�

is infinitely differentiable for� � � or � is constant for
� �� �. Infinite differentiability allows us to assume that
all differentials of� are well-defined. A tuple of functions
is infinitely smooth iff all its components are. For a possibly
infinite interval� �� we write�� to denote the set of
functions from� to the set� that are piecewise smooth on
�.

With writing � � ��	� � �	�� for the data space of
the controlled variables, we can also interpret the seman-
tics of a HySC��� �� as a relation between the dense his-
tories of the input variables, the dense histories of the
controlled variables and the considered time intervals, i.e.,
��� ��
 �

��

� 	 � �� 	 �
�
� . We do not demand that this

relation is total in the set of input streams���� . In fact
HySCs may constrain the evolution of the input variables.
This takes into account that a single HySC describes a sys-
tem’s response to a particular input from the environment.

ZENONESS. Specifications which demand that a sys-
tem performs infinitely many discrete moves within a finite
interval are calledzeno. Like with other powerful descrip-
tion techniques for hybrid systems, such as hybrid automata
[1], it is possible to write down zeno specifications with
HySCs. For instance, zenoness can result from specifying
that the system always reacts discretely when a continuous
input signal crosses a boundary value. In a high-level spec-
ification technique we do not want to exclude such specifi-
cations which certainly make sense for many input signals.
Hence, zeno behavior has to be ruled out later in the design
process.

4.1. Predicates

CONDITION PREDICATES. The condition predicate
� that holds in a certain section of the abstract time axes
of all the components in a HySC can be derived as the
conjunction of all, local, and hierarchic condition predi-
cates that are valid in this section. The derived condition
ranges over all the components. Its semantics is a relation
�����

�
��	�
 �

�
� 	 � �� , where��� is the set of pos-

sibly infinite right-open intervals starting from zero, and,
for a set� , the notation��� denotes the set of piecewise
smooth functions�� which furthermore are continuous,
hence��� ��. This type of the predicates’ seman-
tics permits discontinuities in the input, while the controlled
variables must still evolve continuously. This reflects that
discrete jumps in the evolution of the controlled variables
are interpreted as events, hence they are only allowed when
an event arrow is drawn in the HySC. Furthermore, the type
allows that a condition predicate specifies finite behavior of
varying length.

EVENT PREDICATES. The semantics of the event
predicates� which label the arrows is a relation between

the old and the new values of the variables����� � 	 �,
where we demand that����� is topologically closed (see Sec-
tion 4.2 for the justification of this restriction). The seman-
tics of simultaneous events, which are graphically denoted
by arrows emanating from or pointing to a dashed region of
the abstract time axis of a component in a HySC, is defined
as the conjunction of the individual predicates of all the si-
multaneous events within the dashed region under consid-
eration. Those variables for which the event predicates do
not specify new values remain constant.

4.2. Basic HySCs

The basic idea behind the semantics of a HySC� is
that it defines a set��� �� of tuples such that for each��� �� �
��� �� the dense history� behaves inside the time interval
��� �� as required by� and arbitrarily outside of��� ��. In the
definition of��� �� it is useful to generalize the lower bound
� to an arbitrary value
 � �� and to work with sets��� ���
where the dense histories� are constrained inside the time
interval�
� ��. In the following we define��� ��� inductively
on the structure of� . Then obviously the semantics of a

HySC� is ��� ��
���
� ��� ���.

NEUTRAL HySC. HySCs without events act as the neu-
tral elements with respect to our semantics. All the con-
ditions in them are ignored, and no time elapses in them:

��� ���
���
� ����
� � � � ����

SINGLE EVENT HySC. Suppose� is the condition
predicate that results from the conjunction of all the con-
dition predicates that are valid in the section of the HySC
before event� happens. Note that� may be the conjunction
of a set of simultaneous events.��� ��� is defined as follows:

��� ���
���
� ���� �� � ��� 	 �� �

� � 	���� �
 � ���	��
����� ����� � ������

� ���������� � ������������� �

where	�� �
���
� �, �����

���
� ��
 	 �� and��Æ denotes

the restriction of a dense stream to the time intervalÆ. Re-
striction is extended to tuples of dense streams in a compo-
nentwise style. To constrain� inside�
� �� without violat-
ing the time’s origin assumption we constrain the transla-
tion�� of � by the condition predicate� inside the interval
��� ��
�.

The definition requires that a finite, non-zero amount of
time passes before the event becomes true. The HySC then
terminates at the first time instant� at which� is true. Pro-
vided� does not hold initially, this first time instant, defined
as the minimum of a set, is guaranteed to exist, because�����
is topologically closed. (See [8] for a proof under similar
assumptions.) Demanding that some time passes before the
event occurs is motivated by the visual representation. If we

wanted to specify that no time passes between two consec-
utive events, we would have to use simultaneous events.

Note that� �� �� and therefore if� � � then��� �� �
�. Thus, the semantics requires that the event eventually
occurs, which is also motivated by the visual representation.
The event arrow in the diagram would be misleading, if we
allowed it to never occur.

SEQUENTIAL COMPOSITION. The sequential com-
position of the HySCs�� and��, textually denoted as
��
��, is syntactically well formed only if�� ends with
the global condition with which�� starts. In particular, this
includes the case that�� and�� are successive parts of a
single, larger HySC. The semantics is given only for well
formed terms.

����
�����
���
� ���� �� � ���	��� �

�� � �� � ��� �� � ������� � ��� �� � ������
�

Note that whereas the HySC��
�� may describe an infi-
nite computation (� � ���) any of its prefixes exhibiting the
behavior required by�� has to be finite (� � ��).

4.3. HHSCs

Due to space limitations the reader is referred to [7] for
the detailed semantics of nondeterministic choice, feedback
and (nested) preemption. Basically, the semantics of feed-
back is obtained by a fixed point construction. The defini-
tion for preemption is rather technical and in large parts sim-
ilar to the semantics definition for single event HySCs and
sequential composition. The semantics of nondeterministic
choice is fairly straightforward.

5. Conclusion

Borrowing from the standardized syntax of MSC-96, we
have introduced a description technique that allows the sys-
tem developer to specify the communication between the
components of a hybrid system graphically. Basically, this
is achieved by giving precise meaning to the conditions
and events in HySCs. Motivated by the specific needs of
embedded systems we have, furthermore, included a con-
struct into our definition of HHSCs that allows us to specify
preemption. We demonstrated the usage of HySCs along
a non-trivial example and defined their formal semantics.
HySCs are more abstract than drawing trajectories of the
system variables, and are more detailed than other forms of
graphical interaction specifications that do not handle con-
tinuous variables, e.g. [10, 13]. Thus we believe they are a
good supplement to state-based hybrid techniques like hy-
brid automata or HyCharts [1, 9], just as ordinary sequence
diagrams are beneficial in the development of discrete sys-
tems. In particular, they seem to be well-suited for bridging
the gaps between requirements capture, specification, and

later phases of system development. Note that, apart from
their syntax, HySCs are substantially different from stan-
dard MSCs.

ACKNOWLEDGMENT. We thank Manfred Broy, Jan
Philipps and Olaf M¨uller for their constructive criticism af-
ter reading a draft version of this paper.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H.
Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The
algorithmic analysis of hybrid systems.Theoretical Com-
puter Science, 138:3–34, 1995.

[2] R. Alur and T. Henzinger. Reactive modules. InProc. of
the 11th Annual Symposium on Logic in Computer Science.
IEEE Computer Society Press, 1996.

[3] T. Amon, G. Borriello, T. Hu, and J. Liu. Symbolic timing
verification of timing diagrams using presburger formulas.
In Proc. of the 34th Design Automation Conference. ACM,
1997.

[4] M. Broy, C. Hofmann, I. Krüger, and M. Schmidt. A graphi-
cal description technique for communication in software ar-
chitectures. Technical Report TUM-I9705, Technische Uni-
versität München, 1997.

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. A System of Patterns. Pattern-Oriented Software
Architecture. Wiley, 1996.

[6] C. Dietz. Graphical formalization of real-time requirements.
In Proc. FTRTFT’96, LNCS 1135. Springer Verlag, 1996.

[7] R. Grosu, I. Krüger, and T. Stauner. Hybrid sequence
charts. Technical Report TUM-I9914, Technische Univer-
sität München, 1999.

[8] R. Grosu and T. Stauner. Modular and visual specification
of hybrid systems - an introduction to HyCharts. Techni-
cal Report TUM-I9801, Technische Universit¨at München,
September 1998.

[9] R. Grosu, T. Stauner, and M. Broy. A modular visual model
for hybrid systems. InProc. FTRTFT’98, LNCS 1486.
Springer-Verlag, 1998.

[10] ITU-TS. Recommendation Z.120 : Message Sequence Chart
(MSC). Geneva, 1996.

[11] L. Lamport. Hybrid systems in TLA+. InHybrid Systems,
LNCS 736. Springer-Verlag, 1993.

[12] N. Lynch, R. Segala, F. Vaandrager, and H. Weinberg. Hy-
brid I/O automata. InHybrid Systems III, LNCS 1066.
Springer-Verlag, 1996.

[13] Unified modeling language, version 1.1. Rational Software
Corporation, 1997.

[14] I. Schieferdecker. Proposal for time and performance in
MSCs. InProc. ITU-T Meeting SG10, Geneva, 1998.

[15] T. Stauner, O. M¨uller, and M. Fuchs. Using HyTech to verify
an automotive control system. InProc. HART’97, LNCS
1201. Springer-Verlag, 1997.

[16] The MathWorks Inc. MATLAB. http://www.
mathworks.com/products/matlab/, 1999.

[17] R. Wieting. Hybrid high-level nets. InProc. of the 1996
Winter Simulation Conference, Coronado, California, pages
848–855, 1996.

