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Abstract

Visual description techniques are particularly important for the design of hybrid
systems because speci�cations of such systems usually have to be discussed be�
tween engineers from a number of di�erent disciplines	 Modularity is vital for
hybrid systems not only because it allows to handle large systems� but also be�
cause hybrid systems are naturally decomposed into the system itself and its
environment	

Based on two di�erent interpretations for hierarchic graphs and on a clear
hybrid computation model� we develop HyCharts	 HyCharts consist of two mod�
ular visual formalisms� one for the speci�cation of the architecture and one for
the speci�cation of the behavior of hybrid systems	 The operators on hierarchic
graphs enable us to give a surprisingly simple denotational semantics for many
concepts known from statechart�like formalisms	 Due to a very general composi�
tion operator� HyCharts can easily be composed with description techniques from
other engineering disciplines	 Such heterogeneous system speci�cations seem to
be particularly appropriate for hybrid systems because of their interdisciplinary
character	
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Chapter �

Introduction

Hybrid systems have been a very active area of research over the past few years
and a number of speci�cation techniques have been developed for such systems	
While they are all well suited for closed systems� the search for hybrid description
techniques for open systems is relatively new	

For open systems � as well as for any large system � modularity is essential	 It
is not only a means for decomposing a speci�cation into manageable small parts�
but also a prerequisite for reasoning about the parts individually� without having
to consider the interior of other parts	 Thus� it greatly facilitates the design
process and can help to push the limits of veri�cation tools� like model�checkers�
further	

With a collection of operators on hierarchic graphs as our tool�set� we follow
the ideas in �GSB��� and de�ne a simple and powerful computation model for hy�
brid systems	 Based on this model we introduce HyCharts� which consist of two
di�erent interpretations of hierarchic graphs	 Under one interpretation the graphs
are called HySCharts under the other one they are called HyACharts	 HySCharts
are a visual representation of hybrid� hierarchic state transition diagrams	 Hy�
ACharts are a visual representation of hybrid data��ow graphs �or architecture
graphs� and allow the designer to compose hybrid components in a modular way	
The behavior of these components can be described by using HySCharts or by
any technique from system theory that can be given a semantics in terms of dense
input�output relations	 This includes di�erential equations	 Dense input�output
relations are a relational extension of hybrid Focus �MS��� Bro���	

��� An Example

The following example illustrates the kinds of systems we target at	 It will be
used throughout the paper to demonstrate the use of HyCharts	

Example � 	An electronic height control system
 EHC� The purpose of
this system� which was originally proposed by BMW� is to control the chassis level






�

of an automobile by a pneumatic suspension	 The abstract model of this system�
which considers only one wheel� was �rst presented in �SMF���	 It basically works
as follows�

Whenever the chassis level is below a certain lower bound� a compressor is
used to increase it	 If the level is too high� air is blown o� by opening an escape
valve	 The chassis level sHeight is measured by sensors and �ltered to eliminate
noise	 The �ltered value fHeight is read periodically by the controller � which
operates the compressor and the escape valve and resets the �lter when necessary	
A further sensor� inBend � tells the controller whether the car is going through a
curve	

The diagram in Figure 
	
� left� depicts the architecture of the EHC and its
interconnection to the environment	 The environment� shaded in grey in the
�gure� will not be regarded further in this paper	 Instead we concentrate on
the open system consisting of the �lter� the controller and a delay element that
ensures that the feed�back is well�de�ned	 The escape valve and the compressor
are modeled within the controller	
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� The EHC� Architecture and a typical evolution	

Diagrams like the one in Figure 
	
� left� are called HyACharts	 Each com�
ponent of such a chart can be de�ned again by a HyAChart or by a HySChart
or some other compatible formalism	 The components only interact via clearly
de�ned interfaces� namely channels� which results in a modular speci�cation tech�
nique	

The behavior of a component is characterized� as intuitively shown in Figure

	
� right� by periods where the values on the channels change smoothly and by
time instances at which there are discontinuities	 In our approach the smooth
periods result from the analog parts of the components	 The discontinuities are
caused by their combinational �or discrete� parts	

�Note that periodical sampling can be avoided in a hybrid model� However� it was used in
the BMW implementation and it allows us to expose various features of our formalism� like
entry�exit actions and timeouts�
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We specify the behavior of both the combinational and the analog part of a
component within a single HySChart� i	e	� by a hybrid� hierarchic state transition
diagram� with nodes marked by activities and transitions marked by actions	 The
transitions de�ne the discontinuities� i	e	� the instantaneous actions performed by
the combinational part	 The activities de�ne the smooth periods� i	e	� the time
consuming behavior of the analog part while the combinational part is idle	 As
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Figure 
	�� The EHC�s Control component	

an example� Figure 
	� shows the HySChart for the EHC�s Control component	
It consists of three hierarchic levels	 Figure 
	�� left� depicts the highest level	
Figure 
	�� top right� re�nes the state outBend and Figure 
	�� bottom right�
further re�nes the state outTol 	 The states� transitions and activities �written in
italics in the �gure� are explained in Chapter �	 �

��� Related Work

The basic motivation for this work were experiences we obtained when modeling
the EHC case study outlined above with hybrid automata �SMF���	 A basic
result of the case study was that the lack of modularity of hybrid automata
complicates speci�cation and analysis	 Furthermore� the lack of hierarchic states
turned out to be inconvenient for speci�cation	 In this work� we develop a formal�
modular description technique for hybrid systems that is associated with a visual
formalism and incorporates advanced state machine features such as hierarchic
states and preemption	 In contrast to hybrid automata �ACH����� HyCharts are
fully modular and suitable for open systems	

The rather new hybrid modules from Alur and Henzinger �AH��� are modular�
but their utility su�ers from the fact that it is not obvious how to model feedback
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loops	 For theoretical reasons� loops pose a problem in our approach� too	 We
solve it by explicitly allowing feedback loops� as long as they introduce a delay	
Demanding a delay is not unrealistic� as signals cannot be transmitted at in�nite
speed	

Another modular model� hybrid I�O automata� is presented in �LSVW��	
While this model is promising from the theoretical point of view� we think it
has some de�cits in practice	 In particular� there is no graphical representation
for hybrid I�O automata yet� there is no hierarchy concept for them and �nally�
there is no visual formalism for the speci�cation of the architecture of a composed
system	 The same applies for the hybrid modules mentioned above	 From the
systems engineering point of view our approach is therefore more convenient	

A �rst approach towards a hybrid version of statecharts can be found in
�KP���	 The operational semantics given there� however� does not allow inter�
level transitions and hierarchic speci�cation of continuous activities	 Therefore�
this approach does not fully support hierarchy� unlike HyCharts� which permit
both	

Except for HyCharts all the models mentioned above are based on some kind
of trace semantics in which continuous trajectories are pasted together at dis�
crete time instances	 At these instances� the preceding trajectory� the succeeding
trajectory and possibly some intermediate discrete actions determine the values
for the variables in the model	 As the end point of the preceding trajectory�
the values determined by intermediate discrete actions and the start point of the
succeeding trajectory need not be equal we get situations in which one variable is
assigned a sequence of values at the same physical time instant	 This means that
such a trace is not isomorphic to a function of time	 In our opinion this makes
it di�cult to combine the above models with models for continuous systems� as
they evolved in the engineering disciplines� di�cult	 A decision must be made
that determines which value of the variable is to be �exported�� i	e	 visible to
the outside world at a physical time instant	 For hybrid automata� for instance�
intermediate values in a sequence of discrete actions can cause further actions in
parallel components	 Thus� such a decision is hardly possible	 For HyCharts we
use a simpler form of traces	 Here� any variable has exactly one value at each
time instant� the variable evaluation is a function of time	

Commercial products for the design of embedded systems� like StateFlow
�TMI���� take a di�erent approach to specifying hybrid systems	 In this approach
the system needs to be partitioned into purely discrete and purely continuous
components before speci�cation can begin	 While this method may be appropri�
ate for many systems we think it enforces a too early partitioning into hardware
and software components and is highly inconvenient for specifying components
that are hybrid themselves� like some environment models� which� for example�
contain phase transitions	 A formal model that uses a speci�cation approach sim�
ilar to StateFlow can be found in �EH��	 Interestingly there are some parallels
between our hybrid machine model �Chapter �� and the model presented there	
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To end this journey through the literature we want to mention that HyCharts
look largely similar to the description techniques used in the software engineering
method for real�time object�oriented systems ROOM �SGW��� and may therefore
be seen as a hybrid extension of them	

��� Overview

The rest of the paper is organized as follows	 In Chapter � we present two abstract
interpretations of hierarchic graphs	 These interpretations provide the infrastruc�
ture for de�ning a surprisingly simple denotational semantics for the key concepts
of statecharts �Har��� o�ered in HyCharts� like hierarchy and preemption	 They
also are the foundation for the denotational semantics of our hybrid computa�
tion model� which is introduced in Chapter �	 Following the ideas developed in
this model� HyCharts are de�ned in Chapters � and � as a multiplicative and
an additive interpretation of hierarchic graphs� respectively	 Both diagram kinds
are introduced in an intuitive way by using the example above	 In Chapter  we
brie�y discuss how other techniques for component speci�cation can be integrated
into our approach and relate HySCharts to timed automata	 Furthermore� we
discuss the HyChart speci�cation of the �lter component from our example sys�
tem and its importance for hybrid modeling	 Finally� in Chapter � we summarize
our results	



Chapter �

Hierarchic Graphs

This chapter �rst introduces an algebra of hierarchic graphs �Section �	
�	 Then
two models� an additive and a multiplicative model� for this algebra are given	
The additive model interprets the operators in a way that results in control��ow
graphs �Section �	��� the multiplicative model interprets them in a way that yields
data��ow graphs �Section �	��	

��� Syntax

A hierarchic graph consists of a set of nodes connected by a set of arcs� For
each node� the incoming and the outgoing arcs de�ne the node�s interface� i	e	 its
type	 Let A and B be the input and the output interfaces of a node n	 Then the
corresponding textual notation for n is n � A� B �Fig	 �	
�	 Interpreting A and
B as sets �or types� n may be regarded as a mapping from elements of A into
elements of B	

A
n

B

Figure �	
� A node n � A� B	

����� Operators on Nodes

In order to obtain graphs� we put nodes next to one another and connect them
by using the following operators on relations� sequential composition� visual at�
tachment and feedback	 Their respective visual representation is given in Figure
�	�	

Sequential composition� One basic way to connect two nodes is by sequential
composition� i	e	� as shown in Figure �	�� left� by connecting the output of one
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Figure �	�� The composition operators	

node to the input of the other node� if they have the same type	 Textually we
denote this operator by the semicolon �	 Given n� � A � B and n� � B � C we
de�ne n��n� to be of type n��n� � A� C	

Regarding the nodes as computation units� Figure �	�� left� says that the
output produced by n� is directed to the input of n�	 The connection between n�

and n� as well as the units n� and n� themselves� are internal to n��n�	 In other
words� n��n� does not only de�ne a connection relation but also a containment
relation	

Visual attachment� By visual attachment we mean that nodes and corre�
sponding arrows are put one near the other� as shown in Figure �	�� middle	 To
obtain a textual representation for visual attachment� we need an attachment
operator both on arrows and on nodes	 We denote this operator by �	 Given
two arrows A and B their visual attachment is expressed by A � B	 Given two
nodes n� � A� � B� and n� � A� � B� their visual attachment is expressed as
n��n� � A��A� � B��B�	 Visual attachment also de�nes a containment relation	
We say that n� and n� are contained in n� � n�	

In order to deal with hiding it is convenient to explicitly introduce an arrow
E denoting the absence of any information	 This arrow is neutral for attachment�
i	e	 A � E � E � A � A� because visually attaching nothing does not change the
original information	

Feedback� Sequential composition allows us to connect the nodes of a graph
in a causal way	 However� using only sequential composition to connect nodes
is not expressive enough because it cannot deal with loops or with bidirectional
communication	 We therefore introduce a feedback operator� as shown in Figure
�	�� right	 It allows us to connect the rightmost output of a node to the rightmost
input of the same node� if they have the same type	 Given n � A�C � B �C we
de�ne n �CA�B� A� B	 Similar to sequential composition and visual attachment�
feedback also introduces a containment relationship	 We say that n and the
feedback arrow are contained in n �CA�B	

Nodes and arrows that are not built up from other nodes or arrows using the
above operators are called primitive	
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����� Connectors�

Beside operators on nodes� we also need some operators on arcs �or prede�ned
nodes�� which we call connectors� We consider the following connectors� identity�
identi�cation� rami�cation and transposition� Their visual representation is given
in Figure �	�	

A

A A A

A

identity identification ramification transposition

A

A

A A B

B A

Figure �	�� The connectors	

Identity� The identity connector IA simply copies its input to the output	 It
has type A� A	

Identi�cation� The identi�cation connector �k
A joins k inputs together	 Its

type is Ak � A� where Ak � A � � � � � A stands for the k�fold attachment of A	
For k � � we de�ne A� � E� i	e	 the neutral arrow	 In Figure �	� the binary case
is depicted	

Rami�cation� The rami�cation connector �A
k copies the input information on

k outputs	 Hence �A
k has type A� Ak	 Figure �	� shows the binary case	

Transposition� Finally the transposition connector A
X
B exchanges the inputs	

Its type is A � B � B � A	
To be a precise formalization of our intuitive understanding of graphs� the

above abstract operators and connectors have to satisfy a set of laws� which in�
tuitively express our visual understanding of graphs	 These laws correspond to
strict� symmetric� monoidal categories with feedback and bimonoid objects� see
e	g	 �Ste���	 �GSB��� shows that the additive and the multiplicative interpre�
tations of the operators and connectors are particularly relevant for computer
science	

����� An Example

As an example for a hierarchic graph and its corresponding textual respresenta�
tion we consider the graph in Figure �	�� left	 Using the above basic operators
and connectors it de�nes a derived composition operator� the symmetric feed�
back	 If n� � A� � A � B� � B and n� � B � A� � A � B� then n��� n� has type
A��A� � B��B�	 Its simpli�ed visual representation is given in Figure �	�� right	
The textual respresentation corresponds one to one to the visual representation
in Figure �	�� left�

n��� n�����IA�
� A�x

A�B���n� � n����IB�
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x
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Figure �	�� The symmetric feedback	

��� The Additive Model

The additive model is a model for hierarchic control��ow graphs	 The intuition
behind these graphs is as follows	 At any moment of time� the control resides
in exactly one node	 The node receives the control on one of its entry points
and gives the control back on one of its exit points	 Entry and exit point are
disjoint� i	e	 control can only be received or given by one of them	 The arcs
of the graph forward the control to the other nodes of the graph	 The intended
disjointness of nodes� entry�exit points and branches of the connectors is obtained
by interpreting visual attachment additively as disjoint sum �see below� and by
de�ning the other operators and connectors consistently with this interpretation	

����� Arrows

The control can be understood as a pair �k� s� consisting of the control�state
�or program counter� k � N and the data�state s � S	 As a consequence� we
consider given a set S� the data�state space	 Each primitive arrow in a �ow�
graph is interpreted as this set	 The control�state space N is not an arrow� but
it appears in the de�nition of visual attachment	 We take the empty set as the
interpretation of the neutral arrow E	 Given the data�state space S we de�ne
the program�state space n�S as follows�

��S � �� 
�S � S� n�S � f�k� s� j k � n � s � Sg� if n � 


Now the disjoint sum of program�state spaces is de�ned by the following equation�
m�S � n�S � �m � n��S	 From the left and right summands m�S and n�S there
are two canonical functions into the sum �m � n��S� called the left injection l�
and the right injection r�	 They inject elements from the summands into the sum
such that one can recover their original source	 Their de�nition is as follows�

l� � m�S � �m� n��S� l��k� s� � �k� s�
r� � n�S � �m � n��S� r��k� s� � �k �m� s�

We interpret the visual attachment operator in control��ow graphs by the disjoint�
sum operator	 It is easy to see that the sum is associative and the neutral element
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is ��S	 In the following we will often merely refer to the program�state as the
state	

����� Nodes and Operators

A node n � A � B of a control��ow graph is interpreted as a relation n 	
�I 
 k�S� 
 l�S between the current input� the current control and the next
control	 Upon receiving the current control state� it determines the next control
state� depending on the current input	 In addition� we consider an external
input here� because the sequential machines de�ned by the relations are allowed
to communicate with their environment	 They may receive inputs and produce
outputs	 The output space simply is a projection of the data�state space	 We
write I to denote the input space	 The de�nition of the operators below ensures
that all nodes receive the same input	 Therefore� by convention no arrow is
drawn to denote the external input I to a node	 Note that in order to simplify
notation� we use the same name for the node� which is a syntactic entity� and
its associated relation� which is a semantic entity	 In the following we denote
arbitrary program�state spaces x � S and xi � S over data�state space S by X and
Xi for x � fa� b� cg 	

The Node Operators

Sequential composition� The sequential composition of two nodes

n� 	 �I 
 A� 
 B� n� 	 �I 
B� 
 C

yields� a new node n� � n�� which is de�ned as expected�

n� � n� 	 �I 
 A� 
 C

n� � n� � f�x� a� c� j �b � B� �x� a� b� � n� � �x� b� c� � n�g

Additive composition� The additive composition of two nodes

n� 	 �I 
 A�� 
 B�� n� 	 �I 
 A�� 
 B�

yields� as in statecharts� a new node n� � n�� such that control resides either in
n� or in n�	 Note that the interface of the sum re�ects this fact	

n� � n� 	 �I 
 �A� � A��� 
 �B� �B��

n� � n� � f�x� l�a� l�b� j �x� a� b� � n�g � f�x� r�a� r�b� j �x� a� b� � n�g

The visual notation of n� � n� is given in Figure �	�� left	 The meaning of
�n� � n���x� l�a� is intuitively shown in Figure �	�� right	 Receiving the tuple
�x� l�a�� the sum uses the control information l to �demultiplex� the input and
select the corresponding relation n�� this relation is then applied to �x� a� to
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Figure �	�� The additive interpretation	

obtain the next state b� �nally� the output of the relation is �multiplexed� to l�b	

Additive feedback� The additive feedback is more tricky and it allows the
construction of loops	 As in programming� feedback has to be used with care in
order to ensure termination	 Given a relation

n 	 �I 
 �A � C�� 
 �B � C�

we de�ne the relation n�C� as follows� The control is received on A and it is either
given directly on B or after an arbitrary number of times in which it loops along
C	 Formally�

n�C� 	 �I 
 A� 
 B

n�C� � nl�l � nl�r � n
�
r�r � nr�l

where n� is the arbitrary but �nite iteration of n and ni�j is de�ned for i� j � fl� rg
as below�

ni�j � f�x� s� s�� j �x� i�s� j�s�� � ng

In this de�nition l and r are the injections corresponding to A and C for the
input and to B and C for the output	

The Connectors

Identity� The identity IA is de�ned as expected�

IA 	 �I 
 A�
 A� IA � f�x� a� a� j a � A � x � Ig

Additive identi�cation� The additive identi�cation k�A forgets the entry
point on which it gets the control�

k�A 	 �I 
 k A�
 A�

k�A � f�x� i�a� a� j � � i � k � a � A � x � Ig

where k A � k �a � S� � �k � a� � S	
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Additive rami�cation� The additive rami�cation A�k gives the control on
any of its exit points�

A�k 	 �I 
 A�
 k A�

A�k � f�x� a� i�a� j � � i � k � a � A � x � Ig

Additive transposition� The additive transposition B
A�n commutes the entry

point information�

B
A�n 	 �I 
 �A�B��
 B � A�

B
A�n � f�x� l�a� r�a� j a � A � x � Ig � f�x� r�b� l�b� j b � B � x � Ig

This means that control is passed on along the right exit point if it was received
on the left entry point and vice versa	

��� The Multiplicative Model

The multiplicative model is a model for hierarchic data��ow graphs	 The intuition
behind these graphs is as follows	 At any moment of time� all nodes of the graph
are active and computing the output data based on the input data	 A node
receives the input data along a tuple of input channels and sends the computed
data along a tuple of output channels	 The arcs of the graph� i	e	� the channels�
forward the data to the other nodes in the graph	 The intended parallelism
of nodes� input�output channels and branches of the connectors is obtained by
interpreting the visual attachment � multiplicatively by the product 
 and by
de�ning the other operators and connectors consistently with this interpretation	

����� Arrows

We assume given a set of channel types D � fDi j i � Ng� each de�ning the set
of messages which is allowed to �ow along a channel	 The input and the output
interface type of a component� respectively� is then a product A � A�
� � �
An

of channel types Ai � D� de�ned as follows�

A � f��g if n � �� A � A� if n � 
�
A � f�x�� � � � � xn� j x� � A� � � � � � xn � Ang if n � 


Given arbitrary interface types A � A�
 � � �
Am and B � B�
 � � �
Bn	 We
extend the above product de�nition as follows�

A
f��g � f��g
A � A
A
B � A� 
 � � �
 Am 
 B� � � �
 Bn




�

Hence� the empty interface f��g is the neutral arrow E	 The left and right
projections p� and q� are given below�

p� � A�
� � �
Am
B�� � �
Bn � A�
� � �
Am�
p��a�� � � �� am� b�� � � �� bn� � �a�� � � �� am�

q� � A�
� � �
Am
B�� � �
Bn � B�
� � �
Bn�
q��a�� � � �� am� b�� � � �� bn� � �b�� � � �� bn�

The projections uniquely de�ne a pairing function ��� �� such that for any C�
f � �f�� � � �� fm� � C � A and g � �g�� � � �� gn� � C � B it holds that� �f� g� �
�f�� � � �� fm� g�� � � �� gn�	 By de�nition� the product is associative and has as neutral
element E	 The unique existence of projections is characteristic for data��ow
graphs	

In data��ow graphs the main concern is the data �ow 	 To de�ne and analyze
this �ow� we need to observe the information exchanged along each channel over
time	 In a hybrid system this �ow may be continuous �think of analog devices��
so we assume that time increases continuously� i	e	 it is dense� and take the non�
negative real numbers R� as abstract time axis	 In this case� the data exchanged
along a channel with type A over time de�nes a mapping a � AR�	 Motivated
by our hybrid computation model �Chapter �� we impose some restrictions on
this mapping in the next chapter	 We call such a restricted mapping a dense
communication history and its corresponding type a dense communication history
type	 The latter ones are used to interpret the primitive arrows of data��ow
graphs	

A reasonable assumption which leads to a model with very nice properties� is
that data��ows are time synchronous� i	e	� that time �ows in the same way for each
channel and each component	 In this case� the history �and its associated pre�x�
ordering� of a component�s interface �A�
� � �
Am�

R� is equal to the product

AR�� 
� � �
AR�m of the histories of its channels	

����� Nodes and Operators

The behavior of a component can be completely described by an input�output
relation� i	e	� by a relation between the histories of its input channels and the
histories of its output channels	 The relation must be total in the input histories	
We assume that the relations are de�ned such that the data occurring in the
histories of the output channels at time t only depends on the input history
received up to �and including� t	 Formally� for all a�� a� and t�

a�����t� � a�����t� � n�a������t� � n�a������t�

where by a�� we denote the restriction of a to the time interval �	 Clearly� each
realizable component behaves in this way	 We call these relations time guarded�




�

They interpret the nodes of the data��ow graphs	 To simplify notation� we use
the same name �or symbol� for a node �or operator� and its associated relation �or
relational operator�	 Note� however� that the names and symbols are syntactic
entities whereas the relations and relational operators are semantic entities	

The Node Operators

Sequential composition� The interpretation of sequential composition is the
usual sequential composition of relations	 It allows passing of the data from one
component to another component in a linear way	 Given two relations�

n� 	 AR� 
 BR�� n� 	 BR� 
 CR�

we de�ne their sequential composition n� � n� as follows�

n� � n� 	 AR� 
 CR�

n� � n� � f�a� c� j �b � BR�� �a� b� � n� � �b� c� � n�g

Parallel composition� As in statecharts� the parallel composition of two com�
ponents yields a new component such that both constituents are active simul�
taneously� i	e	 each constituent has its own control� described for example by a
control��ow graph	 The interface of the product has to re�ect this fact	 Given
two relations

n� 	 A�
R� 
 B�

R�� n� 	 A�
R� 
 B�

R�

we de�ne their product n� 
 n� as follows�

n� 
 n� 	 �A�
R� 
 A�

R�� 
 �B�
R� 
B�

R��

n� 
 n� � f��a�� a��� �b�� b��� j �a�� b�� � n� � �a�� b�� � n�g

The visual notation for n� 
 n� is given in Figure �		

Y Y21

Multiplicative interpretation

n21

X1 2

n

X

Figure �	� The multiplicative interpretation	

Feedback� The multiplicative feedback allows the passing of the output of a
component back to its input	 In the next chapter we will use this construct to
add the memory to our components	 Given a relation�




�

n 	 �AR� 
 CR�� 
 �BR� 
 CR��

we de�ne the new relation n�C� as below�

n�C� 	 AR� 
 BR�

n�C� � f�a� b� j �c� �b� c� � n�a� c�g

n�C� is time guarded and guaranteed to be total in the input channel histories AR�

if n is time guarded and its output on channel C up to time t � � is completely
determined by its input up to time t on input channel C and by the input on the
other input channels up to time t� � �Bro���	 I	e	 its output on C reacts with a
delay � � � to input channel C	 We also say that n is strongly time guarded on
feedback channel C	

The Connectors

Identity� We interpret the identity connector IA � A � A by the identity

relation IA which simply copies the input to the output�

IA 	 AR� 
 AR�� IA � f�a� a� j a � AR�g

Multiplicative identi�cation� The identi�cation connectors ��
k
A � Ak � A

are interpreted by the multiplicative identi�cation relations ��
k
A	 They allow to

identify k copies of elements a � AR��

��
k
A 	 �Ak�R� 
 AR�� ��

k
A � f�ak� a� j � � k � a � AR�g

Note that �Ak�R� � �AR��k� as we are in a time synchronous setting	

Multiplicative rami�cation� The rami�cation connectors ��Ak � A � Ak are
interpreted by the multiplicative rami�cation relations ��Ak 	 They allow to make
k copies of the input a�

��Ak 	 AR� 
 �Ak�R�� ��Ak � f�a� ak� j � � k � a � AR�g

Multiplicative transposition� The transposition connectors A
X
B � A�B

�B�A are interpreted by the multiplicative transposition relations A
X
B which

allow to commute the position of the elements in the input tuple	

A
X
B 	 �AR� 
BR��
 �BR� 
 AR���

A
X
B � f��a� b�� �b� a�� j �a� b� � AR� 
 BR�g



Chapter �

The Hybrid Computation Model

We start this section by explaining informally how our hybrid computation model
works	 After that the model�s constituents are introduced formally	

��� General Idea

We model a hybrid system by a network of autonomous components that com�
municate in a time synchronous way	 Time synchrony is achieved by letting time
�ow uniformly for all components	

Each component is modeled by a hybrid machine� as shown in Figure �	
� left	
This machine consists of �ve parts� a combinational �or discrete� part �Com�� an
analog �or continuous� part �Ana�� a feedback loop� an in�nitesimal delay �Lims��
and a projection �Out�	 The feedback models the state of the machine	 Together
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Figure �	
� The hybrid�machine computation model	

with Lims it allows the component to remember at each moment of time t the
input received and the output produced �just before� t	
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The combinational part is concerned with the control of the analog part and
has no memory 	 It instantaneously and nondeterministically maps the current
input and the fed back state to the next state	 The next state is used by the
analog part to select an activity among a set of activities �or execution modes�
and it is the starting state for this activity	 If the combinational part passes the
fed back state without modi�cation� we say that it is idle� The combinational
part can only select a new next state �di�erent from the fed back state� at distinct
points in time	 During the intervals between these time instances it is idle and
the selection of the corresponding activity is stable for that interval� provided the
input does not change discretely during the interval	

The analog part describes the input�output behavior of the component when�
ever the combinational part is idle	 Hence� it adds to the component the temporal
dimension	 It may select a new activity whenever there is a discrete change in
the input it receives from the environment or the combinational part	

Example � Figure �	
� right� shows the exemplary behavior of a component	
The shaded boxes �i indicate the time periods where the combinational part
idles in node i	 At time t� the discrete move of the environment triggers a dis�
crete move of the combinational part	 According to the new next state received
from the combinational part� the analog part selects a new activity	 The activ�
ity�s start value at time t� is as determined by the combinational part	 At time t�
there is a discrete move of the environment� but the combinational part remains
idle	 The analog part chooses a new trajectory for the variables whose start value
is the analog part�s output just before t�� because this is what it receives from
the combinational part at time t�	 Thus� the output has a higher order discon�
tinuity here	 At time t� the environment does not perform a discrete move� but
the combinational part does� e	g	 because some threshold is reached	 Again the
analog part selects a new activity� which begins with the start value determined
by the combinational part	 During the intervals ��� t��� �t�� t�� and �t���� the
combinational part is idle	 �

Please note the structural similarity of our hybrid machine and discrete con�
trollers of continuous systems in Control Theory	 There we also have a discrete
and a continuous part that are interconnected with feedback	

Feedback and state� Since the input received and the output produced may
change abruptly at any time t� as shown in Figure �	
� right� we consider that the
state of the component at moment t is the limit limx�t��x� of all the outputs
��x� produced by the analog part when x approaches t	 In other words� the
feedback loop reproduces the analog part�s output with an in�nitesimal inertia	
We say that the output is latched 	 The in�nitesimal inertia is realized by the
Lims part of the hybrid machine �Fig	 �	
� left�	 Its de�nition is�

Lims����t�
def
�

�
s if t � �
limx�t��x� if t � �
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where s is the initial state of the hybrid machine	

The data�state of the machine consists of a mapping of latched �or controlled�
variable names to values of corresponding type	 Let S denote the set of controlled
variable names with associated domains f	v j v � Sg	 Then the set of all possible
data�states is given by S �

Q
v�S 	v	

The set of controlled variable names can be split in two disjoint sets� a set
P of private variable names and a set O of output �or interface� variable names	
We write SP for

Q
v�P 	v and SO for

Q
v�O 	v	 Clearly� S � SP 
SO	 The latched

inputs are a subset of P 	

The input is a mapping of input variable names to values of corresponding
type	 Let I denote the set of input variable names with associated domains
f	v j v � Ig	 Then the set of all possible inputs is given by I �

Q
v�I 	v	

��� The Combinational Part

The combinational part is a relation from the current inputs and the latched state
to the next state� formally�

Com � �I 
 n � S� � P�n � S�

where n � S is the program�state space �see Section �	�	
� and P�X� � fY 	 X j
Y �� fgg	 The n is the number of leaf nodes in the hierarchic graph that de�nes
Com �see Section �	
�	� The computation of Com takes no time	

An important property of the relation de�ning the combinational part is that
it is de�ned for all states and inputs� i	e	� it is total 	 To emphasize totality�
we wrote it in a functional style	 Furthermore� we want that the combinational
part passes the next state to the analog part only if it �the combination part�
cannot proceed further	 In other words� if s� � Com�i� s� is the next state� then
Com�i� s�� � fs�g� i	e	� no new state s� �� s� can be computed starting in s� with
input i	 We say that Com is idle for i and s�	 Finally� the set E 	 I 
 n � S
of inputs and states for which Com is not idle must be topologically closed	�

Together with the preceding property this guarantees that the extension of Com
over time can only make discrete moves at distinct points in time	 This fact
is needed in the following to ensure that the semantics of a hybrid machine is
well�de�ned	

�Technically the output of Com is an element of a disjoint sum of some structure with n

summands S� Due to associativity of the disjoint some we abbreviate this as n � S�
�As topology we use the Tychono� topology on I � n � S which is induced by using the

discrete topologies on the variable domains di�erent from R and the Euclidean topology on R
for the variable domains that are equal to R �Eng����
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��� The Analog Part

Whenever the combinational part idles� the analog part performs an activity 	 We
describe an activity by a relation Act with type�

Act � �I 
 S�Rc� � P�SRc��

For any set M � the set MRc� stands for the set of functions from the non�negative
real numbers R� to M that are continuous and piecewise smooth� We say that
a function f � R��M is piecewise smooth i� every �nite interval on the non�
negative real line R� can be partitioned into �nitely many left closed and right
open intervals such that on each interval f is in�nitely di�erentiable �i	e	� f is in
C�� for M � R or f is constant for M �� R	 In�nite di�erentiability is required
for convenience	 It allows us to assume that all di�erentials of f are well de�ned	
A tuple of functions is in�nitely smooth i� all its components are	 We also call
MRc� the set of �ows over M 	 To model analog behavior in a �well behaved�
way� activities must be total and time guarded	 Furthermore� we demand that
the activities do not depend on absolute time �measured from system start� but
may be started anytime	 Using a relational notation for Act this formally means
that for all time intervals �u� v� and for all histories 
� � � SRc� and � � IRc��

��� 
� ��j�u�v� � Actj�u�v� � �t � �u� ��t� 
t� �t�j�u�t�v�t� � Actj�u�t�v�t�

where 
t is the right shift of stream 
 by t� 
t�x�
def
� 
t�x� t�	

The complete behavior of the analog part is described by a relation Ana with
type�

Ana � �I 
 n � S�R� � P��n � S�R��

where n � S is the program�state space� as in the type of Com� and for any set
M � MR� denotes the set of piecewise smooth functions R��M 	 Hence� the input
and output of the analog part is not necessarily continuous	 Instead� �nitely
many discrete moves by the combinational part and the environment during any
�nite interval are allowed	 In the following we will see that this demands that the
combinational part is realizable	 We call MR� the set of dense communication
histories	

The relation Ana is obtained by pasting together the �ows of the activities
associated to the nodes where the combinational part Com idles	 Pasting is real�
ized as shown in Figure �	
� middle� by extending the sum operation to activities	
Given a set of activities ACT � fActj j j � ng� their sum is de�ned as below��

�n
j��Actj

def
� f ��� ��� 	�� ��� ��� j

���m� �j� � my � m � n � ��� 	� ��j� � �Actm�j�g

�Here we use for convenience the relational notation Act � IRc� � SRc� � SRc��
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where � is a left closed right open interval� my is the extension of m to a constant
function over �� � � IR� and ��� 	�� ��� �� � �n � S�R� 	 The tuple ��� 	� consists of
the control�state �ow � which gives at each moment of time the node where the
combinational part idles �see Figure �	
� right� and the data�state �ow 	 which
gives at each moment of time the data�state passed by the combinational part	
The tuple ��� �� consists of the same control�state �ow � and the data�state �ow
� computed by the sum	 For each interval � in which the combinational part
idles� the sum uses the control information �j� to demultiplex the input ��� 	�j�
to the appropriate activity and to multiplex the output � j� to ��� ��j�	 Section �	�
will show how Ana is constructed from the activities in a HySChart by using the
� operator	 As the construction results in a �at structure over S� we need not
use injections l� and r� in the de�nition of �� but can directly use the summands�
numbers in the n�fold disjoint sum n � S	

Note that the type of Ana assures that ��� ��� 	�� is partitioned into pieces�
where �� � and 	 are simultaneously piecewise smooth	 The output histories ��� ��
of Ana are again piecewise smooth� by the de�nition of Ana	

As we demand that every activity is total and time guarded� the analog part
also is total and time�guarded	 Furthermore� for the analog part we demand
that it is resolvable� which means that it must have a �xed point for every state
s� � n � S and every input stream i � IRc� � i	e	�

�	 � �n � S�Rc� �	��� � s� � 	 � Ana��� 	�

Resolvability of the analog part is needed to prove that the semantics of a hybrid
machine is well�de�ned �see below�	

��� The Component

Given an initial state s�� the behavior of the hybrid machine is a relation Cmp
between its input and output communication histories	 Writing the graph in
Figure �	
� middle� as a relational expression with the multiplicative operators
results in the denotational semantics of Cmp�

Cmp � n � S � IR� � P�OR��

Cmp�s� � �����
I� � �I
Comy� � Ana � ��� � �Outy
Lims�� �
n�S
�

where Ry trivially extends the combinational relation R in time� i	e	 Ry���
def
�

fo j o�t� � R���t��g for any t � �	 Out selects the output variables from the state
stream	

By de�nition� Cmp is a time guarded relation� because Comy� Ana� Outy�
Lims� I and ��� are time guarded	 To show that Cmp is total we outline the proof
for the existence of a �xed point of the above de�nition for arbitrary starting



�


state and input	 As the composed relation under the feedback operator does not
introduce a delay � � �� the existence of a �xed point is not guaranteed a priori	
Instead� it is a consequence of the properties of Com and Ana	

Proof for the existence of a �xed point

First� we prove that some time t � � passes between two discrete moves by
the combinational part or the environment	 Above� we demanded that the set
E 	 I 
 n � S on which Com is not idle is topologically closed	 Therefore� E
is also closed with respect to the induced subspace topology on �I 
 n � S� �
range���� 	�j�t��t��� �Eng���	 Now suppose s� is an output of Com for the current
input i and the latched state s at time t� �see Figure �	��	 From the restrictions

0δ

0t0t 0+δ 1

(i,s)

(i,s")

t

I

(ι,σ)(i,s’)
E

Figure �	�� Computing the minimal delay	

we imposed on Com we know that it must be idle for s� and the current input�
i	e	� �i� s�� �� E	 Com will remain idle as long as its inputs from the environment
and the feedback loop are not in E	 Hence� we must determine when E can be
reached next	 As the input stream � is piecewise in�nitely smooth� there must be
a time t� � t�� such that it evolves continuously from now up to t�	 Due to its
resolvability� the analog part must have a �xed point 	 for this input and starting
state s�	 This �xed point also is a continuous function	 Constructing the inverse
image of E for the �xed point of Ana and the input stream up to t� yields a set
I that is closed w	r	t	 dom���� 	�� � �t�� t��� since the input and the analog part�s
output are continuous functions up to t�	 As t� is not in this set and the set
is closed w	r	t	 �t�� t��� we get that the next discrete move cannot be performed
before t� � �� � minfminfIg� t�g � t�	 �minfIg exists� because I is bounded
from below and closed	�

On the interval �t�� t�� ��� the �xed point of Ana is a �xed point of Cmp� be�
cause Com and Lims are the identity there	 Applying this argument inductively
we get a �xed point for Cmp on the interval �����

n���n� for every initial state s�	
If ��

n���n diverges� we have a proper �xed point of Cmp	 Otherwise we have a
zeno execution� the combinational part performs in�nitely many discrete moves
within a �nite interval	 Hence� it is not realizable	 A su�cient condition for real�
izability is that there is a lower bound � on the �i for all inputs and initial states	
If the analog part is resolvable and the combinational part is realizable with re�
spect to the analog part then the component delivers a reasonable� i	e	� in�nite
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and piecewise smooth� output for all reasonable inputs	 In other words� the com�
ponent is total	 According to the principal idea given in �AH��� for receptiveness�
we call a total component receptive�

��� A Note on Semantics

A very important characteristic of our semantic model is its uniform use of the
relational framework	 Activities and the component itself are both total time
guarded relations	 This agrees with Abramski�s slogan that processes are rela�
tions extended in time� Moreover� the combinational part is also a relation� but
a relation without time and memory	 This uniformity has two important con�
sequences	 First� it considerably simpli�es the semantic de�nition	 Second� it
allows us to apply the operators on hierarchic graphs introduced in the preceding
chapter to compose relations	 As we shall see in the following� these operators
correspond to hierarchic system architecture speci�cations for the components
and to hierarchic state�based speci�cations for the discrete part	 The time ex�
tension of the additive operators leads to activity speci�cations for the analog
part	

Using dense piecewise smooth communication histories as the basis for com�
ponent speci�cation allows to integrate hybrid machines with components that
are speci�ed in other formalisms	 In particular this includes well�established de�
scription techniques from control theory� where a component usually is a function
from its inputs to its outputs� IR� � OR� without continuity restrictions in this
case �Son���	



Chapter �

System Architecture

Speci�cation � HyACharts

The system architecture speci�cation determines the interconnection of a system�s
components	

Graphical syntax� The architecture speci�cation is a hierarchic graph� a so�
called HyAChart �Hybrid Architecture Chart�� whose nodes are labeled with
component names and whose arcs are labeled with channel names	 Each node
may have subnodes	 The node names and channel names only serve for reference	
We use a graphical representation that is analogous to the structure speci�cations
in ROOM �SGW���	

Semantics� As a HyAChart is a hierarchic graph� it is constructed with the
operators of Section �	
	 Writing the graph as the equivalent relational formula
and using the multiplicative model to interpret the operators in it directly gives
the HyAChart�s semantics	

As � is interpreted as the product operation for sets in this model� visual
attachment here corresponds to parallel composition	 Hence� each node in the
graph is a component acting in parallel with the other components and each arc
in the graph is a channel describing the data��ow from the source component to
the destination component� as explained in Section �	�	

The component names in the graph refer to input�output behaviors speci�ed
in other HyACharts or with other formalisms �Chapters � and �	 The channel
names are the input and output variable names used in the speci�cation of the
components	 The variables� types must be speci�ed separately	

We can now return to the HyAChart of our example system given in the
introduction in Figure 
	
� left� and develop its semantics	

Example � 	HyAChart of the EHC� In Figure 
	
� left� the boolean�valued
channel inBend signals the controller whether the car is in a curve	 The real�
valued channel sHeight carries the chassis level measured by the sensors	 The real�
valued channel fHeight carries the �ltered chassis level	 The real�valued channel

��
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aHeight carries the chassis level as proposed by the actuators� compressor and
escape valve� without environmental disturbances	 The boolean�valued channels
reset and dReset �delayed reset� transfer the boolean reset signal to the �lter	
The delay component Df ensures that the feedback is well�de�ned �see Section
�	��	

The types of the �lter� the control component and the delay component follow
from the channels� types�

Filter � �R 
 B �R� � P�RR� �
Control � �B 
 R�R� � P��R 
 B �R� �
Df � B

R� � P�B R� �

The semantics of the whole system EHC is de�ned as below	 It is the relational
algebra term corresponding to the HyAChart of Figure 
	
� left	

EHC � �B 
 R�R� � P�RR� �
EHC � ��I
Filter� � Control � �I
Df �� �R�

Note that the user only has to draw the HyAChart and to de�ne the types of the
channels	 �



Chapter �

Component Speci�cation �

HySCharts

A HySChart �Hybrid StateChart� de�nes the combinational and the analog part
of a hybrid machine	 The input�output behavior of the resulting component
follows from these parts as explained in Chapter �	

The Graphical Syntax of HySCharts� A HySChart is a hierarchic graph�
where each node is of the form depicted in Figure �	
� left	 Each node may have
sub�nodes	 It is labeled with a node name� which only serves for reference� an
activity name and possibly the symbols �� and �� to indicate the existence
of an entry or exit action� which is executed when the node is entered or left	
The outgoing edges of a node are labeled with action names	 The action names
stand for predicates on the input� the latched state and the next state	 They
are structured into a guard and a body	 The activity names refer to systems
of ordinary di�erential �in�equations	 The speci�cation of actions and activities
and their semantics is explained in detail in the following	 Transitions from com�
posed nodes express preemption	 Except for activities� HySCharts look similar
to ROOM�charts �SGW���	

The Semantics of HySCharts� The semantics of a HySChart is divided
into a combinational and an analog part	 The combinational part follows almost
directly from the diagram	 The analog part is constructed from the chart with
little e�ort	

In the following we will �rst explain how the combinational part is derived
from a HySChart� then the analog part is covered	 We will also show how actions
and continuous activities are speci�ed	

��� The Combinational Part

A HySChart is a hierarchic graph and therefore constructed from the operators in
Section �	
	 As mentioned in Section �	�� interpreting the graph in the additive

��
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model leads to a close correspondence to automata diagrams	
We may view the graph as a network of autonomous computation units �the

nodes� that communicate with each other over directed control paths �the arcs�	
Due to the additive model� at each time point control resides in only one �prim�
itive� computation unit �Section �	��	

In order to derive the combinational part from the HySChart we now give a
semantics to its nodes� i	e	� to its computation units	 The semantics for hierarchy
and actions follows	

nodes
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Figure �	
� Syntax and semantics of a computation unit	

Computation units� Each primitive node of the HySChart represents the
graph given in Fig	 �	
� top right	 It formally corresponds to the relational
expression below�

CompUnit
def
� ��m

i��entry � I� � m��� � �n�� � ���
n
i��actioni � exit� � wait�

According to the additive operators� it has the following intuitive meaning	 A
computation unit gets the control along one of its entry points eni and gives the
control back along one of its exit points exj	

After getting control along a regular entry point� i	e	� an entry point di�erent
from wait wt� a computation unit �rst executes its entry action entry� if one is
speci�ed	 Then it evaluates a set of action guards	� If one of the guards is true�
then the corresponding action is said to be enabled and its body is executed	
After �nishing its execution� the computation unit executes its exit action exit�
if present	 Finally� control is given to another computation unit along the exit
point corresponding to the executed action	

�An action actionk consists of a guard and a body�
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If more than one guard is true� then the computation unit nondeterministically
chooses one of them	 Guard wait in the diagram stands for the negation of the
disjunction of the guards of the actions actionk	 Hence� if none of the guards
is true� then the discrete computation is completed� and the control leaves the
combinational part along the designated wait exit point wt	 The next section
shows that the analog part takes advantage of the information about the exit
point to determine the activity to be executed and gives control back along the
corresponding wait entry point	

Hierarchy� A composed or hierarchic node in the HySChart stands for the graph
in Figure �	
� bottom right	 A principal di�erence to primitive nodes is that the
entry points are not identi�ed� instead they are connected to the corresponding
entry points of the sub�nodes	 Similarly� the exit points of the sub�nodes are
connected to the corresponding exit points of their enclosing hierarchic node	
Furthermore� the hierarchic node has a wait entry and wait exit point for every
wait entry�exit point of the sub�nodes	 When it receives control on one of them�
it is directly passed on to the wait entry point of the corresponding sub�node	
Thus� the wait entry point identi�es a sub�node	 The hierarchic node is left along
a wait exit point� if a sub�node is left along its corresponding wait exit point	

Actions� An action a is a relation between the current input� the latched
data�state and the next data�state�

a 	 �I 
 S�
 S

For HySCharts� actions are speci�ed by their characteristic predicate	 They are
the conjunction of a precondition �the action guard� on the latched data�state and
the current input and a postcondition �the action body� that determines the next
data�state	 The precondition implies that the postcondition is satis�able� hence
the action is enabled i� the precondition is true	 We use left�quoted variables v� to
denote the current input� right�quoted variables v� to denote the next data�state
and plain variables to denote the latched data�state	 Moreover� we mention only
the changed variables and always assume the necessary equalities stating that
the other variables did not change	 To simplify notation further� we associate a
variable c with each channel c	 For example� the action resetting the �lter in the
EHC example is de�ned as follows�

dReset � �� dReset � dReset � � dReset � � fHeight � � �

It says that each time dReset is toggled� fHeight should be reset to �	
As mentioned in Chapter �� the combinational part may only perform discrete

state changes� on a topologically closed subset of I 
 n � S	 This condition is
satis�ed by a HySChart de�ning the combinational part� if the precondition of
every action in the chart identi�es a topologically closed subset of I 
 S	 Note
that in conjunction with hierarchy the action guards must be chosen with care
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in order to guarantee that the combinational part speci�ed by the HySChart is
total	

Events� Latched variables allow us to model many di�erent communication
styles	 Particularly interesting for our example are events which we model by
toggling boolean variables	 The occurrence of an event is detected by testing if
the current input value for that variable is di�erent from the latched value of
that variable� i	e	� e� �� e� where e � B signals the occurrence of the event e	 We
write e as abbreviation for e� �� e� e� � e�	 �The second part of the conjunction
updates the latched value of e	� Similarly� sending an event is given by the
following expression e� � �e which is abbreviated by e!	 With this notation� the
�lter reset action can be rewritten as dReset � fHeight � � �	 Message passing
can be modeled equally easily �GSB���	

Preemption� In HySCharts we use transitions originating from a hierarchic
node �and not from any of its subnodes� to express preemption	 The actions
associated with such transitions are called preemptive actions	 As discussed in
�GSB���� one can de�ne such a preemptive action to have higher priority than
any action inside the hierarchic node �strong preemption� or to have lower pri�
ority than any action inside the node �weak preemption�	 Here� we use weak
preemption� because it is simpler and better suited for the re�nement of nodes	
It allows that actions inside a hierarchic node overwrite the preemptive action	

The corresponding graph for a node with preemption is obtained as follows	
Replacing a hierarchic node with preemptive actions pa�� � � � � pah �Fig	 �	�� top
left� by its corresponding graph of Figure �	
� bottom right� yields a diagram of
the form given in Figure �	�� top right	� To obtain the semantics of the original
node with the preemptive transitions� this diagram is in turn replaced by the
graph in Figure �	�� bottom	

This graph basically expresses that whenever a subnode is left on a wait exit
point wt and one of the preemption actions is enabled� it is executed and followed
by the exit action exit of the enclosing hierarchic node	 The hierarchic node
is then left along an exit point pex corresponding to the executed preemptive
action	 If none of the preemptive actions is enabled �wait is the negation of the
disjunction of the guards of the pai actions� the hierarchic node is left along the
wait exit point that corresponds to wt of the subnode	

In our example of Figure 
	�� left� the action n�b is a preemption action of
the composed computation unit noBend	

The additive interpretation of graphs also provides the infrastructure to eas�
ily model history variables and other concepts known from statecharts�like for�
malisms �GSB���	

�The interior of the node is omitted here for clarity� It exactly is the graph of Figure 	���
bottom right�
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Figure �	�� The semantics of preemption	

Semantics� If each node in the HySChart is replaced by the corresponding
graph of Figure �	
� right� and �	�� right� we obtain a hierarchic graph whose
nodes merely are relations	 Writing the graph as the corresponding relational
expression with the additive operators gives the denotational semantics of the
HySChart�s discrete part� i	e	� the combinational part of a hybrid machine	

At the highest level of hierarchy� the hierarchic graph resulting from the
HySChart has one wait entry�exit point pair for every primitive �or leaf� node in
the chart	 On the semantic level there is exactly one summand in the n�fold sum
n � S of the combinational part�s type �I 
 n � S� � P�n � S� for every entry�exit
point pair	 The analog part uses the entry�exit point information encoded in
this disjoint sum to select the right activity for every node in the HySChart
�Section �	��	

To outline the utility of this approach for hybrid systems we now return to
the HySChart for the controller given in the introduction	

Example � 	The EHCs Control component� We describe the states and
transitions in Figure 
	� in a top�down manner	 The activities� written in italics
in the �gure� are explained in the next section	

The computation unit Control� On the top level of the component Control
we have two computation units� outBend and inBend 	 When the controller senses
that the car is in a curve� the computation unit inBend is entered	 It is left again
when the controller senses that the car no longer is in a curve	 Sensing a curve
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is event�driven	 We use the boolean variable bend for this purpose	 The actions
n�b and b�n are identical and very simple� n�b � b�n � bend 

The computation unit outBend � The computation unit outBend is re�ned to
inTol and outTol as shown in Figure 
	�� top right	 Control is in inTol as long
as the �ltered chassis level is within a certain tolerance interval	 The compressor
and the escape valve are o� then	 If fHeight is outside this interval at a sampling
point� one of the sub�nodes of outTol is entered	 These sub�nodes are left again�
when fHeight is inside the desired tolerance again and the �lter is reset	 The
actions originating from inTol are de�ned as follows�

t o � w � ts� i�i � lb � fHeight � ub
i�u � fHeight � lb� i�d � fHeight � ub

An interesting aspect of inTol is the speci�cation of the composed action started
by the timeout t o� which semantically corresponds to the rami�cation operator
for hierarchic graphs	 Of course� one could have used three separate transitions
instead	 However� in this case the visual representation would have failed to
highlight the common enabling condition t o	

Leaving the computation unit outTol along its exit point reset causes the
execution of the reset action	 This action is always enabled and de�ned by
reset � reset !	 Note that we used here the same name for the action and its
associated event	

The transition n�b originates from the composed node outBend �and from
none of its sub�states�	 This expresses weak preemption� i	e	� this transition can
be taken from any sub�node of outBend � as long as it is not overwritten	

The computation unit outTol� As shown in Figure 
	�� bottom right� the
computation unit outTol consists of the computation units up and down	 When
the �ltered chassis level is too low at a sampling point� node up is entered� where
the compressor is on	 When the level is too high� down is entered� where the
escape valve is open	 Control remains in these nodes until fHeight is inside the
desired tolerance again �actions u�i� d�i�	 These actions cause outTol to be left
along the same exit point� reset 	 The actions originating from up and down are
very similar to those of inTol �

u�u � fHeight � lb� u�i � lb � fHeight � ub� u�d � fHeight � ub�
d�d � fHeight � ub� d�i � lb � fHeight � ub� d�u � fHeight � lb

Again� rami�cation is used in the chart to highlight the common enabling condi�
tion t o for these actions	

As indicated by the symbol �� the nodes inTol � up and down have an entry
action	 It is de�ned as entry � w� � � and resets w	 Together with action t o and
the activity w inc it models sampling in these nodes� i	e	 all transitions directly
originating from these nodes can only be taken at the end of a sampling interval	
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Semantics� The combinational part follows directly from the HySChart by
replacing the nodes by their corresponding graphs of Figure �	
� right� and �	��
right	 As every wait entry�exit point pair at the highest level of the resulting
graph corresponds to a summand in the type of the combinational part� we get
that the combinational part of Control has type�

Com � �I 
 � � S� � P�� � S� �

Note that the user only has to draw the HySChart and give the de�nitions of the
actions	 The corresponding combinational part can be constructed automatically	

��� The Analog Part

The second part of a HySChart�s semantics is the analog part it de�nes	 In the
following we explain how this analog part is derived from the chart	

Activities� Each activity name in the HySChart refers to a system of ordinary
di�erential �in�equations over the variables of the component	� We demand that
for any tuple of initial values s � S and any continuous� in�nitely smooth input
stream i � IRc� � the resulting initial value problem is solvable	

Example � 	The activities of Control� In our example from Figure 
	� the
activity names written in italics stand for the following di�erential �in�equations�

w inc � "w � 
 a inc � "c � �cp�� cp��
a const � "c � � a dec � "c � �ev�� ev��

where cp�� cp� � � and ev�� ev� � � are constants	 For w this means that it
evolves in pace with physical time	 Variable c either increases with a rate in
�cp�� cp�� �activity a inc�� it decreases �a dec� or remains constant �a const�

Note that this is all the user has to provide to specify the analog part	 �

The activity Act � �I 
 S�Rc� � P�SRc�� in every node is derived from the
di�erential �in�equations in the following way� For the input stream i and the
state stream s we take s��� as the initial value for the system of di�erential
�in�equations	 The activity�s set of output streams then consists of the solutions
of the resulting initial value problem for input stream i	 For those controlled
variables v� whose evolution is not determined by the initial value problem� the
activity�s output is equal to s�v� i	e	� to the v component of the state stream the
activity received	 Hence� it remains unmodi�ed	

�An adaption of HySCharts to a more application speci
c syntax for activities� e�g� suited
for multimedia streams� is feasible�
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Figure �	�� The Control component�s analog part	

Composition of Activities� To re�ect the hierarchy in the HySChart the
activities speci�ed in the nodes are composed appropriately	 Therefore� we extend
the sequential composition operator � to �disjoint sums of� activities�

Act� � Act� � f�i� 	� 	�� j ��� �i� 	� �� � Act� � �i� �� 	�� � Act�g

A HySChart can be seen as a tree with the primitive nodes as its leaves	 The
HySCharts in Figure 
	�� for example� has node Control as its root and the nodes
inBend � inTol � up and down as leaves	 Starting from the tree�s root we derive
the composed activity de�ned by the HySChart as follows� �We write ActN for
the �primitive� activity of node N and CActN for the composed activity of node
N � here	�

 if N is a primitive node� CActN
def
�ActN

 if N has sub�nodes M�� � � � �Mn which have composed activities CActMi
�

�mi

j��ActMi�j� where each ActMi�j stands for a sequential composition of prim�
itive activities� then

CActN
def
� �n

i�� ��mi

j�� �ActN �ActMi�j��

The analog part is the composed activity of the root node of the HySChart�
i	e	 Ana � CActroot	 Figure �	� and the following example explain this de�nition	

Example � 	The analog part of Control� The HySChart in Figure 
	� has
the analog part�

Ana � �w inc � a const� � �w inc � I � a const��
�w inc � I � I � a inc� � �w inc � I � I � a dec�

where we applied associativity of � and �	 The activity names are used to refer
to the semantics of each activity� here	 Note that the expression is equivalent to
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�w inc � a const� � �w inc � a const� � �w inc � a inc� � �w inc � a dec�� because
the identity connector is the neutral element for sequential composition	 Figure
�	� depicts the analog part as a graph	 �

The entry and exit point symbols in the �gure highlight that the analog part has
one path through the graph for every primitive node in the HySChart	 When
we construct the combinational part from the HySChart� we also get one wait
entry and wait exit point at its highest level of hierarchy for each primitive node	
This allows to sequentially compose the combinational part with the analog part
as in the semantics of a hybrid machine in Chapter �	 The distinct wait points
allow both the combinational part and the analog part to know which node in
the HySChart currently has control and to behave accordingly	

In Chapter � we demanded that the analog part is resolvable	 If the activities
are de�ned as the solutions of solvable initial value problems as above� this is
automatically ensured	

As a further example� Section 	� contains the HySChart for the EHC�s �lter
component	
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Relation to Other Formalisms

��� Heterogeneous Component Speci�cation

The multiplicative interpretation of � not only allows to compose components
speci�ed under the additive interpretation �HySCharts�� but it enables us to
compose arbitrary components of type IR� � P�OR��� where I and O is a set
of input and output channels� respectively	

This means that any formalism can be used for component speci�cation which
de�nes a component as a total� time�guarded relation on piecewise smooth inputs
and outputs	 In particular this allows us to use description techniques from
engineering disciplines� like e	g	 block diagrams� which are widely used in control
theory	

Example � 	A delay element� The delay element of the EHC reproduces its
input with delay � � �	 It can be speci�ed directly as a relation as follows�

Df � B
R� � P�B R� �

Df�i��t� � ffalseg if t � � and fi�t� ��g otherwise �

��� Timed Automata

An interesting side e�ect of HySCharts is that they can simulate the non�urgent
transitions of timed automata �AD���� although transitions in HySCharts are
taken as soon as they are enabled	 To explain this� Figure 	
� left� shows a state
of a timed automaton that must be left during the time interval t � �a� b�	 The
equivalent node of a HySChart is given in Figure 	
� right	 The actions are
r � x� � � and g � x � 
 and the activity is Act � "x � ��

b
� �
a
�	 This means

that instead of non�deterministically choosing a time instant between a and b� we
non�deterministically choose a time scale between ��

b
� �
a
�	 When the skewed clock

x equals the limit 
 the transition is taken	 E	g	 for activity "x � �
b
we get that

the transition is taken at t � b� because x�t� � �
b
t	

��
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Figure 	
� Translating timed automata into HySCharts	

Reading the translation from Figure 	
 the other way round we get that
a certain subclass of HySCharts� namely the one which only allows guards and
activities of a form like those in the �gure� can be translated into timed automata	
Therefore� this class has a decidable reachability problem �ACH����	 This result
is comparable to the decidability of the simple multirate timed systems de�ned
in �ACH����	

��� A Typical Hybrid Component

Figure 	� shows the HySChart for the �lter of the EHC example	 Action name
set stands for dReset � fHeight � � �� and activity name f follow denotes
d
dt
fHeight � �

T
�sHeight � fHeight�� where T is the �lter�s time constant� i	e	 a

measure for its inertia	

f_follow
Filter

set

Figure 	�� HySChart for the �lter	

While both the discrete and the analog part of the �lter are very easy� the com�
ponent is nevertheless interesting from a hybrid point of view� As there is a
very close interaction of the discrete dynamics �the set action� and the continu�
ous dynamics �the di�erential equation�� it is hardly possible to decompose the
�lter into a purely discrete and a purely continuous part that cannot exhibit
discontinuities	 Therefore� the �lter underlines the need for hybrid speci�cation
techniques	

�Remember that dReset� is a shorthand for dReset � �� dReset � dReset � � dReset ��
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Conclusion

Based on a clear hybrid computation model� we were able to show that the ideas
presented in �GSB��� can smoothly be carried over to hybrid systems and yield
modular� visual description techniques for such systems	 Namely� the resulting
techniques are HyACharts and HySCharts for the speci�cation of hybrid system
architecture and hybrid component behavior� respectively	

With an example we demonstrated the use of HyCharts and their features	
Apart from many features known from statecharts�like formalisms� this in par�
ticular includes the ability to compose HySCharts with components speci�ed
with other formalisms	 In our opinion such heterogeneous speci�cations are a
key property for designing hybrid systems� as it allows to integrate description
techniques from di�erent engineering disciplines	

Methodically we conceive a HySChart as a very abstract and precise mathe�
matical model of a hybrid system	 Knowing exactly the behavior of the analog
part as given by a system of di�erential �in�equations allows us to develop more
concrete models that can easily be implemented on discrete computers	 For such
models it is essential to choose a discretization which preserves the main proper�
ties of the abstract description	

Although this paper mainly aims at hybrid systems appearing in the con�
text of disciplines like electrical and mechanical engineering� we think that the
continuous activities in HySCharts also make them well suited for specifying mul�
timedia systems� such as video on demand systems	 Basically HyCharts seem to
be appropriate for any mixed analog�digital system where the use of continuous
time is more natural than a discrete time model	

In the future we intend to develop tool support and a requirement speci�cation
language for HyCharts	 For the veri�cation of HySCharts we believe that the
techniques known for linear hybrid automata �ACH���� can easily be adapted	

Acknowledgment� We thank Ingolf Kr�uger� Olaf M�uller and Jan Philipps for
their constructive criticism after reading draft versions of this paper	
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