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Abstract: The design of hybrid systems usually involves engineers from a number
of different engineering disciplines. Hence, specification techniques are needed that
can intuitively be understood by people from all these engineering communities.
Furthermore, a formal foundation for these techniques in necessary to prohibit
ambiguities which may be fatal in the safety critical environment of many hybrid
systems. In this paper we present an example development scenario in order to
demonstrate the use of HyCharts, a formalism that satisfies both these needs. The
semantic foundation of HyCharts is outlined briefly.
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1. INTRODUCTION

Hybrid systems are dynamical systems whose be-
havior is characterized by both, discrete and con-
tinuous aspects. Typical examples are embedded
real-time systems interacting with their physical
environment.

In the past few years a number of formalisms
have been proposed for the specification and ver-
ification of such systems. (Alur et al., 1996) is a
good starting point in this subject. However, the
practical utility of almost all these formalisms is
restricted either because they do not permit mod-
ular specification, like e.g. hybrid automata (Alur
et al., 1995), or because there is no convenient
graphical representation for them, like e.g. for
hybrid I/O automata (Lynch et al., 1996).

In this work we show how HyACharts and
HySCharts, two complementary visual descrip-
tion techniques for hybrid systems that achieve
both these aims, can support the methodical de-
velopment of hybrid systems. HyACharts allow
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the hierarchic specification of system architec-
ture. Hybrid behavior is specified with hybrid
hierarchic state transition diagrams (HySCharts).
HySCharts may be regarded as a hybrid exten-
sion of ROOMcharts (Selic et al, 1994). The
components in both diagram types have clearly
defined interfaces. Thus, side-effects are elimi-
nated and modularity is obtained. Hy ACharts and
HySCharts can be seen as hierarchic graphs. Their
semantics can therefore be defined by instantiat-
ing the operators of an abstract algebra for these
graphs appropriately.

This paper is organized as follows. We start with
an example that gives an intuitive impression of
HyCharts and shows their use in the develop-
ment of hybrid systems. In particular the example
sketches how HyCharts aid a methodology for
the design of hybrid systems that is based on
refining an abstract, hybrid model to more con-
crete models that are closer to implementation.
An introduction to our underlying model of hybrid
systems follows. After that, we outline the con-
nection of HyCharts to abstract hierarchic graphs
and indicate how this connection serves to define
the semantics of HyCharts. Finally we draw some
conclusions.



2. SYSTEM DEVELOPMENT WITH
HYCHARTS: AN EXAMPLE

In this section we demonstrate by means of an
example how HyCharts can be applied in the
methodical development of hybrid systems. Basic
concepts of the charts are explained informally.

As example we use an electronic height control
system (EHC), taken from a former case study
together with BMW. The purpose of this system
is to control the chassis level of an automobile by
a pneumatic suspension. The abstract model of
this system which regards only one wheel was first
presented in (Stauner et al., 1997). Its informal
requirements are as follows:

(1) Whenever the chassis level sHeight is outside
a certain tolerance interval, it has to be increased
or decreased in order to get close to the center of
the interval again. (2) Very short deviations from
the tolerance interval should not be compensated.
(3) After a compensation, some time should pass
before the same actuator, namely a compressor
that can increase the chassis level and an escape
valve that can decrease it, is switched on again. (4)
In any case the chassis level may not be modified
by the controller when the sensor bend signals that
the car is going through a curve.
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Fig. 1. HyAChart of the EHC.

In the development steps of our example we want
to focus on the control component of the EHC.
We therefore assume the initial architecture of
the system given. It is depicted as a HyAChart
in Figure 1. As we do not regard the environment
here, the basic components of the system are a
filter and the controller. The filter eliminates high-
frequency disturbances in sHeight and thus helps
to satisfy requirement (2). It may be reset to a
defined zero level inside the tolerance interval. As
we will see the controller uses this to fulfill require-
ment (3). The escape valve and the compressor are
modeled within the controller. Variable aHeight
models their influence on the chassis level. The
component labeled Dy introduces a delay and
ensures that the feedback between the filter and
the controller is well-defined.

The behavior of a component is characterized, as
intuitively shown in Figure 2 by periods where
the values on the channels change smoothly and
by time instances at which there are discontinu-
ities. In our approach the smooth periods result
from the analog parts of the components. The
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Fig. 2. A typical evolution of the EHC.

discontinuities are caused by their combinational
(or discrete) parts (see Section 3).

We specify the behavior of both the combina-
tional and the analog part of a component by a
HySChart, i.e., by a hybrid, hierarchic state tran-
sition diagram, with states marked by activities
and transitions marked by actions. The transi-
tions define the discontinuities, i.e., the instan-
taneous actions performed by the combinational
part. The activities define the smooth periods, i.e.,
the time consuming behavior of the analog part
while the combinational part idles.

2.1 Initial Design of the EHC’s Controller

In the development of the controller we start with
the two most fundamental states of the EHC,
inBend and outBend. Figure 3, left, shows the
HySChart of the controller at this first level of
decomposition.
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Fig. 3. The EHC’s Control component (without
sampling).

The labels of the transitions refer to actions,
i.e. to predicates that specify when a transition
is enabled and how variables change when it is
taken. In these predicates we use the following
conventions. A backprimed variable z* denotes the
current input, an unprimed variable  denotes the
stored value of z and a primed variable 2’ denotes
the updated value of z. Transitions are taken as
soon as they are enabled. The actions in Figure 3,
left, sense whether signal bend is set or not. They
are both defined as n2b = b2n = bend?, where
bend? is a shorthand for bend # bend‘ A bend =
bend‘ which is true if the stored value of bend is



different from the current value (bend # bend‘)
and which updates the stored value to the current
value (bend' = bend").

The labels written in italics within the states
of the figure denote activities. They specify the
analog part of a component, i.e. they deter-
mine how the variables evolve, when control is
in the respective state. Activity a_const stands
for %aHeight = 0 and specifies that aHeight
remains constant when control is in inBend,
i.e. that compressor and escape valve are off. No
activity is given for out Bend as this state will have
to be refined further and the evolution of aHeight
depends on the concrete substates of outBend.
This first hierarchic level of the controller ensures
that requirements (4) is satisfied.

When the car is not in a curve we need to dis-
tinguish whether the chassis level is in the toler-
ance interval or not. Therefore, the next hierarchic
layer of the controller refines state outBend and
consists of the two states inTol and outTol (Fig-
ure 3, top right). For state inTol we already know
that compressor and escape valve need not be
operated. Hence aHeight remains constant which
again is expressed by activity a_const in state
inTol.

State outTol is further refined into up and down,
as shown in Figure 3, bottom right. The activities
in these two states denote that aHeight increases
or decreases, respectively. Activity a_dec stands
for LaHeight € [ev_, ev;] which means that vari-
able aHeight evolves smoothly with its derivative
satisfying the given inequation when control is
in down. Activity a_inc stands for %aHeight €
[ecp—,cp+]- The constants ev_ and ev; are nega-
tive, cp_ and cpy are positive. The actions ¢2u
and i2d test whether the filtered chassis level is
below or above the tolerance interval. The actions
u2i and d2i test whether it is inside the tolerance
interval, and not too close to its lower boundary
or upper boundary, respectively, again. Hence, the
developed version of the controller fulfills require-
ment (1) now. In detail these actions stand for the
following predicates:

i2u = fHeight' < b,

i2d = fHeight' > ub,

u2i =1lb+ c < fHeight' < ub,

d2i =1b< fHeight' <ub—c
Where [b, ub and c are appropriate constants.

Action reset sends a reset signal to the filter
which causes the filter value fHeight to be set
to a predefined zero level inside the tolerance
interval. This way the controller ensures that some
time passes before fHeight leaves the tolerance
interval again and compressor or escape valve
are operated again (requirement (3)). The action
stands for reset’ = —reset meaning that the new
value of reset results from toggling the old value.

The circles at the boundary of Figure 3, top
right and bottom right are interface points. The
HySChart can receive control from or give control
to the next higher level of hierarchy there. The
labels at the interface points indicate from which
transition control is received or to which transition
it is given, respectively. Thus, the interface points
provide modularity for HySCharts. In the example
the interface point labeled n2b is not connected
to any substate of outBend. This specifies that
it can be taken from any substate of it if action
n2b is true. Thus, it is a preemptive transition.
The preemption semantics used in HySCharts
is weak preemption, i.e. preemptive transitions
may be overwritten at lower levels of hierarchy.
For this reason weak preemption is well-suited
for refinement. (Note that transition n2b is not
overwritten in the presented example.)

2.2 Towards Implementation

Now that we have an initial design that satisfies
the informal requirements, we want to take a step
towards implementation. We will now refine the
initial design into one in which the filtered chassis
level fHeight is not read continuously, but with
a certain sampling rate. Choosing a sampling rate
is done after a deep understanding of the system.
It should not alter the properties we expect the
system to satisfy.
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Fig. 4. The EHC’s Control component (with
sampling).

As the controller’s reaction to curves is not af-
fected by sampling fHeight, we do not expect
that the first hierarchic layer of the controller
needs to be modified strongly. In fact all changes
can be kept local to the substates of out Bend.

To model sampling we introduce a new variable
w. In the substates of outBend is must evolve
in pace with physical time, i.e. it has a constant
derivative of 1, which is specified by activity
woine = %w = 1. In inBend the evolution of
w is irrelevant, nothing is specified there. Figure

4, left, shows the new top level of the HySChart



for the controller. Note that the only change was
made in state outBend and is local to this state.

The controller with sampling is only allowed to
read the filtered chassis level at the end of a
sampling interval. For the HySChart this means
that all the transitions inside outBend may only
be taken when w reaches a certain threshold,
i.e. the end of the sampling interval. Therefore
all transitions emerging from inTol, up and down
have action ¢_o, which stands for predicate w =
tsample; as common enabling condition. These
t_o transitions then lead to choice points, which
are well-known from Statecharts (Harel, 1987)
and ROOMcharts. There, they split into several
alternative branches. Some of these branches are
newly introduced, because in the sampling model
scenarios in which fHeight traverses the hole
tolerance interval within one sampling period are
possible. Hence, transitions u2d and d2u leading
directly from up to down and vice versa are
necessary. As every state must be left after a
sampling period in order to read the chassis level,
we must also add transitions that allow to reenter
the old state (transitions i2i, u2u and d2d in the
HySCharts of Figure 4, right). The corresponding
actions are defined as follows:

u2d = fHeight' > ub,

d2u = fHeight* < b,

12t = Ib< fHeight' < ub,

u2u = fHeight' <1b+c,

d2d = fHeight' > ub—c

After a transition was taken w must be reset to
zero in order to model that the next sampling
interval starts. In the HySChart of Figure 4 this
is specified by marking the states inTol, up and
down with the entry action symbol —o. The entry
action is executed whenever the associated state
is entered. In our example all three states have
the same entry action which resets w, namely
entry = w' =0

This example demonstrates two major benefits of
HyCharts. First, is shows that hierarchy is not
only useful for discrete states, but also for con-
tinuous activities. In the model of the controller
with sampling w_inc is an example for a hierarchic
activity. In a formalism like hybrid statecharts
(Kesten and Pnueli, 1992) this would not be al-
lowed and we would have to add activity w_inc to
the states inT'ol, up and down explicitly. Clearly,
this has negative consequences for further changes
or refinements of these states.

Secondly, the development step performed above
shows that HyCharts allow to make refinement
steps from a very abstract model towards imple-
mentation within the same specification formal-
ism. We think this feature of hybrid description
techniques in general is highly useful for ana-
log/digital codesign.

3. ABSTRACT VIEW OF HYBRID SYSTEMS

This section explains our understanding of hy-
brid systems and presents the underlying system
model.

3.1 Hybrid systems

We model a hybrid system by a network of au-
tonomous components that communicate in a time
synchronous way via directed channels (Figure 5,
left). Time synchrony is achieved by letting time
flow uniformly for all components.

Every channel reflects a communication history of
the system. Formally, such a history is a function
Ry — M, where Ry is the set of non-negative
real numbers, our time scale, and M is the set of
messages transmitted on the channel (Miiller and
Scholz, 1997). In our view, the interface behavior
of hybrid system components is characterized by
intervals [¢,¢') in which no discrete actions occur,
i.e. the values on the channels only change “in-
finitely smoothly”, and by time instances ¢,t', ...
at which discrete actions take place and (possi-
bly) cause discontinuities in a component’s output
(Figure 2). A realistic component cannot perform
actions at arbitrary frequency as it is not infinitely
fast. Hence, we demand that a hybrid communi-
cation history or hybrid stream only has finitely
many discontinuities during any finite interval
[t,t') C Ry, i.e. that it is piecewise infinitely
smooth.

Components can now be formalized as total, time
guarded relations over input and output commu-
nication histories. A relation is called time guarded
if its output up to time ¢ only depends on its in-
puts up to t. We use relations instead of functions
in order to allow nondeterminism. This nondeter-
minism can be used to express under-specification
which quite naturally occurs in the early phases of
system development that HyCharts are supposed
to aid.

In principle a component can be specified by any
description technique whose semantics results in
such a relation. With a slight modification this
e.g. allows to use block diagrams, which are widely
used in Control Theory, to specify purely contin-
uous components. For mixed discrete/continuous
components, HySCharts are particularly appro-
priate.

3.2 Hybrid machines

A component specified by a HySChart is modeled
by a hybrid machine, as shown in Figure 5, right 2 .

2 This diagram can itself be seen as a HyAChart.



This machine consists of three basic parts: a
combinational (or discrete) part (Com), an analog
(or continuous) part (Ana) and a feedback loop.
The feedback models the state (or memory) of the
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Fig. 5. The hybrid-machine computation model.

machine. Together with the limes from the left,
Limg, it allows the component to remember at
each moment of time ¢ the input received and the
output produced “just before” .

The combinational part is concerned with the
control of the analog part and has no memory.
It instantaneously and nondeterministically maps
the current input and the fed back state to the
next state.® The next state is used by the analog
part to select an activity among a set of activities
(or execution modes) and it is the starting state
for this activity. The combinational part can only
select a new next state (different from the fed back
state) at distinct points in time. During the inter-
vals between these time instances it passes the fed
back state without modification, i.e. it idles, and
the selection of the corresponding activity is stable
for that interval.

The analog part describes the input/output be-
havior of the component whenever the combina-
tional part idles. Hence, it adds to the compo-
nent the temporal dimension. It may select a new
activity whenever there is a discrete change in
the input it receives from the environment or the
combinational part.

3.3 Ezxzample

In the exemplary evolution of the EHC of Figure
2, the combinational part of the controller always
idles except at times ¢ and t, the filter’s combi-
national part is only active at time t”. At time
t the controller realizes that the filtered chassis
level, fHeight, is too high and opens the escape
valve. In the model this means that, driven by
the combinational part, the controller’s analog
part selects a new activity that decreases aHeight
and that starts with the value determined by the
combinational part, i.e. the value right before the
transition in this case. Due to the environment

3 Again nondeterminism models under-specification.

this decrease in turn causes sHeight and finally
fHeight to decrease. At time t' the controller’s
combinational part senses that fHeight is in the
desired tolerance interval again, selects a new next
state with escape valve closed and sends the reset
signal to the filter. At time t” the filter receives
this signal, its combinational part reacts by re-
setting fHeight and its analog part selects an
activity starting with this new value.

4. THE SEMANTIC FOUNDATION OF
HYCHARTS

From an abstract point of view, both HyACharts
and HySCharts consist of a set of nodes connected
by a set of (typed) arcs, i.e. they are hierarchic
graphs.* We interpret each node in such a graph
as a relation between its inputs and outputs,
as denoted by the arcs. Hierarchic graphs are
constructed by putting nodes next to another and
interconnecting them with the operators in Figure
6. Furthermore the connectors in Figure 7 may be
applied to e.g. join, split or commute arcs.
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Fig. 6. The composition operators.
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Fig. 7. The connectors.

In principle a HyAChart’s or HySChart’s seman-
tics is obtained from the hierarchic graph by using
one of two consistent interpretations of the ab-
stract operators and connectors in Figures 6 and
7.

The multiplicative interpretation is used for Hy-
ACharts. Its effect is that all the nodes in a Hy-
AChart are active in parallel. They receive data
on all their input channels and send data along
all their output channels. Thus, nodes closely
correspond to system components in a data-flow
network. Hence, the HyAChart models the data-
flow in a system.

The additive interpretation is used for HySCharts.
Its effect is that only one node can be active
or have control at each time. A node receives

4 For HySCharts some simple transformations are neces-
sary to reduce entry/exit actions and preemption to such
graphs.



control on one of its entry points, i.e. its incoming
arcs, and passes control on on one of its ewit
points, i.e. its outgoing arcs. Thus, nodes closely
correspond to the control states and arcs to the
transitions in an automaton. The whole graph
models the control-flow in the automaton.

A variant of this interpretation is used to ob-
tain the analog part of a hybrid machine from
the HySChart. Here, the activities of states at
consecutive levels of hierarchy in the HySChart
are sequentially composed. Each such sequence of
sequentially composed activities corresponds to a
solvable initial value problem. The interpretation
of the visual attachment operator determines that
only one sequence is active at a time. Furthermore,
it switches between the sequences depending on
the input the analog part receives form the com-
binational part and the environment.

A detailed explanation together with a definition
of the mapping from HyChart syntax to their
semantics is not possible within the limited space
of this paper. We therefore refer the interested
reader to (Grosu and Stauner, 1998).

5. CONCLUSION

By means of an example we introduced HyCharts
and indicated how their main features like hi-
erarchy of states and continuous activities, pre-
emption and entry/exit actions can be utilized
in the development of hybrid systems. In our
development scenario we sketched elements of a
methodology for the development of hybrid sys-
tems. We outlined the underlying system and ma-
chine model for HyCharts and revealed their con-
nection to abstract hierarchic graphs, which serve
as the semantic foundation for the two description
techniques.

For use in practice, future work will have to focus
on tool support and implementation techniques
for HyCharts.
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