
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Hybrid Sequence Charts

Radu Grosu, Ingolf Krüger, Thomas Stauner

ABCDE
FGHIJ
KLMNO

TUM-I9914
Juli 99

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-07-I9914-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c�1999

Druck: Institut für Informatik der
Technischen Universität München

Hybrid Sequence Charts

Radu Grosu� Ingolf Kr�uger and Thomas Stauner�

Institut f�ur Informatik� Technische Universit�at M�unchen

D������ M�unchen� Germany

http���www��in�tum�de��fgrosu�kruegeri�staunerg�

Email� fgrosu�kruegeri�staunerg�in�tum�de

�This work was supported with funds of the Deutsche Forschungsgemeinschaft under the
Leibniz program within project SysLab� and under reference number Br ����� within the
priority program Design and design methodology of embedded systems�

Abstract

We introduce Hybrid Sequence Charts �HySCs� as a visual description

technique for communication in hybrid system models� To that end� we

adapt a subset of the well�known MSC syntax to the application domain of

hybrid systems� The semantics of HySCs is di�erent from standard MSC

semantics� Most notably� we use a shared variables communication model

and assume the existence of a continuous� global clock� Similar to their
classic counterpart HySCs can be advantageously used in the early phases

of the software development process� In particular� in the requirements

capture phase� they improve the dialog between customers and application

experts� They complement existing formalisms like hybrid automata by

focusing on the interaction between the system�s components� We outline

the key concepts and the usage of HySCs along an example� the speci�ca�

tion of an electronic height control system� Then we de�ne their formal

semantics�

iv

Contents

� Introduction �

� Hybrid Sequence Charts � HySCs �

� HySCs in Practice �

��	 An Electronic Height Control System � � � � � � � � � � � � � � � �

��� Speci�cation with HySCs �

� Semantics of HySCs ��

�	 Predicates � 	

�� Basic HySCs � 	�

�� HHSCs � 	

� Conclusion ��

	

� Introduction

In recent years a considerable number of description techniques has been devel�
oped for the speci�cation of hybrid systems� Some of them are based on Petri
nets �DA��� Wie�
�� others use logic �Lam��� and yet others are based on some
kind of automata �ACH���� LSVW�
� GSB���� However� little work has been
done to visualize the behavior of a hybrid system together with the communi�
cation between its components� Yet� a thorough integration of interaction�based
and state�based description techniques is essential if we wish to support and im�
prove today�s development processes for hybrid and� more generally� embedded
systems�

We regard a hybrid system as consisting of a set of time�synchronously operat�
ing components� each encapsulating a private state and communicating with the
other components over directed channels� The behavior of a component is char�
acterized� as intuitively shown in Figure 	� top left� by periods where the values
on the channels change smoothly and by time instants at which there are discon�
tinuities� In our approach the discontinuities are caused by discrete actions� The
smooth periods are caused by analog activities� Two attempts at visualizing the
evolution of the values of a hybrid system�s channel� and private variables are
trajectories and timing diagrams� Their de�ciencies motivate our introduction of
Hybrid Sequence Charts� below�

Trajectories� Trajectories are a straightforward visualization approach that
directly depicts the evolution of a system�s variables over time �Figure 	� top left��
While this approach is simple and e�ective it can only depict one special case�
namely the one in which all variables evolve as in the diagram� It cannot highlight
qualitative di�erences between system states� Visualization by trajectories is
supported by development tools like MATLAB �TMI����

Timing diagrams� A �rst step from single trajectories to an abstract descrip�
tion of sets of trajectories is obtained by partitioning for each variable the time
period under consideration into qualitatively equivalent intervals and by only giv�
ing a predicate specifying the variable�s evolution within the respective interval�
In the diagram of Figure 	� bottom left� for example� it is only important to know
whether variable fHeight is inside or outside a given tolerance interval� There�
fore� the concrete trajectory fHeight�t� from Figure 	� top left� can be abstracted
to the sequence of intervals with the predicates greater � meaning that fHeight
is outside the tolerance interval� inside� which is abbreviated by i� in the �gure
and means that fHeight is inside the tolerance interval� the unlabeled interval�
meaning that the value of fHeight is arbitrary� and inside again�� Note that the
resulting diagram has some similarity with timing diagrams �ABHL��� FJ����
which are widely used in hardware design� and the constraint diagrams intro�

�Label c� is used as abbreviation for constant in the �gure�

�

[

[

)[

[
)

[

[

[[[[[[
))))))
[w

time

)fHeight

dReset

aHeight

decrease

greater

constant

constant

i. inside

c. constant

increase increase

aHeight

fHeight

dReset

w

Filter D Control

set

t_o

reset
dReset

inTol

down

inside

greater a_dec

inside a_const

d2i

hysc d2i

Figure 	� Description techniques for the behavior of hybrid systems�

duced in �Die�
�� Causality can be indicated in the diagram by drawing vertical
arrows between the abstract time axes of two variables if a change in the �rst
variable is relevant� i�e� may provoke a qualitative change� for the evolution of
the second one�

Hybrid Sequence Charts� In this paper we go a step further and also ab�
stract from the individual variables in the graphical representation of system
behavior� Thus� instead of partitioning and giving predicates for individual vari�
ables� we project the trajectories of all variables of one system component on a
single abstract time axis� One axis for each component is appropriate� because
we are interested in the sequence of qualitative states each component traverses�
Such a qualitative state of a component is usually characterized by a predicate
over all its variables �see Figure 	� right�� This projection was motivated by
notations for component interaction that have gained increasing popularity in
the domain of telecommunication systems �cf� �IT�
��� and� more generally� in
object�orientation �cf� �Rat��� BMR��
� SHB�
� BHKS����� We are aware� of
course� that the semantic models � if existent � of such notations do not nec�
essarily match the time�synchronous hybrid system model with communication
proceeding over shared channels that we have sketched above� Yet� we believe
that by adapting notation from� say� MSCs �cf� �IT�
�� to the application domain
we consider here� we can carry over much of the intuition that has contributed
signi�cantly to the popularity of sequence charts in general� In fact� we consider
capturing interaction sequences among system components an important step of
any development process� Therefore� we borrow a subset of the syntax of MSC��

�cf� �IT�
�� for the speci�cation of interaction sequences within hybrid systems��

�This has the further advantage that developers can use standard syntax�directed graphic

�

we call the resulting notation �Hybrid Sequence Charts �HySCs��� In particu�
lar� we use arrows to denote events� arrows are directed from the originator of
the event to its destination� Angular boxes denote conditions on the component�s
variables� they may span a single instance axis �local conditions�� or multiple axes
�non�local condition�� and even all component axes �global condition�� The re�
maining syntactic elements in Figure 	� right� are introduced later� Every HySC
speci�es a typical evolution� or scenario� of the system under consideration in
connection with its environment over some �nite time interval� If the environ�
ment does not behave as depicted in the HySC� no statement is made about the
system�s evolution� By composing such typical evolutions appropriately� we can
achieve a speci�cation of the system�s behavior upon di�erent inputs from the
environment� Even a complete speci�cation covering all possible inputs is pos�
sible� We use High�level HySCs �HHSCs�� whose syntax we also borrow in part
from MSC��
� to specify the composition of HySCs� To make HHSCs applicable
in the context of hybrid systems we provide notation for expressing preemption�
which is an important concept for embedded systems�

HySCs in the development of hybrid systems� Just as MSCs �IT�
� or se�
quence diagrams �Rat��� in the discrete case� HySCs can be used for requirements
speci�cation� interface speci�cation� test�case speci�cation� validation� and doc�
umentation� Due to their intuitive appearance they are particularly well�suited
for capturing and specifying system requirements in the dialog among engineers
from di�erent disciplines� as well as among engineers and customers�

Overview� The rest of this paper is organized as follows� In Section � we
introduce HySCs informally and explain our understanding of them� In Section �
we present an example hybrid system� in particular� we discuss the key parts of
its formal speci�cation with HySCs in Section ���� Section contains the formal
semantics of HySCs� We summarize our work� and draw conclusions in Section ��

� Hybrid Sequence Charts � HySCs

We start with a short introduction to the syntax and informal semantics of basic
HySCs that consist of interactions� conditions� and coregions only� Then we cover
HHSCs� which allow us to specify hierarchic �roadmaps� through sets of HySCs�

Basic HySCs� Basic HySCs contain one vertical axis� an abstract time axis�
for each component� or instance� under consideration� Time advances from top
to bottom� Sequences of incoming and outgoing arrows partition the time axis of
each component into intervals� According to our view of hybrid systems� which
we have sketched in Section 	� we require the existence of a global clock� and
assume that communication occurs without delay �therefore� all arrows in our

editors for their speci�cations�

1

1q
p n

mq

p

...

A

...
...

...

C

...
...

Cond

...
...

B

Figure �� Basic segment of a HySC�

HySCs are horizontal�� We assume further that the components occurring in the
HySC are connected by channels along which message exchange occurs� Hence�
a HySC is built up from sequences of segments of the form given in Figure ��
Each such segment denotes the execution of an action by component B� The
action is triggered by the occurrence of all events p� through pn� we say that the
action guard becomes true� The result of executing the action body is that B
simultaneously emits the events q� through qm� and changes its state to the one
speci�ed in the condition labeled Cond in Figure �� Actions in hybrid systems
usually depend on the values of continuous variables� therefore� we consider action
guards and action bodies carefully� below�

Before we regard the actions in detail� it is necessary to explain our classi�cation
of variables� In our view each component has a set of input variables� which are
written by the environment or by other components and a set of controlled vari�
ables that are written by the component itself� The set of controlled variables of
a component is further partitioned into a set of private variables� whose elements
are only visible to the component� and a set of output variables� whose elements
may be read by the other components or the environment� The input and the
output variables are the observable variables�

The action guard p�� � � ��pn is a conjunction of predicates pi� Each predicate pi
that labels an arrow from a component� say A� to B may depend on the old and
current values of the output variables of A that are input by B and optionally
on the old values of some other private variables of B�� The arrow indicates
the moment of time �the event� when pi becomes true� A similar arrow must
be drawn if pi becomes false again� before the action is executed� However� no
second arrow needs to be drawn if the predicate possibly only holds for a single
point in time� i�e� if the predicate depends on the occurrence of an event or on
the exact value of a continuous variable�

The action body q�� � � ��qm is also a conjunction of predicates qi� Each predicate

�Actually� the old values of the output variables of A that are input by B are kept in private
variables of B�

�

qi that labels an arrow fromB to� say� A speci�es the current values for the output
variables of B that are input by A� These values may depend on the current value
of all input variables and on the old and current value of all controlled variables
of sender B�

As soon as all parts from the action guard are true� the action body is executed�
All the changes that it causes on the output variables simultaneously become
visible to those other components which read these variables� Simultaneity is
expressed graphically by a coregion� i�e� by drawing a region of the time axis of
one component as a dashed line� all the predicates in this coregion are evaluated
simultaneously �see Figure ���

We allow the use of predicates as condition labels to indicate a component�s
state� and adopt the convention that no new condition symbol is drawn if the
control�state does not change� Conditions ranging over a set of components are
also allowed� and express a global state of the referenced components� A local as
well as such a hierarchic condition Cond remains valid up to the next condition
symbol that references the same or a superset of the components referenced by
Cond �

Events can be expressed in terms of �event� predicates by toggling boolean vari�
ables� For example� we write e�� for e� � �e meaning that the current value of e
�denoted by e� in the predicate� is the negation of the old value �denoted by e in
the predicate� �AH�
� GSB���� The old value of a variable e at a time t is de�ned
as the limit from the left limu�te�u� for this variable� i�e� as the value just before
t�

Note that an arrow from A to B can in general be labeled with the conjunction
of a part of an action body qi of A and a part of an action guard pj of a di�erent
action of B� This may be the case if the current values speci�ed for the output
from A to B are relevant for pj�

A qualitative state in a hybrid system is characterized by a set of trajectories that
are allowed for the variables in that state� Therefore� the condition after an action
in a HySC not only determines the next qualitative state� but it also speci�es
how input and controlled variables of the component are expected to evolve in
this qualitative state� Controlled variables may only evolve continuously� because
in our view discontinuities may only be caused by qualitative changes� which in
turn result from actions�

HySCs can also be used to specify timing requirements like �at least time ts passes
between the arrows a and b�� as proposed in �Sch��� for timed MSCs� The way
to specify these requirements is to add an observer component that synchronizes
with the observed component and that has a private variable� which evolves in
pace with global time� as speci�ed in the component�s conditions� This private
variable is used to measure the length of time intervals between certain events
used for synchronization�

A timeout can be speci�ed by using a private variable� which also evolves in pace
with global time� and an action guard that becomes true when the variable has
reached a certain threshold� Setting the variable to a certain value corresponds
to resetting the timer� In our example we therefore use the set�timer and timeout
symbols borrowed from MSC��
 to denote this�

High�level HySCs 	HHSCs
� HySCs can be used within HHSCs to specify the
complete behavior of a system� For this complete behavior description HHSCs
provide operators for the concatenation of HySCs� the choice between HySCs
and the iteration of HySCs� The choice is controlled by global conditions� i�e� by
conditions ranging over all components� A branch of a choice in the HHSC may
be taken i� the condition guarding it is currently true� The system behavior
is then determined by the HySC following the branch operator� It must start
with the same condition as the selected branch� Syntactically� the starting point
in an HHSC is represented by an outlined� downward triangle� an end�point �if
it exists� by a �lled� upward rectangle� References to other HySCs appear in
rounded boxes� Conditions are depicted as in basic HySCs� Lines �or arrows�
determine the �road�map�� i�e� the sequence in which the interactions appearing
in the referenced HySCs may occur� Choice is represented by multiple outgoing
edges in the HHSC �see Section ��� for examples��

In this paper we introduce the additional concept of preemption to HySCs�
Graphically preemption is depicted as a labeled� dashed arrow between two HySC
references in an HHSC� Its meaning is that the system behavior is as determined
by the HySC reference that is the arrow�s source� as long as the preemptive predi�
cate� to which the arrow�s label refers� is false� As soon as the predicate becomes
true� the system behavior is as speci�ed by the HySC reference to which the
arrow is pointing� Preemption is widely used in the programming of embedded
systems� We believe that this is a highly important concept� The example in the
next section underlines this� Note� however� that none of the popular graphical
notations for component interaction� such as �IT�
� or �Rat���� o�ers adequate
syntax for the speci�cation of preemption�

� HySCs in Practice

To explain the capabilities and usage of HySCs� we formally specify a non�trivial
example system and discuss the key parts of this speci�cation�

��� An Electronic Height Control System

As example we use an electronic height control system �EHC�� taken from a
former case study carried out together with BMW� The purpose of this system

�

EHC

Filter

bend

sHeight

aHeight

fHeight

resetdReset

Control

D

Figure �� Architecture of the EHC�

is to control the chassis level of an automobile by a pneumatic suspension� The
abstract model of this system� which regards only one wheel was �rst presented
in �SMF���� It basically works as follows� whenever the chassis level sHeight is
below a certain lower bound� a compressor is used to increase it� If the level is too
high� air is blown o� by opening an escape valve� The chassis level is measured
by sensors and �ltered to eliminate noise� The �ltered value fHeight is read
periodically by the controller� which operates the compressor and the escape valve
and resets the �lter when necessary� A further sensor bend informs the controller
whether the car is going through a curve� Periodical sampling of fHeight occurs in
dependence of a timer� which is local to the controller� Besides the environment�
the basic components of the system are the �lter and the controller �see Figure
��� The escape valve and the compressor are modeled within the controller� The
component labeled D introduces a delay and ensures that the feedback between
the �lter and the controller is well�de�ned�

A speci�cation of the EHC with HyCharts� a state�based description technique
for hybrid systems� can be found in �GSB����

��� Speci�cation with HySCs

We specify behavior required by the EHC by using HySCs� First� we present
HHSCs for the top�level requirements� Then� we consider two of the basic HySCs
in detail�

����� High�level HySCs 	HHSCs

The top�level description of the EHC is given by a HHSC� as shown in Figure �
left� On this abstraction level� we distinguish between two scenarios� the car is
either inside a curve or going straight� The behavior inside a curve is characterized
by the HySC inBend� The behavior outside a curve is characterized by the HySC
outBend�

Preemption� The EHC switches between these two behaviors each time the
boolean value provided by the variable bend � which is controlled by the environ�
ment� is toggled� In other words� toggling bend is a preemption event� To describe

�

n2bb2n

inBend

inBendC

outBend

outBendC

hysc EHCroot

outBendC

i2i i2o o2o

inTol

o2i

outTol

hysc outBend

inBendC � bend � True inTol � d
dt
aHeight � �

outBendC � bend � False outTol � d
dt
aHeight �� �

b�n � n�b � bend��

Figure � The HySCs EHCroot and outBend�

this situation we use the preemption mechanism that we have introduced in Sec�
tion �� Recall that we use a special kind of arrows� preemption arrows� to denote
preemption in HHSCs� As explained above� they are represented visually by a
dashed arrow connecting a source HySC reference to a destination HySC refer�
ence� and are labeled by the preemptive predicate� Their semantics is given in
Section � Intuitively� any pre�x of the traces described by the source HySC
reference may be followed by a time instant at which the preemptive predicate is
true and then by a trace of the destination HySC reference� The labels inBend
and outBend in the HySC boxes� i�e� the boxes with the rounded edges� refer to
further HySCs� The labels inBendC and outBendC in the angular condition boxes
refer to the condition predicates bend �True and bend �False� where variable
bend signals whether the car is in a curve� The labels b�n and n�b both stand
for the event predicate b�n� n�b� bend��� i�e� for the occurrence of an event
which toggles the value of bend �see Section ��� Note that for easier reference we
also give the de�nition of the condition and event predicates in a box below the
HySCs in Fig� and the following �gures�

	Nondeterministic
 choice� The HHSC outBend describes the behavior of
the EHC as long as the car is outside a curve �Fig� � right�� On this level
we use the nondeterministic choice operator� graphically depicted as branching
arrows� to distinguish between two cases� In the �rst case� the compressor and
the escape valve are o�� because the value of fHeight � which was read last� was
inside the tolerance interval� A further choice operator splits this case into two
sub�cases� If fHeight remains inside the interval� then the behavior is given by
the HySC i�i� If the chassis level gets outside the interval� then we have a
behavior as described by the HySC i�o� The second case describes the behavior

�

inTol

up down

i2u i2d

outTol

hysc i2o

outTol

inTol

u2i d2i

downup

hysc o2i

inTol � d
dt
aHeight � � up � d

dt
aHeight � �

outTol � d
dt
aHeight �� � down � d

dt
aHeight � �

Figure �� The HySCs i�o and o�i�

if compressor or escape valve are on� because of the last value of fHeight being
outside the tolerance interval� This part of the HySC is symmetric to the �rst
one�

The labels inTol and outTol in the HySC refer to the predicates d
dt
aHeight � �

and d
dt
aHeight �� �� respectively� which characterize global states of the system�

Variable aHeight �actuator height� models how the chassis level is in�uenced
by the compressor and the escape valve� If the derivative of aHeight is zero�
i�e� aHeight remains constant then the chassis level is not modi�ed by the two
actuators� the compressor and the escape valve�

Feedback� After the behavior speci�ed by the HySCs i�i� i�o� o�i and o�o is
�nished� a new cycle starts in which we again have to distinguish the cases from
above� This is modeled by the feedback arrows in the HySC leading from the
bottom of it up to those points in the HySC from where the following behavior
must continue� Thus� feedback allows us to specify in�nite behavior�

Finite Behavior� The HHSCs i�o and o�i in Fig� � are examples for HySCs
that do not specify in�nite behavior� Instead of feedback arrows� an arrow leading
to a black triangle is drawn in them to mark their end�

This completes the exposition of the basic features of HHSCs� Now� we continue
with the description of basic HySCs�

	�

Filter D Control

inTol

down

inside

t_o

setgreater

a_const

abv

hysc i2d

Filter D Control

inTol

down

inside

abv

greater

a_const

t+s

hysc i2d

a const � d
dt
aHeight � � � w � ws �

d
dt
w � 	

inTol � d
dt
aHeight � � abv � fHeight � � ub

inside � fHeight � �lb� ub� t o � w � ws

greater � fHeight � ub set � w� � �
down � d

dt
aHeight � � t� s � w � ws � w� � �

Figure
� The HySC i�d and its reduction without timeout arrows�

����� Basic HySCs

All the basic HySCs referenced directly or indirectly by HHSC outBend describe
the behavior of the EHC in the interval between two expirations of the Controller�s
timer� In the following we will analyze HySC i�d in detail� Furthermore� we will
explain HySC inBend�

The HySC i�d describes the scenario in which the chassis level increases from
within the tolerance interval to a value above the upper bound �Fig�
� left�� It
appears in the right branch of HHSC i�o �Fig� �� left��

Condition predicates� The HySC starts with the condition box labeled inTol

�see Fig�
� left�� As mentioned in the previous section this label refers to
predicate d

dt
aHeight � �� Because the condition box ranges over all compo�

nents of the diagram it is a global condition� The following conditions inside

and a const range over only one component� Hence� they are local conditions�
They add some more detail on the evolution of the variables� Label inside
refers to predicate fHeight � �lb� ub�� where lb and ub are constants denoting
the lower and upper bound of the tolerance interval� Label a const stands for
d
dt
aHeight � � � w � ws �

d
dt
w � 	� The �rst conjunct of this condition means

that the chassis level is not modi�ed by aHeight � the second conjunct means that
variable w is less than constant ws� the sampling period� and the third conjunct
provides that w evolves in pace with the global time� i�e� it is a clock variable or
a timer� No local predicate is given for component D� By convention this means

		

that it implicitly has local predicate True�

Events� The very moment fHeight reaches the upper bound of the tolerance
interval is given by the horizontal arrow labeled by abv� which stands for event
predicate fHeight � � ub�

After the event abv has occurred� the chassis level is above the tolerance interval�
Again� this property �or interval invariant� is given by a local condition predicate�
the condition predicate greater� which stands for fHeight � ub�

Timers� The control component senses that the chassis level is too low� only
when the timer has expired� i�e�� with some delay� As a consequence� neither the
escape valve� nor the compressor are actuated before the expiration� Correspond�
ingly� the local condition a const continues to hold for the controller�

In the diagram we draw the timeout and set�timer arrows t o and set borrowed
from MSC��
 to represent an event the control component sends to itself� Pred�
icate t o stands for w � ws� i�e� the timer has reached the threshold� and set

stands for w� � � which starts a new sampling period by resetting the timer�

On the level of semantics these arrows can be reduced to a single arrow labeled
t�s pointing from the axis of the control component to itself �see Fig�
� right��
The label refers to event predicate w � ws � w� � ��

Scoping of conditions� As mentioned previously� conditions remain valid until
the next condition on the same or on a higher level of hierarchy is given� Thus�
before the timer has expired� the overall behavior of the EHC still has to satisfy
the global condition inTol� because no other global condition occurred up to that
point� Correspondingly� the set of behaviors characterized by the conjunction of
the predicates inside � a const and by greater � a const is a subset of the
behaviors characterized by inTol�

In�nite continuous behavior� In the context of hybrid systems it is sometimes
necessary to specify analog behavior that lasts forever� For instance� the behavior
speci�ed by HySC inBend which is referenced by HHSC EHCroot �Fig� � left�
may last forever� if the car remains in a curve forever� To allow the speci�cation
of in�nite continuous behavior we do not add a new construct� but introduce
a macro that allows to specify it comfortably and that is reduced to primitive
constructs� Fig� �� left� shows the HySC inBend with the macro � to denote
that it lasts forever� The macro is a notational shorthand for a HHSC with
feedback that iterates a �nite but arbitrarily long basic HySC with the required
continuous behavior� The HHSC for the example is given in Fig� �� middle� The
iterated HySC is depicted in Fig� �� right� The two events t set and t out

result from introducing a new private variable t to component Control which
is not used elsewhere and which is used to specify a non�deterministically set
timeout� Of course the variable could also have been introduced to any of the
other components�

	�

88 8

Filter D Control

hysc inBend

inBendC

ac

inBendC

iBbasic

hysc inBend

inBendC

Filter D Control

hysc iBbasic

inBendC

t_out

t_set

ac+td

inBendC � bend � True

ac � d
dt
aHeight � � t set � t� � �

ac� td � ac � �t � �	 t out � t � �

Figure �� The HySC inBend with macro �left� and its reduction to primitives
�middle and right��

Note that the HySC speci�cation we have given is not complete for the EHC�
Instead it de�nes a set of required behaviors� To extend it to a complete speci�ca�
tion we would furthermore have to consider scenarios in which fHeight leaves and
enters the tolerance interval several times within one sampling interval� Using
HHSCs with choice and feedback this is straightforward�

� Semantics of HySCs

Suppose we are given a set of HySCs with the components �or instances� C�� � � � �

Cn� For each component Ci� we assume its interface� i�e� the set of input and
controlled variables� to be given�

In the following let Si be the data space associated with the controlled variables
of component Ci� For uniformity� let S� be the data space associated with the
variables controlled by the environment and S � S�	� � �	Sn� Then we de�ne
the semantics of a HySC M to be a set ��M ��
 SR� 	 R

�
� of pairs ��� t� where

� � R��S is a piecewise smooth function �also called a dense communication
history or dense stream� that exhibits the behavior required by M inside the time
interval ��� t�� If t � � then the behavior of � is constrained by M along the
whole time axis� i�e�� the HySC M never terminates� Such HySCs may be de�ned
by using� for example� feedback�

We say that a function f � R��Q is piecewise smooth i� every �nite interval on
the nonnegative real line R� can be partitioned into �nitely many left closed and

	�

right open intervals such that on each such interval f is in�nitely di�erentiable
�i�e�� f is in C�� for Q � R or f is constant for Q �� R� In�nite di�erentiability
is required for convenience� It allows us to assume that all di�erentials of f are
well�de�ned� A tuple of functions is in�nitely smooth i� all its components are�
We write QR� to denote the set of piecewise smooth functions from R� to the
set Q� Furthermore� we write QA for the set of functions from A to Q that are
piecewise smooth on the interval A� Intuitively� a dense communication history
is obtained by pasting together smooth pieces� The time instants at which the
pieces are pasted together are those at which events occur�

Let O be the projection of S�	� � �	Sn on the output variables� i�e� the data
space of the output variables� and let P be the projection of S�	� � �	Sn on the
private variables� i�e� the data space of the private variables of the system� With
this bit of structure on the data�space� we can also interpret the semantics of
a HySC ��M �� as a relation between the dense histories of the input variables�
the dense histories of the private and output variables and the considered time
intervals� i�e�� ��M ��
 S

R�

� 	 �P 	 O�R� 	 R
�
� � To model analog behavior in a

well behaved way� the relation ��M �� has to be time guarded� i�e� for any moment
of time u � R� � the values of the variables controlled by the components are
completely determined by the values of the input variables until that moment�
Formally� for all ��� �� � S

R�

� and u � R� if ������u� � ������u� then�

f�� j ���� ��� � ��� ��M ��g����u� � f�� j ���� ��� � ��� ��M ��g����u�

where by ��� we denote the restriction of a dense stream to the time interval ��
Restriction is extended to tuples and sets of dense streams in a componentwise
and pointwise style� respectively� By ��� we denote the projection of a tuple �or
set of tuples� on the �rst two components� Note that we do not demand that the

relation given by ��M �� is total in the set of input streams S
R�

� � This takes into
account the fact that a single HySC describes a system�s response to a particular
input from the environment� Only if an HHSC is used to specify the behavior of
a system completely� i�e� for all possible inputs� it must result in a relation that
is total in the input streams�

A note on zenoness� Speci�cations which demand that a system performs
in�nitely many discrete moves within a �nite interval are called zeno� Like with
other powerful description techniques for hybrid systems� such as hybrid au�
tomata �ACH����� it is possible to write down zeno speci�cations with HySCs�
For instance� zenoness can result from specifying that the system always reacts
discretely when a continuous input signal crosses a boundary value� In a high�
level speci�cation technique we do not want to exclude such speci�cations which
certainly make sense for many input signals� Hence� zeno behavior has to be ruled
out later in the design process� Note that on the level of semantics zeno behav�
ior is excluded� since streams containing in�nitely many discontinuities within a
�nite interval are not piecewise smooth�

	

��� Predicates

Condition predicates� Before we turn to the de�nition of the semantics of
HySCs� some thoughts about the semantics of the condition and event predicates
are necessary� The semantics of a condition predicate pK ranging over the com�
ponents Ck� k � K� for a set K of indices� is a relation ��pK��

S
A�Int I

A
K	 �PK	

OK�
Ac� where IK is the data space of the input variables of the components in

K� without those variables that are output by other components in K� OK is
the data space of their output variables and PK is the data space of their private
variables� Int is the set of possibly in�nite right�open intervals starting from
zero� Int � f��� t� j t � R� nf�gg�R� For a set X� the notation XAc denotes the
set of piecewise smooth functions XA which furthermore are continuous� hence
XAc XA�

This type of the predicates� semantics permits discontinuities in the input� while
the controlled variables must still evolve continuously� This re�ects that discrete
jumps in the evolution of the controlled variables are interpreted as events� hence
they are only allowed when an event arrow is drawn in the HySC� Furthermore�
the type allows that a condition predicate speci�es �nite behavior of varying
length� For instance� this is useful to model timeout conditions depending on a
skewed clock� like in the condition c � 	 � �c � ����� 	�	�� Note that condition
predicates may constrain the evolution of the input variables� This is justi�ed�
because a HySC only speci�es a system�s behavior for those cases in which the
environment behaves as expected�

The condition predicate that holds in a certain section of the abstract time axes
of all the components in a HySC can be derived as the conjunction of all� local�
and hierarchic condition predicates that are valid in this section� The derived
condition ranges over all the components� therefore its semantics is a relation over
the evolution of the input variables from the environment and all the controlled
variables of the system�

Event predicates� The semantics of the event predicates e which label the ar�
rows is a relation between the old and the new values of the variables ��e�� S	S�
where we demand that ��e�� is topologically closed� This is necessary to guarantee
that there exists a minimal time t at which the predicate becomes true for the
�rst time� The semantics of simultaneous events� which are graphically denoted
by arrows emanating from or pointing to a dashed region of the abstract time
axis of a component in a HySC� is de�ned as the conjunction of the individual
predicates of all the simultaneous events within the dashed region under consid�
eration� Those variables for which the event predicates do not specify new values
remain constant� The timeout and set�timer symbols are reduced to event predi�
cates over private variables in the way explained in Section � and in the example
of Section ��

	�

��� Basic HySCs

The basic idea behind the semantics of a HySC M is that it de�nes a set ��M �� of
tuples such that for each ��� t� � ��M �� the dense history � behaves inside the time
interval ��� t� as required by M and arbitrarily outside of ��� t�� In the de�nition
of ��M �� it is quite useful to generalize the lower bound � to an arbitrary value
u � R� and to work with sets ��M ��u where the dense histories � are constrained
inside the time interval �u� t�� However� we have to take care to maintain the
quite natural assumption of HySCs that the time�s origin is at the top of their
vertical time axis� In the following paragraphs we de�ne ��M ��u inductively on the

structure of M � Then obviously the semantics of a HySC M is ��M ��
def
� ��M ����

Note that the semantics de�nition we will give is compatible to the formalism of
HyCharts� de�ned in �GSB���� HyCharts are a graphical formalism for the state�
based speci�cation of hybrid systems� Thus� HySCs� which allow interaction� or
event�based speci�cations� can be applied in conjunction with HyCharts in the
development process�

Neutral HySC� HySCs without events act as the neutral elements with respect
to our semantics�

��M ��u
def
� f��� u� j � � SR�g

Hence� all the conditions in the HySCs are ignored� and no time elapses in a
neutral HySC�

Single event HySC� Suppose p is the condition predicate that results from
the conjunction of all the condition predicates that are valid in the section of the
HySC before event e happens� Note that e may be the conjunction of a set of
simultaneous events� ��M ��u is de�ned as follows�

��M ��u
def
� f��� t� � SR� 	 R� j

t � minfv � u j �limx�v��x�� ��v�� � ��e��g �

�u����t�u� � ��p������t�u� g

where min �
def
� � and �u�x�

def
� ��u � x�� To constrain � inside �u� t� without

violating the time�s origin assumption we constrain the translation �u of � by
the condition predicate p inside the interval ��� t� u�� Note that the restriction
of ��p�� to ��� t � u� only contains streams that are de�ned on ��� t � u�� If ��p��
only contains shorter streams� the restriction is empty� Longer streams are cut
at t� u�

The de�nition requires that a �nite� non�zero amount of time passes before the
event becomes true� The HySC then terminates at the �rst time instant t at which
e is true� Provided e does not hold initially� this �rst time instant� de�ned as
the minimum of a set� is guaranteed to exist� because ��e�� is topologically closed�

	

�See �GS��� for a proof under similar assumptions�� Demanding that some time
passes before the event occurs is motivated by the visual representation� If we
wanted to specify that no time passes between two consecutive events� we would
have to use simultaneous events� graphically indicated by a coregion�

Note that � �� R� and therefore if t � � then ��M �� � �� Thus� the seman�
tics requires that the event eventually occurs� which is also motivated by the
visual representation� The event arrow in the diagram would be misleading� if
we allowed it to never occur�

Sequential composition� The sequential composition of the HySCs M� and
M�� textually denoted as M��M�� is syntactically well formed only if M� ends
with the global condition with which M� starts� In particular� this includes the
case that M� and M� are successive parts of a single� larger HySC� The semantics
is given only for well formed terms�

��M��M���u
def
� f��� t� � SR�	R�� j �v � R� � ��� v� � ��M���u � ��� t� � ��M���vg

Note that whereas the HySC M��M� may describe an in�nite computation �t �
R
�
� � any of its pre�xes exhibiting the behavior required by M� has to be �nite

�v � R���

��� HHSCs

Nondeterministic choice� The semantics of a rami�cation of the HySCs M�

and M�� textually written as M� �M�� is given by the union of the semantics of
each alternative�

��M� �M���u
def
� ��M���u � ��M���u

Feedback� The semantics of a feedback arrow in an HHSC is de�ned as the
greatest �xed point of the following equation�

��M ���u � ��M � �M ����u

where M � textually denotes the feedback of HySC M � The �xed point is well�
de�ned� because the monotonicity of the de�ning equation ensures its existence�

Preemption� Suppose the HySC M� may be preempted by the event e and
continued by the HySCM�� textually written asM� eM�� To de�ne its semantics�
let ��M ��vu be the set obtained by �cutting� the histories ��� t� � ��M ��u at time
point v � t such that � is constrained by M within the halfopen interval �u� v��
Formally�

��M ��vu � f��� v� j ���� t� � ��M ��u� ���u�v� � ���u�v� � v � tg

	�

Then the associated semantics is de�ned as follows�

��M� eM���u
def
� f��� t� � SR�	R�� j �v � R

�
� �

v � minfy � u j �limx�y��x�� ��y�� � ��e��g �

��� v� � ��M���
v
u � ��� t� � ��M���vg

where for any M we de�ne ��M ���
def
� SR� 	 f�g� The de�nition constrains the

behavior according to HySC M� as long as e does not hold� Starting from the
�rst time instant where e is true� the behavior is as speci�ed by HySC M�� Note
that the behavior at the �rst time instant where e holds is no longer constrained
by M�� This is reasonable� because preemptive events typically falsify the current
condition predicate of M�� As in the semantics of single event HySCs some time
must pass before e holds� In contrast to the semantics of single event HySCs it
is allowed that e does not occur� In this case the semantics speci�es that the
behavior is according to M� forever�

Preemption with feedback� Suppose that a HySC M is restarted by an event
e� textually written asM�e�� Its corresponding semantics is given by the greatest
�xed point of the following equation�

��M�e��u � ��Me�M�e���u

Again� the �xed point is well�de�ned� because of the monotonicity of the de�ning
equation�

� Conclusion

Borrowing from the standardized syntax of MSC��
� we have introduced a de�
scription technique that allows the system developer to specify the communica�
tion between the components of a hybrid system graphically� Basically� this is
achieved by giving precise meaning to the conditions and events in HySCs� Moti�
vated by the speci�c needs of embedded systems we have� furthermore� included
a construct into our de�nition of HHSCs that allows us to specify preemption�
We demonstrated the usage of HySCs along a non�trivial example and de�ned
their formal semantics� HySCs are more abstract than drawing trajectories of
the system variables� and are more detailed than other forms of graphical inter�
action speci�cations that do not handle continuous variables� e�g� �IT�
� Rat����
Thus we believe they are a good supplement to state�based hybrid techniques
like hybrid automata or HyCharts �ACH���� GSB���� just as ordinary sequence
diagrams are bene�cial in the development of discrete systems� In particular�

�This construct is necessary to give a semantics to HySC EHCroot from our example in
Section ��

	�

they seem to be well�suited for bridging the gaps between requirements capture�
speci�cation� and later phases of system development� Note that� apart from
their syntax� HySCs are substantially di�erent from standard MSCs�

Acknowledgment� We thank Manfred Broy� Jan Philipps and Olaf M�uller for
their constructive criticism after reading a draft version of this paper�

References

�ABHL��� T� Amon� G� Borriello� T� Hu� and J� Liu� Symbolic timing veri�cation
of timing diagrams using presburger formulas� In Proc� of the ��th
Design Automation Conference� ACM� 	����

�ACH���� R� Alur� C� Courcoubetis� N� Halbwachs� T�A� Henzinger� P��H� Ho�
X� Nicollin� A� Olivero� J� Sifakis� and S� Yovine� The algorithmic
analysis of hybrid systems� Theoretical Computer Science� 	�������
	����

�AH�
� R� Alur and T�A� Henzinger� Reactive modules� In Proc� of the ��th
Annual Symposium on Logic in Computer Science� IEEE Computer
Society Press� 	��
�

�BHKS��� M� Broy� C� Hofmann� I� Kr�uger� and M� Schmidt� A graphical
description technique for communication in software architectures�
Technical Report TUM�I����� Technische Universit�at M�unchen� 	����

�BMR��
� F� Buschmann� R� Meunier� H� Rohnert� P� Sommerlad� and M� Stal�
A System of Patterns� Pattern�Oriented Software Architecture� Wiley�
	��
�

�DA��� R� David and H� Alla� Petri Nets and Grafcet� Tools for modelling
discrete event systems� Prentice Hall� 	����

�Die�
� C� Dietz� Graphical formalization of real�time requirements� In
Proc� Formal Techniques in Real�Time and Fault�Tolerant Systems
�FTRTFT	
��� LNCS 		��� Springer Verlag� 	��
�

�FJ��� K� Feyerabend and B� Josko� A visual formalism for real time re�
quirement speci�cations� In Proc� AMAST Workshop on Real�Time
Systems and Concurrent and Distributed Software �ARTS	
�� LNCS
	��	� Springer Verlag� 	����

�GS��� R� Grosu and T� Stauner� Modular and visual speci�cation of hybrid
systems � an introduction to HyCharts� Technical Report TUM�I���	�
Technische Universit�at M�unchen� September 	����

	�

�GSB��� R� Grosu� T� Stauner� and M� Broy� A modular visual model for
hybrid systems� In Proc� Formal Techniques in Real�Time and Fault�
Tolerant Systems �FTRTFT	
��� LNCS 	�
� Springer�Verlag� 	����

�IT�
� ITU�TS� Recommendation Z�	�� � Message Sequence Chart �MSC��
Geneva� 	��
�

�Lam��� L� Lamport� Hybrid systems in TLA�� In R�L� Grossman� A� Nerode�
A�P� Ravn� and H� Rischel� editors� Hybrid Systems� LNCS ��
�
Springer�Verlag� 	����

�LSVW�
� N�A� Lynch� R� Segala� F�W� Vaandrager� and H�B� Weinberg� Hybrid
I O automata� In R� Alur� T�A� Henzinger� and E�D� Sontag� editors�
Hybrid Systems III� LNCS 	�

� Springer�Verlag� 	��
�

�Rat��� Uni�ed modeling language� version 	�	� Rational Software Corpora�
tion� 	����

�Sch��� I� Schieferdecker� Proposal for time and performance in MSCs� In
Proc� ITU�T Meeting SG��� Geneva� 	����

�SHB�
� B� Sch�atz� H� Hu!mann� and M� Broy� Graphical Development of
Consistent System Speci�cations� In J� Woodcock and M��C� Gaudel�
editors� FME	
��Industrial Bene�t and Advances in Formal Methods�
volume 	��	 of LNCS� Springer� 	��
�

�SMF��� T� Stauner� O� M�uller� and M� Fuchs� Using HyTech to verify an
automotive control system� In Proc� Int� Workshop on Hybrid and
Real�Time Systems �HART	
�� LNCS 	��	� Springer�Verlag� 	����

�TMI��� The MathWorks Inc� MATLAB� http���www�mathworks�com�

products�matlab�� 	����

�Wie�
� R� Wieting� Hybrid high�level nets� In Proc� of the �

� Winter
Simulation Conference� Coronado� California� USA � Charnes� pages
������� 	��
�

