
Using Application Domain Ontology to Construct an Initial System Model

Leonid Kof
Fakulẗat für Informatik, Technische Universität München,

Boltzmannstr. 3, D-85748 Garching bei München, Germany
kof@informatik.tu-muenchen.de

Abstract

This paper describes a case study on application of natu-
ral language processing in very early stages of the require-
ments engineering. In our previous work [7] we have shown
how natural language processing can be applied to build
an application domain model from the requirements docu-
ment. In this paper we want to go one step further. We want
to build an initial system model. To do so, we match the
extracted application domain model and the meta model of
the specification formalism. It turns out that such a match-
ing is possible and it yields a sensible model, extensible to
a full–fledged specification.

1 Introduction

Precise specification is a key success factor for a soft-
ware project. Formal specification is ideal for the software
developer, but it is not reasonable to require the author of
the requirements document, who is seldom familiar with
formal methods or even with the concept of “specification”,
to provide a formal description. State of the art are informal
requirements documents written in natural language.

Using techniques described in section 2, we can extract
a domain ontology from the text. The ontology itself is a
valuable basis for communication between the domain ex-
pert and the requirements engineer. Though, to build an
application, we have to go further and to map the extracted
ontology to implementable concepts, like components, mes-
sages etc.

The first approach trying to extract domain knowledge
and to map domain concepts to data types was that by Ab-
bott [2]. It declares common nouns to data types, verbs
to operators etc. This assumption renders the analysis re-
sults highly dependent on the writing style. Our aim is
also to eliminate the drawbacks of Abbott’s approach. We
use other techniques, that seem more promising, to classify
terms used in the text.

The primary aim of this paper is to show how the results

of text analysis can help in building a system model. As in
[7], our aim is also to discover weaknesses of the require-
ments document and to guide the writer to better require-
ments specification.

The paper is organized in the following way: section 2
introduces the methods of the ontology extraction and the
tools implementing these methods, section 3 describes the
case study and section 4 sums up the results.

2 Ontology Extraction

This section is a short summary of [7]. It describes just
the techniques used for ontology extraction. The extraction
results are presented in section 3.1.

2.1 Subcategorisation Frame Extraction

A verb subcategorization frame is a predicate with its
arguments (subject and objects). Subcategorization frames
are used by the tool ASIUM [6] for term classification and
clustering. We used the parser by Michael Collins [5] to
produce the parse tree. We cut subtrees according to certain
heuristics in order to extract application domain concepts.
A description of the heuristics can be found in [7].

2.2 Taxonomy Building

The tool ASIUM [6] is based on the assumption that con-
cepts used in the same grammatical context must be related.
It builds clusters of nouns occurring in the same context1

and looks for common words in different clusters. There
are different measures for cluster overlapping. If overlap-
ping of two clusters exceeds the previously set threshold,
the tools asks the user if the clusters should be joined.

The user can join such clusters to larger ones. When
joining clusters, the user can introduce a generic term de-
scribing both joined clusters. In this way the user builds a
tree of “is-a” relations, which is the domain taxonomy.

1context = verb subcategorization frame



2.3 Association Mining

The tool KAON [8] borrows its main idea from data
mining: It considers the text as a database transaction and
counts how often certain concepts occur in the same trans-
actions. It is also possible to force it to use finer grade trans-
actions, just by splitting the text into smaller chunks, each
chunk representing a new transaction. The tool offers an
own concept extraction facility, based on Part–of–Speech
tagging and extraction of tag patterns.

The user can also set the minimal support and confidence
values that make associations interesting. For every found
association the user can decide if it should be included in
the ontology. Given a taxonomy, KAON generalizes the
association rules as described in [9].

3 Case Study

The steam boiler specification [4] was chosen for the
case study, because this specification was also used as a
benchmark for different formal specification techniques.
The specification describes a system consisting of the boiler
itself, a valve, four pumps and a couple of measuring de-
vices. The goal of the control program is to maintain cer-
tain level of water in the boiler in order to avoid the damage
of the boiler. The control program should be fault tolerant
and maintain the proper water level despite failures of some
hardware units.

The case study was conducted in the following way: we
started with the application domain ontology extracted in
[7] and with the AutoFocus meta model shown in figure
1. We tried to map the extracted concepts and associations
to the concepts offered by meta model. This mapping is
done manually, but is guided by the extracted ontology. If
some parts of the extracted ontology were not clear enough
to be mapped, we looked for the corresponding chunks of
the specification text for clarification.

3.1 Extracted Ontology

This taxonomy was extracted using the techniques de-
scribed in sections 2.1 and 2.2:

• Message sources

– water-level-measuring-unit

– steam-level-measuring-unit

– pump-controller

• Message receivers

– physical-unit

– control unit

– pump

• Potentially failing hardware

– water-level-measuring-unit

– steam-level-measuring-unit

– pump

– control-unit

– pump-controller

• Operation modes

– waiting-state

– emergency-stop-mode

– normal-mode

– degraded-mode

– initialization-mode

– rescue-mode

• Messages

– signal

– message

– message-stop

– message-steam-boiler-waiting

– message-open-pump

– message-close-pump

– message-pump-failure-detection

– . . .

• Actuators

– valve

– pump

• Failures

– failure

– pump-failure

– transmission-failure

– pump-controller-failure

– water-level-measuring-unit-failure

– steam-level-measuring-unit-failure

This taxonomy was also enriched by associations. Every
association involves two concepts and has the form like

• transmission-failure CAUSES emergency-stop-mode

• pump-controller CONTROLS pump

• message-pump-control-repaired-acknowledgement
IS-SENT-BY control-unit

• . . .

For the sake of brevity we do not want to list all the associ-
ations here.

2



Condition

Input

Output

Action

TransitionSegment State

InterfacePoint

Port Channel

Automaton

ComponentLocalVariable

Figure 1. AutoFocus Meta Model

3.2 AutoFocus Meta Model

AutoFocus [1] is a CASE tool for modeling distributed
reactive systems. It models a system as a set of components,
connected by channels and communicating via message-
exchange. Figure 1 shows the concepts used to build Aut-
oFocus models and relations between them. In the diagram
we omit the multiplicity specifications and role names, be-
cause we can not use them to map the results of text mining
anyway.

We want to use this meta model in the following way:
first of all, we determine the components building up the
system (class “Component” in figure 1). Then, we deter-
mine communication ways (channels, class “Channel”) be-
tween the components. To specify the component behavior,
we attribute an automaton and a set of local variables (class
“LocalVariable”)

3.3 Matching the Ontology and the AutoFocus
Meta Model

In this section we describe the process of matching the
extracted ontology and the AutoFocus meta model. In the
first step we try to map every extracted conceptclassto an
AutoFocus concept. In the second step we map different
associations to suitable concepts.

3.3.1 Messages

It is impossible to map the messages to AutoFocus con-
cepts. “Message” or a similar concept does not exist in
AutoFocus. Although AutoFocus uses message exchange
as communication means, the channels are untyped and we
can not define an alphabet for every channel. One can also

see in figure 1 that the channel is only related to its ports
(end points) and to a component, but there is no concept
of channel alphabet. To the contrary, “message” is used in
the specification text in the sense “element of the channel
alphabet”, so it can not be mapped to AutoFocus model.

3.3.2 Components and Channels

To model the components (class Component in figure 1),
we can pick several categories of our taxonomy: Message-
sources and receivers, actuators and “potentially failing
hardware” are candidates for components. These categories
are not disjoint and we get the following set of components:
{steam-level-measuring-unit, water-level-measuring-unit,
valve, control-unit, pump-controller, pump}
This set also shows a limitation of our text mining approach:
According to the specification text, we need four pumps
and four pump-controllers, but this does not follow from
the results of our text analysis. To extract this information,
we would need precise semantics evaluation and not just
syntax– and word-frequency–based analysis.

In the next step we want to connect the components by
channels. There is no category in our extracted taxonomy
that could correspond to channels. There is also only one
association between concepts that can be used to deter-
mine channels: “pump-controller” CONTROLS “pump”.
This implies a channel from the pump-controller to the con-
trolled pump. For other channels we have to use the sen-
tence

The program communicates with the physical-
units through messages which are transmitted
over a number of dedicated lines connecting each
physical-unit with the control-unit.

3



Figure 2. Components and channels

Such a sentence is not yet analyzable with the currently
available text analysis tools. To decide about the direc-
tion of the channels, we can use the classification of the
physical-units as message-senders and message-receivers
(see section 3.1). This yields the component structure
shown in figure 2. (We instantiate just two pumps and
pump-controllers in order not to over–complicate the pic-
ture. The extension to four pumps is straightforward.) The
box attached to control-unit in figure 2 lists the local vari-
ables of control-unit. We will explain the origin and mean-
ing of local variables in section 3.3.4.

3.3.3 Components States

When mapping our extracted concepts to states (class
State in figure 1), we have to decide which extracted
state belongs to which component. First of all, there are
two kinds of states: “operation modes” and “failures”.
Some states can be assigned by the means of extracted
associations: For example, we have associations of the
kind “pump-failure” IS-FAILURE-OF “pump”. The other
failures can be assigned by the means of their names. The
only failure that can not be assigned in such a way is
“transmission-failure”, so we assign it to the control-unit.
“Operation modes” are states of the control-unit. So, we
get the following set of states for the control-unit:
{initialization-mode, normal-mode, waiting-state,
degraded-mode, rescue-mode, emergency-stop-mode,
transmission-failure}

All the components that can have a failure and that got
“failure” as a state in the previous step also need a “work-
ing” state as a counterpart of “failure”. For example, for the
pump-controller we get the states and transitions shown in
figure 3. In such a way all the components but valve get
their internal states. According to the results of text mining,

Figure 3. State transition diagram for pump-
controller

valve has no failure and is not involved in any association,
so it remains stateless.

3.3.4 State Transitions

Associations Involving Operation Modes. In the very
first step of state transition modelling we model the transi-
tions between the “failure” and the “working” states. As the
results of text mining do not provide any further information
about these transitions, we model them asε–transitions (see
also figure 3).

To model other state transitions, we use the associations
between concepts, extracted from the text. These associa-
tions often involve an operation mode and a message. This
yields, however, only a half transition: we lack either the
start or the destination mode. For example, the association

“normal-mode” IS-ENTERED-AFTER
“message-physical-units-ready”

contains only information about the input message and the
goal state, which is not enough to construct a state transi-
tion. To solve this problem, we look for the lines of our
specification text where certain association occurs. Due to
the structure of the specification text, we get the start state
in such a way.

In the initialization-mode we get following associations:

• “normal-mode” IS-ENTERED-AFTER “message-
physical-units-ready”

• “message-program-ready” IS-SENT-IN
“initialization-mode”

• “message-program-ready” IS-SENT-UNTIL
“message-physical-units-ready”

The first association can be translated directly into
a state transition from “initialization-mode” to “normal-
mode” (figure 4). The others give rise to different problems.
The second and the third association can only be inter-
preted as a transition without state change. To stop sending

4



“message-program-ready” when “message-physical-units-
ready” is received, we need an indicator variable showing
that the message-has been received (see also figure 2).

Waiting-state is involved in just one association:

• “waiting-state” WAITS-FOR “message-steam-boiler-
waiting”

This association does not indicate the goal state. The textual
context of the original sentence gives no information either,
so we introduce a new state, called “UNKNOWN”, as the
universal source and sink for such transitions.

When trying to determine in a similar way transitions
from/to “emergency-stop-mode”, we discover following as-
sociations:

• “transmission-failure” CAUSES “emergency-stop-
mode”

• “water-level-measuring-unit-failure” CAUSES
“emergency-stop-mode”

To interpret the second association as a transition, we
introduce the variable “wlmu-failure”2 as a local variable of
control-unit.

Introduction of this variable gives rise to an important
idea: we have to differ between “wlmu-failure” as a state
of the water-level-measuring-unit and “wlmu-failure” as a
failure detected by the control-unit. In general, we have
to differ between real failures and the failures detected by
the control-unit. To indicate the detected failures, we in-
troduce indicator variables to the control-unit. Figure 2
shows three of them: two “pumpX-working” indicators and
“wlmu-failure”. We can easily add more indicators for other
detected failures.

Associations Involving Failures. When considering as-
sociations involving failures, we find three associations not
yet taken into account in our model:

• “transmission-failure” IS-DETECTED-BY-WRONG
“message”

• “wlmu-failure” IS-DETECTED-BY-WRONG
“message-level”

• “pump-controller-failure” IS-DETECTED-BY-
MISSING-REACTION-TO “message-start”

• “message-level-failure-detection” DETECTS “wlmu-
failure”

The first, second and third associations can not yet be
translated into model elements: They require detailed mod-
elling of system behavior, which we can not provide basing

2In the following, we abbreviate “water-level-measuring-unit” as
“wlmu” and “steam-level-measuring-unit” as “slmu”

solely on the results of text mining. We have to know what
a wrong message means (unexpected or something else),
we have to keep record of theshould–water level and we
have to know theshould–reaction to the “message-start”.
The only thing we can model is transmission-failure: as
wrong message can be received in every operation mode,
each mode gets a transition to “transmission-failure” (fig-
ure 4).

The fourth association stems from the following text
fragment:

LEVEL-FAILURE-DETECTION: This message
is sent (until receipt of the corresponding ac-
knowledgement) to indicate to the physical-units
that the program has detected a failure of the
water-level-measuring-unit.

We model this sentence in the following way: If the
variable “wlmu-failure” is set, the control-unit sends the
“message-level-failure-detection”, which we can model in
our state transition diagram (figure 4). To model the
“until”–part of the requirement, we introduce the variable
indicating the receipt of the acknowledgement message (see
also figure 2).

The control-unit sends the “message-level-failure-
detection” to other physical-units. This implies that we have
to introduce a state or a variable “wlmu-failure” to the units
other than control-unit as well.

Associations Involving Messages. The only association
involving messages that is not yet mapped to the model, is
the following one:

• “message-stop”, SENT 3 TIMES, CAUSES
“emergency-stop-mode”

It stems from the sentence

stop: when the message-stop has been received
three times in a row by the program, the program
must go into emergency-stop-mode.

To satisfy this requirement, we introduce counters/indicator
variables, similar to the pump-failures (see figure 2).

Further Specification Steps. We are aware that our
model, presented mainly in figure 4, is not complete.

Following steps has to be done yet:

• Byproducts of mapping text mining results:

– Introduce all the necessary indicator variables
and use them really as pre- and postconditions
of transitions

– Introduce extra states or variables for “. . . -
acknowledgement to stop sending “. . . -
detection” messages.

5



Figure 4. State transition diagram for control-unit

• Other steps, that are necessary, but that can not be done
using solely the results of text mining

– Control the channel alphabets and the directions
of message-flow. Further channels (additional to
those shown in figure 2) can become necessary.

– Eliminate the state “UNKNOWN” and properly
implement state changes

– Implement the state changes on the basis of sys-
tem dynamics (water level etc.) and not only on
the basis of messages

We do not want to go further in the implementation, be-
cause here purely manual work begins. Text mining gives
us no more support. The goal of our work was to show how
far we can get using the results of text mining and what kind
of problems occur when mapping the results of text mining
to the concepts of an existing specification formalism.

4 Conclusion

In this paper we presented a case study showing how to
get from a textual specification to an initial version of for-
mal model. We started with the results of text analysis per-
formed in [7] and with a meta model of the specification
formalism. The results of the text mining were mapped to
the concepts offered by the specification formalism.

Although the result of the modelling is neither complete
nor executable, we do not want to go further: Our goal is
not to build a full–fledged specification, but to show how
far we can get using text mining.

Using the results of text mining, we could get surpris-
ingly far: we modeled the system architecture (components
and connections), internal states of the components and
state transitions. We believe that together with approaches
described in [7] we have a powerful method of requirements
analysis.

Acknowledgements

Here we want to thank Alexander Pretschner, Tobias
Hain, Jan Romberg and Manfred Broy for fruitful discus-
sions and help with AutoFocus modelling.

References

[1] The AutoFocus Homepage. http://autofocus.in.tum.de/index-
e.html, accessed 17.10.2003.

[2] R. J. Abbott. Program design by informal english descrip-
tions. Communications of the ACM, 26(11):882–894, 1983.

[3] J.-R. Abrial, E. B̈orger, and H. Langmaack.Formal Meth-
ods for Industrial Applications: Specifying and Programming
the Steam Boiler Control, volume 1165 ofLNCS. Springer–
Verlag, 1996.

[4] J.-R. Abrial, E. B̈orger, and H. Langmaack. The
steam boiler case study: Competition of for-
mal program specification and development meth-
ods, in [3], 1996. http://www.informatik.uni-
kiel.de/˜procos/dag9523/dag9523.html.

[5] M. Collins. Head-Driven Statistical Models for Natural Lan-
guage Parsing. PhD thesis, University of Pennsylvania, 1999.

[6] D. Faure and C. Ńedellec. Asium: Learning subcategorization
frames and restrictions of selection. In Y. Kodratoff, editor,
10th European Conference on Machine Learning (ECML 98)
– Workshop on Text Mining, Chemnitz Germany, April 1998
1998.

[7] L. Kof. An Application of Natural Language Processing to
Requirements Engineering — A Steam Boiler Case Study.
Contribution to ICSE 2004.

[8] A. Maedche and S. Staab. Discovering conceptual relations
from text. In W.Horn, editor,ECAI 2000. Proceedings of the
14th European Conference on Artificial Intelligence, pages
321–325, Berlin, 2000. IOS Press, Amsterdam.

[9] R. Srikant and R. Agrawal. Mining generalized association
rules. Future Generation Computer Systems, 13(2–3):161–
180, 1997.

6


