
March 14, 2006 15:59 Proceedings Trim Size: 9in x 6in main

UPCOMING AUTOMOTIVE STANDARDS FOR
FAULT-TOLERANT COMMUNICATION:

FLEXRAY AND OSEKTIME FTCOM.∗

C. KÜHNEL AND M. SPICHKOVA

Institut für Informatik,
Bolzmannstr. 3,

D-85748 Garching, Germany
E-mail: {kuehnelc,spichkov}@in.tum.de

A safety-critical system needs fault-tolerant communication between its compo-

nents. This is especially important for automotive domain, as it consists of dis-

tributed real-time systems that are based on the results of the communication.
To realize distributed systems with predictable time behavior the time-triggered

paradigm is used. According to this paradigm, a time-triggered communication

protocol, FlexRay, and an operating system OSEKtime with corresponding com-
munication layer FTCom for the fault-tolerant communication are introduced. In

this paper we present the formal specifications of FlexRay and FTCom that allow

us to argue about their properties in a precise, formal manner and also infer the
collaboration between their properties.

1. Introduction

The trend in the automotive industry to shift functionality from machan-
ics and eletronics to software has been going on for several years now,
but progress seems to have slowed down. Most of the manufacturers have
presented drive-by-wire prototypes, but none of them has entered mass
production. The experiences with increased software in the infotainment
domain have shown severe quality issues. To overcome this, new technology
for distributed fault-tolerant systems, is required.

One major problem today is reliable, deterministic communication for
distributed automotive systems. In this domains two standards for auto-
motive systems have established: FlexRay, a fault-tolerant communication

∗This work was partially funded by the german federal ministry of education and tech-
nology (bmbf) in the framework of the verisoft project under grant 01 is c38. the re-

sponsibility for this article lies with the authors.

1



March 14, 2006 15:59 Proceedings Trim Size: 9in x 6in main

2

network, and OSEK FTCom, a fault-tolerant communication layer for the
OSEKtime OS operating system.

The specified system towards the time-triggered paradigm – both, the
communication protocol and the operating system, are time-triggered. In
a time-triggered system all actions are executed at predefined points in
time. This provides a time behavior that is deterministic: task execution
times and their order, as well as message transmission times are determin-
istic. This property is important for distributed real-time systems, because
for such kind of systems it is possible to prove their time properties with
reasonable effort.

The FlexRay and the FTCom form, together with OSEKtime OS, the
verification framework3 that provides the methodology for the verification
of application properties. We abstract here from the detailed specification
of the OS, as well as from the application components to concentrate on
the representation of the fault-tolerant communication between application
components via FlexRay and FTCom.

To make a formal analysis for FlexRay and FTCom possible, several
aspects of the systems have been formalized11. In this paper, the major
aspects of the formalization are described.

1.1. FOCUS

This paper is based on the formal language Focus4. It was chosen since it
provides means for modeling concurrent, distributed system and allows to
specify them in formal manner.

The central concept in Focus are streams, that represent communica-
tion histories of directed channels. Streams in Focus are functions mapping
the indexes in their domains to their messages. For any set of messages M ,
M ω denotes the set of all streams, M∞ and M ∗ denote the sets of all in-
finite and all finite streams respectively. M ω denotes the set of all timed
streams, M∞ and M ∗ denote the sets of all infinite and all finite timed
streams respectively. A timed stream is represented by a sequence of mes-
sages and time ticks (represented by

√
), the messages are also listed in

their order of transmission. The ticks model a discrete notion of time.
An empty stream is represented in Focus by 〈〉. 〈x 〉 denotes one-

element stream and #x denotes the length of the stream x . The Focus

predicate disjunct(s1, . . . , sn) is true, if all streams s1, . . . , sn are disjunct,
i.e. in every time unit only one of these streams has any messages to trans-
fer. To simplify the specification of the real-time systems we introduce the



March 14, 2006 15:59 Proceedings Trim Size: 9in x 6in main

3

Focus operator ti(s,n) that yields the list of messages that are in the timed
stream s between the ticks n − 1 and n (at the nth time unit). We also
define the Focus operator maxmsgn(s), which holds for a timed stream
s, if this stream contains at every time unit at most n messages. dom.x
denotes [1..#x ] and rng.x denotes {x .j | j ∈ dom.x}.

1.2. FlexRay

FlexRay is a time triggered communication protocol, developed by the Flex-
Ray Consortium6. It’s primary application domain are distributed real-time
systems in vehicles. Today, most of these systems use a Controller Area
Network (CAN)17 as means of communication. The advantages of FlexRay
over CAN are: higher bandwidth, integrated functionality for clock synchro-
nisation, deterministic real-time message transmission and fault tolerance.

1.3. OSEKtime FTCom

OSEKtime15 OS is an OSEK/VDX13 open operating system standard of
the European automotive industry. The OSEKtime OS is a time-triggered
OS that supports static cyclic scheduling based on the computation of the
WCETs (worst case execution times) of tasks. WCETs are needed for
scheduleability analysis and can be estimated from a compiled C program
and the processor the program runs on1.

FTCom14 (Fault-Tolerant Communication) is an fault-tolerant commu-
nication layer for OSEKtime that provides a number of primitives for in-
terprocess communication and makes task distribution transparent.

2. Formal Specification

2.1. Fault-Tolerant Embedded System

The architecture of the overall system is represented as a Focus specifi-
cation SystemArch. The system consists of a number of nodes that are
connected by a FlexRay bus. On each node runs the OSEKtime OS and a
number of applications, and on each node there is a component FTComCNI
that consists of two subcomponents: the FTCom itself and a CNI Buffer
(Communication Network Interface). In the CNI buffer all the messages
that must be sent via FlexRay are stored, whereas the local communica-
tion on the node is done directly via FTCom.



March 14, 2006 15:59 Proceedings Trim Size: 9in x 6in main

4

SystemArch(constant tS1 , . . . , tSn ∈ FType ∗; tI1, . . . , tIn ∈ Id2Slots ∗; c1, . . . , cn ∈ Config) glass-box

FTComCNI(constant tS1 , . . . , tSn ∈ FType ∗; tI1 , . . . , tIn ∈ Id2Slots ∗) glass-box



March 14, 2006 15:59 Proceedings Trim Size: 9in x 6in main

5

2.2. FTCom

The component FTCom consists of three subcomponents: FTCom Buffer,
Replica and RDA (Replica Determinate Agreement14). The FTCom buffer
is used for the local communication – between applications that are de-
ployed on the same node, so that local messages are not sent via FlexRay.
The Replica and RDA components are needed for the fault-tolerant com-
munication with other nodes of the system.

FTComArch(constant table ∈ FType ∗) glass-box

The type FT CNI Entity represents the type of application messages. It
consists of a message identifier of type MessageId and an application data
type DataType. The data types RCV Type and Status Type represent
the result types of the standard FTCom functions14 ttReceiveMessage and
ttSendMessage that are used by the applications to access the FTCom-
buffer.

The Replica component assumes the replication task: one application
message is packed into several FlexRay frames using the replication-tables
tS – an application message will be transported during several FlexRay
slots of each communication round. A replication-table is specified as list
of type FType, which is defined below.

type FType = ft(slot ∈ Slot , msl ∈ MessageId ∗)

The RDA component assume the RDA task: frames are unpacked using
the RDA-tables tI . A RDA-table is specified as list of type MessageId.
From these replicated messages the current one is build using some RDA
algorithm, e.g. average, majority vote, “pick any” (see also Sect. 3). The



March 14, 2006 15:59 Proceedings Trim Size: 9in x 6in main

6

Replica and RDA tasks are called by the OSEKtime dispatcher every com-
munication round. In the Focus specification this represented by using
request messages of type Request on the channel startR.

We define11 several properties for the correct Replica- and RDA-tablesa.
For the overall system the same properties must also hold for the unions of
the corresponding tables of the overall system, namely gS is the union of
all tS tables and gI of all tI tables. Moreover, the tables gS and gI must
be “inverse” in sense of the predicate InverseSI 11. In such a way we can
formally show (using a theorem prover Isabelle/HOL12,21) for the concrete
tables that they are correct according to these properties.

InverseSI

gS ∈ FType ∗; gI ∈ MessageId ∗

∀ i ∈ rng.gI : ∃ s ∈ rng.gS : i ∈ rng.msl(s)
∀ ft(s, id list) ∈ rng.gS : ∀ i ∈ rng.id list : i ∈ rng.gI
∀ i , j ∈ dom.gS : i 6= j ⇒ sl(gS .i) 6= sl(gS .j )

2.3. FlexRay

FlexRay contains a set of complex algorithms to provide the communication
services. From the view of the software layers above FlexRay only a few of
these properties become visible. The most important ones are static cyclic
communication schedules and system-wide synchronous clocks. These pro-
vide a suitable platform for distributed control algorithms as used e.g. in
drive-by-wire applications. The formalization described here is based on
the ”Protocol Specification 2.0”8.

2.3.1. Abstractions

To reduce the complexity of the system several aspects of FlexRay have
been abstracted in this formalization: (1) There is no clock synchroniza-
tion or start-up phase since clocks are assumed to be synchronous. This
corresponds very well with the time-synchronous notion of Focus 4. (2)
The model does not contain bus guardians. (3) Only the static segment

aLike “Every slot identifier can occur in the frame table tS at most once”, “the table is

non-empty”, etc.



March 14, 2006 15:59 Proceedings Trim Size: 9in x 6in main

7

has been included not the dynamic, as we are mainly interested in time-
triggered systems. (4) The time-basis for the system is one slot i.e. one slot
FlexRay corresponds to one tick in in the formalization. (5) The system
contains only one FlexRay channel. Adding a second channel would mean
simply doubling the FlexRay component with a different configuration and
adding extra channels for the access to the CNI Buffer component.

2.3.2. FlexRay Architecture

The component FlexRay Architecture is a refinement of the component
FlexRay (see below) and consists of several FlexRay- Controller and a net-
work Cable. The unconnected channels of each controller are to be con-
nected to those of the FTCom-CNI components. Since Focus does not
contain a concept for broadcast communication this is simulated in the
component Cable: It forwards a received frame to all connected nodes.

The type Slot describes here one time slot during a FlexRay communi-
cation cycle and is equal to the type of natural numbers N. A Frame that
represents a FlexRay frame consists of a slot identifier slot and the payload
Payload. The definition of the type Payload depends on the configuration
of the FTCom (see Sect. 2.2 and Sect. 3). The FlexRay bus configura-
tion Config contains the bus scheduling table schedule of the node and the
length of the communication cycle cyclelength.

FlexRay Architecture (constant c1, ..., cn ∈ Config) glass-box

Cable

FlexRay-Controller(c1)

st
or

e 1
: F

ra
m

e

FlexRay-Controller(cn)

ge
t 1

: S
lo

t

re
tu

rn
1

: F
ra

m
e

se
nd

1
: F

ra
m

e

recv : Frame

st
or

e n
: F

ra
m

e

ge
t n

: S
lo

t

re
tu

rn
n

: F
ra

m
e

se
nd

n
: F

ra
m

e

type Frame = frm(slot ∈ Slot , payload ∈ Payload)

type Config = conf (schedule ∈ Slot ∗, cycleLength ∈ N)



March 14, 2006 15:59 Proceedings Trim Size: 9in x 6in main

8

The component FlexRay contains the assumptions and guarantees for the
FlexRay network. In IdenticCycleLength it assumes that the length of the
communication cycle is identical for all nodes, in DisjointSchedules that for
each slot of a cycle there is at most one sending node. These are the basic
requirements of a static cyclic time division multiplexing network.

FlexRay (constant c1, ..., cn ∈ Config) timed

in return1, ..., returnn : Frame

out store1, ..., storen : Frame; get1, ..., getn : Slot

asm ∀ i ∈ [1..n] : maxmsg1(returni )

DisjointSchedules(c1, ..., cn )

IdenticCycleLength(c1, ..., cn )

gar FrameTransmission(return1, ..., returnn , store1, ..., storen , get1, ..., getn ,

c1..., cn )

∀ i ∈ [1..n] : maxmsg1(geti ) ∧maxmsg1(storei )

The guarantee maxmsg1 defines that over the channels geti and storei at
most one frame is transmitted in each tick. The former one is required by
the CNI Buffer, the latter by Cable. The guarantee FrameTransmission
describes how frames are transmitted over a FlexRay-network.

FrameTransmission
store1, ..., storen , return1, ..., returnn ∈ Frame ω

get1, ..., getn ∈ Slot ω

c1, ..., cn ∈ Config

∀ t ∈ N, k ∈ [1..n] :

s ∈ schedule(ck ) : s = t mod cycleLength(ck ) →

ti(getk , t) = 〈s〉 ∧

∀ j ∈ [1..n], j 6= k : ti(storej , t) = ti(returnk , t)

This predicate specifies that if at time t the node k should be sending
according to it’s schedule, then it requests the frame which should be sent
from the CNI Buffer over the channels getk and returnk . This frame is then
send to the other nodes of the system. These receive the frame and store



March 14, 2006 15:59 Proceedings Trim Size: 9in x 6in main

9

it in their respective CNI Buffers over the channel storej . This guarantee
is the theorem that has to be proved for an implementation of the FlexRay
protocol.

2.3.3. FlexRay Controller

A FlexRay-Controller component consists of a Scheduler and a BusInter-
face. The Scheduler evaluates the schedule schedule(c). This schedule
specifies in which time slot this node should send a frame. Based on this
information the Scheduler notifies the BusInterface in case a frame should
be sent. The slot number specifies the time slot when the frame should be
sent and also the type of frame, since this mapping is static. The BusInter-
face then fetches the corresponding frame from the CNI Buffer and sends
it on the channel send. If the node is not sending and a frame is received
over the channel recv, this frame is forwarded to the CNI Buffer over the
channel store. For the sake of brevity, the specification details11 of these
components are omitted here.

FlexRay-Controller (constant c ∈ Config) glass-box

BusInterface

store : Frame

get : Slot

return : Frame

activation : Slot

recv : Frame

send : Frame

Scheduler(c)

3. Collaboration between FlexRay and FTCom

The formal specifications of FlexRay and FTCom allow us to argue about
their properties in a precise, formal manner19 and also infer the collabora-
tion between their properties. In this section we discuss the the examples
of the collaboration properties.

3.1. Level of the Fault-Tolerance

According to the FlexRay specification8 a frame contains a 24 bit CRC
(cyclic redundancy check) checksum to ensure the integrity of the frame
transmission. The probability of undetected network errors16 is less than



March 14, 2006 15:59 Proceedings Trim Size: 9in x 6in main

10

6 · 10−8, this means that at 10,000 messages per second and a bit error
rate of 10−6, this is means approximately 2 · 10−6 undetected erroneous
frames per hour. Using FTCom’s replication mechanisms we can reduce
this probability even further and increase the fault-tolerance.

If the FlexRay error rate is good enough for a certain system, we can use
simpler configurations of the RDA component of the FTCom. Because of
the high probability of the communication error detection by the FlexRay,
we can assume that if such an error occurs, the wrong frame will be not
saved in the CNI buffer. Thus, as the RDA algorithm for this case a “pick
first appropriate” can be chosen to make the data processing faster.

The configuration of the replication table for the Replica-task, depends
on reliability of physical connection.

3.2. FlexRay Frames

The type of payload in the FlexRay frame (see Sect. 2.3) depends on the
configuration of FTCom. In the general case, we represent the payload part
of the FlexRay frame as a list of application messages – the type Payload
is then defined as a list over the type FT CNI Entity .

If the number of replicated messages in the system is smaller than the
number of the FlexRay communication slots in a round, then it is possible
to use the model “One message per frame”, in which the types Payload
and FT CNI Entity are equal. In the simple case, when the bus connec-
tion is reliable enough to send an application message without replication,
i.e. once every FlexRay round, the message identifier can be taken as the
corresponding slot numberb Payload = DataType.

3.3. Schedule Dependences

Combining the time-triggered OS and bus one can synchronize not only the
communication, but also the computations in the systems. FlexRay pro-
vides OSEKtime OS with a globally synchronized clock. For this purpose,
the length of the OSEKtime dispatcher round must be a multiple of the
length of the FlexRay round (counted in FlexRay slots).

As mentioned in the Section 2.2, the Replica and RDA tasks must be
called by the OSEKtime dispatcher every communication round to have
current data both in the FTCom and CNI buffers. Generating the OSEK-
time dispatcher tables, this property must be taken into account.

bThis implies that the types MessageId and Slot (N) are equal.



March 14, 2006 15:59 Proceedings Trim Size: 9in x 6in main

11

4. Conclusion and Future Work

The paper presented the formal specifications of FlexRay and FTCom in
Focus and also inferred the correlation between their properties. These
Focus specifications allow us to argue about the properties of FlexRay
and FTCom in a precise, formal manner. Using the presented specification
of FlexRay we also have verified19 that this FlexRay specification conforms
the FlexRay requirements.

An Overview of the verification of TTA (Time Triggered Archicecture)
10 was presented by J. Rushby18. Since a comparison of TTA and FlexRay9

have shown several differences, the results of the verification of TTA can
not be transfered directly to FlexRay and FTCom.

A verification of the clock synchronization algorithm of FlexRay is in
progress at LORIA, based on their framework5.

Another future work is the extension of the formal specification with
a second FlexRay-channel and Bus Guardians7, which would improve the
fault-tolerance.

The work on the verification of the lower layers2 of the specified system
is in progress in the Verisoft project20.

Acknowledgments

We would like to thank Manfred Broy for his valuable feedback on the
Focus specifications.

References

1. AbsInt Angewandte Informatik GmbH. Worst-Case Execution Time Analyz-
ers. http://www.absint.com/profile.htm.

2. S. Beyer, P. Böhm, M. Gerke, M. Hillebrand, T. In der Rieden, S. Knapp,
D. Leinenbach, and W.J. Paul. Towards the formal verification of lower sys-
tem layers in automotive systems. In 23nd IEEE International Conference
on Computer Design: VLSI in Computers and Processors (ICCD 2005), 2-5
October 2005, San Jose, CA, USA, Proceedings, pages 317–324. IEEE, 2005.

3. J. Botaschanjan, L. Kof, Ch. Kühnel, and M. Spichkova. Towards Verified
Automotive Software. In ICSE, SEAS Workshop, St. Louis, Missouri, USA,
May 21 2005.

4. M. Broy and K. Stølen. Specification and Development of Interactive Systems:
Focus on Streams, Interfaces, and Refinement. 2001.

5. D. Barsotti and L. Prensa Nieto and A. Tiu. Verification of Clock Synchro-
nization Algorithms: Experiments on a Combination of Deductive Tools. In
Electr. Notes Theor. Comput. Sci. 145, 2006.

6. FlexRay Consortium. http://www.flexray.com.



March 14, 2006 15:59 Proceedings Trim Size: 9in x 6in main

12

7. FlexRay Consortium. FlexRay Communication System – Bus Guardian Spec-
ification - Version 2.0, 2004.

8. FlexRay Consortium. FlexRay Communication System – Protocol Specifica-
tion – Version 2.0, 2004.

9. H. Kopetz. A Comparison of TTP/C and FlexRay. Technical report, Institut
für Technische Informatik, Technische Universität Wien, 2001.

10. H. Kopetz and G. Bauer. The time-triggered architecture. In Proceedings of
the IEEE. IEEE, 2003.

11. C. Kühnel and M. Spichkova. FlexRay und FTCom: Formale Spezifikation
in Focus. Technical Report TUM-I0601, Technische Universität München,
2006.

12. T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

13. OSEK/VDX. http://www.osek-vdx.org.
14. OSEK/VDX. Fault-Tolerant Communication – Specification 1.0, 2001. http:

//www.osek-vdx.org/mirror/ftcom10.pdf.
15. OSEK/VDX. Time-Triggered Operating System – Specification 1.0, 2001.

http://www.osek-vdx.org/mirror/ttos10.pdf.
16. M. Paulitsch et al. Coverage and the use of cyclic redundancy codes in ultra-

dependable systems. In 2005 International Conference on Dependable Sys-
tems and Networks (DSN’05), pages 346–355, 2005.

17. Robert Bosch GmbH. CAN Specification Version 2.0, 1991.
18. J. Rushby. An overview of formal verification for the time-triggered architec-

ture. In Formal Techniques in Real-Time and Fault-Tolerant Systems, volume
2469 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

19. M. Spichkova. FlexRay: Verification of the Focus Specification in Is-
abelle/HOL. A Case Study. Technical Report TUM-I0602, Technische Uni-
versität München, 2006.

20. Verisoft Project. http://www.verisoft.de.
21. M. Wenzel. The Isabelle/Isar Reference Manual. Technische Universität

München, 2004.


