
The WebShop E-Commerce
Framework

Marcus Fontoura
IBM Almaden Research

Center
650 Harry Road, San Jose,

CA 95120, U.S.A.
 e-mail:

fontoura@almaden.ibm.com

Wolfgang Pree
Professor of Computer

Science
Software Research Lab

University of Constance, D-
78457 Constance, Germany

e-mail: pree@acm.org

Bernhard Rumpe
Software and Systems

Engineering
Munich University of
Technology, D-80290

Munich, Germany
e-mail: rumpe@acm.org

Abstract - This paper presents an e-commerce
framework called WebShop, which was developed
by the authors for the purpose of demonstrating the
use of UML and the UML-F in the domain of Web
applications. Thus, the WebShop is not regarded as
a full-fledged system out of which real Web stores
can be derived. For example, the framework in the
presented version does not encounter security
features. However, it presents the most important
variation points related to online catalogs. The
UML-F Web site http://www.UML-F.net provides
the Java source files and some sample adaptations
of WebShop.

Keywords: e-commerce, UML, UML-F, object-
oriented frameworks.

1. WebShop overview
WebShop basically allows the creation of
online stores from a description of the
products that should be offered and sold on a
Web site (see Figure 1).

WebShopProduct information
& store configuration

Web-site with
product catalog
and shopping
facilities

Figure 1 The goal of the WebShop framework.

As specific Web stores differ in various
aspects, the WebShop framework defines the
following variation points:
• Payment options: companies accept

various payment options, such as credit
cards, electronic money, and so on.
Moreover, completely new electronic
payment methods may arise and the
framework should be able to incorporate
them.

• Promotions: promotions usually depend
on parameters such as the overall
shopping volume of a customer or the
frequency a customer comes along. For
example, a bookstore site might send a gift
at the end of the year if the sales volume
of a customer has surpassed a certain
limit. Another example would be to freely
upgrade to a faster delivery, if a customer
buys goods for a greater value amount.
WebShop should be easily extended in
that regard.

• Reports: every organization requires
different kinds of management
information. Examples include rankings of
the best customers, sales figures on
various single products and product
groups, and information regarding the
preferred payment methods. Once again,
WebShop should be open for any
extension of the reporting subsystem.
Figure 2 sketches the configuration

options of WebShop. Typical WebShop
adaptations can choose among predefined
payment options so that this aspect allows a
black-box configuration. The promotion and
report generation will quite likely be adapted
to the specific requirements of each
application.

Figure 3 represents the navigational
structure of a typical WebShop application.
Each single rectangle represents a web page
and the arrows represent the actions that cause
movement between the pages.

The Shopping page is the application entry
point. It displays the list of available products,

allowing clients to add products to their
individual shopping cart and to change the
quantities of each selected product. When the
client wants to checkout he or she only has to
select payment method and to provide the
required payment information. The system
then verifies the information and either
processes the transaction or reports an error.
Figure 4 shows a typical Shopping page.

WebShop

Payment
options

Administrative
reports

Promotions

WebShop’s variation points

Product information
& store configuration

Web-site with
product catalog
and shopping
facilities

Figure 2. Variation points of WebShop.

Process
transaction

Shopping
page

@

Transaction
concluded

@

Transaction
error

@

- Add product to
shopping cart
- Alter product
quantities
- Payment method
selection & information

Figure 3. Navigational structure of a typical
WebShop application.

WebShop allows the creation of a
complementary site for displaying the
administrative reports. Typically, the structure
of the administrative is set up as a simple list
of reports. The end user can select from an
overview list any of the reports available (see
Figure 5).

2. WebShop components
The following sections present the core
aspects of WebShop by means of UML-F [1]
diagrams. UML-F is an UML [4] extension for
documenting object-oriented frameworks and
design patterns. This presentation forms the
basis for identifying patterns that are useful in
the context of e-commerce frameworks.

Figure 4. Typical Shopping page for WebShop.

Select report

Report
list

@

Report1

@

Report K

@

- Report selection &
information

Figure 5. Report listing on a separate site.

2.1. Shopping Cart
The core entity of the WebShop framework is
the shopping cart. For each client access to a
Web store a new shopping cart object is
created. This shopping cart takes care of the
connection and is responsible for controlling
the user selection of products and the checkout
operation. Figure 6 shows an UML-F diagram
demonstrating what a shopping cart contains -
the exact number of products and one
transaction log.

Methods addProduct(),
removeProduct(), and changeQuantity() in
class ShoppingCart modify the products
already chosen accordingly. Method
checkout() processes the payment transaction.

It is also responsible for updating the system
transaction log by invoking method addLog()
in class TransLog. The transaction log may be
used for various customer relationship
management activities such as promotions.
Thus, it forms the basis of various reports.

Product

+getName()

+getValue()

products *ShoppingCart

+addProduct()

+removeProduct()

+changeQuantity()

+checkout()

TransLog

+addLog()

transLog 1

...
...

...

Figure 6. UML-F class diagram of ShoppingCart
and two of its associated classes.

2.2. Payment options
Each application created by the framework
will incorporate a number of payment options.
In particular, the cart’s checkout() method
requires the information on available payment
choices. To keep payment methods flexible,
WebShop applies the Separation construction
principle [3] (see Figure 7). As all the
Payment objects interacting with a shopping
cart have to be able to process a payment, the
interface Payment defines the
processPayment() method. Therefore, all
specific classes used for payment have to
implement the Payment interface, as illustrated
in Figure 7.

Figure 7 uses UML-F tags to identify
explicitly the template and hook methods and
classes. The method checkout() is the template
method («Sep-t»), since it is responsible for
invoking processPayment() («Sep-h»), which
is a hook method that varies for different
classes that implement the Payment interface.
The «adapt-dyn» tag indicates that the classes
are dynamically loaded into the system when
needed.

From the client’s perspective, a Web
form should present the payment options
available. The client selection is then
proceeded to the store that has to instantiate
the appropriate payment object and plug it into
the shopping cart. The sequence diagram in
Figure 8 illustrates this scenario. It shows the
creation of an object to process credit card

transactions in Figure 8(a), and the electronic
money transactions in Figure 8(b).

«Sep-T»

ShoppingCart

...
+checkout() «Sep-t»

payment 1

«interface»

«Sep-H»

Payment

+processPayment() «Sep-h»

CreditCard

+processPayment()

EMoney

+processPayment()

«adapt-dyn»

Figure 7. The Payment interface.

checkout(“CreditCard”, ...)

:CreditCard

:ShoppingCart

«create»

processPayment(...)

checkout(“EMoney”, ...)

:EMoney

:ShoppingCart

«create»

processPayment(...)

(a)

(b)

Figure 8. Creating the appropriate payment object
(a) for credit cards and (b) for electronic money.

Note that the parameter specifying the
payment option is a string that represents the
class name of the specific payment class. The
checkout() method uses dynamic class loading
to instantiate the appropriate class based on its
name. Example C.1 illustrates the code for the
checkout(). A more elaborate (and flexible)
design would have a table mapping the string
parameters to the actual class names.

public boolean checkout(
 String paymentClassName,
 String paymentInfo) {

 boolean paymentOK = false;

 Payment payment = null;

 try { // tries to instantiate a Payment object
 Class c = Class.forName(paymentClassName);
 payment = (Payment) c.newInstance();
 }
 catch(Exception e) {
 // error, throws framework exception
 }
 // The method total() calculates the total value
 // of goods in the shopping cart. This method is a
 //private method in class ShoppingCart.

 if (payment.verifyPayment(payInfo, total())) {
 // Add transaction to log
 paymentOK = true;
 }
 return paymentOK;
}

Example 1. Source code fragments of method
checkout() in class ShoppingCart.

The various implementations of the
processPayment() hook method require
different arguments. As the client supplies
these arguments through a Web form,
WebShop assumes that they are provided in a
single string that is formatted according to
simple conventions, that is, as “number =
’5534453567144532’; expdate = ’10/2002’;
name = ‘John V. Lee’”. (Another equivalent
solution would is to use XML for formatting
this input string). Each implementation of
processPayment() parses and processes this
input string. The attributes in the string are
defined by the particular payment classes. The
sequence diagram in Figure 9 illustrates this
behavior for the CreditCard object.

2.3. Defining promotions in
WebShop

In order to deal with promotions, the
checkout() method invokes a method
definePromo(). This method defines a
promotion that depends, for example, on the
overall value of purchased goods.

As the WebShop framework should be
able to support several promotions at the same
time, WebShop applies the Chain-of-
Responsibility (COR) pattern [2]. For
example, when a frequent shopper buys goods
for more than $ 1000.00 he or she should
receive an extra discount.

The COR pattern allows each
promotion object to check if the current
transaction follows the conditions required by
it. The object then forwards the request to the
next promotion object, if any. The object
diagram in Figure 10 exemplifies a
combination of two such promotion objects to
which a ShoppingCart object refers to.

checkout(“CreditCard”, ...)

:CreditCard

:ShoppingCart

«create»

processPayment(...)
parseInput()

process()

Figure 9. The general behavior of concrete
implementations of processPayment().

:ShoppingCart

:BaseDiscount

:Over1000

Figure 10. Composing promotion objects.

The ShoppingCart object is responsible for
invoking the definePromo() method as the first
in the chain of promotion objects. These
promotion objects are further responsible for
forwarding the request in the chain. In the
sample chain shown in Figure C.10, the object
of class Over1000, which gives discounts for
transactions over $ 1000.00, treats the request
and forwards it to the next promotion object,
which gives a 10% discount for all
transactions. Figure 11 annotates the
promotions variation point with the COR tags.

Of course, the solution based on COR
is simple and doesn’t take in account some
important issues, such as the fact that some
implementations of definePromo() should
have access to the payment and user
information and to the transaction log in order
to support promotions based on the user
history, such as promotions for frequent
shoppers. However, COR provides the main

structure of this variation point to which new
extensions can be added.

ShoppingCart ...
promo 1

«COR-Handler»

Promotion

+definePromo() «COR-handleRequest»

1

successor

«COR-ConcreteHandler»

Over1000

+definePromo()

 «COR-handleRequest»

«COR-ConcreteHandler»

BaseDiscount

+definePromo()

 «COR-handleRequest»

Figure 12. Annotation of the promotions variation
point with the COR tags.

2.4. Reports

The report generation in WebShop relies on
the Separation construction principle (see
Figure 13). Analogous to the Payment
subclasses, a string is used to uniquely specify
which class implementing Report should be
loaded the system, as illustrated in Figure 14.

The report() method is responsible for
the dynamic loading of the appropriate
ReportImp class and for the invocation of the
generateReport() method, which returns a
string containing the report written/generated
in HTML. For example, class ListLog lists the
entire log while class ByProduct might lists
the transactions related to a given product.

«Sep-T»

Report

...
+report() «Sep-t»

reportImp 1

«interface»

«Sep-H»

ReportImp

+generateReport() «Sep-h»

ListLog

+ generateReport()

ByProduct

+ generateReport()

«adapt-dyn»

Figure 13. Annotating the report variation point
through the Separation construction principle tags

2.5. The Web Request pattern
As the design used for the Report variation
point is analogous to the one used for
Payment, and as it is quite useful to have a
dynamically created object to treat end-user
requests, we define a domain-specific pattern
called Web Request. The payment and
administrative reports variation points both
use the Web Request structure. Payment, for

instance, is a specialization of Web Request
that treats payment processing requests. Figure
15 models the administrative reports variation
point together with the Web Request tags (the
same can be done to payment).

report(“ListLog”)

: ListLog

:Report

«create»

generateReport()

Figure 14. Creating the appropriate report object

«WebR-L»

Report

...
+report() «WebR-load»

request 1

«interface»

«WebR-H»

ReportImp

+generateReport() «WebR-handle»

«WebR-CH»

ListLog

+generateReport() «WebR-handle»

Figure 15. Using the Web Request tags to model
the report generation variation point.

Web Request keeps the execution of a request
flexible and applies the Separation
construction principle [2] for this purpose. The
«WebR–load» method is responsible for
dynamic loading of the appropriate «WebR–
ConcreteHandler» class based on its input
arguments

3. Conclusions
The paper presented the core components of
the WebShop framework, which focus
assisting the development of online stores. The
UML extensions, namely the UML-F profile
[1] used to describe WebShop proved very
effective to provide an application developer
an intuitive and easy overview of the
framework. The UML-F profile mainly
provides a set of tags together with
mechanisms to introduce new tags and to
describe their meaning and intention in an
informal yet systematic way.

4. References
[1] M. Fontoura, W. Pree, and B. Rumpe, The
UML Profile for Framework Architectures,
Addison-Wesley, 2001.

[2] E. Gamma, R. Johnson, R. Helm, and J.
Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-
Wesley, Reading, MA, 1995.

[3] W. Pree, Design Patterns for Object-
Oriented Software Development, Addison-
Wesley, ACM Press, 1995.

[4] J. Rumbaugh, I. Jacobson, and G. Booch,
The Unified Modeling Language Reference
Manual, Addison-Wesley, 1998.

