Developing Component Systems based on the J2EE: Problems and
Solutions*

Michael Fahrmair, Frank Marschall, Sascha Molterer, Maurice Schoenmakers
Technische Universitat Miinchen
Institut fiir Informatik
D-80290 Miinchen, Germany
{fahrmair|marschal|molterer|schoenma} @in.tum.de

Abstract

The Java 2 Enterprise Edition (J2EE) seems to be a
promising base for the development of distributed in-
formation systems. However while developing the in-
formation system CROFT based on this technology we
experienced, that the J2EE builds a good and conve-
nient platform but its use is not yet a guarantee to
obtain a performant and extensible system. Rather a
lot of knownledge about the applied technologies and its
capabilities and shortcomings is necessary.

We show how to build an extensible system by avoid-
ing fized associations between the business components.
Further we demonstrate how to keep this degree of
modularity at the GUI and what is necessary to de-
sign a performant solution with Enterprise Java Beans
(EJBs). Finally we show how to satisfiy the security
needs that are out of scope of the J2EE specification.
These guidelines allow also unexperienced developers
to create J2EE-based applications that allow an easy
integration of new components and subsystems and are
still very performant.

1 Introduction

A white paper by Sun about the Java 2 Platform En-
terprise Edition (J2EE) states the following proposi-
tion: “The J2EE application model partitions the work
needed to implement a multi-tier service into two parts:
the business and presentation logic to be implemented
by the developer, and the standard system services pro-
vided by the J2EE platform” [SUN99]. After develop-
ing an information system based on business compo-
nents on top of the J2EE we argue that this proposition
is misleading. So far for developing self-contained, plu-
gable business components [HS99, Sut98, AF98] you
do not simply implement the business logic, but to

*This paper originates from the project MARLIN (Models
and ARchitectures for Large Information system Networks) and
was supported by BMW, Munich

build modular, scaleable and extensible systems you
also need to have a profound knowledge of the techni-
cal possibilities as well as the technical shortcomings of
the underlying J2EE technology.

In this position paper, we introduce some of the miss-
ing guidelines and solutions to allow also unexperienced
developers to design and implement their components
without jeopardizing modularity, scalability and per-
formance. Our experiences result form developing the
J2EE-based information system CROFT.

In the following section, we first present the architec-
ture of CROFT and the J2EE reference model on
which it’s based. In the main section we discuss the
problems like extensibility, performance and security
followed by the resulting design model of CROFT.
This model shows a reasonable mapping of the domain
specific CROFT business components to the J2EE ar-
chitecture. The position paper closes with a conclusion
and an outlook on our current and future work.

2 Architecture and the J2EE

CROFT uses a technical standard architecture that
can be found in many business information systems. It
distinguishes between the following logical layers and
is described in depth in [Hir96], [NMMZ00).

e The presentation layer contains the components
to provide an user interface to the system. In our
case we used a web-based HTML interface.

e The control layer contains the components to con-
trol the process of the user interaction via the
GUI with the system. For example the order
of the dialogs. Changes made by the user are
propagated to the correct business component in
the next layer. In CROFT this layer is imple-
mented by server side web components like classes
(web beans), Java Servlets and Java Server Pages
(JSPs), which dynamically generate HTML pages.
The web beans contain reusable client logic that

may be used by other kinds of presentation tech-
nology like wml files for mobiles phones.

o The business logic layer mainly includes the busi-
ness components and their associations. These
components encapsule the business data and main
functions to alter this data. A main task of this
layer is to maintain the overall system and keep the
business components and their associations always
in a consistent state. Invalid changes to a business
component are prevented and reported as excep-
tions to the control layer. The business logic was
implemented with Enterprise Java Beans (EJBs)
as described below.

o The persistence layer is the place where all enter-
prise data is stored and retrieved by the business
logic layer. This layer keeps all information in a
safe and recoverable place. In our case we used
the relational Oracle database for this purpose.

Multiple users can access the CROFT system through
the presentation layer simultaneously and may view
and change shared business components. The CROFT
architecture corresponds with the one defined in the
Java 2 Platform Enterprise Edition (J2EE) by Sun
[SUN99]. The J2EE is a standard architecture for de-
veloping multi-tier, web-enabled business information
systems. It includes the JSP and EJB technologies
and many others (JNDI, JMS, JDBC, RMI-ITIOP, JTA,
JavaMail).

The technology relevant for the guidelines presented
in this paper is EJB. EJB is an open standard for a
server-side component model. Unlike the classic Java
Beans, which are often used in the form of user interface
elements at the presentation layer, EJB components
run within a EJB container at the business logic layer of
a distributed system. This container is part of a J2EE
platform and offers a number of services, needed to
enable distributed, persistent and transactional objects
in common business applications.

One proposed benefit using an EJB container is that
the developer of EJBs should be released from re-
curring technical tasks during the implementation.
The container implementation for coordinating trans-
actions, multithreading, database connection pooling,
security checks, and lifecycle handling can be reused.
This should permit the encapsulation of pure business
logic within the EJB components and so decisively in-
creases maintainability and modifiability of the new
system.

However, our experiences with the development of
CROFT show, that the availability of these container
services and the use of J2EE concepts does definitly not
lead necessarily to a scalable and modular system. The
question is how to use the J2EE concepts. To ensure
modularity and scalibility the business logic must be

distributed and mapped to J2EE concepts very care-
fully. Also the interface design of the EJB components
must still take technical issues in account. For exam-
ple the influence on the performance if remote calls are
used. These issues require experienced developers in
this field. Developers can not concentrate on the busi-
ness logic alone.

The next chapter describes the guidelines we have de-
veloped to overcome these deficiencies. We also noticed
that the J2EE is missing some security concepts, espe-
cially concerning object based security checks. In this
area we propose some requirements for an extension of
the J2EE in the next chapter.

3 Problems & Solutions

3.1 Modularity

One of the major non-functional requirements was the
request for an easily extensible system, especially that
it should be possible to extend the system by adding
new entities in the form of business components and
relations without changing and reviewing the code for
already existing relations, components or other func-
tionality. Therefore it was necessary to design a modu-
lar architecture in which the following rules are applied:
No hard-coded associations: Associations between
business components (at the moment there are four en-
tities mapped to business components in CROFT: per-
son, project, contact and document) can be connected
by different associations, e.g. “persons are members
in projects” or “persons own documents”. These asso-
ciations could be integrated directly into the business
components implementing the entity. However, this so-
lution has some disadvantages in case additional busi-
ness componentes are going to be integrated in the sys-
tem or in case an existing business component should
be reused in another system. Already existing business
components need to be changed, if new associations are
added to them. This problem can be solved by model-
ing separate associations.

All associations are handled by a special component
called association manager. The association manager
can be queried for a list of all associations (collection of
association EJBs) connected to a given business com-
ponent (e.g. a document).

This way one is able to build composeable subsystems
and furthermore achieves easy extensibility. To use
this flexibility also the user interfaces needs to be com-
poseable in a similar way (see paragraph below) and
moreover a communication controlling component is
needed to connect all these loosely coupled parts (see
paragraph about the “folder” component).

Flexible User Interface: To achieve a composable
and easy extensible user interface, it needs to be de-
signed modular, in the way it is possible to add displays

for new associations and business components without
changing already existing views.

Therefore Java Server Pages and web beans are used to
generate the necessary HTML code to display the cor-
responding GUIs. For example there is a pair of one
web bean and one JSP to display the project home-
page. This bean uses another web bean that requests
all current associations for one business component (in
our example the project-component) instance from the
association manager EJB and returns a correspond-
ing JSP with specialized web bean for each associa-
tion found. This way all associations (like the per-
sons belonging to that project) are resolved in the web
bean before they are viewed. These specialized asso-
ciation web beans gather all associated business com-
ponents. A JSP generates the necessary HTML code
to display these components in a list. This list can be
included in the project’s view JSP. For example, the
bean for the the association “person—project” returns
an HTML coded list of all persons belonging to this
project. Moreover this association web beans contain
interfaces for adding and removing entries to the rela-
tion.

Using this mechanism it is possible to extend the sys-
tem later on by an additional subsystem, for example
to manage tasks. There might be an additional asso-
ciation added to the project business component con-
taining tasks within a given project. The project view
JSP and web bean have not be changed, because the
additional relation and its corresponding list (all tasks
belonging to a project) is resolved at runtime by the
association manager. Its representation as a list is gen-
erated by a separate JSP/web bean and automatically
added as an additional list in the project’s view.

The Folder: For the combination of the flexible user
interface elements described above, a general control
communication component is needed. The folder com-
ponent allows the transfer of business components be-
tween different masks of the GUI and to collect ref-
erences to components for further printing, etc. For
example it is possible to open a person’s public home-
page, mark interesting documents and addresses and
copy them to the folder. Later on the user may visit
one of his or her projects’ workspaces and add the in-
teresting documents in the list of documents associated
with this project. Afterwards the user has the possi-
bility to visit his or her own workspace and add the
gathered addresses.

Result: Due to loosely indirect coupling of business
components with separate association EJBs and a cen-
tral component to resolve the associations at runtime it
is possible to design an easily extensible system where
new business components can be integrated without
changing already existent business components. This
extensibility can also be achieved for the GUI by realiz-
ing a flexible modular user interface with a general con-
trol component, that connects the single user-interface

parts and business-components together.
3.2 Performance

Performance is a critical issue in distributed systems.
A remote call costs a multiple of time and resources
compared to a simple local call. The main advice is
to examine use cases of the system and to extract the
most common types of requests to optimize their imple-
mentation by reducing the number of remote calls. For
requests at the persistence layer the number of tables
to join should be reduced for frequent calls. Based on
these general rules we extracted the following general
useful guidelines.

Transfer business components contents per
value: The presentation layer requires the data con-
tents of the business components but there is no need
to preserve identity by means of a single EJBs instance,
where each client application has an own remote refer-
ence on it. Instead it is sufficient to get the business
component’s data and id per value as a copy encap-
suled in an object. A similar solution is introduced in
[Bro99].

This reduces the number of remote calls dramati-
cally as the control layer can perform local calls on
these so called model objects. Thus a PersonEJB
does not need to have remote getName (), setName (),
getBirthday () and setBirthday () business methods.
Instead the control layer needs to invoke only a single
getModel () call that returns a PersonModel per value,
which contains all the data. This model object in turn
provides access to it’s internal data by the methods
getName (), getBirthday() etc. If a business compo-
nent has to be changed then the control layer calls the
setModel() on the EJB. The EJB will in turn store
the change in the database.

When to use Entity and Sessionbeans: As men-
tioned above in most cases a set of business compo-
nents is just shown within lists. Stateless session beans
are ideal candidates for providing these sets of business
components’ data or associations. Examples for such
sets are the result set when searching persons or the
set of all documents belonging to a person. One single
stateless session bean can be shared between thousands
of users and they all receive their own copies of the cur-
rent version of the business components’ data from the
database. This way the required container resources
are minimized. (Note: stateless means not that the
bean can not access a common state on the database).
The result sets delivered by the session beans should
be just sets of model objects and not entity bean ref-
erences.

We used session beans that deliver sets of complete
model objects for all web forms that only present lists
of entities. Only in those pages where a business
component is created, edited or removed, the accord-
ing entity bean is contacted when the user requests

the change. This is performed by extracting the pri-
mary key from the model object and using the stan-
dard findByPrimaryKey() method from the the en-
tity bean’s home interface.

As a general standard we required for each enterprise
component a model object, an entity bean to incorpo-
rate the business logic to create, change and remove an
entity instance and at least one stateless session bean
to perform the queries to search for instances in various
ways.

Optimize for the most common use during de-
sign Another point is to improve the performance to
optimize the database requests that will be very of-
ten performed. To find these requests a good starting
point is to consider the things the system does mostly.
In our case this is displaying lists. This includes that
attribute values are displayed and security checks are
performed. Thus two good candidates for this type of
optimization are the retrieving of attribute domain val-
ues and the object based authorization checks, which
have to be performed for each entry in a list.

Results Due to the careful consideration of perfor-
mance related issues already during the design use
cases we were able to define design guidelines such,
that a scalable fast application could be implemented.
We believe that these guidelines are useful in general.

3.3 Security

To use the CROFT system in practice an effective
security mechanism to protect private or confidential
data from unauthorized access is vital. Therefore the
J2EE standard offers several facilities. However we had
to implement an additional security manager EJB to
realize our security requirements.

The security concept of CROFT is based on the no-
tion of ownership. Naturally the owner of a business
component always has full access to it and is able to
restrict the access for other users and the public. For
every business component the following rights can be
set:

e right to read for external users
e right to read for users who have an account
e right to write for users who have an account

Capabilities of the J2EE: For the realization of the
security concept described above we could use some of
the features the J2EE standard offers. The J2EE appli-
cation server provides access control and user manage-
ment at the control layer and at the business logic layer.
The control layer security is similar to the Apache web-
server’s capabilities. It can prohibit GET and POST
statements to Java Server Pages. Besides it offers ba-
sic, form based and certificate based authentication.
Within the EJB container every user is mapped to a

role. In the deployment descriptor someone may al-
low or deny the use of certain business methods to all
users in a certain role, which is called declarative autho-
rization. Within the business code itself the methods
getCallerIdentity() and isCallerInRole() can be
used to realize programmatic authorization.
Object-based authorization: Though the appli-
cation server allows us to restrict the use of busi-
ness methods to certain users (roles), this possibil-
ity is not enough to implement our security needs.
For example it’s not a good idea to prohibit access
to a document to all users in the croftuser role as
declarative authorization would allow us to do. In
fact someone must be able to modify those documents
that are owned by him, by one of his projects or
that are marked as writeable for all users. To prove
these instance-dependent (not class-dependent) rights
we implemented a method getPermission() in the
SecurityManager session bean.

The security managers’ methods are used by all busi-
ness components and by the association EJBs. Latter
need to prove that they only return objects the actual
user is allowed to see. Further they have to check if
the user has the permission to write to a business com-
ponent, if (s)he wants to add or remove association
instances to other business components.

Result We experienced that the container’s facilities
were not sufficient to fulfil our needs. Hence the imple-
mentation of some kind of additional security infras-
tructure was neccessary. Therefore it would be desire-
able that the container provides either an object-based
security mechanism or a hook where the developer has
the possiblity to execute code whenever a components
business method is called. If foreign subsystems or
components are going to be integrated in the system
their business interface must be wrapped to enforce our
security policies.

3.4 Design Model

Comprising the guidelines introduced in the last sec-
tions, figure 1 shows the final design model of CROFT.
It shows a person and a document business component
which are associated with the means of a person-to-
document component. As you can see there are no di-
rect dependencies betwee the person and the document
business components. Thus all other existing business
components follow this pattern as well as those that
have to be integrated in future.

4 Conclusion & Future Work

From a technical perspective, a standard component
model like the EJB component model provides a suit-
able infrastructure, a programming model to some ex-
tent and a (technical) standard architecture like for
example the J2EE architecture.

Control % % Person %
Layer Person To Document
Document
%Search %Search
HlList
]
[[Model | [Model] Document Model || | [Model | [Model
Egs_lg?_sas - Association
gl y Manager
Stateless
Ransgliel\:sa;ues Session Bean
Session Bean 4

Stateless y Stateless
Session Entity Session
Bean Bean Bean

= Tables ‘ '

Figure 1. The component structure for per-
sons, documents and an association with
their depedencies.

- ; Entit
Security Session Bea{]
Statefull Bean

Session Bean

Persistence [Tables [|| [Tables

We presented solutions and guidelines for a subset of
problems which occurred during the development of the
CROFT information system based on the J2EE. The
main problems solved included:

e Avoiding unnecessary relations between business
components to obtain plug-and-play modules for
different CROFT-based systems.

e Avoiding performance problems due to unneces-
sary remote calls to EJBs and textbook-oriented
database calls.

e Introducing a feasible object-based security con-
cept without compromising the modularity of the
business components.

With the new EJB 2.0 standard [SUN0O], some prob-
lems like undermining the modularity of business com-
ponents through direct, programatic relations will
probably be solved. EJB 2.0 introduces container man-
aged relations (CMR). With CMR it should be possible
to declaratively add relations between entity beans dur-
ing deploy time without changing the beans. Although
the standard was released in April 2000, there’s still
no J2EE platform available which implements CMR
to test this new possibility. Currently, we extend the

CROFT system by business components which rely
on workflow and calendar related functionality. Still
using J2EE as the target platform, it’s foreseeable that
we will have to solve further problems since it is not
yet clear, how to integrate a workflow service into the
J2EE and how to implement “active” business compo-
nents, i.e extend J2EE by a service which concurrently
invokes business components if certain time constraints
are fulfilled.

References

[AF9S]

[Bro99]

[Hir96]

[HS99]

[NMMZ00]

[SUN99]

[SUNO0O]

[Sut98]

Paul Allen and Stuart Frost. Component-Based

Development for Enterprise Systems. Cam-
bridge University Press, New York, 1998.
Kyle Brown. A small pattern lan-

guage for Distributed Component Design.
http://members.aol.com/kgh1001001/-
Articles/PLoP99/brownfinal.pdf,
Presented at the EuroPLoP’99.

R. Hirschfeld. Three-tier distribution architec-
ture, 1996.

1999.

Peter Herzum and Oliver Sims. Business Com-
ponent Factory : A Comprehensive Querview
of Component-Based Development for the En-
terprise. John Wiley & Sons, Inc., New York,
1999.

J. Noack, H. Mehmaneche, H. Mehmaneche,
and A. Zendler. Architectural patterns for web
applications, 2000.

Java 2 Platform Enterprise Edition Spec-
ification, Version 1.2. Sun Microsystems
(http://java.sun.com), December 1999.

Enterprise JavaBeans Specification, Version
2.0. Sun Microsystems (http://java.sun.com),
May 2000.

Jeff Sutherland. Business Object Component
Architectures: A Target Application Area for
Complex Adaptive Systems Research. In Delip
Patel, Jeff Sutherland, and Joaquin Miller,
editors, OOPSLA Workshop Proceedings on
Business Object Design and Implementation I1.
Springer, London, 1998.

