
The UML as a Formal Modeling Notation

R� France

Department of Computer Science � Engineering

Florida Atlantic University� Boca Raton� Florida� USA

A� Evans

Department of Computing

Bradford University� Bradford� UK

K� Lano

Department of Computing

Imperial College� London� UK

B� Rumpe

Department of Computer Science

Munich University of Technology� Munich� Germany

� Introduction

The popularity of object�oriented methods �OOMs� such as OMT ���� and the FusionMethod ���� stems
primarily from their use of intuitively�appealingmodeling constructs� rich structuring mechanisms� and
ready availability of expertise in the form of training courses and books	 Despite their strengths� the
use of OOMs on nontrivial development projects can be problematic	 A signi
cant source of problems
is the lack of semantics for the modeling notations used by these methods	 This can lead to the
following problems�

� Understanding of models can be more apparent than real	 A stated strength of OO modeling
notations is their intuitive appeal� reducing the e�ort required to read and understand the mod�
els	 The lack of precise semantics for OO notations can result in situations where a readers
interpretation is not the same �or is not consistent� with the model creators interpretation	 Un�
less the reader �e	g	� a customer� and creator �e	g	� a software analyst� explicitly communicate
their interpretations there is the danger that both will walk away with inconsistent views of the
modeled structure and�or behavior without realizing it	 In the cases where the reader is respon�
sible for implementing the behavior speci
ed in the models the result can be an implementation
that is not consistent with the view of the models	 To compound the problem� it is di�cult to
rigorously establish consistency of the models and their implementations	 Communication also
becomes problematic when the concepts used to explain the modeling constructs have no precise
meaning� and are themselves subject of misinterpretation	

� Developers can waste considerable time resolving disputes over usage and interpretation of no�
tation	 In practice� the use of OOMs can lead to situations where it is not clear to the users of
the methods which of a number of opposing views on interpretation and usage is appropriate	
Appeal to textbooks is often not helpful because of the lack of meaningful examples and the
informal descriptions provided	 Over time developers may develop a more precise variant of
the notation tailored to their development environment	 These more precise interpretations are
developed by consensus and are based on interpretations provided by the tools used� the experi�
ences of the users� and the experiences of others they have come in contact with	 This process�
if it exists within an organization� is very informal� and often the more precise interpretations

�



are not explicitly available to all engineers� rather they exist primarily in the heads of the more
experienced developers	 Within a single organization� di�erent teams may develop di�erent vari�
ants of the modeling	 This can result in communication problems when team members move
from project to project	

� Rigorous semantic analysis is di�cult	 In practice OO models are validated and veri
ed infor�
mally �in requirements�design reviews�	 These informal techniques are often inadequate� they
cannot be used to rigorously establish that implementations and models are consistent with each
other� and rigorously establish that models capturing di�erent views of the system are consistent
with each other	 Review meetings can be further enhanced if the notations used have a precise
semantics	 The results of model validations and veri
cations can be presented in reviews as
evidence of the quality of the models	 Such formal analysis serves to increase con
dence in the
creative results of the modeling activity	 Rigorous semantic analysis techniques also facilitate
the early detection of modeling errors which considerably reduces the cost of error removal	

� Tool support limited to syntactic concerns	 First generation tools supporting OO modeling
notations mainly focused on editing and drawing issues	 As class diagrams �object models�
are based on entity�relationship�diagrams� considerable e�ort is going into generating code� for
example� class frames and SQL tables� from them	 Due to the lack of precise semantics there is
considerably less support for other modeling notations� usually leading to error�prone hand�made
translation into code	

The Uni�ed Modeling Language �UML� ���� is a set of OO modeling notations that has been
standardized by the Object Management Group �OMG�	 It is di�cult to dispute that the UML re�ects
some of the best modeling experiences and that it incorporates notations that have been proven useful
in practice	 Yet� the UML does not go far enough in addressing problems related to the lack of
precision	 The architects of the UML have stated that precision of syntax and semantics is a major
goal	 In the UML semantics document �version �	�� ���� the authors claim to provide a �complete
semantics� that is expressed in a �precise way� using metamodels and a mixture of natural language
and an adaptation of formal techniques that improves �precision while maintaining readability�	 The
meta�models do capture a precise notion of the �abstract� syntax of the UML modeling techniques
�this is what meta�models are typically used for�� but they do little in the way of answering questions
related to the interpretation of non�trivial UML structures	 It does not help that the semantic meta�
model is expressed in a subset of the notation that one is trying to interpret	 The meta�models can
serve as precise description of the notation and are therefore useful in implementing editors� and they
can be used as a basis to de
ne semantics� but they cannot serve as a precise description of the meaning
of UML constructs	

The UML architects justify their limited use of formal techniques by claiming that �the state of
the practice in formal speci
cations does not yet address some of the more di�cult language issues
that UML introduces�	 While this may be true to some extent� we believe that much can be gained
by using formal techniques to explore the semantics of UML	 On the other hand� we do agree that
current text�based formal techniques tend to produce models that are di�cult to read and interpret�
and� as a result� can hinder understanding of UML concepts	 This latter problem does not diminish
the utility of formal techniques� rather� it obligates one to translate formal expressions of semantics
to a form that is digestible by users of the UML notation	

In this paper we discuss how experiences gained by formalizing OO concepts can signi
cantly
impact the development of a precise semantics for UML structures	 We motivate an approach to
formalizing UML concepts in which formal speci
cation techniques �FSTs� are used primarily to gain
insights to the semantics of UML notations	 The goal of our proposed UML formalization is to

�



produce a clear� precise expression of the UML notation semantics that can be used by users of the
UML notation	 In section �� we give an overview of other works on the formalization of OO modeling
concepts and relate it to our attempts at formalizing UML	 In section � we describe the goals of the
PUML project and outline and motivate our formalization approach	 In section � we illustrate our
formalization approach� discussing the structural view �class diagrams�	 We conclude in section � with
a summary and a list of some of the open issues that have to be tackled if our approach is to bear
meaningful results	

� Formalizing OO Concepts� An Overview of Integrated Methods

Three general approaches to formalizing OO modeling concepts can be identi
ed� supplemental� OO�
extended formal language� and methods integration approaches	

In the supplemental approach parts of the informal models that are expressed in natural language
are replaced by more formal statements	 The most developed example of the supplemental approach
is Syntropy ���	 In Syntropy� OMT�like models are annotated with mathematical expressions	 Formal
expression of annotations makes models more precise and less ambiguous� but the semantics of graphi�
cal constructs are not necessarily precisely de
ned in these approaches� in Syntropy only the semantics
of the static data model is de
ned	 In order to be industrially usable for rigorous OO development� it
must be possible to use the formal semantics underlying the diagrams as the basis for tool�supported
transformations� such as re
nement steps	 In principle the approach allows much �but not all� of the
complexities of a formal method to be concealed from users	

In the OO�extended formal language approach� an existing formal notation is extended with OO
features	 Several OO extensions of formal notations have been proposed in the literature �e	g	� Z��
���� and Object�Z ����	 Often the intent of adding OO modeling concepts to formal notations is to
enhance the structuring capabilities of the base formal language	 In this respect these approaches
have indeed resulted in richer formal notations	 Furthermore� incorporating OO concepts into formal
notations requires that the OO concepts be formalized	 The result is a rich body of work on formal
notions of object behavior and some aspects of class structures	 From a practical perspective� a
problem with the notations developed using this approach� at least initially� is the lack of analysis
tools	 Also� the models created using these notations are not easy to read� understand and modify
because of the large semantic gap between real world concepts and their mathematical representations
in the formal notations	 Considerable e�ort is needed to map concepts between the real�world and
formal domains	

In the methods integration approach informal OO modeling techniques are made more precise and
amenable to rigorous analysis by integrating them with a suitable formal speci
cation notation	 A
number of integrated OO and formal notations have been proposed �e	g	� see ��� �� ����	 Most works
focus on the generation of formal speci
cations from less formal OO models	 The act of formalizing
an informal model can reveal signi
cant problems that are easily missed in less formal analyses of
the models	 Furthermore� the formal speci
cations produced can be rigorously analyzed� providing
another opportunity for uncovering problems	

In an integrated method the formal speci
cations generated from informal models are intended to
re�ect the formal interpretations associated with the informal models	 In fact� the generation of formal
speci
cations from informal models is only possible if there is a mapping from syntactic structures in
the informal modeling domain to artifacts in the formally de
ned semantic domain	 This mapping
is used to build interpretations of the informal models	 Often� this mapping is informally described
�e	g	� through examples� and rarely justi
ed in papers describing particular integrated methods	 The
question of whether the generated speci
cations indeed capture the intended interpretations of the
informal models is di�cult to answer without a more formal description of the mapping rules	 Another

�



bene
t of formalizing the mapping between graphical and formal constructs is that it can uncover
problems with the modeling notations	 For example� it can help identify ambiguous and inconsistent
structures	 In addition� a formalized mapping can be used as the basis for de
ning semantically
well�formed informal models	

The existence of a mapping does not necessarily mean that the generation of formal speci
cations
from OO models can be completely automated	 The OO models often do not contain all the infor�
mation needed to generate a formal model� and if they do� the information is not expressed in precise
terms �hence� their informality�	 In most integrated methods the generation of formal speci
cations
from OO models requires the developer to supply the additional information in a suitable formal for�
mat	 Other approaches automatically generate what they can and it is then up to the developer to
complete the formal speci
cation	

A signi
cant barrier to the practical use of integrated methods is the need for users to directly
manipulate the generated formal speci
cations �e	g	� to complete and analyze the speci
cations�	 Users
of integrated methods must have working knowledge of the formal notations	 The gap between the
intuitive meaning of graphical OO models and their representations in the formal models is wide	 As
mentioned previously� this means that considerable e�ort is needed to comprehend the formal models	
Realizing the full bene
ts of integrated formal methods requires users of the methods to have in�depth
knowledge of both the informal OO and formal speci
cation techniques	 Such a user is currently rare
in industry	

When a complete semantic mapping from a graphical OO notation into formal semantic domains
is possible then the OO notation must itself be treated as a formal notation	 This is the basis of
the PUML work on formalizing UML	 The intent is not to generate formal speci
cations from UML
models� rather� the objective is to develop a more formal version of UML that can be used to build
precise and analyzable models	 This paves the way for the development of tools that support semantic
analysis of OO models� and does not require developers to have knowledge of another formal notation	

� Towards a Precise UML

The methods integration approaches to formalizing graphical OO modeling techniques outlined in the
previous section focus on how traditional text�based formal speci
cation notations can be used in the
context of informal� graphical OO modeling techniques	 Unfortunately� system analysts�developers in
industry 
nd it di�cult to express their business rules� information structures� software requirements
and designs in existing formal notations	 This is because much e�ort is required to transform real�
world concepts to the abstract mathematical structures used by most formal notations	 For this
reason� understanding formal speci
cations can also be di�cult	 One of the strengths of the OO
techniques in UML is that they provide constructs that allow developers to build models that have a
clear connection to real�world concepts	

Rather than generate formal speci
cations from informal OO models and require that developers
manipulate these formal representations� a more workable approach is to provide formal semantics for
graphical modeling constructs and develop rigorous analysis tools that allow developers to directly
manipulate the OO models they have created	 Formal speci
cation techniques can be used to explore
and gain insights into appropriate formal semantics for graphical modeling constructs	 Once identi
ed
and formally stated� the semantics can be re�expressed in a form that is digestible by users of the OO
modeling notation �e	g	� natural language� mixture of text and graphical representations�	

The UML provides a unique opportunity for us in this respect	 It is still very much a notation
that can bene
t from formalization of its constructs	 We are currently embarking on a collaborative
project� called the Precise UML �PUML� project� that has as its focus the formalization of core UML
concepts	 A major objective of the project is to develop a formal reference manual for the UML	

�



This will give a precise description of core components of the language and provide inference rules for
analyzing their properties	 In developing the reference manual we will build upon the semantics given
in the UML semantics document ���� by using formal techniques to explore the described semantic
base	 Such formalization is very likely to uncover problems related to inconsistent� incomplete� and
ambiguous descriptions of the UML semantics	 The insights we gain through formalization will be
used to develop precise descriptions of the semantics that will be presented in the reference manual
in a readable form	 In this section we motivate and give the objectives of the Precise UML �PUML�
project	

��� PUML objectives

Given its role as a standard modeling notation� it is imperative that the UML have a well�de
ned�
fully explored semantics	 A formal semantics would make the UML a formal modeling notation and
paves the way for its use in rigorous OO system development	 Exploring the semantic base of UML
with formal techniques can be bene
cial for the following reasons�

� Formalization allows one to derive and explore consequences of particular interpretations	 Such
exploration can yield insights that can help determine the appropriateness of interpretations	
Problems related to incomplete� inconsistent� and ambiguous interpretations can be unmasked
through rigorous analysis	 Similarly� formal characterizations of semantic domains and semantic
mappings can be analyzed to uncover problems and yield insights	

� Variants of the semantics can be obtained by relaxing and�or tightening constraints on semantic
models	 This paves the way for the development of a variety of semantic models for UML
constructs that can be used in various modeling contexts	

� Overall� the formalization of UML constructs can lead to a deeper understanding of OO concepts�
which� in turn� can lead to the development of more sophisticated semantic analysis tools� and
to the more mature use of OO technologies	

A primary object of the PUML project is to develop a formal characterization of core UML
concepts	 The intent is that the semantics we provide for the core concepts will provide a base for
developing semantic variations of the UML �e	g	� semantics tailored to system and product modeling
contexts�	 As pointed out above� such variants can be obtained by modifying the characterizations
of the semantic domains and mappings	 For example� there are many forms of aggregation� most of
which are applicable only to speci
c modeling contexts	 In the UML two forms of aggregation are
distinguished� the strong form called composite aggregation and the weak form simply called shared
aggregation	 In our formalization of the core concepts we will formalize these two forms� semantic
variations of aggregation can be obtained by modifying these formal characterizations	

Some of the concepts identi
ed as core in the UML include� types� values� operations� behaviours�
associations� hierarchy and inheritance	 However� other concepts such as collaborations� re
nement
and design patterns will also be considered in due course	 At present� a draft denotational semantics
of some of the above concepts has been developed ��� using the Z notation ����	 Already� the task
of producing this speci
cation has identi
ed some interesting and subtle ambiguities in the UML
meta�model	

The appropriateness of identi
ed semantics for UML constructs cannot be determined by formal
analysis only	 It is necessary to gain feedback from expert OO modelers and industrial users of
the notations	 The current UML documents re�ect a signi
cant amount of OO modeling expertise	
Formalization builds upon the expertise as discussed above	 The results of formalization can also
bene
t from expert feedback	 Such feedback is necessary at least to determine the signi
cance of the

�



insights gained and the appropriateness of the semantic mappings	 In order to achieve the PUML
objectives it is necessary to collaborate with industrial users of the UML and expert OO modelers	
The PUML group will utilize mechanisms that facilitate expert feedback on the formalization results
�e	g	� publishing results and soliciting feedback on the PUML web site �http���www�comp�brad�ac�uk��
and on relevant listservers�	

The semantics obtained through formalization will be described in a precise and readable form in
a reference manual	 The reference manual will also provide descriptions of useful semantic variants of
constructs	 A particular objective of the project is to ensure that the reference manual is accessible
to mainstream software engineers	 As mentioned above� we hope to achieve this by re�expressing the
formal semantics in terms of a suitably expressive language	 This could be achieved� for example�
by using a mixture of notations such as an enhanced version of the UML meta�model� the Object
Constraint Language �OCL� ����� and precise natural language statements �precise in the sense that
they are readable re�expressions of more formally represented concepts�	

��� Roadmap to Formalization

In this subsection� we give an overview of the formalization approach and discuss some of the issues
that have to be tackled	

In the introduction we discussed why a formalization of UML description techniques is useful	
From that discussion we can derive the following two requirements for a formalization�

�	 A formalization must be complete� and as abstract �but meaningful� and understandable as is
possible	

�	 The formalization of a heterogeneous set of description techniques has to be integrated to allow
the de
nition of dependencies between them	

This does not mean that every syntactical statement must have a formal meaning	 Annotations
or descriptions in prose are always necessary for documentation� although they do not have a formal
translation	

A clear and precise notion of what constitutes a system and how it should be denoted in OO
terms is needed	 Such a characterization provides a 
rm base for subsequent formalization activity	
For this reason� the 
rst step in our formalization approach is to formalize the notion of a system
in terms of its constituent parts� interactions� and static and behavioral properties	 This activity
requires the formalization of modeling concepts that are independent of speci
c modeling notations
and techniques	 In the OO modeling realm this is possible because objects have certain properties that
are independent from the modeling techniques� and are thus intrinsic to �being an object�	 Examples
of such properties include having attributes or having sequentially invocable methods	 In ���� and
���� a system model is de
ned� and used� as described in papers such as ��� and ����� as a basis for
formalizing OO diagrams	 Such a system model can also be viewed as the semantic domain� as it is
used as the domain of the semantics mapping	

The second step is to formally de
ne the abstract syntax of the graphical OO notations	 For that
purpose� the UML meta�model ��� is well suited� as it gives a precise notion of the abstract syntax	 The
UML semantics document also provides well�formedness rules expressed in the expression language
OCL	 These rules are used to determine whether a UML structure can be associated with a well�
de
ned meaning	 This part of the UML semantics is already well de
ned and we do not anticipate
that our formalization will add much signi
cant insights to this aspect of the semantics	 However�
the meta�model primarily aims at readability for the user	 For a formalisation� an even more abstract
characterisation of the syntax� e	g	 using math or Z �as we did below� is a better starting point	

�



The third step of the formalization is concerned with de
ning the mapping between the syntactic
domains �as characterized in step �� and the semantic domains	 The mappings relate syntactic con�
structs� such as class names� to semantic ones� like actual classes	 The system model formally de
nes
the set of all possible systems	 A document of a given description technique is then de
ned by relating
its syntactic elements to elements of a system� such as the existing set of classes� or other structural
or behavioral entities	 The semantics of a document is then given by a subset of the system model	
This subset of the system model consists exactly of all systems that are correct implementations of
the document	

It is an important advantage� to separate formalization of the semantic domain and the semantics
mapping� by de
ning the system model explicitly� because this leads to a better understanding of the
developed systems� allows the user to understand what a system is independently of the used notation�
and allows to add and integrate new OO diagram forms	

If the semantic domain is carefully de
ned� then the mapping between syntax and semantics
becomes easier	 If there is a larger coincidence between the syntactic and the semantic domain� then
the mapping may even be the identity to some extent	 For example� if the notion of class does exist
in the semantics� either because it was de
ned �e	g	 a schema using Z�� or it already exists in the used
language �e	g	 Object�Z� Z���� identity can be used in this case	 Thus� syntactic and semantic domain
may overlap to some extent	 For convenience� we will allow such overlapping� but is important to be
aware of this situation to avoid confusion	 It is also important that syntactic and semantic concepts
have the same meaning	 For example� if the syntax allows the denotation of classes with publicly
accessible attributes� then a mapping to classes without such attributes is not appropriate	

It clearly is beyond the scope of this paper to carry out these steps	 In the next section we give a
few examples of the formalizations that can be produced in our approach	

� A Formalization Example

In this section� we formalize the meaning of a classi
er in terms of the set of object instances that it
describes	 To keep the example small� we show only the part of a formalisation that deals with classes
and attributes	 Please note� that this section demonstrates the formalisation approach� especially the
separation of syntactic and semantic domains	 It is however not intended to be already a considerable
contribution to the formalisation of UML	

��� Abstract Syntax

The 
rst step in formalizing the meaning of a classi
er is to describe its abstract syntax	
First� it is assumed that there are the given sets�

�ClassifierName�AttributeName�

from which the set of all classifer and attributes names can be drawn	
A classi
er has a name� and a set of attributes�

Classifier�
�
�
�
�
name � ClassifierName

attributes � FFAttributeName

�



At any point in time� a UML model will contain a set of uniquely named classi
ers�

AbstractSyntax�
�
�
�
�
�
�
�
�

classifiers � FFClassifier

�c�� c� � classifiers j c� �� c� � c��name �� c��name

The constraint of the schema states that each classi
er must have a unique name	

��� System Model

In order to give meaning to classi
ers� values must be assigned	 In the UML� a classi
er is viewed
as de
ning a set of possible object instances	 This is the �system model that we adopt for our
formalization	

The given types ObjectName and AttributeLink describes the set of all object identities and
values of interest�

�AttributeLink�ObjectName�

An object is owned by a classi
er� has a unique identity� and maps a set of attributes to their
values�

Object�
�
�
�
�
�
�

owner � ClassifierName

name � ObjectName

attributes � AttributeName � �� AttributeLink

At any point in time� the meaning of a UML model is a 
nite set of unique object instances�

SystemModel�
�
�
�
�
�
�

objects � FFObject

�o�� o� � objects j o� �� o� � o��name �� o��name

��� Meaning function

This section describes the meaning of classi
ers as a mapping from classi
ers to object instances�
It is assumed that there is a relationship between attributes and their values�

�
�
� value of � AttributeLink �� AttributeName

The following function describes the meaning of a classi
er	 It maps a classi
er a set of possible
combinations of object instances �Objects�� whose attribute values conform to that permitted by

�



the classi
er	 By �conform it is meant that the values of each objects attributes conform to those
permitted by the attribute of the owning classi
er�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Mclassifier � Classifier �� PPObject

�c � Classifier�
Mclassifier�c� � fo � Object j
o�owner � c�name�
o�attributes � fa � c�attributes� v � AttributeLink j

value of�v� � agg

Similarly� a function to describe meaning of a collection of classi
ers �the abstract syntax� can be
de
ned using the above function�

�
�
�
�
�
�
�
�
�
�
�

Msyntax � AbstractSyntax �� PPSystemModel

�a � AbstractSyntax�
Msyntax�a� � fs � SystemModel j
s�objects �

S
fc � a�classifiers �Mclassifier�c�gg

It maps an AbstractSyntax to the set of possible SystemModels that may be derived from the
meaning of the abstract model	

��� Advantages of Formal Notations

The advantage of using a formal notation like Z to formalize components of the UML is that all the
usual facilities for Z are available for�

� Type checking the components

� Proving properties about the components

� Giving precise rules for manipulating the components

In addition� by permitting incremental speci
cation� it is possible to generate the meaning of parts
of the UML seperately and then combine them to produce a semantics of the whole model	 In this
way� a compositional model of the UML can be built� which has important consequences for proof and
re
nement of UML models	

The main disadvantage of using Z however� is that faithfully mapping the UML Semantics to Z
can result in very verbose speci
cations	 Intuitively� expressing the UML semantics using a meta�
model is much easier for a non�formalist to understand and comprehend than a Z speci
cation	 As
an example� consider the UML meta�model description of the model presented above	 The class
diagram representing the syntax and partial semantics of the model is depicted in 
gure � and the
OCL expression required to ensure that the values of an instance conform to those permitted by the
attributes of its owning classifer or class is�

�



*

Classifier

Instance

Attribute

Value

1

0..*

1 *

1

*

1 *

Figure �� Class diagram representing syntax and partial semantics

Classifier

self�instances � � forall�i � Instance �

�i�values � � forall�v � Value �

v�attributes � self�attributes�� and

i�values� �sum � self�attributes��sum�

The constraint states� ��� that each value of an instance must belong to the set of values permitted
by an attribute belonging to the owning classi
er� ��� the number of values an instance may have must
be equal to the number of attributes of the owning classi
er	

However� although the UML description is simpler �and shorter� than the Z version� it su�ers from
any means of proving properties about the components	 This is a critical shortcoming which will need
to be addressed if a precise semantics and proof system for UML is ever to be developed using the
meta�model approach	

� Summary and Open Issues

In this paper we have presented our motivation for formalizing the UML	 The objective of our e�orts
is to make the UML itself a precise modeling notation so that it can be used as the basis for a rigorous
software development method	 The bene
ts can be summarized as follows�

� Lead to a deeper understanding of OO concepts� which in turn can lead to more mature use of
technologies	

� The UML models become amenable to rigorous analysis	 For example� rigorous consistency
checks within and across models can be supported	

� Rigorous re
nement techniques can be developed	

An interesting avenue to explore is the impact a formalized UML can have on OO design patterns
and on the development of rigorous domain�speci
c software development notations	 Domain�speci
c

��



UML patterns can be used to bring UML notations closer to a users real�world constructs	 Such
patterns can ease the task of creating� reading� and analyzing models of software requirements and
designs	

An integrated approach to formalisation of UML models is needed in order to provide a practical
means of analysing these models	 Current work on compositional semantics ��� has used techniques
for theory composition to combine semantic interpretations of di�erent parts of an OO model set	

Some of the other issues that have to be addressed in our work follows�

� How does one gauge the appropriateness of an interpretation of UML constructs� In prac�
tice an �accepted interpretation is obtained by consensus within a group of experts	 Formal
interpretations can facilitate such a process by providing clear� precise statements of meaning	

� Should a single formal notation be used to express the semantics for all the models� The
advantage of a single notation is that it provides a base for checking consistency across models�
and for re
nement of the models	 This is necessary if analysis and re
nement is done at the
level of the formal notation	 On the other hand� if the role of the formal notation is to explore
the semantic possibilities for the notations� and analysis and re
nement are carried out at the
UML level� then there seems to be no need to use a single formal notation	

� Are the identi
ed core concepts su�cient�

� How can the formal semantics of the UML be best presented to non�formalists�

It is anticipated that as our work progresses additional issues that will have to be tackled will surface	
To solve these problems the authors have started a project that deals with the formalisation of

core elements of UML	

References

��� J	 Bicarregui� K	 Lano� and T	 Maibaum	 Objects� associations and subsystems� A heirarchical
approach to encapsulation	 In Proceedings of ECOOP ��� LNCS �	
�	 Springer�Verlag� ����	

��� Robert H	 Bourdeau and Betty H	C	 Cheng	 A formal semantics for object model diagrams	 IEEE
Transactions on Software Engineering� ��������������� October ����	

��� Ruth Breu� Ursula Hinkel� Christoph Hofmann� Cornel Klein� Barbara Paech� Bernhard Rumpe�
and Veronika Thurner	 Towards a formalization of the uni
ed modeling language	 In Satoshi Mat�
suoka Mehmet Aksit� editor� ECOOP��� Proceedings	 Springer Verlag� LNCS ����� ����	

��� T	 Clark and A	 Evans	 Foundations of the Uni
ed Modeling Language	 In Proceedings of The
Second Northern Formal Methods Workshop	 Springer�Verlag� ����	

��� Derek Coleman� Patrick Arnold� Stephanie Bodo�� Chris Dollin� Helena Gilchrist� Fiona Hayes�
and Paul Jeremaes	 Object�Oriented Development� The Fusion Method	 Prentice Hall� Englewood
Cli�s� NJ� Object�Oriented Series edition� ����	

��� Steve Cook and John Daniels	 Lets get formal	 Journal of Object�Oriented Programming �JOOP�
pages ����� and ������ July�August ����	

��� Roger Duke� Paul King� Gordon A	 Rose� and Graeme Smith	 The Object�Z speci
cation lan�
guage	 In Timothy D	 Korson� Vijay K	 Vaishnavi� and Bertrand Meyer� editors� Technology of
Object�Oriented Languages and Systems� TOOLS �� pages �������	 Prentice Hall� ����	

��



��� Robert B	 France� Jean�Michel Bruel� and Maria M	 Larrondo�Petrie	 An Integrated Object�
Oriented and Formal Modeling Environment	 To appear in the Journal of Object�Oriented Pro�
gramming �JOOP� ����	

��� The UML Group	 UML Metamodel	 Version �	�� Rational Software Corporation� Santa Clara�
CA������� USA� September ����	

���� The UML Group	 UML Object Constraint Language Speci
cation	 Version �	�� Rational Software
Corporation� Santa Clara� CA������� USA� July ����	

���� The UML Group	 UML Semantics	 Version �	�� Rational Software Corporation� Santa Clara�
CA������� USA� July ����	

���� The UML Group	 Uni
ed Modeling Language	 Version �	�� Rational Software Corporation� Santa
Clara� CA������� USA� July ����	

���� J	 Anthony Hall	 Using Z as a speci
cation calculus for object�oriented systems	 In D	 Bj rner�
C	 A	 R	 Hoare� and H	 Langmaack� editors� VDM and Z � Formal Methods in Software De�
velopment� volume ��� of Lecture Notes in Computer Science� pages �������	 VDM�Europe�
Springer�Verlag� New York� ����	

���� Cornel Klein� Bernhard Rumpe� and Manfred Broy	 A stream�based mathematical model for
distributed information processing systems � SysLab system model � 	 In Jean�Bernard Stefani
Elie Naijm� editor� FMOODS��� Formal Methods for Open Object�based Distributed Systems�
pages �������	 ENST France Telecom� ����	

���� Kevin C	 Lano	 Z��� an object�orientated extension to Z	 In John E	 Nicholls� editor� Z User
Workshop� Oxford ����� Workshops in Computing� pages �������	 Springer�Verlag� ����	

���� J	 Rumbaugh� M	 Blaha� W	 Premerlani� F	 Eddy� and W	 Lorensen	 Object�Oriented Modeling
and Design	 Prentice Hall� ����	

���� Bernhard Rumpe	 Formal Method for Design of Distributed Object�oriented Systems	 Ph	d	 thesis
�in german�� Technische Universit!at M!unchen� ����	

���� J	 Michael Spivey	 The Z Notation� A Reference Manual	 Prentice Hall� Englewood Cli�s� NJ�
Second edition� ����	

��


