
Utilizing User Interface Models for Automated
Instantiation and Execution of System Tests

Benedikt Hauptmann
Technische Universität München, Germany

benedikt.hauptmann@in.tum.de

Maximilian Junker
Technische Universität München, Germany

maximilian.junker@in.tum.de

ABSTRACT
Scripts for automated system tests often contain technical
knowledge about the user interface (UI). This makes test
scripts brittle and hard to maintain which leads to high
maintenance costs. As a consequence, automation of sys-
tem tests is often abandoned.

We present a model-driven approach that separates UI
knowledge from test scripts. Tests are defined on a higher
level, abstracting from UI usage. During test instantiation,
abstract tests are enriched with UI information and executed
against the system. We demonstrate the application of our
approach to graphical UIs (GUIs) such as rich clients and
web applications. To show the feasibility, we present a proto-
typical implementation testing the open-source application
Bugzilla.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Testing and Debugging—
Testing tools; D.2.9 [Software Engineering]: Manage-
ment—Software quality assurance

General Terms
Verification, Design

Keywords
Testing, User Interface, Model-Based

1. INTRODUCTION
Testing is a central activity for quality assurance. The

system under test (SUT) is executed with the intention to
find errors as well as to gain confidence that it works as
intended.

System tests execute the whole system to check whether
it fulfills its functional requirements. The focus is on the
observable input/output behavior rather than on the struc-
ture or the internal state of the system or on timing as-
pects [1]. For systems with user interfaces (UI) this usually

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ETSE ’11, July 17, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0808-3/11/07 ...$10.00.

means that system tests are executed against the UI. The
execution of UI-based tests is easy to perform by humans.
Their brainpower, experience and intuition facilitate them
to interpret high level descriptions (e.g., activate the human
resource module) without the need of detailed UI specific
information.

If system tests have to be executed repeatedly, for ex-
ample for regression testing, test automation can be very
efficient [7, 10, 3]. To automate system tests, UI specific
information has to be included in the test scripts. As such
information may change when the software evolves (e.g., a
button is moved to a different dialog), automatically exe-
cutable test scripts tend to be fragile and need to be main-
tained often [2, 22]. This causes considerable costs and the
decision whether and when tests should be automated highly
depends on the maintenance effort for the test scripts [7, 6].
The following problems motivate an efficient and flexible way
of test instantiation and execution for systems with UIs.

1. Maintenance of tests: I the case of changes to the UI,
test scripts tend to be fragile because of the mixture of func-
tional (e.g., providing a certain input value) and technical
aspects (e.g., clicking on a specific button). This makes it
difficult to adapt test scripts when the SUT changes.

2. Reuse between tests: The same functionality is usually
tested with different inputs or in different variants. Further-
more, different tests may use the same parts of the user inter-
face. A main obstacle for maintainable tests is redundancy,
or put differently, the low level of information reuse within
tests. There are several approaches addressing those issues
(e.g., keyword-driven testing) [7]. However, using these ap-
proaches, tests still contain much technical information and
the potential for reuse is not exploited.

We propose a model-driven approach to separate tests
from UI related information. Tests are defined on the func-
tional level, abstracting from UI interactions. During test
execution, abstract tests are enriched with UI information
and are executed against the system.

The remainder of this paper is structured as follows. In
Section 2, related work is reviewed. In Section 3, we present
our model-based approach to abstract UIs in testing. In
Section 4, we show how our approach can be applied to
graphical UIs by introducing a suitable meta-model. In Sec-
tion 5, we present a prototypical implementation showing
models for the open-source application Bugzilla. In Section
6, we discuss our approach based on a changing scenario. In
Section 7, we conclude and give an outlook on future works.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ETSE’11, July 17, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0808-3/11/05 ...$10.00

8

2. RELATED WORK
Improving maintainability of test scripts has been dis-

cussed repeatedly. Two popular concepts are data-driven
testing (DDT) and keyword-driven testing (KDT) [7] which
both raise the abstraction level of test scripts to enhance the
level of reuse. In the latter, to write abstract tests, action
words are used which are mapped to test script snippets.
Our approach is similar to KDT but models the relevant
parts of the UI instead of defining executable scripts. With
this, we expect simpler maintenance and better reuse.

The open-source testing framework Tellurium1 uses UI
models to reduce the effort of creating test scripts snippets
in KDT. However, several UI concepts are mixed in one
model. Our approach aims to provide one comprehensive UI
model, containing all aspects of UIs on dedicated abstraction
levels. By this separation, we expect that the UI model can
be performed easier.

In [9], tool-support is used to ease the maintenance of test
scripts for GUIs. Differences between GUIs are automati-
cally analyzed and the affected parts of the test scripts are
detected. However, this approach still focuses on low level
test scripts and does not exploit the full potential for test
reuse.

Model-based testing (MBT) is concerned with testing soft-
ware using models. However, the focus of most works is on
test case generation, which we do not target. To generate
test cases for GUIs, many approaches exist [14]. For ex-
ample, [20, 15] use variants of finite state machines (FSMs)
which are very detailed and complex to create and maintain.
In our work, we want to keep the effort for the test designer
as low as possible by reducing the necessary models to just
that information required for test execution.

Although it is acknowledged that the gap between ab-
stract test cases and the system needs to be bridged [23],
test instantiation in MBT is not covered in detail in most
works. Most MBT approaches in literature are applied to
systems with simple UIs, for example, embedded systems
or chip cards. Mostly, there is a direct mapping between
abstract actions and the code that implements that action.
This is true, for example, for approaches that build on Spec-
Explorer [24, 15, 17]. Katara et al. [13] implement a layered
approach for test case execution.

In [8] a model-driven approach which stepwise enriches
tests with UI information is presented. However, since they
focus only on infotainment systems of cars, they are limited
in their field of application.

We already presented the idea of separating tests based
on functional and UI related concerns in [11]. In the cur-
rent paper, we continue this work and show how this ba-
sic idea can be applied using the example of graphical UIs.
We adapt concepts from model-based UI development and
present a meta-model designed for the needs of test instan-
tiation (Section 4). Furthermore, we show the feasibility of
the approach by giving a concrete example testing an open-
source application (Section 5).

3. OVERVIEW
To analyze the mentioned problems, we make use of a

conceptual UI model introduced in [25] (see Figure 1). The
model separates an interactive system into two logical parts:
the application and a mediator. The application realizes

1http://code.google.com/p/aost/

the desired functionality and is independent from any UI
related concepts. The mediator is the intermediary between
the functionality (realized by the application) and the user.
Furthermore, the mediator forms the interface at the system
boundary. It is built to be used by a certain type of user
and is therefore optimized for it. A system may also have
several mediators for several types of users (e.g., a GUI and
a web service interface).

User

control actions

feedback

Mediator Application

Interactive System

application messages

function calls

Figure 1: Conceptual UI model (based on [25]).

For example, a telephone answering device typically has a
UI containing a display and several buttons to be used in a
physical way. The same machine may also be used remotely
by voice control. Both of the UIs (mediators) will trigger
the same functionality (the application), even though they
are used in different ways.

In the sense of this model, an automated test is a user
too. However, the mediator is typically not optimized to be
used by a test. An easy solution would be to extend the sys-
tem with another mediator, optimized for automated testing
(e.g., a special testing interface). This is in conflict with the
paradigm of system testing which is to test the complete
system in a black box way (i.e., including the mediator).

Since we do not want to adapt an SUT for automated test-
ing, we have to find a way to ease automated communication
with the SUT.

Our approach aims to separate tests into functional and
mediator specific concepts to improve their reuse and make
them insusceptible to changes to the system’s UI. We split
tests into two artifacts. (1) Pure test logic (the actual test
cases) which has no dependency to any information of the
UI, and (2) the pure UI knowledge which is necessary to exe-
cute the tests (see Test Cases and UI Model in Figure 2). For
the latter, we suggest a descriptive model. To execute these
UI independent test cases, we reconstruct the necessary in-
formation by using a generic test adapter which instantiates
test cases using the UI information stored in the UI model
for a given UI (see Test Adapter in Figure 2).

3.1 Test Modeling
Considering UI specific issues during test case creation can

be very distracting. By ignoring these concerns, the test en-
gineer can focus on creating good tests. Furthermore, since
appropriate test case specification techniques can be used,
the test engineer does not need to have programming skills.
We envision a description technique that largely uses natu-
ral language. However, as the test cases will focus on inputs
and outputs, tabular notations may be suitable for certain
contexts as well. We expect that a test case specification
language which ignores UI related information helps the test
engineer to be more efficient and to create better tests.

9

Specification Test Cases

Requirements

System

tests

Test
UI Model Adapter

Figure 2: Overview of the approach.

Tests without UI specific information can be reused for
different variants of an application implementing the same
functionality. This is especially relevant in the context of
software product lines where UI independent tests can be
reused for different products of the same product line. Fur-
thermore, if a system contains several UIs (for example a
web interface and a rich client), tests can be reused for all
of them.

Considering software evolution, many slightly different ver-
sions of the same system will exist. Even though the sys-
tem is modified over time, most of the functionality will
remain constant. UI independent tests will be valid if the
UI changes.

3.2 UI Modeling
By keeping all UI related information in a dedicated model

which is separate from tests, competences between test cre-
ation and test instantiation can be allocated more explicitly.
Whereas a test engineer can focus on creating test cases, a
test execution engineer is responsible for creating and main-
taining the UI model.

If tests have to be performed for several instances or ver-
sions of a system, instead of copying and adapting every
single test, just a corresponding UI model has to be created
and the tests can be reused.

To support maintenance of tests, we suggest dedicated, de-
scriptive models to store UI related information. Compared
to conventional test scripts where functional test logic and
UI information are mixed, having a single artifact where all
UI related data are kept centrally makes changes to the UI
easier to handle.

3.3 Test Case Instantiation and Execution
The transition from test cases to executable test scripts

is called test instantiation [18]. Abstract test cases are con-
cretized to concrete interactions with the system and the
responses of the system are abstracted back to the level of
the test cases and compared with the expected results. Gen-
erally, two different approaches exist. Test cases are either
transformed into executable test scripts by adding the nec-

essary information of the system’s interface, or an adapter
is built which interprets the test cases and dynamically per-
forms the necessary actions on the system interface during
test execution.

Test scripts are created before test execution, for exam-
ple, using a capture/replay tool. They therefore have limited
options to react dynamically on the system’s behavior dur-
ing test execution. Before the execution of a test has been
started, every single detail of the behavior of the UI has to be
foreseen. A test adapter, however, can react dynamically on
the system’s behavior during execution and therefore does
not need to know every response of the UI in advance. For
example, after an action has been triggered on the UI, a test
script needs to exactly know if this action has led to a dia-
log switch and if yes, which the new active dialog is. A test
adapter, however, can detect a potential dialog transition
during execution and can calculate the necessary UI inter-
actions to perform the next commands of the test case on
the fly. Therefore, using test adapters, less information of
the dynamic behavior of the UI is necessary for the test ex-
ecution which again leads to smaller UI models and reduced
maintenance effort.

In our approach, a generic test adapter interprets test
cases and loads the necessary UI information from a given
UI model. Using this adapter, test cases can be reused for
different UIs by switching the UI model for the correspond-
ing UI.

4. MODELING AND ADAPTING GUIS
The approach introduced so far is not limited to graphical

UIs, but can also be applied to other forms of UIs like textual
or voice UIs. However, in the following sections, we will
focus on how to create models and adapters for graphical
interfaces like in web or desktop applications. We introduce
a multi-layered architecture for test adapters as well as a
suitable meta-model.

To handle the complexity of sophisticated UIs, we divide
the test instantiation into several parts. We propose a pro-
ceeding which is oriented towards multi-layered communi-
cation abstraction [19], as in network communication stacks
(e.g., the ISO/OSI reference model). We use several layers,
stepwise abstracting from the usage of the UI. Every layer
reduces typical UI concepts like concrete widgets, dialogs
or navigation, and provides a more abstract view of the sys-
tem’s interface (see System Interface, System Interfacelayer1 ,
. . . in Figure 3). These virtual, more abstract SUT interfaces
are the base for the next layers which will reduce further UI
concepts. This is repeated until all UI related concepts are
removed and a virtual, completely UI independent SUT in-
terface has been created. Test cases are defined on this, most
abstract layer using the interactions provided by this UI in-
dependent SUT interface. To execute tests, on each layer,
models hold the extracted UI information. The adapter uses
these models to concretize tests respectively abstract the
system’s response from one layer to another and finally ex-
ecutes the tests against the actual SUT (see . . . , Testlayer2 ,
Testlayer1 , Test in Figure 3).

4.1 System
As topmost layer, we introduce the Abstract System Model

which will form the abstracted interface for testing of the
SUT. It consists of the abstract system interactions a user
can perform with the system. An abstract system interac-

10

System Interface

System Interface layer2

Test

Test layer2tests

concretization/
abstraction

UI Model

...

concretization/
abstraction

UI Model

System Interface layer1 Test layer1

...

tests

tests

Figure 3: Multi-layered communication abstraction.

tion can be an input, output, or action and is independent
from any concrete UI implementation. In our approach, the
abstract system model has two roles. From the perspective
of test creation, it forms the interface of the SUT against
which tests are created (see left of Figure 4). Secondly, it
forms the starting point for the creation of the UI model.

4.2 GUI Modeling
In this section, we focus on how to model graphical UIs

as they exist on desktop PCs or web applications. For the
UI model, we have the following goals in mind:

Ease of creation: UI model creation should not hinder the
testing process. Therefore UI models have to be easy and
quick to create. We address this by providing a meta-model
for GUIs which works as a framework for the creation of UI
models and is the base for tool support.

Partial and incremental modeling: Only the parts of the
UI which are relevant for testing should have to be modeled.
Parts of the UI which are not affected during testing are not
relevant and therefore should not have to be modeled. Only
necessary UI information has to be modeled (see Section
3.3). If new tests are created, the existing UI model can be
expanded with the further needed parts of the UI.

Flexible to changes to the GUI: Changes to the GUI should
be easy to reproduce in the UI model. We addressed this
by reducing redundancy in the UI model. Every single piece
of information is stored only once. All connections within
the model are realized using references. Furthermore, we
designed our meta-model based on typical concepts of GUIs.
If the UI changes, it is easy to find the according parts in
the model and perform the changes.

To create suitable UI models, we first give an overview on
Model-Based UI Development, a research area of software
engineering which aims to create UIs based on UI models.
After that, inspired by MBUID, we introduce our own UI
meta-model optimized for test instantiation.

4.2.1 Model-Based UI Development (MBUID)
Model-Based User Interface Development (MBUID) [21,

5, 12] is a set of concepts and models from the research
area of human-computer interaction (HCI) and software en-
gineering which aims to design and develop UIs based on
models. MBUID introduces a forward engineering approach
to stepwise transform UI models by systematically enriching
them with design and layout information.

Typically, the starting points of an MBUID are Task Mod-
els and Domain Models which are independent from UI de-
sign and layout specific concepts. Task Models describe the
tasks a user can perform with a software system. A com-
mon notation is ConcurTaskTree [16] which represents tasks
in terms of abstract human-computer interactions (input,
output, action triggered, . . .). Tasks can be hierarchically
decomposed into subtasks and connected with temporal re-
lationships (e.g., two tasks are concurrent or one task en-
ables another task). Domain models are not limited to UI
design, but are also used in other fields of software engineer-
ing. They describe the structure of the application (e.g., in
terms of a UML class diagram).

Task and domain models are transformed into an Abstract
User Interface (AUI), dealing with layout concepts such as
dialogs, navigation and abstract widgets. These abstract
widgets are highly abstract UI elements, for example, ab-
stract buttons or text field elements. AUIs already define
the basic layout of the dialogs but are still independent from
any implementation specific concept like the target platform
or the GUI framework.

The abstract layout defined in the AUI is transferred to
concepts of the target platform. This so called Concrete
User Interface (CUI) contains implementation details nec-
essary to automatically generate the UI.

Borrowing from MBUID, we present a meta-model to cre-
ate UI models for GUIs. It addresses, but is not limited
to, web and desktop applications. Performing minor adap-
tations, this meta-model also fits to other graphical, dialog-
based UIs like they occur in mobile or multi-touch appli-
cations. The meta-model contains three sub models which
build upon each other. Each sub model enriches the previ-
ous sub model by adding further UI related concepts (see
Figure 4).

Compared to MBUID, we are not interested in modeling
every single detail of the GUI. For test instantiation, the fo-
cus is on controlling an already existing GUI. Therefore, our
models differ from the ones from MBUID. For example, our
most abstract model, the system model, just deals with the
system’s abstract interactions and does not focus on their
relationships as task models in MBUID do. Furthermore,
since we are interested in an understandable, easy to create,
and maintainable tracing from abstract system interactions
to GUI widgets, we cut the AUI into two parts, the cluster
and the abstract page model.

4.2.2 Cluster Model
The cluster model enriches the system model with the

concept of clusters. Inspired by [4], clusters group abstract
system interactions (see Interaction in Figure 4) which are
visible to the user at the same time. Those clusters form
the basis for the presentation units of the later UI. Further-
more, the interactive dialog structure is modeled as Naviga-
tions referencing all clusters which are navigable by a user
(or test). As concept of reuse, we added a second refer-
ence to other clusters modeling includes. They represent
sub-clusters like tabs or side bars which can be activated,
deactivated and reused among clusters.

Although an abstract system interaction exists just once
in the abstract system model, it can appear in several clus-
ters in a UI. Therefore, there is a 1 : n relationship between
abstract system interactions and clusters.

11

UI Model

Cluster Model

Cluster

Interactions
Navigations
Includes

Abstract Page Model

Abstract Page

Concrete
Page Model

Abstract
Widget

Abstract
System Model

Abstract
System
Interaction

Test Cases

Widgets
PageType

Figure 4: Meta-model for graphical UIs (GUIs) (arrows represent references to other elements).

4.2.3 Abstract Page Model
Looking at modern GUIs, there is often no 1 : 1 rela-

tionship between abstract system interactions as we mod-
eled them in the abstract system model and widgets at the
UI. Very often, the same interaction is represented multiple
times on the same dialog. For example, in web applications,
headers and footers containing the same content are a very
common layout pattern. But also the other way round oc-
curs frequently. Several interactions can be realized using a
single GUI widget. Date inputs, for example, can be seen
as functional disjunctive inputs for day, month and year.
On the implementation level however, they can be realized
using a single calendar widget. Furthermore, there are dif-
ferent ways a dialog may be implemented, for example as a
window or as view in a rich client application. We reflect
those possibilities via a parameter PageType.

We extend the GUI model to an Abstract Page Model con-
taining Abstract Pages. Every abstract page maps to one
cluster from the cluster model and lists Abstract Widgets
from the concrete UI. Between abstract system interactions
referenced by the cluster model and abstract widgets from
the abstract pages, there is an n : m relationship.

4.2.4 Concrete Page Model
The Concrete Page Model, the last sub-model, bridges the

gap between the abstract widgets and the actual UI. Ab-
stract widgets are mapped to concrete instances of UI wid-
gets in the actual UI, for example, a certain text input field
on the main window. This mapping should be based on a
UI platform specific test framework.

5. PROOF OF CONCEPT
To demonstrate the feasibility of our approach, we cre-

ated a prototypical implementation in Java. As test object,
we chose the open-source application Bugzilla2, a web-based
general-purpose bug tracking system. It is a grown system
and many old versions are still available with which we can
simulate an evolving system. As system specification, we
used the official Bugzilla manual3. Even though the manual
contains many GUI related details, the functional concepts
are clearly recognizable.

In the rest of this section, we will show how our approach
can be applied and which artifacts have to be created. We

2http://www.bugzilla.org
3http://www.bugzilla.org/docs/3.6/

will focus on the function reporting a new bug as it is de-
scribed in section 5.6.1 of the Bugzilla manual. The user
has to click on the link new of the navigation panel. After
selecting a product, several attributes of the new bug have
to be set (e.g., the product’s component, a summary, a de-
scription, . . .). At the end, the user has to confirm the new
bug by clicking on a submit button.

5.1 Tests and the Abstract System Model
Analyzing the Bugzilla manual, abstract interactions can

be elicited by searching for data exchanged between the user
and the system as well as actions triggered by the user. Ta-
ble 1 shows the part of the Abstract System Model necessary
to report a new bug.

Table 1: The abstract system model for Bugzilla

Abstract System Interactions

Inputs: Product, Component, Summary, Description,
Search String, Select Result, . . .

Outputs: Product, Component, Summary, Description, . . .
Actions: Submit Bug, Search, . . .

Using the abstract system model, test cases for the bug
reporting function can be created by referencing the elicited
abstract system interactions. Table 2 shows a simple test in
table notation. Every row represents a system interaction
having a type (input, output or action), an interaction and
value which has to be applied. This table is interpreted by
our adapter (introduced in Section 5.3) which will execute
the test line by line.

5.2 GUI Modeling
To reduce unnecessary GUI modeling, we perform a re-

verse engineering approach. We execute test cases manually
and model all parts of the GUI which have been used during
the execution. Using this bottom up procedure, we have to
model just the parts of the UI that are necessary for the
execution of the tests.

5.2.1 Concrete Page Model
For the concrete page model, we make use of the GUI

automation framework Selenium4. We chose Selenium as it
is open-source and freely available. Since our approach is

4http://www.seleniumhq.org

12

Table 2: An example test case for Bugzilla.

Type Abstr. Inter. Value

. . .
Set Input Product ’Test Product’

Set Input Component ’Test Component’

Set Input Summary ’Test Bug’

Set Input Description ’This is a Test Bug’

. . .
Perform Action Submit Bug —
Set Input Search String ’Test Bug’

Perform Action Search —
Set Input Select Result 1

. . .
Expect Output Product ’Test Product’

Expect Output Component ’Test Component’

Expect Output Summary ’Test Bug’

Expect Output Description ’This is a Test Bug’

. . .

independent of the GUI technology used other automation
tool will work as well. Selenium provides a capture/replay
tool recording repeatable test scripts, as well as a program-
ming framework for several programming languages (includ-
ing Java) to manually write tests. Using this programming
framework, we wrote a reusable set of wrapper classes ab-
stracting from the usage of all required HMTL widget types.
With this wrapper classes, the concrete page model is repre-
sented by a mapping from abstract widgets to HTML widget
types and a Selenium specific identification attribute (Sele-
nium Target). Table 3 shows a subset of the HTML widgets
used in the test introduced before (Table 2).

Table 3: The concrete page model for Bugzilla.

Abstract Widget HTML Widget Selenium Target

Product Selection Link List ’//table’

Component Selection Selection ’id=component’

Summary Input Input Field ’id=short_desc’

Description Input Input Field ’id=comment’

Submit Bug Button Button ’id=commit’

Component Text Text ’//div[2]/form/

table/tbody/tr/

td/table/tbody/

tr[4]/td[2]’

. . .

5.2.2 Abstract Page Model
In the abstract page model, we group the abstract widgets

from the concrete page model in pages. To reduce redundant
modeling, our meta-model allows reusing recurring UI parts
by including other clusters (Section 4.2.2). For example,
each page at the Bugzilla web application contains the same
navigation links (header and footer). To avoid modeling
these links at every single page, we create a (fictive) page
Navigation containing all common widgets of the used pages.
This fictive page is included in other pages in the cluster
model. Table 4 shows a subset of the abstract page model
for the test introduced in Table 2. We omit the PageType
parameter as in this case all pages have the same type.

Table 4: The abstract page model for Bugzilla.

Abstract Page Abstract Widgets

Home —
Navigation Home Link, New Link, Search Link
Select Product Product Selection
New Bug Component Selection, Summary Input,

Description Input, Submit Button, . . .
. . .

5.2.3 Cluster Model
So far, the concrete and abstract page model abstracted

the Bugzilla web application to pages containing abstract
widgets. In the cluster model, these concepts are brought
together with the abstract system interactions from the ab-
stract system model (see Figure 4). The cluster model con-
tains the following information: (1) The navigation between
and inclusion of clusters, (2) the abstract system interac-
tions represented by a cluster, and (3) the mapping between
abstract system interactions and abstract widgets.

Figure 5 shows the navigation and inclusion relationship
of the example introduced before. The dotted edges repre-
sent cluster inclusions. The cluster Navigation, for example,
contains the navigation area which exists on every page and
therefore is included in every cluster. Each solid edge rep-
resents a navigation link between pages. The labels on the
edges bind navigation to an abstract widget. For example,
by using the abstract widget Home Link, a navigation to the
cluster home can be performed.

Home

Navigation

Select
Product

 New
 Bug Search

Home
Link

New
Link

Search
Link

Figure 5: The navigation between clusters of Bug-
zilla.

All abstract widgets have one of the following functions.
They can either be directly mapped to an abstract system
interaction from the abstract system model (input, output,
or action), or they are auxiliary interactions to control the
GUI (e.g., a navigation link). Since the latter is UI depen-
dent, it is not part of the abstract system interface.

Table 5 and 6 show the abstract system interactions and
their mapping to the abstract page model for the example
from Figure 5.

5.3 The Adapter/Execution
Our adapter is able to interpret tests using a given UI

model. It stores the cluster that represents the current state
of the UI (a specified start cluster at the beginning of a
test). To perform an abstract interaction on the UI our
adapter executes the following steps. (1) If the current ac-
tive cluster does not contain the needed abstract interaction,
the adapter searches a cluster which offers the desired inter-
action. A breadth first search is performed in the model,
starting at the current cluster and following the navigation

13

Table 5: The first part of the cluster model for Bug-
zilla. It shows the mapping to the abstract pages.

Cluster Abstract Page

Home Home Page
Navigation Navigation Page
Select Product Product Page
New Bug New Bug Page
Search Search Page

. . .

Table 6: The second part of the cluster model for
Bugzilla. It shows the mapping between interactions
and abstract widgets.

Cluster Abstr. Inter. Abstract Widget

Select Product Product Product Selection
New Bug Component Component Selection

Summary Summary Input
Description Description Input
Submit Bug Submit Button

. . .

edges. If a path has been found, the GUI is navigated to
the cluster providing the desired abstract system interaction
and the interaction can be handled. (2) The current active
cluster now contains the needed abstract system interaction.
The UI model is used to find the necessary widgets and the
interaction is performed.

In many cases, performed actions lead to page transitions.
Since these transitions depend on the current state of the
system, the target of this navigation cannot be foreseen.
To overcome this (from the viewpoint of the adapter) non-
determinism, we synchronize the state of the adapter before
every interaction. We extend every cluster with a special
output which identifies the pages distinctly (e.g., the title of
the HTML document).

Using our prototypical implementation, a test execution
leads to one of the following three verdicts. (1) Pass: the
test has been executed successfully and the visible behav-
ior was as expected. (2) Fail: the test has been executed
successfully but the visible behavior was not as expected.
This is because outputs had different values as expected.
(3) Inconclusive: the test has not been executed success-
fully because the adapter could not perform all interactions.
This can have two reasons. Either the system’s GUI behaved
unexpectedly (maybe because a page did not load or the ap-
plication crashed) or the UI model has not been correct or
detailed enough to perform the test.

We now assume we want to execute the test-case given in
Table 2. Starting from the cluster Home, the first interaction
is the selection of the product. The cluster Home does not
contain such an interaction. Searching along the navigation
links (using the included Navigation cluster) the adapter
finds that Product Selection provides the desired interaction.
To reach this cluster the adapter executes the navigation link
New which maps to a HTML link. Now the adapter sets
the input to the abstract interaction Product which maps to
selecting a link that matches the input value. The remaining
steps are performed similarly.

6. DISCUSSION
In this work, we suggested a solution to ease maintainabil-

ity and enhance the level of reuse of tests. Using our model-
driven approach, modifications of the UI reduce to adapting
the UI model. To give an example, using our meta-model for
GUIs (see Section 4), a relocation of a widget to a different
dialog would lead to the following changes in the UI model:
(1) In the concrete page model, the relocated abstract wid-
get has to be adapted. The concrete changes depend on
the utilized test framework. In our prototype, the selenium
identification attribute (Selenium Target see Table 3) has
to be adapted. (2) The affected abstract pages have to be
updated (Table 4). At the initial abstract page, the widget
has to be removed and at the abstract page which represents
the new host, it has to be added. (3) Finally, the interac-
tions of the affected clusters as well as their mappings to
the abstract page model have to be updated (Table 5 and
6). Since the test cases do not contain UI related informa-
tion, they do not have to be adapted. They can be reused
for the changed UI without touching them.

This short example shows that changes to the UI may be
handled by changing only the UI model. We believe that
with suitable tool support, which is feasible due to our ex-
plicit meta-model, even major changes to the UI can be per-
formed efficiently. The presented proof-of-concept, however,
is too small to make a statement about the maintainability.
We therefore want to apply our approach to a larger system
in near future to validate our claims.

7. CONCLUSIONS AND OUTLOOK
Automated test instantiation and execution for systems

with UIs is a very challenging task. Even small changes to
the UI can lead to a high maintenance effort of test scripts,
causing considerable costs. This paper provides the follow-
ing three contributions addressing this problem.

Firstly, we present a model-based approach to make func-
tional tests easier to create and more flexible to changes of
a system’s UI. We suggest separating tests into two types
of artifacts, the actual test cases containing just functional
logic of the tests and a dedicated UI model containing all
necessary information to instantiate the tests. Given this
UI model, a test adapter executes tests against a UI (see
Section 3).

Secondly, we introduce a meta-model to build UI mod-
els for GUIs like desktop, mobile or web applications (see
Section 4). To reduce the modeling effort, the meta-model
is designed to support partial modeling for a certain set of
tests. Furthermore, the meta-model can be incrementally
extended for further tests.

Thirdly, we show the feasibility of our approach by pre-
senting a prototypical implementation. We create a test for
the open-source application Bugzilla as well as a UI model
sufficient to execute the tests. Furthermore, we present the
conceptual architecture of an adapter, executing these test
cases (see Section 5).

This work describes the principles of model-based test in-
stantiation and execution for UI based systems. The func-
tional principle has been proven using a prototypical imple-
mentation. However, to bring our approach into practice,
the meta-model has to be adapted to the concrete UI of the
target application.

14

Furthermore, in future works, we aim to develop tool sup-
port to create and maintain UI models. A capture/replay-
like tool might be appropriate to determine the necessary
UI knowledge during a manual execution of a test.

ACKNOWLEDGMENTS
The authors thank Elmar Juergens, Sebastian Eder, Lars
Heinemann, Georg Hackenberg and Philipp Neubeck from
Technische Universität München for their support and in-
sightful comments.

REFERENCES
[1] IEEE Standard Computer Dictionary. A Compilation

of IEEE Standard Computer Glossaries. IEEE Std 610,
1991.

[2] S. Berner, R. Weber, and R. K. Keller. Observations
and lessons learned from automated testing. In Proceed-
ings of the 27th international conference on Software
engineering (ICSE ’05), 2005.

[3] A. Bertolino. Software testing research: Achievements,
challenges, dreams. In Future of Software Engineering
(FOSE ’07), 2007.

[4] G. Botterweck. A model-driven approach to the en-
gineering of multiple user interfaces. In Proceedings of
the Workshop on Model-driven development of advanced
user interfaces (MDDAUI ’06), 2006.

[5] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg,
N. Souchon, L. Bouillon, M. Florins, and J. Vanderdon-
ckt. Plasticity of user interfaces: A revised reference
framework. In Proceedings of the First International
Workshop on Task Models and Diagrams for User In-
terface Design, 2002.

[6] E. Dustin, J. Rashka, and J. Paul. Automated software
testing: introduction, management, and performance.
Addison-Wesley, 1999.

[7] M. Fewster and D. Graham. Software test automation:
effective use of test execution tools. Addison-Wesley,
1999.

[8] H. Grandy and S. Benz. Specification based testing of
automotive human machine interfaces. In GI Jahresta-
gung, 2009.

[9] M. Grechanik, Q. Xie, and C. Fu. Maintaining and
evolving gui-directed test scripts. In Proceedings of the
31st International Conference on Software Engineering
(ICSE ’09), 2009.

[10] M. J. Harrold and A. Orso. Retesting software during
development and maintenance. In Proceedings of the
Frontiers of Software Maintenance (FoSM ’08), 2008.

[11] B. Hauptmann. Model-based test instantiation for ap-
plications with user interfaces. In Proc. Doctoral Sym-
posium at the International Conference on Product Fo-
cused Software Development and Process Improvement
(PROFES ’11), 2011.

[12] H. Hussmann, G. Meixner, and D. Zuehlke, editors.
Model-Driven Development of Advanced User Inter-
faces. Springer, 2011.

[13] M. Katara, A. Kervinen, M. Maunumaa, T. Paakko-
nen, and M. Satama. Towards deploying model-based
testing with a domain-specific modeling approach. In
Proceedings of the Testing: Academic & Industrial Con-
ference on Practice And Research Techniques, 2006.

[14] A. M. Memon and B. N. Nguyen. Advances in auto-
mated model-based system testing of software applica-
tions with a GUI front-end. In M. V. Zelkowitz, editor,
Advances in Computers, volume 80. 2010.

[15] A. C. R. Paiva, N. Tillmann, J. C. P. Faria, and R. F.
A. M. Vidal. Modeling and testing hierarchical GUIs.
In Proceedings of the 12th International Workshop on
Abstract State Machines, 2005.

[16] F. Paternò, C. Mancini, and S. Meniconi. Concur-
tasktrees: A diagrammatic notation for specifying task
models. In Proceedings of the IFIP TC13 Interantional
Conference on Human-Computer Interaction (INTER-
ACT ’97), 1997.

[17] A. Pimenta. Automated Specification Based Testing of
Graphical User Interfaces. PhD thesis, Engineering
Faculty of Porto University, Department of Electrical
and Computer Engineering, 2006.

[18] W. Prenninger, M. El-Ramly, and M. Horstmann.
Case studies. In M. Broy, B. Jonsson, J.-P. Katoen,
M. Leucker, and A. Pretschner, editors, Model-Based
Testing of Reactive Systems, volume 3472 of Lecture
Notes in Computer Science. Springer, 2005.

[19] W. Prenninger and A. Pretschner. Abstractions for
model-based testing. Electron. Notes Theor. Comput.
Sci., 116, January 2005.

[20] R. K. Shehady and D. P. Siewiorek. A method to au-
tomate user interface testing using variable finite state
machines. In Proceedings of the 27th International Sym-
posium on Fault-Tolerant Computing (FTCS ’97), 1997.

[21] P. A. Szekely. Retrospective and challenges for model-
based interface development. In Proceedings of the Sec-
ond International Workshop on Computer-Aided De-
sign of User Interfaces (CADUI’96), 1996.

[22] M. Utting and B. Legeard. Practical Model-Based Test-
ing: A Tools Approach. Morgan Kaufmann, 2006.

[23] M. Utting, A. Pretschner, and B. Legeard. A taxonomy
of model-based testing. Technical report, The Univer-
sity of Waikato, April 2006.

[24] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte,
N. Tillmann, and L. Nachmanson. Model-based testing
of object-oriented reactive systems with spec explorer.
Formal methods and testing, 2008.

[25] S. Winter. Modellbasierte Analyse von Nutzer-
schnittstellen. Dissertation, Technische Universität
München, München, 2009.

15

