
The UML as a Formal Modeling Notation

Andy Evans�� Robert France�� Kevin Lano�� and Bernhard Rumpe�

� Department of Computing� Bradford University� UK
� Department of Computer Science � Engineering� Florida Atlantic University� USA

� Department of Computing� Imperial College� London� UK
� Department of Computer Science� Munich University of Technology� Germany

email� puml�comp�brad�ac�uk

Abstract� The Uni�ed Modeling Language �UML� is rapidly emerging
as a de�facto standard for modelling OO systems� Given this role� it is
imperative that the UML needs a well�de�ned� fully explored semantics�
Such semantics is required in order to ensure that UML concepts are
precisely stated and de�ned� In this paper we motivate an approach
to formalizing UML in which formal speci�cation techniques are used
to gain insight into the semantics of UML notations and diagrams and
describe a roadmap for this approach� The authors initiated the Precise
UML �PUML� group in order to develop a precise semantic model for
UML diagrams� The semantic model is to be used as the basis for a set of
diagrammatical transformation rules� which enable formal deductions to
be made about UML diagrams� A small example shows how these rules
can be used to verify whether one class diagram is a valid deduction of
another� Because these rules are presented at the diagrammatical level� it
will be argued that UML can be successfully used as a formal modelling
tool without the notational complexities that are commonly found in
textual speci�cation techniques�

� Introduction

The popularity of object�oriented methods such as OMT �RBP���� and the Fu�
sion Method �CAB����� stems primarily from their use of intuitively�appealing
modelling constructs� rich structuring mechanisms� and ready availability of ex�
pertise in the form of training courses and books� Despite their strengths� the
use of OO methods on nontrivial development projects can be problematic� A
signi�cant source of problems is the lack of semantics for the modelling notations
used by these methods� A consequence of this is that understanding of models
can be more apparent than real� In some cases� developers can waste consider�
able time resolving disputes over usage and interpretation of notations� While
informal analysis� for example� requirements and design reviews� are possible� the
lack of precise semantics for OO modelling makes it di	cult to develop rigorous�
tool�based validation and veri�cation procedures�

The Uni�ed Modeling Language
UML� �Gro��c� is a set of OO modelling no�
tations that has been standardized by the Object Management Group
OMG��

It is di	cult to dispute that the UML reects some of the best modelling ex�
periences and that it incorporates notations that have been proven useful in
practice� Yet� the UML does not go far enough in addressing problems that re�
late to the lack of precision� The architects of the UML have stated that precision
of syntax and semantics is a major goal� The UML semantics document
version
���� �Gro��b� is claimed to provide a �complete semantics� that is expressed
in a �precise way� using meta�models and a mixture of natural language and
an adaptation of formal techniques that improves �precision while maintaining
readability�� The meta�models do capture a precise notion of the
abstract� syn�
tax of the UML modelling techniques
this is what meta�models are typically
used for�� but they do little in the way of answering questions related to the
interpretation of non�trivial UML structures� It does not help that the semantic
meta�model is expressed in a subset of the notation that one is trying to in�
terpret� The meta�models can serve as precise description of the notation and
are therefore useful in implementing editors� and they can be used as a basis to
de�ne semantics� but they cannot serve as a precise description of the meaning
of UML constructs�

The UML architects justify their limited use of formal techniques by claiming
that �the state of the practice in formal speci�cations does not yet address some
of the more di	cult language issues that UML introduces�� Our experiences with
formalizing OO concepts indicate that this is not the case� While this may be true
to some extent� we believe that much can be gained by using formal techniques
to explore the semantics of UML� On the other hand� we do agree that current
text�based formal techniques tend to produce models that are di	cult to read
and interpret� and� as a result� can hinder the understanding of UML concepts�
This latter problem does not diminish the utility of formal techniques� rather�
it obligates one to translate formal expressions of semantics to a form that is
digestible by users of the UML notation�

In a previous paper �FELR���� we discussed how experiences gained by for�
malizing OO concepts can signi�cantly impact the development of a precise
semantics for UML structures� We motivated an approach to formalizing UML
concepts in which formal speci�cation techniques are used primarily to gain in�
sights to the semantics of UML notations� In this paper we present the roadmap
we are using to formalize the UML� and describe the results of its application to
the formalization of UML static models�

The primary objective of our work is to produce rigorous development tech�
niques based on the UML� A �rst step is to make UML models amenable to
rigorous analyses by providing a precise semantics for the models� This paves
the way for the development of formal techniques supporting the rigorous de�
velopment of systems through the systematic enhancement and transformation
of OO models� In this paper we show how the formalized static model can be
rigorously manipulated to prove properties about them and their relationships
to other static models�

In Section �� we present an overview of work on the formalization of OO mod�
elling concepts and notations� and outline the PUML formalization approach�

As we �rmly believe that not the formalization� but the resulting manipulation
techniques and consistency checks are the value add� we give only a small ex�
ample formalization of UML static models in Section � to demonstrate how our
approach of formalization is applied� In Section � we discuss how the Class Dia�
grams can be formally manipulated and what the bene�ts of such manipulation
techniques are� We conclude in Section � with a summary and a list of some of
the open issues that have to be tackled if our approach is to bear meaningful
results�

� Formalizing OO Concepts� Overview and Roadmap

��� Classi�cation of Approaches

In �FELR��� we identi�ed three general approaches to formalizing OO mod�
elling concepts� supplemental� OO�extended formal notation� and methods in�

tegration approaches� In the supplemental approach more formal statements
replace parts of the informal models that are expressed in natural language�
Syntropy �CD��a�CD��b� uses this approach� In the OO�extended formal lan�
guage approach� an existing formal notation
e�g� Z �Spi���� is extended with
OO features
e�g� Z�� �Lan��� and Object�Z �DKRS����� In the methods in�
tegration approach informal OO modelling techniques are made more precise
and amenable to rigorous analysis by integrating them with a suitable formal
speci�cation notation
e�g�� see �FBLP���BC���Hal�����

Most method integration works involving OO methods focus on the gener�
ation of formal speci�cations from less formal OO models� This is in contrast
to the PUML objectives� where the OO models are the precise
even formal�
models� The degree of formality of a model is not necessarily related to its form
of representation� In particular� graphical notations can be regarded as formal if
a precise semantics is provided for their constructs�

A formal semantics for a modelling notation can be obtained by de�ning a
mapping from syntactic structures in the
informal� modelling domain to ar�
tifacts in the formally de�ned semantic domain� This mapping� often called a
meaning function� is used to build interpretations of the informal models�

Rather than generate formal speci�cations from informal OO models and
require that developers manipulate these formal representations� a more work�
able approach is to provide formal semantics for graphical modelling notations
and develop rigorous analysis tools that allow developers to directly manipulate
the OO models they have created� De�ning meaning functions provides oppor�
tunities for exploring and gaining insight into appropriate formal semantics for
graphical modelling constructs� The method developers
and not the application
developers� should use these mappings to justify the correctness of analysis tools
and procedures provided in a CASE tool environment�

However� diagrams alone are usually not expressive enough to de�ne all prop�
erties� Therefore it is to expect that a textual language� such as OCL or also Z�
can be used to supplement the diagrams� In this case the supplemented textual

language is used as syntactic notation by the developer� but not as notation to
de�ne an appropriate semantics for the syntactic notation
we will use Z this
way��

��� Roadmap to Formalization

Our experiences with formalizing OO modelling notations indicate that a precise
and useful semantics must be complete
i�e�� meanings must be associated with
each well�formed syntactic structure�� preserve the intended level of abstraction

i�e�� the elements in the semantic domain must be at the same level of abstrac�
tion as their corresponding modelling concepts�� and understandable by method
developers� Furthermore� the formalization of a heterogeneous set of modelling
techniques requires that the notations are integrated at the semantic level� Such
integration is required if dependencies across the modelling techniques are to be
de�ned�

The following are the steps of the formalization approach that we use in our
work on formalizing the UML�

�� In this step� a formal language for describing syntax and semantics is chosen�
For the UML formalization we chose Z because it is a mature� expressive
and abstract language� that is well supported by tools� Our experiences with
using Z to formalize OO concepts indicates that it is expressive enough
to characterize OO concepts in a direct manner
i�e�� without introducing
unwanted detail��

�� In this step� the abstract syntax of the graphical OO notation is de�ned�
Here� we will refer to this notation as
language� L� Language L� like conven�
tional textual languages� needs to have a precise syntax de�nition� Whereas
grammars are well suited for text� the UML meta�model �Gro��a� works well
as a description of the structure of UML diagrams� However� a Z character�
ization of the abstract syntax is better able to capture constraints on the
syntactic structures that can be formed using the graphical constructs�

�� This step is concerned with characterizing the notion of a system in terms
of its constituent parts� interactions� and static and behavioral properties�
The characterization de�nes the elements of the semantic domain� which we
denote by S� The elements of the semantic domain correspond to modelling
concepts that are independent of particular modelling techniques� In the OO
modelling realm this is possible because objects have certain properties that
are independent from the modelling techniques� and are thus intrinsic to
�being an object�� In �KRB��� and �Rum��� a system model is de�ned� and
used as the semantic domains for OO notations in papers such as �BHH����
and �Rum���� In this paper� the semantic domain is characterized using the
language Z�

�� This step is concerned with de�ning the meaning function for the OO nota�
tion� A mapping between the syntactic domain L and the semantic domain S
is de�ned� The system model domain formally de�nes the set of all possible
systems� The semantics of a model created using a given description tech�
nique is obtained by applying the meaning function to its syntactic elements�

The semantics of a model is given by a subset of the system model domain�
This subset of the system model consists of all the systems that possess the
properties speci�ed in the model�

�� In the �nal step� analysis techniques are developed for the formalized OO
notation� These techniques enable us to constructively enhance� re�ne and
compose models expressed in the language L� and also allow us to introduce
veri�cation techniques at the diagrammatic level�

An important aspect of our formalization approach is the separation of concerns
reected in the language�independent formulation of the semantic domain S�
This leads to a better understanding of the developed systems� allows one to
understand what a system is independently of the used notation� and allows one
to add and integrate new OO diagramming forms�

Though we speak of one language L� this language can be heterogeneously
composed of several di�erent notations� However� it is important to note that
integration of these notations is more easily accomplished if the semantic domain
S is the same for all these sub�languages�

In the following sections� we illustrate the application of this formalization
approach using a small subset of UML class diagram notation�

� A Formalization Example

In this section we formally de�ne a small subset of the abstract syntax of the
UML static model notation� characterize an appropriate semantic domain for
its components� and de�ne a meaning function for the formally de�ned syntax�
The focus of this paper is not to present this formalization� but to present the
roadmap of the last section by example and to have a basis for arguing about the
bene�ts of a formalization in the next section� Please note that there are di�erent
formalizations as well as di�erent denotations of the same formalization possible�
Whereas the former di�er in their essential semantics� the later just denote the
same semantics in di�erent ways�

��� Abstract Syntax

In the UML semantics document
version ����� the core package � relationships �
gives an abstract syntax for the static components of the UML� This is described
at the meta�level using a class diagram with additional well�formedness rules
given in OCL� For reasons given in the previous section� we use the Z notation
to de�ne the abstract syntax� Unlike the OCL� Z provides good facilities for
proof� In our work we treat the UML semantics document as a requirements
statement from which a fully formal model can be obtained�

As an example� the following schemas de�ne some of the UML static model
constructs� Speci�cally� they de�ne a set of classi�ers� associations and a gener�
alization hierarchy� and attach a set of attributes to each classi�er� We start to
introduce a set for classi�ers
e�g� class names� and a set of other names
e�g�
attribute and method names��

�Classi�er �Name�

An association end connects an association to a classi�er� and has a unique
name and a multiplicity��

AssociationEnd

name � Name

classi�er � Classi�er
multi � PN

Each association has a name of its own and is connected to a number �
typically two � of association ends�

Association

name � Name

connects � F AssociationEnd

The abstract syntax of class diagrams contains to a set of classes� a set of
abstract classes� a set of associations� and a supertype relation between classes�
Each class is attached to a set of attribute names
denoted as Name�� The com�
ponents of the abstract syntax of class diagrams can be formalized as follows��

Static�
abstract � classi�ers � F Classi�er
associations � F Association
attributes � Classi�er � �� F Name

supertype of � Classi�er � Classi�er

abstract � classi�ers

Well�formedness of the abstract syntax is ensured by further constraints��

� A Z schema is similar to a record� It introduces a schema name� and elements of the
schema� which are part of the schema� They can be referred to when the schema is
used�

� Schemas in addition allow to state axioms that must hold between their elements�
� Refering to another schema name includes the elements of the referred schema in the
new one� All operations� and especially equality� are mathematical set and function
operations�

Static

Static�

supertype of �
classi�ers � classi�ers�
supertype of � � id
classi�ers� � �

� c�� c� � classi�ers �
c� supertype of c� 	 attributes
c�� � attributes
c��

�a�� a� � associations �
a�
� a� 	 a��name
� a��name

�a � associations �
fe � a�connects � e�classi�erg � classi�ers

The above schema describes the constraints governing how elements of the
abstract syntax can be combined
more constraints are possible�� These con�
straints state that�

� the collection of classi�ers in the supertype hierarchy form a directed acyclic
graph�

� association names are unique and link classi�ers

��� Semantic Domain

Semantically� a classi�er is represented as a set of objects� We distinguish between
object identi�ers
oValues� and normal values
integer etc���

�Value�

Values

oValues �nValues � PValue

oValues � nValues � �

An object is owned by a classi�er� has a unique identity� and maps a set of
attribute names
denoted as Name� to values�

Object

classi�er � Classi�er
self � Value
attvals � Name � �� Value

At any point in time� a system can be described as a set of objects� where
each object is referenced by its identity self�

SM �
Values

objects � Value �� Object

dom objects � oValues

�o � Value � o � dom objects 	
objects
o���self � o

From that snapshot� we can derive sets of links
instances of associations��

SM

SM �
links � Name �
Value � Value�

�at � Name� o�� o� � Value �

o�� o�� � links
at�� o� �

objects
o����attvals�
at�

��� Semantic Mapping

The semantic mapping determines how the syntactic elements of the UML static
model� for example� abstract� classi�er� and association� are to be interpreted in
the semantic domain� The semantic mapping that takes the concepts given in
the syntactic domain AbstractSyntax to elements in the semantic domain SM
is characterized by a Z schema that takes the characterizations of the syntactic
and semantic domains as parameters�

Semantics

Static

SM

fo � ran objects � o�classi�erg � classi�ers n abstract

�o � dom objects �
attributes

objects
o���classi�er� � dom

objects
o���attvals�

�a � associations � o � dom objects �
� e � a�connects � e�classi�er �
objects
o���classi�er 	

e�name � dom

objects
o���attvals� �
�

links
e�name��
j fog j�� � e�multi

� s�� s� � Classi�er �
s� supertype of s� 	

fo � Value j
objects
o���classi�er � s�g �
fo � Value j
objects
o���classi�er � s�g

The axioms state that each object is assigned to a non�abstract classi�er�
Furthermore� the objects have at least the set of attributes explicitly mentioned
in the classi�er de�nitions� We also interpret association ends as attributes and
restrict the multiplicities� Finally� the supertype relationship requires that a

set of objects assigned to a subtype is a subset of the objects assigned to its
supertype�

We have now given a formalization of
a subset of� the abstract syntax of class
diagrams and an appropriate semantic domain� Especially the semantic domain
is de�ned in dependency of the abstract syntax� If a concrete class diagram is
�lled in for the schema Static then the semantics for this class diagrams is given
by the resulting schema Semantics � Therefore� we implicitly de�ned a mapping
from syntax to the semantic domain without explicitely de�ning this mapping�
An explicit form of the semantics mapping can be expressed as follows�

M � Static � PSM

� st � Static �
M
st� � fSemantics j st � �Static � �SM g

It can be used to prove properties of this mapping� One such property is e�g�
the consistency of the mapping� which is stated by the property � st � Static �
M
st�
� ��

� Analyzing UML diagrams

As discussed above� a central part of the PUML group�s work is to develop a
formal version of UML that can be used to build precise and analyzable models�
However� how can a UML model be analyzed� In the case of a textual notation
such as Z� analysis is carried out by constructing proofs to determine the truth or
falsity of some property being asserted about a speci�cation� Each proof involves
applying a sequence of inference rules and axioms to the speci�cation to derive
the required conclusion� At each step� a new formula is derived either from the
original speci�cation or as a result of applying an inference rule to previous
formulas�

To analyze UML models� a very similar approach can be adopted �Eva����
However� because UML is a diagrammatical modelling language� a set of deduc�
tive rules for UML will consist of a set of diagrammatical transformation rules�
Thus� proving a property about a UML model will involve applying a sequence
of transformation rules to the model diagrams until the desired conclusion is
reached�

This approach is briey illustrated by a simple
toy� example� Consider the
left hand class diagram D in Figure �� which describes the relationship between
a university and its students� Given that full�time students are enlightened by a
university� it is an interesting question to deduce the relationship between uni�
versities and students in general� One
obvious� conjecture is that some students
are enlightened� but not all� This is expressed by the right hand class diagram�

Using a suitable sequence of transformation rules� we should be able to trans�
form the original diagram into the second diagram� thereby proving that the
derivation is valid� In this simple case� only three steps are required to carry out
the proof� One transformation rule allows us to move an association end from a

0..1 0..*

0..*

1

D D’

enlightens
Student

Student

Part-time
enlightens

Full-time

University

University

Fig� �� Transforming a Class Diagram D to D � to derive information

subclass to a superclass� but requires that the opposite association end becomes
optional� This rule is justi�ed because a superclass may contain objects that
are not in its subclasses� thus they may not participate in the association� The
second transformation rule permits the deletion of the full and part�time classes�
as they are of no further interest in the current derivation� By only applying cor�
rect transformations� the derivation automatically is correct� and a proof for its
correctness exists� Please note that this is not a mathematical or textual proof�
but a diagrammatic proof that deals with diagrams as axioms and diagrammatic
rules as transformation rules� Nevertheless� it can be regarded fully formal� pro�
vided a formal syntax� semantics and set of transformation rules exists� This is
of course just indicated here� but not fully carried out��

��� Satisfaction Conditions

Whenever a transformation rule is applied to a diagram it must be shown that
the resulting diagram is a valid deduction of the original diagram� The condition
under which this is true is known as the satisfaction condition� This states that if
every meaning satisfying one model also satis�es another model� then whatever
property holds for the �rst model must also hold for the second� Thus� the second
diagram follows from
or is a logical deduction of� the �rst diagram� Of course�
for this result to be valid� both models must be well formed�

This condition can be expressed in Z as follows� Let us assume� there is a
transformation rule T given� This is formally represented as a modi�cation on
the syntax� in this case a static model�

T � Static �� Static

Such a transformation can� for example� be the erasure of a classi�er or
association� or weakening of a multiplicity� This syntactic transformation needs
a semantic counterpart� which relates elements of the semantic domain� This is
known as the satisfaction relation� and it has the general form�

� Full details of the transformation rules can be found in �Eva	
��

j� � P
SM �� P
SM �

� s � s � � P
SM � �
s j� s � � s � s �

Thus� a semantic model s �� will satisfy all the properties of s provide that
every property of s is in s ��

Finally� the formal proof of correctness of a transformation can now be de�
scribed within Z
and therefore can be proven within Z�� A transformation T is
correct� i�

� st � Static � M
st� j�M
T
st��

This strongly corresponds to the commuting diagram� �rst stated in �Rum���
and also in �KR����

� Summary and Open Issues

In this paper we outlined and illustrated an approach to formalizing the UML�
The objective of our e�orts is to make the UML itself a precise modelling notation
so that it can be used as the basis for a rigorous software development method�
However� it must �rst be determined how such a formalization can best be carried
out� and what practical purpose it can serve� This paper aims to contribute to
this ongoing discussion�

The bene�ts of formalization can be summarized as follows�

� Lead to a deeper understanding of OO concepts� which in turn can lead to
more mature use of technologies�

� The UML models become amenable to rigorous analysis� As we have illus�
trated� diagrammatical analysis techniques can be developed�

� Rigorous re�nement techniques can be developed�

An interesting avenue to explore is the impact a formalized UML can have on
OO design patterns and on the development of rigorous domain�speci�c software
development notations� Domain�speci�c UML patterns can be used to bring
UML notations closer to a user�s real�world constructs� Such patterns can ease
the task of creating� reading� and analyzing models of software requirements and
designs�

An integrated approach to formalization of UML models is needed in or�
der to provide a practical means of analyzing these models� Current work on
compositional semantics �BLM��� has used techniques for theory composition to
combine semantic interpretations of di�erent parts of an OO model set�

Some of the other issues that have to be addressed in our work follows�

� How does one gauge the appropriateness of an interpretation of UML con�
structs� In practice an �accepted� interpretation is obtained by consensus
within a group of experts� Formal interpretations can facilitate such a pro�
cess by providing clear� precise statements of meaning�

� Should a single formal notation be used to express the semantics for all the
models� The advantage of a single notation is that it provides a base for
checking consistency across models� and for re�nement of the models� This
is necessary if analysis and re�nement is done at the level of the formal
notation� On the other hand� if the role of the formal notation is to explore
the semantic possibilities for the notations� and analysis and re�nement are
carried out at the UML level� then there seems to be no need to use a single
formal notation�

� How will the use of textual constraints
expressed in OCL for example� inter�
act with and impact on diagrammatical analysis and re�nement techniques�

It is anticipated that� as our work progresses� additional issues that will have to
be tackled will come up�

Acknowledgements

The authors thank their colleagues for fruitful discussions and the referees for
helpful comments�

References

�BC	�� Robert H� Bourdeau and Betty H�C� Cheng� A formal semantics for object
model diagrams� IEEE Transactions on Software Engineering� �������		�

�� October �		��

�BHH�	�� Ruth Breu� Ursula Hinkel� Christoph Hofmann� Cornel Klein� Barbara
Paech� Bernhard Rumpe� and Veronika Thurner� Towards a formalization of
the uni�ed modeling language� In Satoshi Matsuoka Mehmet Aksit� editor�
ECOOP��� Proceedings� Springer Verlag� LNCS ���� �		��

�BLM	�� J� Bicarregui� K� Lano� and T� Maibaum� Objects� associations and subsys�
tems� A hierarchical approach to encapsulation� In Proceedings of ECOOP
��� LNCS ����� Springer�Verlag� �		��

�CAB�	�� Derek Coleman� Patrick Arnold� Stephanie Bodo�� Chris Dollin� Helena
Gilchrist� Fiona Hayes� and Paul Jeremaes� Object�Oriented Development�
The Fusion Method� Prentice Hall� Englewood Cli�s� NJ� Object�Oriented
Series edition� �		��

�CD	�a� Steve Cook and John Daniels� Designing Object Systems� Object�Oriented
Modeling with Syntropy� Prentice Hall� Englewood Cli�s� NJ� September
�		��

�CD	�b� Steve Cook and John Daniels� Let�s get formal� Journal of Object�Oriented
Programming 	JOOP
� pages �� and ������ July�August �		��

�DKRS	�� Roger Duke� Paul King� Gordon A� Rose� and Graeme Smith� The Object�
Z speci�cation language� In Timothy D� Korson� Vijay K� Vaishnavi� and
Bertrand Meyer� editors� Technology of Object�Oriented Languages and Sys�
tems� TOOLS �� pages �����
�� Prentice Hall� �		��

�Eva	
� Andy Evans� Reasoning with UML class diagrams� InWIFT��� Proceedings�
IEEE� �		
�

�FBLP	�� Robert B� France� Jean�Michel Bruel� and Maria M� Larrondo�Petrie� An
Integrated Object�Oriented and Formal Modeling Environment� To appear
in the Journal of Object�Oriented Programming 	JOOP
� �		��

�FELR	
� Robert France� Andy Evans� Kevin Lano� and Bernhard Rumpe� The UML
as a formal modeling notation� Computer Standards � Interfaces� to appear�
�		
�

�Gro	�a� The UML Group� UML Metamodel� Version ���� Rational Software Corpo�
ration� Santa Clara� CA�	����� USA� September �		��

�Gro	�b� The UML Group� UML Semantics� Version ���� Rational Software Corpo�
ration� Santa Clara� CA�	����� USA� July �		��

�Gro	�c� The UML Group� Uni�ed Modeling Language� Version ���� Rational Soft�
ware Corporation� Santa Clara� CA�	����� USA� July �		��

�Hal	�� J� Anthony Hall� Using Z as a speci�cation calculus for object�oriented
systems� In D� Bj�rner� C� A� R� Hoare� and H� Langmaack� editors� VDM
and Z Formal Methods in Software Development� volume �
 of Lecture
Notes in Computer Science� pages 	����
� VDM�Europe� Springer�Verlag�
New York� �		��

�KR	�� Haim Kilov and Bernhard Rumpe� Summary of ecoop�	� workshop on pre�
cise semantics of object�oriented modeling techniques� In J� Bosch and
S� Mitchell� editors� Object�Oriented Technology ECOOP��� Workshop
Reader� Springer Verlag Berlin� LNCS ����� �		��

�KRB	�� Cornel Klein� Bernhard Rumpe� and Manfred Broy� A stream�based mathe�
matical model for distributed information processing systems � SysLab sys�
tem model � � In Jean�Bernard Stefani Elie Naijm� editor� FMOODS���
Formal Methods for Open Object�based Distributed Systems� pages �����
�
ENST France Telecom� �		��

�Lan	�� Kevin C� Lano� Z��� an object�orientated extension to Z� In John E�
Nicholls� editor� Z User Workshop� Oxford ����� Workshops in Computing�
pages ������� Springer�Verlag� �		��

�RBP�	�� J� Rumbaugh� M� Blaha� W� Premerlani� F� Eddy� and W� Lorensen� Object�
Oriented Modeling and Design� Prentice Hall� �		��

�Rum	�� Bernhard Rumpe� Formal Method for Design of Distributed Object�oriented
Systems� Ph�D� thesis �in German�� Technische Universit�at M�unchen� �		��

�Spi	� J� Michael Spivey� The Z Notation� A Reference Manual� Prentice Hall�
Englewood Cli�s� NJ� Second edition� �		�

