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Abstract. Model-based development promises to increase productivity
by offering modeling languages tailored to a specific domain. Such mod-
eling languages are typically defined by a metamodel. In response to
changing requirements and technological progress, the domains and thus
the metamodels are subject to change. Manually migrating existing mod-
els to a new version of their metamodel is tedious and error-prone. Hence,
adequate tool support is required to support the maintenance of modeling
languages. This paper introduces COPE, an integrated approach to spec-
ify the coupled evolution of metamodels and models to reduce migration
effort. With COPE, a language is evolved by incrementally composing
modular coupled transformations that adapt the metamodel and specify
the corresponding model migrations. This modular approach allows to
combine the reuse of recurring transformations with the expressiveness
to cater for complex transformations. We demonstrate the applicability
of COPE in practice by modeling the coupled evolution of two existing
modeling languages.

1 Introduction

Model-based development promises to increase productivity by offering modeling
languages tailored to a specific domain. Consequently, a variety of metamodel-
based approaches for the development of modeling languages, such as Model-
Driven Architecture [1], Software Factories [2] and Domain-Specific Modeling
[3] have been proposed in recent years. In response, modeling languages are re-
ceiving increased attention in industry. The AUTOSAR standard, for instance,
defines a modeling language to specify automotive software architectures [4].
With the integration of modeling languages into industrial development prac-
tice, their maintenance is gaining importance. Although significant work in both
academia and industry has been invested into tool support for the initial de-
velopment of modeling languages, issues related to their maintenance are still
largely disregarded.



2

Even though often neglected, a language is subject to change like any other
software artifact [5]. This holds for both general-purpose and domain-specific
modeling languages. For instance, UML [6] – a general purpose modeling lan-
guage – already has a rich evolution history, although it is relatively young.
Domain-specific modeling languages like e. g. AUTOSAR are even more prone
to change, as they have to be adapted whenever their domain changes due to
technological progress or evolving requirements.

A modeling language is evolved by adapting its metamodel to the evolved
requirements. Due to metamodel adaptation, existing models may no longer
conform to the adapted metamodel. These models have to be migrated so that
they can be used with the evolved modeling language. Throughout the paper,
the combination of metamodel adaptation and reconciling model migration is re-
ferred to as coupled evolution. Manually migrating existing models to the adapted
metamodel is tedious and error-prone. Consequently, in current practice two ap-
proaches are used to handle evolution of modeling languages.

The first approach advocates to perform language evolution in a downwards-
compatible fashion. In other words, the metamodel is adapted in a way that the
old models can still be used with the evolved modeling language without mi-
gration. However, downward compatibility heavily constrains the way in which
a metamodel can be adapted. Furthermore, the preservation of old constructs
can unnecessarily clutter and complicate a metamodel. This approach can be
further refined by using deprecation to signal metamodel changes. More pre-
cisely, constructs are marked deprecated, before they are actually removed from
the metamodel. Users of the modeling language are then informed about the
deprecated constructs which should no longer be used. However, deprecation
shifts the responsibility for model migration from the developer of the model-
ing language to its users. In addition, deprecation also clutters and complicates
the metamodel, as it leads to non-orthogonal constructs being available at the
same time. In a nutshell, both downwards compatibility and deprecation heavily
threaten the simplicity and quality of the metamodel. As a lot of artifacts like
language editors and interpreters depend on the metamodel, these approaches
also affect their simplicity and quality.

The second approach is to adapt the metamodel in a breaking fashion and to
later implement a migrator, i. e. when the new version of the modeling language
is deployed. The migrator preserves the information of an existing model by
transforming it into a new version that conforms to the adapted metamodel.
This approach has the advantage that the metamodel can be adapted in a clean
manner, because legacy constructs can be removed. However, implementation of
a migrator after a number of metamodel adaptations is tedious, as the developers
of the modeling language have to become clear about the intentions behind
these metamodel adaptations. In addition, a migrator implemented as a model
transformation does not allow for the reuse of recurring migration knowledge.

Hence, adequate tool support is required to further reduce the effort involved
in migrator implementation. We have performed an empirical study on the his-
tories of two industrial metamodels to determine the requirements for adequate
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tool support [7]. The study showed that there is a large fraction of recurring
migration knowledge. Hence, effort can be saved by enabling the reuse of such
recurring coupled evolution steps. However, it also revealed that there are a
number of migrations that are specific to a certain domain and thus cannot be
reused. In addition, the specification of these migrations requires an expressive
language.

Currently, to our best knowledge, there is no approach that combines both
the desired level of reuse and expressiveness. To alleviate this, we present COPE,
an integrated approach to model the coupled evolution of metamodels and mod-
els. COPE is based on a language that provides means to combine metamodel
adaptation and model migration into so-called coupled transactions. The stated
requirements are fulfilled by two kinds of coupled transactions: reusable and
custom coupled transactions. A reusable coupled transaction allows the reuse of
recurring coupled transformations across metamodels. A custom coupled transac-
tion can be manually defined by the metamodel developer for complex migrations
that are specific to a metamodel. To ease the application of this language, COPE
provides further abstraction by tool support. In order not to disturb the habits
of the metamodel developer, we have integrated COPE into the metamodel ed-
itor. The user interface provides easy access to a number of reusable coupled
transactions available through a library. A language history automatically keeps
track of the consecutively performed coupled transactions.

Outline. In Section 2, we recapitulate the requirements derived from our em-
pirical study. We analyze how these requirements are fulfilled by related work
in Section 3. In Section 4, we introduce the language and show how its con-
cepts directly fulfill the requirements from the study. The seamless integration
of COPE into the Eclipse Modeling Framework (EMF) is presented in Section 5.
In Section 6, we show the applicability of COPE in practice by performing the
coupled evolution of existing metamodels and their models. We conclude and
present directions for future work in Section 7.

2 Requirements for Automated Coupled Evolution

To better understand the nature of coupled evolution of metamodels and models
in practice, we performed a study on the histories of two industrial metamod-
els [7]. The study’s main goal was to determine substantiated requirements for
tool support that is adequate for coupled evolution in practice. We investigated
whether reuse of migration knowledge can significantly reduce migration effort.
To this end, we developed a classification of metamodel changes with respect to
the automatability of the corresponding model migration.

As is depicted in Figure 1(a), we introduced four main classes of language
changes. Metamodel-only changes do not require the migration of models, e. g.
metamodel extensions like the addition of an optional attribute, whereas cou-
pled changes do. Coupled changes can be further subdivided into metamodel-
independent, metamodel-specific and model-specific coupled changes. Metamodel-
independent coupled changes do not depend on a specific metamodel, and thus
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can be reused across metamodels. Examples are well-known object-oriented
refactorings [8] like e. g. rename or extract class. Metamodel-specific coupled
changes are so specific to a certain metamodel that they cannot be reused across
metamodels. An example is the removal of composite states from a statemachine
metamodel which requires to flatten the state hierarchy in the models. Model-
specific coupled changes require information from the developer of a model dur-
ing migration, and thus the migration cannot be specified in a model-independent
way. Examples are metamodel refinements which require to also refine the model.

Model-

specific

Metamodel-

specific

Metamodel-

independent

Coupled 

change

Metamodel-

only change

Language 

change

(a) Classification.

Metamodel-
only
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specific
0% (0)

Metamodel-
specific

11% (41)

(b) Result.

Fig. 1. Empirical study.

For our study in [7], we deliberately chose two metamodel histories where
the impact on the models was not taken into account during metamodel adap-
tation. The combined result of the study for both metamodel histories is shown
in Figure 1(b) as a pie chart. The figure shows the fraction and the accumu-
lated numbers of language changes that fall into each class. As only half of the
changes were metamodel-only, a significant number of language changes required
a migration of existing models. As we found no model-specific coupled changes,
we would have been able to specify transformations to automate the migration
of all models. To this end, we do not take model-specific coupled changes into
account in the following. The proportion between metamodel-independent and
metamodel-specific coupled changes leads to the following two central require-
ments for adequate tool support:

Reuse: More than three quarters of the coupled changes were metamodel-inde-
pendent, thus indicating a high potential for reuse. To take advantage of
these reuse opportunities, reuse of recurring migration knowledge is required.

Expressiveness: The remaining quarter of the coupled changes were meta-
model-specific and therefore required a custom model migration. Tool sup-
port automating coupled evolution must thus be sufficiently expressive to
cater for complex migrations involved in metamodel-specific coupled changes.
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3 Related Work

When a specification is adapted, potentially all existing instances have to be
migrated in order to reconcile them with the new version of the specification.
Since this problem of coupled evolution [9] affects all specification formalisms
(e. g. database schemata, formats, grammars, metamodels) alike, numerous ap-
proaches for coupled transformation [10] of a specification and its instances have
been proposed [11–24]. The idea of coupled transformation has even been gener-
alized to a domain-independent approach that can be instantiated on different
domains [25]. Apart from the target specification formalism, existing approaches
mainly differ in their support for reuse and expressiveness. In this section, we
outline approaches to coupled evolution from different domains, namely schema,
grammar, format and metamodel evolution, focusing on how they fulfill the re-
quirements rather than on idiosyncrasies of their target specification formalism.
There are a number of other domains, like e. g. framework, workflow and ontology
evolution, in which similar approaches are proposed.

Schema evolution denotes the migration of database instance data to an adapted
version of the database schema. Schema evolution has been a field of study for
several decades, yielding a substantial body of research [26, 27]. For the ORION
database system, Banerjee et al. propose a fixed set of change primitives that
perform coupled evolution of the schema and data [11]. While reusing migration
knowledge in case of these primitives, their approach is limited to local schema
restructuring. To allow for non-local changes, Ferrandina et al. propose separate
languages for schema and instance data migration for the O2 database system
[12]. While more expressive, their approach does not allow for reuse of coupled
transformation knowledge. In order to reuse recurring coupled transformations,
SERF – as proposed by Claypool et al. – offers a mechanism to define arbitrary
new high-level primitives [13], providing both reuse and expressiveness. In a
nutshell, the history of approaches for schema evolution exhibits a progression
towards more expressiveness and reuse. In order to fulfill the requirements from
[7], COPE transfers the concepts of SERF to the domain of metamodel evolution.

Grammar evolution denotes the migration of textual programs to adaptations of
their underlying grammar. Grammar evolution has been studied in the context
of grammar engineering [28]. Lämmel proposes a comprehensive suite of gram-
mar transformation operations for the incremental adaptation of context free
grammars [14]. The proposed operations are based on sound, formal preserva-
tion properties that allow reasoning about the relationship between grammars
before and after transformation, thus helping developers to maintain consistency
of their grammar. However, the proposed operations are not coupled since they
do not take the migration of words into account. Building on Lämmel’s work,
Pizka and Juergens propose a tool for the evolutionary development of textual
languages called Lever, which is also able to automate the migration of words [15].
Primitive grammar and word evolution operations can be invoked from within a
general-purpose language to perform all kinds of coupled transformation. Similar
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to SERF, Lever provides a mechanism to define arbitrary new high-level primi-
tives. COPE is not only strongly related to Lever because of its support for reuse
and expressiveness, but also because it provides an explicit language history that
allows to defer model migration to a later instant.

Format evolution denotes the migration of a class of documents to adaptations
of their document schema. Lämmel and Lohmann suggest operators for format
transformation, from which migrating transformations for documents are in-
duced [16]. The suggested operators are based on Lämmel’s work on grammar
adaptation. Furthermore, Su et al. propose a complete, minimal and sound set
of evolution primitives for formats and documents, and show that they preserve
validity and well-formedness of both formats and documents [17]. Even though
both approaches are able to automate document migration for a fixed set of
format changes, they are not able to handle arbitrary, complex migrations.

Metamodel evolution denotes the migration of models in response to adapta-
tions of their metamodel. In order to specify the model migration between two
metamodel versions, Sprinkle introduces a visual graph-transformation-based
language [18, 19]. Compared to conventional languages for model transforma-
tion, this language allows to specify the differences between two metamodels
rather than their similarities. However, Sprinkle’s language does not provide a
mechanism for reusing recurring migration knowledge.

There are a number of approaches to automatically derive a model migra-
tion from the difference between two metamodel versions. Gruschko et al. classify
primitive metamodel changes into non-breaking, breaking resolvable and unre-
solvable changes [20, 21]. Based on this classification, they propose to automat-
ically derive a migration for non-breaking and resolvable changes, and envision
to support the developer in specifying a migration for unresolvable changes. Ci-
chetti et al. go even one step further and try to detect composite changes like
e. g. extract class based on the difference between metamodel versions [22]. How-
ever, their approach is no longer automatic for composite changes which depend
on each other. Although fully automated to some degree, the difference-based
approaches have the disadvantage that the derived migration may not be the
one intended by the developer. As a consequence, the developer has to manually
modify and therefore understand the derived migration.

To avoid this problem, incremental transformation allows to capture the in-
tention while performing metamodel adaptation. Several approaches to perform
an incremental coupled transformation of metamodel and model have been pro-
posed. Hößler and Soden present a number of high-level transformations which
adapt the metamodel and migrate models [23]. These transformations are based
upon a generic instance model for both metamodel and model which is required
to support versioning. Wachsmuth adopts ideas from grammar engineering and
proposes a classification of metamodel changes based on instance preservation
properties [24]. Based on these preservation properties, the author defines a set
of high-level coupled transformations. While both approaches enable the reuse
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of migration knowledge, they do not provide sufficient expressiveness to cater
for complex coupled transformations.

In a nutshell, there is no approach for metamodel evolution that combines
both the desired level of reuse and expressiveness. To alleviate this, we pro-
pose COPE, which integrates a number of features of existing approaches. Like
Sprinkle’s language, COPE also relieves the metamodel developer from specifying
identity rules for metamodel elements which do not have changed. COPE achieves
this by using a generic instance model during migration similar to the proposal
of Hößler and Soden. Based on this generic instance model, COPE follows an in-
cremental transformation approach which allows to capture the intention while
performing the metamodel adaptation. In addition, the incremental approach
allows to better modularize the coupled evolution into manageable transforma-
tions, and thus to easily combine reuse with expressiveness.

4 Coupled Evolution of Metamodels and Models

In this section, we present COPE’s language to specify the coupled evolution
of metamodels and models. This language provides concepts to fulfill both re-
quirements presented in Section 2: reuse of recurring migration knowledge and
expressiveness to cater for domain-specific migrations. Reuse is provided by an
abstraction mechanism that allows to encapsulate both metamodel adaptation
and model migration in a metamodel-independent way. Expressiveness is pro-
vided by embedding primitives for metamodel adaptation and model migration
into a Turing-complete language. From our experience, developers prefer to use
the metamodel editor over specifying the coupled evolution in this language.
Consequently, COPE provides further abstraction from this language by a non-
invasive integration into a metamodel editor. For simplicity of presentation, we
outline the language here, and present the tool support in Section 5.

Running example. Throughout this section, we use a statemachine metamodel as
a running example. Figure 2 shows the metamodel before and after adaptation
as a UML class diagram. In version 0 of the metamodel, a State has a name
and may be decomposed into sub states through its subclass CompositeState. A
Transition belongs to its source state and refers to a target state, and is activated
by a trigger. When a state is entered, a sequence of actions is performed as effect,
and in case of a composite state, an initial state is entered. For version 1 of the
metamodel, the following adaptations are performed3:

1. The statemachine is changed from a Moore to a Mealy machine. In Moore
machines, the effect of the statemachine only depends on the current state. In
contrast, the effect of the statemachine depends also on the trigger in Mealy
machines. Therefore, we move the attribute effect from State to Transition.

2. Regions are introduced to support concurrency within states. Therefore, we
insert the class Region. We further introduce the new composition region so

3 In Figure 1, the differences are indicated by numbered, dashed boxes.
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that a composite state can define a number of concurrent regions. Finally,
we move the composition state and the association initial to the new class
Region, as regions are now composed of sub states.

In the following, we subsequently specify the coupled evolution in COPE’s lan-
guage in order to be able to migrate existing models.

name: String
effect[*]: String

State

CompositeState

trigger: String

Transition*
outgoing

1
target

*
state

1
initial

name: String

State

CompositeState

trigger: String
effect[*]: String

Transition*
outgoing

1
target

*
state

1
initial

Region

*
region

2.

1. 1.

Version 0 Version 1

Fig. 2. Running example adaptation.

4.1 Incremental Coupled Evolution

In practice, a modeling language is evolved by incremental adaptations to the
metamodel. There are a number of primitive metamodel changes like create el-
ement, rename element, delete element, and so on. One or more such primitive
changes compose a specific metamodel adaptation, like in our example the in-
troduction of regions. COPE allows to attach information about how to migrate
corresponding models in response to a metamodel adaptation. Consequently,
the intended model migration can already be captured while adapting the meta-
model, thus preventing the loss of intention. In COPE, such a combination of
metamodel adaptation and model migration is called coupled transaction.

Coupled transactions can be easily composed by simply sequencing them.
They are modular in the sense that the corresponding model migration can
be specified independently of any neighboring coupled transaction. Due to their
modularity, a comprehensive evolution can be decomposed into manageable cou-
pled transactions, thus ensuring scalability. The notion of coupled transaction
qualifies to fulfill the requirements of reuse and expressiveness. Certain coupled
transactions can be reused resulting in reusable coupled transactions, while oth-
ers have to be specified manually resulting in custom coupled transactions.

Figure 3 illustrates how coupled transactions can be used to compose the
coupled evolution of our running example. The first coupled transaction changes
the statemachine metamodel from a Moore to a Mealy machine. As the corre-
sponding model migration is specific to the metamodel, it has to be performed
by a custom coupled transaction. The last two coupled transactions introduce
concurrent regions to the metamodel and are invocations of reusable coupled
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transactions. The invocation of ExtractClass extracts the sub states including
the initial state of a composite state into the new class Region. The invoca-
tion of GeneralizeReference generalizes the multiplicity of the new reference from
CompositeState to Region to enable concurrent regions.

Instantiation

ExtractClass GeneralizeReferenceReusable Coupled
Transactions

Language history

Version 0

Metamodel
Adaptation

Model
Migration

Version 1

GeneralizeR.ExtractClass

Custom Coupled 
Transaction

MooreToMealy

1. 2.

Fig. 3. Language history for the running example.

Keeping track of the coupled transactions that lead from one metamodel
version to the next results in a language history. The language history contains
enough information to migrate a model from the metamodel version to which it
conforms to any subsequent metamodel version. Hence, it is particularly suited
to migrate models which are not accessible while performing the metamodel
adaptation. This is the case when the modeling language and the models are
developed by different distributed parties. Figure 3 indicates the language history
for our running example which consists of the sequence of coupled transactions
together with markers for the different versions.

4.2 Coupled Transactions

Usually, the metamodel adaptation is manually performed in the metamodeling
tool used for authoring the metamodel. The model migration can be manually
encoded as a model transformation which transforms the old model to a new
model conforming to the adapted metamodel. In general, we distinguish between
exogenous and endogenous model transformation, depending on whether source
and target metamodel of the transformation are different or not [29]. Exogenous
model transformation requires to specify the mapping of all elements from the



10

source to the target metamodel. As typically only a subset of metamodel ele-
ments are modified by the metamodel adaptation, a model migration specified
as an exogenous transformation contains a high fraction of identity rules. Con-
cerning this aspect, endogenous transformation is better suited to the nature of
model migration, as it only has to address those metamodel elements for which
the model needs to be modified. However, endogenous transformation requires
the source and the target metamodel to be the same which is not the case for
metamodel evolution. Hence, conventional languages for model transformation
are not well suited to specify a model migration.

Instead, model migration is best served by a language that allows to directly
combine the properties of both exogenous and endogenous model transformation:
one needs to be able to specify the transformation from a source metamodel to a
different target metamodel, but only for the metamodel elements for which a mi-
gration is required. In order to achieve this, we propose to soften the conformance
between metamodel and its model during coupled evolution: the metamodel can
first be adapted regardless of its models, and the model can then be migrated
to the adapted metamodel. As a consequence, only the differences need to be
specified for both metamodel adaptation and model migration. However, soft-
ening the conformance during model migration comes at the price that a model
may not always conform to its metamodel. In order to ensure conformance after
a certain change to metamodel and model, we require a coupled transaction to
enforce the following properties:

Consistency preservation: The adapted metamodel is consistent, i. e. fulfills
the constraints defined by the meta-metamodel, if the original one was.

Conformance preservation: The migrated model conforms to the adapted
metamodel, if the original model conformed to the original metamodel.

Note that both consistency and conformance thus have to hold only at trans-
action boundaries, i. e. the metamodel may be inconsistent or the model may not
conform to the metamodel during a transaction.

We have implemented COPE on top of the Eclipse Modeling Framework
(EMF) [30] which is one of the most widely used metamodeling tools. In this
implementation, the conformance is softened by a generic instance model which
is only used during migration. To specify both metamodel adaptation and model
migration, COPE provides a number of expressive primitives which operate on
the generic instance model. These primitives can be invoked from within the
general-purpose scripting language Groovy [31] in order to take advantage of its
expressiveness. For more information about the generic instance model and a
complete list of the primitives, we refer the reader to [32].

4.3 Custom Coupled Transactions

Expressiveness is provided by custom coupled transactions, which have to be
specified manually by the metamodel developer. In doing so, the metamodel
developer can apply a number of primitives for both metamodel adaptation and
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model migration. The primitives are complete in the sense that every possible
metamodel adaptation as well as model migration can be specified with them.
Completeness can be shown by first destroying the source metamodel or model,
and then rebuilding the target metamodel or model from scratch as done in
[11] for database schema evolution. As these primitives are embedded into the
Turing-complete scripting language Groovy, the resulting language is expressive
enough to even cater for very specific model migrations.

Example. Listing 1 shows the custom coupled transaction that was performed
to change the statemachine from a Moore to a Mealy machine. More specifically,
the depicted custom coupled transaction consists of a metamodel adaptation
and a reconciling model migration. This example also shows that we only have
to specify the differences for both metamodel and model in this language.

Listing 1. Custom coupled transaction MooreToMealy.
// metamodel adaptation
def effectAttribute = State.effect
Transition.eStructuralFeatures.add(effectAttribute)

// model migration
getEffect = { transition −>
def effect = []
def state = transition.target
effect.addAll(state.get(effectAttribute))
while(state.instanceOf(CompositeState)) {
effect.addAll(state.initial.get(effectAttribute))
state = state.initial

}
return effect

}

for(transition in Transition.allInstances) {
def effect = getEffect(transition)
transition.effect = effect

}

for(state in State.allInstances) {
state.unset(effectAttribute)

}

The metamodel adaptation only moves the attribute effect from class State
to class Transition. The attribute is assigned to the variable effectAttribute in
order to be able to access its values for states, even though the attribute is no
longer known to the class State. Note how metamodel elements can be accessed
by means of fully qualified names (e. g. State.effect).
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A Moore machine is migrated to a Mealy machine by moving the effect of each
state to its incoming transitions. However, in the advent of composite states as
well as initial states, the model migration is more involved. When a statemachine
transitions to a composite state, it not only enters the composite state but also
its initial state. Consequently, we also have to take the effect of the initial state
into account when calculating the effect of the transition. Note that this may
have to be applied recursively, as the initial state may again be a composite state,
and so on. The model migration encoded in COPE’s language is thus divided into
two passes: First, we set the effect for each transition based on the states, and
then we remove the effect from each state. The language provides the primitive
allInstances to be able to iterate over all instances of a certain type. The effect
of a transition is set by using transition.effect = effect which is a short form for
transition.set(Transition.effect, effect). The effect of a transition is calculated by
means of the helper method getEffect. As explained before, the effect consists of
the effect of the transition’s target state as well as the effects of the initial states.
transition.target is the short form for transition.get(Transition.target). However,
the short forms can only be used, in case a feature of that name is currently
defined by the instance’s type. As the attribute effect is no longer defined for
class State, we thus have to use state.get(effectAttribute) to be able to access
the effect of a state. Furthermore, the primitive instanceOf can be used to check
whether a state is of type CompositeState. The effect of a state is removed by
using a primitive to unset the effectAttribute.

4.4 Reusable Coupled Transactions

Reuse is provided by an abstraction mechanism to generalize coupled transac-
tions into so-called reusable coupled transactions. Reusable coupled transactions
are specified independently of the metamodel, and encapsulate both metamodel
adaptation and reconciling model migration. They can be reused across meta-
models, thus promising to significantly reduce effort associated with metamodel
adaptation and model migration. COPE allows to declare new reusable coupled
transactions and make them available through a library. The language employs
the abstraction mechanism of procedures in Groovy in order to declare reusable
coupled transactions. A reusable coupled transaction is declared independently
of the specific metamodel by means of parameters. Reusable coupled transac-
tions can be instantiated by invoking the procedure with parameters assigned to
specific metamodel elements. The applicability of a reusable coupled transaction
can be restricted by preconditions in the form of assertions.

Example. Listing 2 shows the invocation of the reusable coupled transactions
ExtractClass and GeneralizeReference, which correspond to the second adaptation
in our example history. ExtractClass is invoked to extract the references state and
initial from CompositeState to the new class Region. The extracted region then
is accessible from a composite state through the new single-valued containment
reference named region. GeneralizeReference is invoked to increase the multiplicity
of this new reference in order to enable multiple concurrent regions. Note that
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by invoking reusable coupled transactions, the metamodel developer does not
have to specify neither metamodel adaptation nor model migration.

Listing 2. Instantiation of reusable coupled transactions.
extractClass([CompositeState.state, CompositeState.initial],

"Region", "region")
generalizeReference(CompositeState.region, Region, 1, INF)

Listing 3 shows the declaration of the reusable coupled transaction Extract-
Class which we just invoked to introduce regions into our example metamodel.
This reusable coupled transaction extracts a number of features from a con-
text class to a new class. The extracted class is accessible from the context
class through a new single-valued containment reference. The reusable coupled
transaction declares parameters for the attributes and references to be extracted
(features), the name of the new class (className) and the name of the new ref-
erence (referenceName). Several preconditions in the form of assertions restrict
the applicability of the reusable coupled transaction, e. g. every feature has to
belong to the same context class.

The metamodel adaptation creates the extracted class and the new single-
valued containment reference from the context class to the extracted class. Then,
the extracted features are moved from the context class to the extracted class.
For the metamodel adaptation, we use the primitives of the meta-metamodel im-
plementation together with some high-level primitives to create new metamodel
elements (e. g. newEClass). The reusable coupled transaction is simplified in the
sense that it leaves out the package in which the extracted class is created.

The model migration pretty much modifies the model accordingly. For each
instance of the context class (contextInstance), a new instance of the extracted
class is created and associated to the context instance through the new reference.
Then, all the values of the extracted features are moved from the context instance
to the new instance. Note that due to the generic instance model the context
instance’s value of a feature can still be accessed by the unset method, even
though the feature has already been moved to the extracted class.

5 Tool Support

From our experience, metamodel developers do not want to script the coupled
evolution, but rather prefer to adapt the metamodel directly in an editor. Con-
sequently, COPE is implemented as a non-invasive integration into the existing
EMF metamodel editor. Even though COPE is based on the language presented
in Section 4, it shields the metamodel developer from this language as far as
possible. COPE is open source and can be obtained from our website4. The web
4 http://cope.in.tum.de
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Listing 3. Declaration of reusable coupled transaction ExtractClass.
extractClass = {List<EStructuralFeature> features, String

className, String referenceName −>

def EClass contextClass = features[0].eContainingClass

// preconditions
assert features.every{feature −> feature.eContainingClass ==

contextClass} :
"The features have to belong to the same class"

assert contextClass.getEStructuralFeature(referenceName) ==
null | | features.contains(contextClass.
getEStructuralFeature(referenceName)) :

"A feature with the same name already exists"

// metamodel adaptation
def extractedClass = newEClass(className)
def reference = contextClass.newEReference(referenceName,

extractedClass, 1, 1, CONTAINMENT)
extractedClass.eStructuralFeatures.addAll(features)

// model migration
for(contextInstance in contextClass.allInstances) {

def extractedInstance = extractedClass.newInstance()
contextInstance.set(reference, extractedInstance)
for(feature in features) {
extractedInstance.set(feature, contextInstance.unset(

feature))
}

}
}

site also provides a screencast, documentation and several examples (including
the running example from this paper). We first describe the workflow that is
supported by COPE, before detailing on its integration into the user interface.

5.1 Tool Workflow

Figure 4 illustrates the tool workflow using the running example from Section 4.
COPE provides a library of reusable coupled transactions that can be invoked

on a specific metamodel. Besides the transactions used in Section 4, the current
library contains a number of other reusable coupled transactions like e. g. Rename
or DeleteFeature. The library is extensible in the sense that new reusable coupled
operations can be declared and registered. Reusable coupled transactions are
declared independently of the specific metamodel, i. e. on the level of the meta-
metamodel.
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Fig. 4. Tool workflow.

All changes performed to the metamodel are maintained in an explicit lan-
guage history. The history keeps track of the coupled transactions which contain
both metamodel adaptation and model migration. It is structured according to
the major language versions, i. e. when the language was deployed. All previ-
ous versions of the metamodel can be easily reconstructed from the information
available in the history. In Figure 4, the evolution from version 0 to version 1 is
the sequence of coupled transactions we performed in Section 4.

A migrator can be generated from the language history that allows for the
batch migration of models. The migrator can be invoked to automatically mi-
grate existing models, i. e. no user interaction is required during migration.

5.2 User Interface

Figure 5 shows an annotated screen shot of COPE’s user interface. COPE has
been integrated into the existing structural metamodel editor provided by EMF
(a). This metamodel editor has been extended so that it also provides access to
the language history (b). Reusable coupled transactions are made available to
the metamodel developer through a special view called operation browser (c).
An editor with syntax highlighting is provided for the specification of custom
coupled transactions (d).
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Fig. 5. Integration of COPE into the EMF metamodel editor.

The metamodel developer can adapt the metamodel by invoking reusable
coupled transactions through the operation browser. The browser is context-
sensitive, i. e. offers only those reusable coupled transactions that are applica-
ble to the elements currently selected in the metamodel editor. The operation
browser allows to set the parameters of a reusable coupled transaction based on
their type, and gives feedback on its applicability based on the preconditions.
When a reusable coupled transaction is executed, its invocation is automatically
tracked in the language history. Figure 5 shows the ExtractClass operation being
available in the browser (c), and the reusable coupled transactions stored in the
history (b). Note that the metamodel developer does not have to know about the
coupled evolution language if she is only invoking reusable coupled transactions.

In case no reusable coupled transaction is available for the coupled evolution
at hand, the metamodel developer can perform a custom coupled transaction.
First, the metamodel is directly adapted in the metamodel editor, in response to
which the changes are automatically tracked in the history. A migration can later
be attached to the sequence of metamodel changes by encoding it in the language
presented in Section 4. Note that the metamodel adaptation is automatically
generated from the changes tracked in the history. In order to allow for different
metamodeling habits, adapting the metamodel and attaching a model migration
is temporally decoupled such that a model migration can be attached at any later
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instant. Figure 5 shows the model migration attached to the manual changes (b)
in a separate editor with syntax highlighting (d).

The operation browser provides a release button to create a major version
of the metamodel. After release, the metamodel developer can initiate the auto-
matic generation of a migrator.

6 Case Study

In order to demonstrate its applicability in practice, we used COPE to model
the coupled evolution of two existing metamodels. The detailed results of the
case study in the form of the language histories as presented in Section 5 can be
obtained from our website5.

6.1 Goals

The study was performed to test the applicability of COPE to real-world coupled
evolution and better understand the potential for reuse of recurring migration
knowledge. More specifically, the study was performed to answer the following
research questions:

– Which fraction of the changes are simple metamodel extensions that do
trivially not require a migration of models?

– Which fraction of the changes can be reused by means of reusable coupled
transactions?

– Which fraction of the changes have to be implemented by means of custom
coupled transactions?

– Can COPE be applied to specify the complete coupled evolution of real-world
metamodels, i. e. including all intermediate versions?

6.2 Setup

As input to our study, we chose two EMF-based metamodels that already have an
extensive evolution history. We deliberately chose metamodels from completely
different backgrounds in order to achieve more representative results.

The first metamodel is developed as part of the open source project Graph-
ical Modeling Framework6 (GMF). It is used to define generator models from
which code for a graphical editor is generated. For our case study, we modeled
the coupled evolution from release 1.0 over 2.0 to release 2.1, which covers a
period of 2 years. There exist a significant number of models conforming to this
metamodel, most of which are not under control of the developers. In order to be
able to migrate these models, the developers have handcrafted a migrator with
test cases which can be used for validation.
5 http://cope.in.tum.de
6 http://www.eclipse.org/modeling/gmf
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The second metamodel is developed as part of the research project Palla-
dio Component Model7 (PCM), and is used for the specification and analysis
of component-based software architectures. For our case study, we modeled the
coupled evolution from release 2.0 over 3.0 to release 4.0, which covers a period
of 1.5 years. As the metamodel developers control the few models, they were
not forced to handcraft a migrator until now, but manually migrated the mod-
els instead. Since no migrator could be used for validation for this reason, the
modeled coupled evolution was validated by the developers of PCM.

The evolution of the metamodels was only available in the form of snapshots
that depict the state of the metamodel at a particular point in time. To this
end, we had to infer both the metamodel adaptation as well as the corresponding
model migration. We used the following systematic procedure to reverse engineer
the coupled evolution:

1. Extraction of metamodel versions: We extracted versions of the metamodel
from the version control system.

2. Comparison of subsequent metamodel versions: Since the version control sys-
tems of both projects are snapshot-based, they provide no information about
the differences between the metamodel versions. Therefore, successive meta-
model versions had to be compared to obtain a difference model. The dif-
ference model consists of a number of primitive changes between subsequent
metamodel versions and was obtained by means of tool support8.

3. Generation of metamodel adaptation: A first version of the history was ob-
tained by generating a metamodel adaptation from the difference model
between subsequent metamodel versions. For this purpose, a transforma-
tion was implemented that translates each of the primitive changes from the
difference model to metamodel adaptation primitives specified in COPE.

4. Detection of coupled transactions: The generated metamodel adaptation was
refined by combining adaptation primitives to coupled transactions based on
the information on how corresponding models are migrated. In doing so, we
always tried to map the compound changes to reusable coupled transactions
already available in the library. If not possible, we tried to identify and
develop new reusable coupled transactions. In case a certain model migration
was too specific to be reused, it was realized as a custom coupled transaction.

5. Validation of the history : The validity of the obtained coupled evolution
was tested on both levels. The metamodel adaptation is easy to validate,
because the history can be executed and the result can be compared to the
metamodel snapshots. Test models before and after model migration were
used to validate whether the model migration performs as intended.

Steps 1 to 3 as well as 5 are fully automated, whereas step 4 had to be per-
formed manually. In addition, there is an iteration over steps 4 and 5, as a failed
validation leads to corrections of the history. It took roughly one person week
for each studied metamodel to reach the fix point during the iteration. However,
7 http://www.palladio-approach.net
8 http://wiki.eclipse.org/index.php/EMF_Compare
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in this case study, the coupled evolution was obtained by reverse engineering,
which requires a lot of effort for understanding the intended migration. We are
convinced that the metamodel developers can model the coupled evolution with
significantly less effort, when they use COPE for forward engineering.

6.3 Results

As the GMF developers do not have all the models under control, they employ
a systematic change management process: the developers discuss metamodel
adaptations and their impact on models thoroughly before actually carrying
them out. Consequently, we found no destructive change at any instant in the
history, that was reversed at a later instant. To this end, the obtained language
history comprises all the intermediate versions. Figure 6(a) gives an impression
of the size of the studied metamodel and its evolution over all the metamodel
versions. In addition, the figure indicates the different releases of the metamodel.
The metamodel is quite extensive, accumulating more than a hundred classes in
the course of its history.
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Fig. 6. History of the GMF metamodel.

Figure 6(b) depicts the number of the different classes of metamodel adapta-
tions that were used to model the coupled evolution using COPE. The metamodel
extensions make up 64% of the adaptations, whereas reusable coupled transac-
tions account for 34%. Table 1 refines this classification by listing the names
and the number of occurrences of the different kinds of metamodel adaptations.
The dashed line distinguishes the reusable coupled transactions known from the
literature from those which have been implemented while conducting the case
study. For the GMF metamodel, these new reusable coupled transactions cover
15 out of 79 occurrences (19%). The remaining 2% of the metamodel adaptations
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consist of only 4 custom coupled transactions for which the model migration had
to be implemented manually. The model migration code handcrafted for these
custom coupled transactions amounts to 100 lines of code.

As the developers of the GMF metamodel do not have all the models under
their control, they have manually implemented a migrator. This migrator con-
stitutes a very technical solution, and is based on different mechanisms for the
two stages. For the migration from release 1.0 to 2.0, the migrator patches the
model while deserializing its XML representation. For the migration from release
2.0 to 2.1, a generic copy mechanism is used that first filters out non-conforming
parts of the model, and later rebuilds them. Even though this migrator is very
optimized, it is difficult to understand and maintain due the low abstraction
level of its implementation.

As the developers of the PCM metamodel have all the models under their
control, they apparently have not taken the impact on the models into account.
Consequently, there were a lot of destructive changes between the intermediate
versions, that were reversed at a later instant. To this end, the obtained language
history comprises only the release versions. Figure 7(a) gives an impression of
the size of the metamodel and its evolution over the studied releases. Similar
to GMF, the PCM metamodel is quite extensive, being split up in a number of
packages and defining more than a hundred classes throughout the history.
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Figure 7(b) depicts the number of the different classes of metamodel adap-
tations that were used to model the coupled evolution. Here, the metamodel ex-
tensions account for only 25% of the metamodel adaptations, whereas reusable
coupled transactions make up 74%. Again, Table 1 provides more detailed re-
sults. The reusable coupled transactions that were implemented while conducting
the case study cover 12 out of 76 occurrences (16%). The remaining 1% of the
metamodel adaptations consist of 1 custom coupled transaction for which the
model migration had to be implemented manually. The model migration code
handcrafted for this custom coupled transaction amounts to only 10 lines of code.
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As the developers have not yet provided tool support for model migration, our
approach helped by providing an automatic migrator. However, they provided
us with test models and helped to validate the obtained model migration.

GMF PCM Overall
1.0 - 2.0 2.0 - 2.1 Overall 2.0 - 3.0 3.0 - 4.0 Overall

Metamodel Extension 136 12 148 9 16 25 173
Add Super Type 1 2 3 3
New Attribute 63 6 69 1 1 70
New Class 36 1 37 3 4 7 44
New Enumeration 12 1 13 4 4 17
New Package 4 4 4
New Reference 25 4 29 5 1 6 35
Reusable Coupled Transaction 76 3 79 44 32 76 155
Change Attribute Type 2 1 3 3
Delete Class 1 1 1
Delete Feature 14 14 4 2 6 20
Extract Class 1 1 1
Extract Super Class 5 5 5
Generalize Reference 5 5 2 2 4 9
Generalize Super Type 1 2 3 3
Inline Super Class 2 2 2
Move Classifier 1 4 5 5
Move Feature 2 1 3 3
Pull up Feature 3 3 3
Push down Feature 1 1 1
Rename 27 1 28 16 18 34 62
Replace Inheritance by Delegation 1 1 2 4 4 6
Specialize Super Type 3 1 4 4
Collect Feature 4 4 4
Combine Feature 1 1 1
Copy Feature 1 1 1
Extract and Group Attribute 1 1 1
Extract existing Class 2 2 2
Flatten Hierarchy 1 1 1
Propagate Feature 1 1 1
Remove Superfluous Super Type 1 1 1
Remove Super Type 1 1 1 1 2
Replace Class 2 2 7 7 9
Replace Enumeration 2 2 2
Replace Literal 1 1 1
Specialize Composition 1 1 1
Custom Coupled Transaction 2 2 4 1 1 5

Table 1. Detailed results.

6.4 Discussion

The fraction of metamodel extensions is very large for the GMF metamodel,
whereas it is rather small for the PCM metamodel. A possible interpretation is
that the GMF developers were as far as possible avoiding metamodel adaptations
that required to enhance the migrator. The reason for the metamodel extensions
could as well be the nature of the evolution: they were adding new generator
features to the language which are orthogonal to existing ones.

For both metamodels, a large fraction of changes can be dealt with by
reusable coupled transactions – aside from the metamodel extensions. This result
strengthens the findings from the previous study as presented in Section 2 that
a lot of migration effort can be saved by reuse in practice. Besides the reusable
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coupled transactions known from the literature, we have also identified a number
of new reusable coupled transactions. It may seem odd that these new reusable
coupled transactions could be used for one metamodel, but not for the other.
However, two case studies may not suffice to show their usefulness in other sce-
narios. In addition, it may depend on the habits of the developer which reusable
coupled transactions are often used and which not. The extension mechanism of
COPE allows the developer to easily register new reusable coupled transactions
which fit their habits.

For both metamodels, a very small fraction of changes were so specific that
they had to be modeled as custom coupled transactions. Due to the expressive-
ness of the language, it was not difficult to manually implement these custom
coupled transactions. This result also strengthens the findings from the previous
study that a non-negligible number of changes are specific to the metamodel.

The case studies further showed that COPE can be applied to specify the
coupled evolution of real-world metamodels. In case of the GMF metamodel, we
would even have been able to directly use COPE for its maintenance. As the
GMF developers do not control the numerous existing models, they took also the
impact on the models into account while adapting the metamodel. COPE can
help here to perform more profound metamodel adaptations. In case of the PCM
metamodel, we would not have been able to directly use COPE for its main-
tenance. For metamodel adaptation, the PCM developers preferred flexibility
over preservation of existing models, as they have the few existing models under
control. COPE can help here to perform the metamodel adaptations in a more
systematic way by using reusable coupled transactions. Summing up, COPE pro-
vides a compromise between the two studied types of metamodel histories: its
provides more flexibility for carrying out metamodel adaptations, and offers at
the same time a more systematic approach for metamodel adaptation.

7 Conclusion

Just as other software artifacts, modeling languages and thus their metamodels
have to be adapted. In order to reduce the effort for the resulting migration of
models, adequate tool support is required. In previous work, we have performed
a study on the histories of two industrial metamodels to determine requirements
for adequate tool support. Adequate tool support needs to support the reuse of
migration knowledge, while at the same time being expressive enough for com-
plex migrations. To the best of our knowledge, existing approaches for model
migration do not cater for both reuse and expressiveness. This paper presented
COPE, an integrated approach fulfilling these requirements. Using COPE, the
coupled evolution can be incrementally composed of coupled transactions that
only require specification of the differences of metamodel and models in consec-
utive versions. The resulting modularity of coupled transactions ensures scala-
bility, and is particularly suited to combine reuse with expressiveness. Reuse is
provided by reusable coupled transactions that encapsulate recurring migration
knowledge. Expressiveness is provided by a complete set of primitives embedded
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into a Turing-complete language, which can be used to specify custom coupled
transactions. Tracking the performed coupled transactions in an explicit lan-
guage history allows to migrate models at a later instant, and provides better
traceability of metamodel adaptations. We implemented these language concepts
based on the Eclipse Modeling Framework (EMF). To ease its application, COPE
was seamlessly integrated into the metamodel editor, shielding the metamodel
developer from technical details as far as possible. We demonstrated the appli-
cability of COPE to real-world language evolution by reproducing the coupled
evolution of two existing modeling languages over several years. These case stud-
ies strengthen the findings of our previous study [7]: while reuse saves a lot of
effort, expressiveness is required for the rare, but important cases of complex
migrations.

Future Work. During the case studies, we have validated the usefulness of well-
known reusable coupled transactions, but also identified a number of new ones.
Until now, we pretty much developed new reusable coupled transactions in a
demand-driven way. However, we plan to compile a library of well-tested reusable
coupled transactions that cover most scenarios of metamodel evolution. To this
end, the existing ones may have to be refined, consolidated and aligned more or-
thogonally to each other. Building on [24], we intend to classify reusable coupled
transactions according to instance preservation properties so that the metamodel
developer can better assess their impact on models.

Currently, conformance preservation of a coupled transaction can only be
verified while executing it on a certain model. To enable the verification of con-
formance preservation in a model-independent way, we intend to develop a static
analysis. In contrast to the verification of properties, validation is more concerned
with whether the migration performs as intended. In order to validate coupled
transactions, we plan to develop a framework for the rigorous testing of model
migrations. This may include specific coverage criteria as well as a method to
derive new test models.

In this paper, we were only concerned with the migration of models in re-
sponse to metamodel adaptation. However, there are also other artifacts like e. g.
editors and generators which depend on the metamodel and which thus have to
be migrated. We first focused on model migration, as the number of models of
a successful modeling language typically outnumbers the number of other arti-
facts. To this end, we intend to extend COPE in a way that also the migration
of other artifacts can be specified. Especially for reusable coupled transactions,
we plan an extension mechanism to allow for the injection of migration code for
other artifacts.

As we already mentioned, our approach is especially suited for the incremen-
tal development and maintenance of modeling languages. We claim that a good
modeling language is hard to obtain by an upfront design, but rather has to
be developed by an evolutionary process. A version of a modeling language is
defined and deployed to obtain feedback from its users, which again may lead to
a new version. We thus plan to define a systematic process in order to support
the evolutionary development of modeling languages. This process should also



24

cover the maintenance of existing modeling languages. To that end, it should
also provide methods to identify bad metamodel designs and to replace them by
better designs.

Acknowledgements. We are thankful to the PCM developers – especially Stef-
fen Becker, Franz Brosch, and Klaus Krogmann – to grant us access to their
metamodel history, and for the effort spent on migration validation. We also like
to thank Steffen Becker, Antonio Cicchetti, Thomas Goldschmidt, Steven Kelly,
Anneke Kleppe, Klaus Krogmann, Ed Merks, Alfonso Pierantonio, Juha-Pekka
Tolvanen, Sander Vermolen, Markus Voelter, and Guido Wachsmuth for encour-
aging discussion, and for helpful suggestions. We are also grateful to anonymous
reviewers for comments on earlier versions of this paper.

References

1. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model Driven Archi-
tecture: Practice and Promise. Addison-Wesley, Boston, MA, USA (2003)

2. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Ap-
plications with Patterns, Models, Frameworks, and Tools. Wiley (2004)

3. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling. John Wiley & Sons (2007)
4. AUTOSAR Development Partnership: AUTOSAR Specification V3.1 (2008)
5. Favre, J.M.: Languages evolve too! changing the software time scale. In: 8th Inter-

national Workshop on Principles of Software Evolution (IWPSE), IEEE Computer
Society (2005) 33–44

6. Object Management Group: Unified Modeling Language, Superstructure, v2.1.2
(2007)

7. Herrmannsdoerfer, M., Benz, S., Juergens, E.: Automatability of Coupled Evo-
lution of Metamodels and Models in Practice. In Czarnecki, K., Ober, I., Bruel,
J.M., Uhl, A., Völter, M., eds.: MODELS 2008. Volume 5301 of LNCS., Springer
Heidelberg (2008) 645–659

8. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley
Longman Publishing Co., Inc. (1999)

9. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., Jazayeri, M.:
Challenges in software evolution. In: 8th International Workshop on Principles of
Software Evolution (IWPSE). (2005) 13–22
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