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SUMMARY

This article presents a Hoare-style calculus for a substantial subset of Java Card, which we call Java����� .
In particular, the language includes side-effecting expressions, mutual recursion, dynamic method binding,
full exception handling, and static class initialization.

The Hoare logic of partial correctness is proved not only sound (w.r.t. our operational semantics of
Java����� , described in detail elsewhere) but even complete. It is the first logic for an object-oriented
language that is provably complete. The completeness proof uses a refinement of the Most General Formula
approach. The proof of soundness gives new insights into the role of type safety. Further by-products of this
work are a new general methodology for handling side-effecting expressions and their results, the discovery
of the strongest possible rule of consequence, and a flexible Call rule for mutual recursion. We also give a
small but non-trivial application example.

All definitions and proofs have been done formally with the interactive theorem prover Isabelle/HOL.
This guarantees not only rigorous definitions, but also gives maximal confidence in the results obtained.

KEY WORDS: Hoare logic, axiomatic semantics, Java, Isabelle/HOL, verification, soundness, completeness,
auxiliary variables, side effects, mutual recursion, dynamic binding, exception handling, type safety.

1. Introduction

1.1. Motivation and Aims

Since languages like Java [17] are widely used even in safety-critical applications, verification
of object-oriented programs is becoming more and more important. A crucial first step towards
verification is developing a suitable axiomatic semantics (a.k.a. “Hoare logic”) for such languages. The
resulting proof system should be provably sound, easy to use, and complete. Due to the complexity of
practical languages and the large amount of detail involved, support by mechanical theorem provers
seems indispensable.

This article focuses on the meta-theory of program verification and its mechanization in a theorem
prover. The work presented here is aimed to be a solid basis for further research and developments
regarding methodological issues and tool support for actual program verification.

Received 16 September 2000
Copyright c� 2001 John Wiley & Sons, Ltd. Revised 28 February 2001

Accepted 2 March 2001



2 D. VON OHEIMB

1.2. Related Work

Various sublanguages of Java have been formalized in theorem proving systems. Syme [55] proves
type soundness by directly mechanizing and improving the work of Drossopoulou and Eisenbach
[13]. Within the LOOP project [28], Jacobset al. [27, 26, 25] translate Java classes to PVS or
Isabelle/HOL theories and perform program verification with a Hoare-style logic proved sound within
their system. Within project Oasis [6], Attaliet al. [7] give an executable transition semantics and
develop a visualization tool for a large subset of Java within the Centaur system. Leinoet al. [37]
translate (almost all of) Java 1.2 to a guarded-command-like language in order to generate verification
conditions for extended static checking.

Many Hoare logics for object-oriented languages have been proposed meanwhile. Abadi and Leino
[1] describe a type-system-like core calculus that later has been formalized by Hofmann and Tang [21]
in LEGO. The OO logic work by Leavens focuses on behavioral subtyping,e.g.[35], and specification
languages, in particular JML [34]. The LOOP project mentioned above provides a formal semantics
for JML [30]. Poetzsch-Heffteret al.give a Hoare logic for a core language of Java [51], where M¨uller
focuses on modular verification [40]. All these logics have been proved sound (typically on paper).
None of them has been proved complete. The Hoare logic for the language SPOOL by America and de
Boer [3, 12] has been proved complete (on paper), yet SPOOL implements only a quite weak form of
object-orientation: it offers records and methods on them, but lacks subtyping and dynamic binding.

Other more specific references to related work are given where appropriate. Our logic has been
developed within Project Bali [42]. The proofs of soundness and completeness have been inspired by
[51] and [32], respectively. This article is essentially a slightly revised standalone version of [47,�5].

1.3. Characteristics

Our Hoare logic for Java has the following characteristics.

Language Coverage Apart from static overloading and dynamic binding of methods as well as
references to dynamically allocated objects, our language, called Java�����, also covers full
exception handling, static fields and methods, and static initialization of classes. The only
important features still missing, name spaces and visibility control, will be added soon. Thus
Java����� is quite close to Java Card [54] which is essentially the sequential part of Java.

Semantical Assertions Our semantic view of assertions identifies the assertion language with the
underlying meta logic of our proof system. This simplifies the logics and makes the otherwise
problematic issues of expressiveness of the assertion language and the completeness of the meta
logic trivial. The dependency of assertions on the program state and auxiliary variables is made
explicit, which is helpful for conducting meta-theory though a bit awkward for actual program
verification.

First-class Expressions Instead of modeling expressions with side-effects as assignments to
intermediate variables, it handles them first-class. Thus programs to be verified do not need to
undergo artificial structural transformations. Jacobset al. [26] claim to deal with side-effecting
expressions, too, though their paper does not reveal their approach and theirWHILE rule does
not allow side-effects in the loop condition.
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HOARE LOGIC FOR JAVA IN ISABELLE/HOL 3

Proven Soundness and Completeness Our logic is both sound — w.r.t. a mature formalization of the
operational semantics of Java����� — and complete. This means that programs using even non-
trivial features like mutual recursion, class initialization, and dynamic binding can be proved
correct.

Reliability Both Java����� and its Hoare logic have been defined and verified within Isabelle/HOL.
This guarantees a rigorous and unambiguous formalization and reliable proofs.

1.4. Overview

This article is an extended version of [45] and [46]. We describe how to extend classical Hoare logic
[18, 4] to handle side-effecting expressions, exceptions, mutual recursion, dynamic binding, static
initialization and other difficult features.

� �2 and�3 give a brief introduction to the underlying theorem proving system Isabelle/HOL and
our formalization of the static and operational semantics of Java�����.

� �4 to �9 present the axiomatic semantics of partial correctness, motivating and discussing all
required concepts like assertions, triples and their validity, as well as the structural and Java-
specific rules.

� �10 and �11 sketch the proofs of soundness and (relative) completeness, both w.r.t. the
operational semantics.

� �12 reports on a small application example and�13 concludes giving a summary and some
evaluation.

2. Isabelle/HOL

For our formalization and proofs we use theIsabelle/HOLsystem. This is the generic interactive
theorem proverIsabelle[50] instantiated with Church’s classical, simply-typed Higher-Order Logic
(HOL) [10].

Isabelle/HOL provides an expressive specification language with type inference and advanced syntax
capabilities resulting in well-readable formulas. It offers a variety of interactive and semi-automatic
proof tools (not further described here) whose trustworthiness is due to the LCF [15] approach. The
system is well-documented and equipped with the convenient Proof General interface [5].

In the next two subsections, we will briefly introduce the basics of Isabelle required for
understanding the declarations and formulas given in the subsequent sections. We adopt the following
typographic conventions: The names of logical constants like ‘True’ or ‘ cfield’ appear in sans serif,
while type names like ‘bool’ or ‘ state’ and variables like ‘v’ appear in italics, and Java keywords like
‘catch’ appear in courier font.
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4 D. VON OHEIMB

2.1. Isabelle Definitions

Types follow the syntax of ML. Type abbreviations are introduced simply as equations. Logical
constants are declared by giving their name and type, separated by ‘��’. Both types and constants
may receive additional general mixfix syntax (possibly with graphical symbols and user-defined
precedences). We write non-recursive definitions and abbreviations with ‘�’.

The appearance of formulas is standard,e.g.‘��’ is the (right-associative) infix implication symbol.
Quantifications have very low syntactical precedence,i.e. their scope extends to the end of the given
formula or until the next closing parenthesis. Terms are expressions of an extended�-calculus similar
to ML. Function application is written in curried style. Predicates are functions with Boolean result.

There are primitive and general recursive function definitions as well as inductive definitions of
relations, which we use heavily. A free datatype is defined by listing its constructors together with their
argument types, separated by ‘�’.

2.2. HOL Library

By HOL we mean Isabelle/HOL, which is not to be confused with its nearest relative, Gordon’s HOL
system [14]. The fundamentals of HOL are introduced in [43], whereas the latest version of HOL can
be found in [22]. A recent gentle introduction is [41].

In HOL there are simple types likebool and nat, as well as the polymorphic type���set of
homogeneous sets for any element type�. Occasionally we apply the infix ‘image’ operator lifting
a function over a set, defined asf �S� �f x �x. x�S�.

The product type� � � comes with the projection functionsfst andsnd. Tuples are pairs nested to
the right,e.g.�a,b,c�� �a,�b,c��. They may be used also as patterns like in��x,y�. f x y.

The sum type� � � comes with the injectionsInl andInr. For the ternary sum� � � � � we assume
the injectionsIn1, In2 andIn3.

We frequently use the datatype

���option�None � Some �

It has an unpacking functionthe �� ���option� � such that the �Some x�� x. (the None is left
unspecified.)

3. Java����� Formalization

Our axiomatic semantics inherits all features, in particular declarations and the program state, from
our operational semantics of Java�����. Here we mention just the most important definitions used in
the following sections. There are many other auxiliary type and function definitions which we cannot
define here for lack of space. See [48] and [47,�2 and�3] for a complete and more detailed description.
The actual Isabelle/HOL theories and proof scripts may be obtained fromhttp://isabelle.in.
tum.de/Bali/src/Bali5/.
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HOARE LOGIC FOR JAVA IN ISABELLE/HOL 5

3.1. Declarations

A program, denoted by�, consists of a list of interface and class declarations:

prog��idecl�list � �cdecl�list

It serves as the context for most judgments. The well-formedness predicatewf prog states that a
program fulfills all the sanity constraints typically checked by the compiler. The (much weaker) well-
structuredness predicatews prog just states that the class and interface hierarchies are finite and acyclic.

3.2. Terms and Results

A Java����� term is either an expression, a statement, a variable, or an expression list, and has
a corresponding result. It helps to handle all four classes of terms as uniformly as possible.
Thus even statements are modeled to have a (dummy) result. The result of a variable has type
vvar� val� �val� state� state�, which is a value (for read access) and a state update function (for
write access). This is reminiscent ofL-valuesintroduced by Strachey [53].

terms��expr� stmt� � var� �expr�list
vals � val � vvar� �val �list

We will use the functions

Val v� In1 v
Var v� In2 v
Vals v� In3 v

for injecting single values, variables and value lists intovals. The namesVal, Var, andVals will be used
not only for the injections, but also as (destructor) patterns. For example,�Val v. f v is a function on the
result entry that expects a single valuev and passes it tof.

Statementsin Java����� are reduced to their essentials. The datatype definition gives the abstract
syntax as follows.

stmt�Skip
� Expr expr
� stmt; stmt
� if�expr� stmtelse stmt
� while�expr� stmt
� throw expr
� try stmtcatch �tname ename� stmt
� stmtfinally stmt
� init tname

The artificial statementinit C is used to model static initialization of a classC at the points of (potential)
first active use.

Javaexpressions, in particular method calls and object creation, do not only yield results but typically
also cause side effects on the program state. A common modeling technique is to get rid of side effects
by transforming the problematic expressions into a series of assignments (which are then considered
as statements) to temporary variables. We believe that such a transformation is inadequate since it
severely alters the structure of programs and has non-trivial semantical connections,e.g.to exception
propagation. Therefore we handle expressions first-class, even if this causes inconveniences, above all
for the axiomatic semantics (cf.�4.3).
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6 D. VON OHEIMB

The abstract syntax of Java����� expressions (andvariablescontained in them) is

expr�new tname
� new ty�expr�
� Cast ty expr
� exprinstanceof ref ty
� Lit val
� super
� Acc var
� var := expr
� expr ? expr: expr
� �ref ty, ref ty, inv mode�expr..mname���ty�list��expr�list�
� Methd tname sig
� Body tname stmt expr

var�LVar lname
� �tname,bool�expr..ename
� expr�expr�

The subterms in braces are so-calledtype annotations: extra information typically added by the
compiler.

The auxiliary expressionMethd C m is employed within method calls (cf.�9.7). It denotes the
implementation of methodm of classC, a concept crucial for the axiomatic semantics, as will be
motivated in�9.7.2. The unfolded version of a method implementation is its actual body, for which we
introduceBody D c e, a further auxiliary term is a useful abstraction used for simplifying the�����

rule of the axiomatic semantics. HereD is the defining class,c is the (block of) statements in the body,
ande is the result expression, used to emulatereturn statements.

See�12 for example program terms.

3.3. Type System

We model the most importantprimitive typesand allreference types, as well alltype relationsbetween
them. Here we just mention thewideningrelation, where��S	T means that in the context� a value
of typeSmay be used in a place where a value of typeT is expected.

The fact that a termt is well-typed and has typeT is expressed via (inductively defined)typing
judgments��,	��t��T where��,	� is the type environment consisting of the program and a local part
mapping variable names to types.

3.4. State

The program state is defined as

st � st globs locals
state��xcpt�option� st

whereglobsandlocals map class references to objects (including class objects) and variable names to
values, respectively, andxcptreferences an exception object. Using the projections on tuples, we define
e.g.normal � � fst ��None, which expresses that in state� there is no pending exception, and write
snd � to refer to the state without the information on exceptions, typically denoted bys.
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HOARE LOGIC FOR JAVA IN ISABELLE/HOL 7

We further define functionals mapping an update of the exception or store part of the state to an
update of the full state,

xupd �� ��xcpt�option� �xcpt�option�� state� state
supd �� �st� st�� state� state
xupd f � ��x,s�. �f x,s�
supd f � ��x,s�. �x,f s�

applied for instance when setting local variables:

set lvars �� locals� state� state
set lvars l � � supd ��s.case sof st g l � st g l ��

In our model many situations arise where under a certain condition an exception should be raised,
yet only if no exception is already present which has to take precedence. This behavior is captured by
the function

raise if �� bool� xname� �xcpt�option� �xcpt�option
raise if c xn� �x�. if c
 x� �None then Some �StdXcpt xn� else x�

3.5. Evaluation

The general evaluation judgment has the form

prog�state�terms� �vals� state�

where��� �t� �w,��� means that in the context of program� evaluation of termt from the initial state
� terminates in state�� and yields the resultw. There are specific variants of the evaluation judgment for
all classes of terms,e.g.for expressionse with valuev: ��� �e–�v� �� � ��� �

In1 �Inl e�
� �Val v,���

When developing the axiomatic semantics we had to adapt our model for method calls as givene.g.
in [48]. As will be motivated in�9.7.2, we distinguish the callee’s side of method calls, the method
implementation, from the caller’s side and further handle the actual method body separately [49]. This
also helps to keep the complexity of the method call rule bearable.

Thus our adapted method call rule does not any more evaluate the statements and result expression of
the method body directly but calls evaluation of themethod implementationMethd C sigwith signature
sig of some classC. The method implementation rule then looks up the method according to this
information and determines the information needed for the body:

��Norm s� �body � C sig–�v
� ��

��Norm s� �Methd C sig–�v
� ��

where body � C sig� let �D, , ,c,e�� the �cmethd � C sig� in Body D c e is an auxiliary function that
looks up the the method with the given signature in the class hierarchy (starting from the classC)
and inserts the method body whereD is the defining class, the statementc represents the actual block
of commands, ande is the result expression.

The evaluation of the body is just a sequential composition of initializing the current class (if
required), executing the block of statements, and evaluating the result expression:

��Norm s� �init D� �� ���� �c� �� ���� �e–�v� ��

��Norm s� �Body D c e–�v
� ��
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8 D. VON OHEIMB

4. Assertions

In designing an axiomatic semantics the most critical notion is that ofassertions, i.e. propositions
describing the pre- and postconditions of term execution. The language of assertions and the underlying
logic strongly determine the expressiveness and completeness of the resulting verification logic.

4.1. Logical Language

As the assertion language and logic, we could usePeano Arithmetic, i.e.first-order predicate logic with
equality, natural numbers,� and�. This is because we will quantify essentially just over (lists and finite
mappings of) values. The program state can be encoded using lists of (lists of) values, the potentially
problematic variable update functions (contained in typevvar) can be coded as a simple choice between
the three possible cases (local, field, and array variables), and for lists standard encodings exist. Thus
a rather minimal language would be sufficient, but at the expense of technically awkward encodings.
Based on these observations, we could define a notion of expressiveness suiting our needs.

We could embed the assertion language, Peano Arithmetic or something less minimal, deeply in
our meta logic HOL. This means defining as a first step the (abstract) syntax of the language and then
assign semantics to it. Such deep embeddings [9] are useful when doing meta-theory on the language in
question since one can express properties of the syntactic structure and prove generic properties of the
language. In particular, this would enable us to explicitly treat expressiveness and the whole issue of
completeness (basically) along the lines of Cook [11], who did a good job separating concerns within
the completeness affair. Yet as observed by Kleymann [32,�2.12], some of the known incompleteness
results crucially depend on certain expressiveness properties and have been misinterpreted in the sense
that they were attributed relevance for practical purposes, which they in fact do not have. Actually,
we are not aware of any actual verification system based on Hoare logic where incompleteness of the
underlying logic is an issue. Thus Kleymann and others follow Aczel’s suggestion [2] not to consider
expressiveness when investigating the completeness of a Hoare-style logic. Moreover, compared to a
shallow embedding, a deep embedding would complicate in particular the proofs of soundness and
completeness as it requires talking explicitly about the syntactic level (i.e. terms and substitutions) and
their semantic interpretation, which would just add clutter without giving us any benefit.

For the reasons given above we shallow-embed the assertion language in HOL,i.e. short-circuit
both logical languages. This not only relieves us from defining (and using) the syntax, semantics and
proof rules of the assertion language — we do not have to bother with expressiveness. Concerning
derivability, we automatically only have to deal withrelative completenessin the sense of Cook [11],
i.e. completeness of the Hoare logic rule system itself modulo (in-)completeness of the underlying
meta logic. In particular, within the rule of consequence, the derivability of an implication between
assertions is replaced simply by its validity,i.e.mere implication in the meta logic HOL.

Since assertions depend on the program variables (including the heap), from the HOL perspective,
they are essentially just predicates on the state. We use the state as an explicit parameter of
the assertions, which is most appropriate when conducting meta-theory. Thus an example Hoare
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HOARE LOGIC FOR JAVA IN ISABELLE/HOL 9

triple that is traditionally given as�True� c �X�1� now reads as���. True� c ���. locals �snd �� X�

Some �Intg 1��, where the rather cumbersome expression in the postcondition could of course be
suitably abbreviated and the assertions pretty-printed. For actual program verification, a mechanism
for hiding the state and directly referring to the program variable names, as given by Wenzel [56],
would enhance readability.

4.2. Auxiliary Variables

Program verification typically involves relating pre- and postconditions of program terms, in particular
when stating that a certain portion of the state does not change or when giving input-/output
specifications of methods (or general procedures). Such relations are easily expressed in VDM [31]
using “hooked” expressions within the postcondition to refer to the initial state. With plain Hoare
logic, one cannot make such references, but one can extend the logic by so-calledauxiliary variables,
or logical variables, which are universally bound at a higher level.

For example, the proposition that a procedureP does not change the contents of a program variable
X may be formulated as the triple�X�Z� Call P �X�Z�, which should mean that wheneverX has some
value denoted byZ before callingP, after return it still has the same value, as given byZ. A potential
interpretation forZ is to be a program variable not occurring inP, but this essential side condition
cannot be expressed within the logic. A better and rather intuitive alternative is thatZ be viewed as
a free variable, which is thus implicitly universally quantified at the outermost logical level. Yet this
gives the desired interpretation only if the triple occurs (implication-)positively, and thus is unsuitable
when triples are used also in antecedents as required for verifying recursive methods (cf.�9.7.2).

Viewing Z as an arbitrary (yet fixed) constant preserves correctness, but this approach suffers
from incompleteness: take a procedure triple like�X�Z� Call SQ �Y�Z�Z� as an example. Both for
handling recursive calls during its proof and for different applications after it has been proved,
different instantiations ofZ may be required, which is impossible ifZ is a constant. The classical
but cumbersome and often incomplete way out, as describede.g.by Apt [4], is inventing some (more
or less ad-hoc) set of substitution and adaptation rules involving sometimes intricate side-conditions on
variable occurrences. A semantically satisfactory solution that we could adopt would involve (implicit
or explicit) universal quantification at the level of triples likeZ. �P Z� c �Q Z�, but this changes the
outer structure of Hoare triples and makes them more difficult to handle, in particular if they occur in
the antecedents.

We follow the approach promoted and applied by Kleymann� [52]: implicit quantification of
auxiliary variables at the level of triple validity. In order to abstract from the number and the names
of the auxiliary variables used in different triples, assertions receive an extra parameter representing
the collection of all required auxiliary variables. The type of the parameter is not specified and thus
can be instantiated as appropriate, typically to a tuple of values (for actual program verification) or
the whole state (for meta theory). With this extended notion of assertions, the motivating example
�X�Z� Call P �X�Z� now reads as��� Z. locals �snd �� X�Z� Call P ��� Z. locals �snd �� X�Z� where
in this case the type ofZ is of course the type of the variableX.

�formerly Schreiber
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10 D. VON OHEIMB

4.3. Result Values

We still need a further — orthogonal — extension of assertions, namely for handling theresult values
of side-effecting expressions. In contrast to most other axiomatic semantics given in the literature, and
as already motivated in�3.2, we take such expressions seriously.

Homeier and Martin [23] appear to have been the first ones to embed side-effecting expressions in
a machine-checked axiomatic semantics. They transform expressions syntactically into the assertion
language while using simultaneous substitutions to account for side-effects. This solution does not
require special triples and result value entries. On the other hand, it is not general enough because it
can handle only variable assignments (includinge.g. incrementation operators) but not method calls
within expressions which appear frequently in object-oriented programs.

We use triples not only to describe the behavior of statements, but also all other classes of terms,
i.e. expressions, expression lists, and variables. This requires a mechanism for not only recording, but
also for passing on the values produced by these terms. In an operational semantics, the (nameless)
result values can be referred to and passed on via meta variables bound at the outermost logical level,
but in an axiomatic semantics, such a simple technique is impossible: the behavior of a term has to
be described solely by a suitable triple without any reference to its surroundings. Thus all variables
occurring in the pre- and postconditions of the triple have to be logically bound to that triple. Violating
this principle easily leads to unsound or incomplete rule systems.

Kowaltowski [33] rather early pointed to the right direction giving a surprisingly simple (syntactic)
solution: Within assertions there is a default reference, call it�, to the result of the current expression.
The rule for constant expressions, for example, then reads as

�P�c/��� c �P�

which is reminiscent of the well-known assignment rule applied to�:=c. The rule for an arbitrary
binary operator� reads as

�P� d �Q��/� �� �Q� e�R�� ��/���

�P� d� e�R�
� does not occur elsewhere

and can be justified by simulating the the special result variables with intermediate program variables.
Unfortunately these rules cannot be used directly in our rigorous semantical setting as they rely on
syntactic substitutions and the problematic syntactic side condition of variable freshness.

Another early treatment of side-effects is due to Boehm [8] who uses a kind of dynamic logic
dividing between effects and values of expressions. This approach seems conceptually nice, but
apparently leads to complex proofs.

After some experimentation we found and implemented a first solution of the result representation
problem: let the assertions refer to a stack of result values. This not only gives a default reference,viz.
the stack top, but also an arbitrary number of unique references for further intermediate results where
the explicit syntactic shifting performed when having two or more intermediate results is handled by
pushing and popping elements.
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HOARE LOGIC FOR JAVA IN ISABELLE/HOL 11

Later we noticed that there is a simpler solution: assertions receive the (single) current result value
as a parameter. Thus substitution can be modeled simply by a combined abstraction and application,
and the rule for constant expressions reads as

���. P c� c �P�

Note that the precondition effectively ignores the result parameter�, i.e. P c does not depend on it,
since it makes sense only in the postcondition. We will later (cf.�4.5) abbreviate the precondition to
P�c.

Multiple result values within a Hoare logic rule can be handled by suitable explicit universal
quantification and substitution of all but the last value in the following way. First, observe that we
may rewrite the rule for binary operators to

�P� d �Q� �Q�� /��� e�R�� � �/���

�P� d� e�R�
for some� not occurring elsewhere

This form has two advantages: we only need substitution to� and the side condition on� can be made
local to the second triple in the assumptions. Thus we can model the side condition semantically by
universal quantification of� around the second triple and end up with the rule

�P� d �Q� � . ���. Q �� e���. R�� � ���

�P� d�e�R�

Both subexpressions are evaluated in sequence, whereQ as intermediate assertion typically involves
the result ofd. The final postconditionR is modified for the proof one as follows: we take the second
intermediate result�, combine it with the first intermediate result� as obtained from the precondition,
and use the combined value as the overall result.

Huisman [25] also deals with side-effecting expressions, though she is not explicit about the
approach employed. Yet the rules given reveal that she uses a similar (though more complicated)
semantical technique, namely existentially quantified result functions that depend on an universally
quantified state parameter.
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12 D. VON OHEIMB

4.4. Assertion Type

Having decided on the logical language, the use of auxiliary variables, and the result entry, we can
finally give the type of assertions. It has a type parameter� for the auxiliary variables and is defined as
a relation between a result value, the state and the auxiliary variables:

� assn� vals� state� �� bool

See�12 for application examples.
For implications between assertions we use the abbreviation

P� Q� Y� Z. P Y� Z�� Q Y� Z

As done here, we typically refer to the result parameter of an assertion asY, the state as�, and the
auxiliary variables asZ.

4.5. Combinators

In order to keep the axiomatic rules short and thus more readable, we define several assertion
(predicate) combinators hiding the state, result, and auxiliary variables in applications as far as possible.

� �s.. P s� �Y�. P �snd �� Y� allowsP to peek at the state (without the exception status) directly.
� P
. p � �Y� Z. P Y� Z 
 p � means that not onlyP holds but alsop, applied to the program state

only. The assertion

Normal P� P
. normal

is a simple application stating thatP holds and no exception has occurred.
� f .; P� �Y�. PY�f �� means thatP holds for the state transformed byf.
� P ;. f � �Y�� Z.��. PY� Z 
 ���f � means thatP held for some state� and the current state is

the image of� under the state transformerf.

Note that the latter two combinators have (almost) inverse effect, in the following sense:
��f .; P� ;. f�� P andP� �f .; �P ;. f��.

Another group of combinators provides abbreviations for producing and consuming results:

� P�w� �Y. P wmeans thatP holds wherew is substituted as the result. In successive substitutions
the leftmost one prevails:P�w�v�P�w.

� �w:. P w� �Y. P Y Ypeeks at the current result and passes it toP.
� P� � �Y� Z.�Y. P Y� Z simply ignores the result.
� P��w � �Y:. P� 
. ���. Y�w� asserts that the current result isw and then ignores it.
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5. Triples

We define Hoare-styletriples (as usual consisting of a term and two assertions as pre- and
postconditions) via a datatype

���triple

with a single constructor with the mixfix syntax:

�� assn� terms� �� assn�

We give a variant for each class of terms,viz.expressions, variables, expression lists, and statements:

�P� e–� �Q� � �P� In1 �Inl e�� �Q�
�P� e�� �Q� � �P� In2 e� �Q�
�P� e

�
���Q� � �P� In3 e� �Q�

�P� .c. �Q� � �P� In1 �Inr c�� �Q�

In some triples of our Hoare logic rules given below the term parameter will be a (quantifier-
free) meta-level expression such asif b then Skip else c rather than a pure term of (the abstract syntax
of) Java�����. This does not hinder the use of such rules since during application these expressions
are reduced to pure Java����� terms, in this case to eitherSkip or c. Another typical example is the
expressionbody � C sigwhich is ultimately replaced by the actual body of the given method.

Concerning the handling of recursive of methods, we take (a variant of) the standard approach:
triples appear not only in the consequent, but sets of triples are used as antecedents within the validity
and derivability judgments.

���triples����triple set

Furthermore, in order to handle mutual recursion, it is convenient to use sets of triples as (multiple)
consequents as well, as further explained in�9.7.2. Semantically speaking, forming sets of triples
always means conjunction of its members. Note that for simplicity we allow infinite sets here though
only finite sets of triples are derivable.

Actually, the triple type should not have a type parameter and triples should be universally quantified
over the type of the auxiliary variables instead:�. �� assn� terms� �� assn�. This is not possible in
HOL due to the weak (parametric) polymorphism. Thus all members of a set of triples and also the
antecedents and consequents as a whole within a Hoare judgment, and thus all triples within a single
derivation, are bound to have the same type of auxiliary variables.

6. Validity

6.1. Single Triples

Thevalidity of a single triple is a judgment of the form

prog��nat:���triple
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We define partial correctness as

���n:�P� t� �Q� � Y� Z. P Y� Z �� type ok � t � ��
�Y� ��. ��� �t:n� �Y�,��� �� Q Y� �� Z�

Validity of �P� t� �Q� (w.r.t. the recursive depthn explained in the next subsection) intuitively means
that if P holds for some type-conforming starting state� and the evaluation of the termt terminates,
thenQ holds for the result and the final state� �. Note the universal quantification on the auxiliary
variableZ motivated in�4.2.

The predicate

type ok �� prog� term� state� bool
type ok � t � � �	. �normal � �� �T. ��,	��t��T� 
 ���	��,	�

expresses that the termt is well-typed (at least if� is a normal state) and that all values in� conform to
their static types, both w.r.t. the global environment� and some local environment	. This additional
precondition is required to ensure soundness, as will be discussed in�10.3.

6.2. Recursive Depth

The judgment��� �t:n� �Y�,��� above is a slight refinement of the evaluation judgment given in�3.5.
The refinement does not alter the semantics of evaluation,i.e. the new parametern is a mere annotation.
It states that evaluation is done with arecursive depthbound byn. This notion is required for the proof
of soundness and thus will be motivated in�10.2.

The inductive rules defining the extended judgment are exactly the same as in our basic operational
semantics, except that the annotation:n is added above the long arrow and the rule for unfolding the
method body is replaced by

��Norm s� �body � C sig–�v:n
� ��

��Norm s� �Methd C sig–�v:n�1� ��

reflecting the increase of the recursive depth due to method calls.
The original and refined versions are equivalent in the following sense:

��� �t� w�� iff �n.��� �t:n� w��

This can be shown by rule induction for each direction. The ‘only if’ direction relies on the fact that
the recursive depth is monotone:

n�m�� ��� �t:n� w�� �� ��� �t:m� w��

Note that validity is monotone in the opposite direction:

m�n�� ���n:t �� ���m:t
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6.3. Liftings

The validity of a single triple canonically carries over to sets of triples:

prog���nat:���triples
����n:ts� t�ts.���n:t

More interesting is the extension of validity to antecedents, defined as

prog,���triples������triples
�,A���ts� n.����n:A�� ����n:ts

meaning that a set of triplests is valid up to any given recursive depth under the assumption that the set
A is valid up to the same depth.

Note the different type parameters for the sets of triples in the antecedent and in the consequent.
This emphasizes that they may have different types of auxiliary variables. Unfortunately, due to the
restriction mentioned in�5 and the rules��� and����� (given below) which short-circuit the type
variables, antecedents and consequents in the rules are restricted to identical types.

We abbreviate the validity of a single triple under a set of assumptions as

�,A��t � �,A����t�

Note that our definition for�,A���ts is weaker than the version one might expect,viz.

�n.����n:A� �� �n.����n:ts�

Yet for an empty set of assumptions, both variants are equivalent, and�,���t gives the standard notion
of validity in the sense that it effectively forgets about the recursive depth:

�,����P�t��Q� iff
n.����n:� �� ����n:��P�t��Q�� iff
n.t���P�t��Q��. ���n:t iff
Y� Z Y� ��. P Y� Z�� type ok � t � �� ��� �t� �Y�,��� �� Q Y� �� Z

Thederivability judgmentshave the general form

prog,���triples�����triples

but for the standard case of a single triple in the consequent we use the abbreviation

�,A�t � �,A���t�

7. Structural Rules

As for any Hoare-style logic, there are a number of structural rules applicable for any kind of term:
rules for handling antecedents and multiple consequents, exceptions, and the rule of consequence.
Many logics involve further rules handling variables and logical connectives within the assertions, but
with a strong rule of consequence at hand they are not actually necessary.
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16 D. VON OHEIMB

7.1. Handling Consequents

The first two rules deal with deriving finite sets of triples, which is done one by one, until finally the
empty set is reached:

�	��
�
�,A�t �,A��ts

�,A���t��ts
�����

�,A���

As opposed to introducing sets of triples in the consequent, one may throw away triples using

����	
�,A��ts� ts� ts�

�,A��ts

7.2. Handling Assumptions

Assumptions are introduced using the����� rule (cf.�9.7.2) and exploited using the following rule:

���
ts�A

�,A��ts

There is also a rule for throwing away assumptions, by shrinking the assumption setA to A �:

����	�
�,A� �� ts A� � A

�,A��ts

It does not need to be asserted, but can be derived (with rule induction) from the others�. If we had
given the simpler but less convenient rule

���� ��
�,A��A

for exploiting assumptions, the���	 rule could no longer be derived.
The��� rule is admissible (i.e.valid) but not derivable:

�����
�,A� �� ts �,A��A�

�,A��ts

It could be added for convenience, yet we leave it out since it is not strictly necessary for completeness.

7.3. Abrupt Termination

In Java, the concept ofabrupt terminationis used to describe the effects ofbreak, continue and
return statements as well as exceptions. Currently we treat only the most important one, exceptions.
We provide result expressions to be evaluated at the end of each method body, and the three kinds
of statements just mentioned have to be emulated by suitable conditional statements. Yet we plan to
support them directly in the near future, as it should be straightforward to handle them using our

�Therefore we write its name in parentheses, as we will do for all derived rules.
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exception mechanism, which would be an optimization of the approach given in [26]: the type of
exceptionsxcpt just has to be generalized to include the three additional sources of abrupt termination,
and suitable catching constructs have to be added to the rules for loops and method calls.

The remainder of this subsection motivates and briefly describes our approach for dealing with
exceptions.

Many axiomatic semantics in the literature leave out exceptions and thus cannot infer anything in
case of exceptional states. Poetzsch-Heffter and M¨uller are extending their work [51] to include them.
If modeled, exceptions are often given a more exceptional state than they deserve. For instance, in the
transition semantics of Drossopoulou and Eisenbach [13] exceptions are regarded as a special form
of terms. Thus, a syntactic trick called “expression contexts” has to be used to describe exception
propagation in a uniform way. Huisman and Jacobs [26] model the result state of expressions and
statements with an outer distinction between hangup, normal completion, and abnormal completion,
while giving the store as a parameter where appropriate. This violates the principle of uniformity and
thus adds clutter through the omnipresence of case distinctions on the state in their model. Moreover,
the axiomatic semantics based on this model uses special kinds of Hoare triples (each with its own
version of validity) for reasoning about exceptions, which at least doubles the number of rule variants
needed. The different versions of validity have recently been unified [30], but the redundancy within
each rule remains. Leino [36] distinguishes between normal and exceptional postconditions. This leads
to repetition of (parts of) the assertions needed during program verification.

We deal with exceptions in a very simple and straightforward way: like in our operational semantics,
the exception status is part of the program state. Thus it is available within the assertions basically the
same way as any variable and heap contents are, and we may re-use predicates on the state likenormal
for the axiomatic semantics.

In order to describe the propagation of exceptions we use the generic rule

����
�,A��P��arbitrary3 t� 
. Not Æ normal� t� �P�

stating that if an exception has occurred, the current command termt is ignored (as well as the result
entry) and thus the state is not changed. Just a suitable dummy result is generated. All other rules —
except for the���� rule — may assume that the initial state is normal (using the predicate transformer
Normal), i.e. they have the general form

�Normal P �� t�� �Q� �Q� t�� � � �

�Normal P� t� �R�

7.4. Rule of Consequence

Kleymann suggests [52,�4.1 and 4.3] a rule of consequence that is stronger than the usual one because
it allows to adapt the values of auxiliary variables as required. In the context of recursion this helps to
avoid incompleteness and introduction of ad-hoc rules of adaptation. Hofmann [19] gives a rule that
is even a bit stronger. After transforming his rule to our setting, simplifying it a bit and adding result
value handling, it reads as

���	����� �

�,A��P
�� t� �Q ��

Y� Z Y� ��. P Y� Z�� �Y Z�. P � Y� Z � �� Q � Y� �� Z ���� Q Y� �� Z

�,A��P� t� �Q�
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For symmetry, its second premise can be formulated equivalently as

� Y� ��. �Y Z. P� Y� Z�� Q � Y� �� Z� �� �Y Z. P Y� Z�� Q Y� �� Z�

Intuitively, it states that the validity of the triple involvingP � andQ � implies the validity of the triple
involvingP andQ. To this end, the usual conditionsP� P � andQ � � Q are sufficient but not necessary.

It will turn out that for completeness we further need (derivatives of) the rule

��������
Y� Z. P Y� Z�� �,A���Y� �� Z �. �Y �,���� �Y,��� t� ��Y� Z �. Q Y� Z�

�,A��P� t� �Q�

We call it ������ rule since it enables extrusion of the result entry, state, and auxiliary variables from
the triple’s precondition such thatP can be used as an assumption on the meta-logical level governing
the rest of the triple. This is essential in particular when dealing with dynamic binding where code
depends on the state. Simple consequences of the������ rule are the following two:

���	���	��
C�� �,A��P� t� �Q�

�,A��P
. ���. C�� t� �Q�

������������
�,A���Y� Z. False� t� �Q�

As already described in [44], we noticed that rather than asserting the rules��	����� and������ , it
is possible to give an even stronger rule of consequence from which these two may be derived:

��	���

Y� Z. P Y� Z �� ��P � Q �. �,A��P
�� t� �Q �� 


�Y� ��. �Y Z�. P � Y� Z � �� Q � Y� �� Z ���� Q Y� �� Z��

�,A��P� t� �Q�

This version is the strongest possible one since it directly reflects the semantics of the pre- and
postconditions involved, as can be seen when conducting its soundness proof. Note that it allows
choosing the pre- and postconditions of the inner triple,P � and Q �, under the assumptionP and
depending on its parametersY, �, andZ.

Common structural rules such as

��
������
�,A��P� t� ��Y� Z. True�

����� �
�,A��P�� t� �Q�� �,A��P�� t� �Q��

�,A���Y� Z. P� Y� Z � P� Y� Z� t� ��Y� Z. Q� Y� Z � Q� Y� Z�

are no longer required at all and may be derived easily if desired. In contrast, two other derived rules
are quite handy, namely the restriction of the rule of consequence to either the pre- or postcondition:

���	���� �
�,A��P

�� t� �Q� P� P �

�,A��P� t� �Q�
���	���� �

�,A��P� t� �Q �� Q � � Q

�,A��P� t� �Q�
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8. Universal Quantification

In the rules given in the next section we will use several techniques introducing and exploiting universal
quantification around triples in the rules’ premises. Their common purpose is to extend the scope in
which values are visible in order to reflect dependencies between different pre- and postconditions.
The techniques may be nested and combined with each other: for instance, the rule for method calls
(cf. �9.7) applies all of them on a single triple. We classify the techniques by the source of the values,
as follows.

State Extrusion is of the formz.�,A��P z
. ���. z� f �� � t z� �Q z�, which means picking some
part of the state (using some functionf) in the precondition, binding it to a variablez, and using it
anywhere within the triple. This technique is usefule.g.to save, modify locally tot, and restore
local variables. It is very similar to a technique within the MGF approach that will be explained
in �11.1, the difference being that there implicit quantification of auxiliary variables is used.

Result Extrusion, already introduced in�4.3, has the general formz.�,A��P z�Inj z� t z� �Q z�
whereInj is one of the injectionsVal, Var or Vals. It means matching (and binding) the result
of the previous triple and using it anywhere within the triple, typically in order to calculate a
new result or let the termt depend on it.

Value Passing involves two triples:
z.�,A��P z� t� z� �Q z� andz.�,A��f �Q z� z� t� z� �R z� wheref is an assertion transformer
modifyingQ z. It is logically equivalent toz.�,A��P z� t� z� �Q z� 
 �,A��f �Q z� z� t� z� �R z�
and thus simply extends the scope ofz to the second triple. This is useful for passing on
previously obtained values to other triples.

An interesting issue is how the bound variables are actually used because this affects the usability
and completeness of the resulting Hoare logic. There are again three cases:

State Transformation uses the bound variables to change the state within a pre- or postcondition,
typically by applying the assertion transformer.; .

Result Generation uses the values to compute results to be entered in the result component of a
postcondition, typically by applying the assertion transformer� .

Term Dependence means, syntactically speaking, that the term between the pre- and postcondition is
an expression actually referring to the bound variables.

The first two uses are harmless: in applications one has to derive triples of the form
z.�,A��P z� t� �Q z� (wheret does not depend onz) for all potential values ofz. Concerning the
Hoare logic rules, this can be done in a uniform way for some fixed but arbitrary valuez because the
shape of the triple is the same for allz. Only the proofs of side conditions that possibly emerge when
using the rule of consequence might require enhanced proof principles like a (local) induction overz.
Yet for these proofs we can assume the full power of predicate logic anyway since we consider relative
completeness, as motivated in�4.1.

The third use, dependent terms, is problematic because the triples involved have the form
z.�,A��P z� t z� �Q z� where the termt z does depend onz such that uniform rule application is
not possible. The only other option for a finitary proof within Hoare logic is to explicitly enumerate all
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possible cases forz, where of course the variety has to be finite. Often this is easy because the type ofz
is bool (or some other finite type). The other option is to derive from the preconditionP z, typically by
applying the������ rule, that only finitely many values forz— commonly even just one — are actually
possible. Then the proof proceeds by constructing a finite set (or superset) of the possible values and
derive the triple for each of its members where the term expressiont z, as well as the assertionsP zand
Q z, can be reduced to something not mentioning the variablez anymore.

9. Java-specific Rules

This section contains the main part of our axiomatic semantics, namely the Hoare-style rules for each
kind of Java term.

We have designed each rule (except for����) such that its final postcondition is given by a predicate
variable only. Thus application of the rules in the typical “backward-proof” style of Hoare logic is
simplified because we avoid the need for applying the rule of consequence in order to adapt the
syntactical form of the postcondition, which normally requires awkward explicit instantiations. In other
words, the weakest precondition of a given postcondition is typically generated automatically.

9.1. Standard Statements

Thanks to our implicit exception propagation mechanism, the rules for the standard statements appear
almost as usual.

����
�,A��Normal �P���� .Skip. �P�

In order to obtain soundness w.r.t. our notion of validity, here (and in a few other rules) we have to
mention explicitly the dummy result of statements,�. In applications this is no harm since pre- and
postconditions of statements do not refer to the result entry anyway.

����
�,A��Normal P� .c�. �Q� �,A��Q� .c�. �R�

�,A��Normal P� .c�;c�. �R�

For expression statements, the result of the expression is discarded using the� operator:

���

�,A��Normal P� e–� �Q���

�,A��Normal P� .Expr e.�Q�

For terms involving a condition we define the Boolean result substitution operator

P��b� �Y� Z.�v. �P�Val v� � Z 
 �normal � �� the Bool v�b�

which is a variant of the operator� expressing that, unless an exception has been thrown, the result of
the preceding Boolean expression isb. Using it in conjunction with the result extrusion technique
introduced in�8 and the meta-level conditional expressionif b then else , we can describe both
branches of conditional terms with a single triple, like in

� 
�,A��Normal P� e–� �P �� b.�,A��P

���b� .�if b then c� else c��. �Q�

�,A��Normal P� .if�e� c� else c�. �Q�
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What is a notational convenience here (to avoid two triples, one for each branch), will be essential for
the���� rule, given below (cf.�9.7).

Another application of the Boolean substitution for case distinctions is

����
�,A��P� e–� �P �� �,A��Normal �P ���True�� .c.�P�

�,A��P� .while�e� c. ��P ���False�����

The loop body needs to be verified only if no exception has been thrown meanwhile and the Boolean
expressioneyieldsTrue. Upon terminationeyieldsFalse (unless an exception has occurred). Here both
P andP � play the role of the loop invariant, whereP � is typically equivalent toP, at least ife does not
have side-effects.

Here, in order to achieve completeness, we have to giveP rather thanNormal P as the precondition
of the triple in the rule’s conclusion because it should be the same as the invariantP and in general
the invariant cannot maintain the absence of exceptions. Furthermore, also for ensuring completeness,
here we have to deviate from the principle of having as the final postcondition a predicate variable only.
Thus applying the rule of consequence will be necessary here, but this does not cause extra nuisance
since finding and inserting suitable invariantsP (andP �) requires manual engagement anyway.

9.2. Exception Handling

The rule for thethrow statement modifies the postconditionQ by updating the exception component
of the state with the reference just evaluated.

!�
�
�,A��Normal P� e–� ��Val a:. xupd �throw a� .; Q���

�,A��Normal P� .throw e.�Q�

If no exception has already occurred meanwhile and the evaluated referencea is not Null (in which
case aNullPointer exception is raised), the auxiliary functionthrow a assigns the reference to the
exception component of the state.

When describing the effect of the statementtry c� catch�C vn� c� we have to distinguish whether
in the state after executingc� an exception of appropriate (dynamic) type,viz. a subclass ofC, is
present, as denoted by�,��catch C. Only if this is the case, the statementc� is considered with its
exception parametervn set (using the functionnew xcpt var) to the caught exception. Otherwise, the
final postconditionR has to be implied immediately.

!
�

�,A��Normal P� .c�. �SXAlloc � Q�
�,A��Q
. ���. �,��catch C� ;. new xcpt var vn� .c�. �R�

�Q
. ���. ��,��catch C��� R

�,A��Normal P� .try c� catch�C vn� c�. �R�

where

SXAlloc � P� �Y� Z.� �. ��� �sxalloc� �� �� P Y�� Z

The auxiliary relation�sxalloc� is a peculiarity of our model used to describe the allocation of
exception objects for standard exceptions.

The rule for thefinally statement needs to transfer the exception status before executing the
second substatement to the postcondition where it is combined with the current exception status,
producing the final status: if one exception occurs in either clause, it is (re-)raised after the statement,
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and if both parts throw an exception, the first one takes precedence. In earlier versions of our axiomatic
semantics, we employed a special result stack entry to transfer the exception status (denoted byfst �
here), but this is not necessary: it suffices to apply the state extrusion technique, as explained in�8.

"�	

�,A��Normal P� .c�. �Q�
x.�,A��Q
. ���. x�fst �� ;. xupd ��x. None�� .c�.

�xupd ��x�. if x��None 
 x��None then x else x�� .; R�

�,A��Normal P� .c� finally c�. �R�

9.3. Class Initialization

The static initialization of classes is an unpleasant feature to model as its structure depends on the class
hierarchy and it is not syntax-driven but rather triggered on demand. Thus at several places,e.g.field
access and method calls, one has to consider potential initialization of some referenced classC, which
we denote by the special statementinit C.

If the class in question is already initialized, there is nothing to do:

#�	�
�,A��Normal �P
. initd C�� .init C. �P�

Otherwise, initialization allocates a new static object usinginit class obj, treats the superclass (if any),
and finally invokes the static initializers of the class itself, whereby the current local variables are
remembered in the bound variablel, hidden during the call toini (usingset lvars empty), and later
restored:

�	��

the �class � C�� �sc, , , ,ini� super� if C�Object then Skip else init sc
�,A��Normal ��P
. Not Æ initd C� ;. supd �init class obj � C��� .super.�Q�
l. �,A��Q
. ���. l� locals �snd ��� ;. set lvars empty� .ini. �set lvars l .; R�

�,A��Normal �P
. Not Æ initd C�� .init C. �R�

Note that the values ofsc, ini andsuperdepending onC are known statically and thus application of this
rule simplifies immediately.

9.4. Simple Expressions

As already motivated in�4.3, the rule for literal values is

���
�,A��Normal �P�Val v�� Lit v–� �P�

It states that for a literal expression (i.e.constant)v the postconditionP can be derived ifP — with the
valuev inserted — holds as the precondition and the (pre-)state is normal. An equivalent but typically
less convenient alternative form would be

����� �
�,A��Normal P� Lit v–� �Normal �P��Val v��

The rule forsuper is similar, except that one has to peek at the state in order to get the value of
This:

����

�,A��Normal ��s.. P�Val �val this s��� super–� �P�
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Variable access is the first example where the result entry is a variable. Here we just need its first
component, which is the current value of the variable.

$��
�,A��Normal P� va�� ��Var �v,f�:. Q�Val v�

�,A��Normal P� Acc va–� �Q�

The rule for variable assignment uses the result extrusion technique to refer to the resulting ofva.

$��

�,A��Normal P� va�� �Q�
vf.�,A��Q�Var vf� e–� ��Val v:. assign �snd vf� v .; R�

�,A��Normal P� va:=e–� �R�

Note that since the value of the assignment is the value of the right-hand side, it is not necessary to give
the result substitutionR�Val v in the postcondition ofe explicitly. The assignment takes place only if
no exception is already present and the update function itself does not throw a new one, as implemented
by

assign f v� ��x,s�. let �x�,s��� if x�None then f v �x,s� else �x,s�
in �x�,if x� �None then s� else s�

The rule for conditional expressions parallels the one for conditional statements:

��	�
�,A��Normal P� e�–� �P �� b.�,A��P

���b� �if b then e� else e��–� �Q�

�,A��Normal P� e� ? e� : e�–� �Q�

A type cast merely evaluates its argument and raises an exception if the dynamic type of the result
happens to be unsuitable:

����
�,A��Normal P� e–� ��Val v:. �s.. xupd �raise if ���,s�v fits T� ClassCast� .; Q�Val v�

�,A��Normal P� Cast T e–� �Q�

Similarly, the type comparison operator flags whether the type of its argument is assignable to the
given reference type:

�	��
�,A��Normal P� e–� ��Val v:. �s.. Q�Val �Bool �v��Null 
 �,s�v fits RefT T���

�,A��Normal P� einstanceof T–� �Q�

9.5. Object Creation

Allocating an object on the heap requires lifting the�halloc� relation (allocating a fresh object with
the given tag on the heap and initializing it) to the assertion level in analogy to theSXAlloc transformer
given above.

%��
�,A��Normal P� .init C. �Alloc � �CInst C� Q�

�,A��Normal P� new C–� �Q�

where

Alloc � otag P� �Y� Z.�� a.�,A�� �halloc otag�a� ���� P �Val �Addr a�� �� Z

%�$

�,A��Normal P� .init comp ty T. �Q�
�,A��Q� e–� ��Val i :. xupd �check neg i� .; Alloc � �Arr T �the Intg i�� R�

�,A��Normal P� new T�e�–� �R�

where
check neg i � raise if �the Intg i�0� NegArrSize
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9.6. Variables

The rule for local variables is analogous to the rule for thesuper expression:

�&�

�,A��Normal ��s.. P�Var �lvar vn s��� LVar vn�� �P�

wherelvar vn scalculates the semantical description of the local variablevn in the states.
The rules for field and array variables have a common pattern: calling a variable-generating function

vf on the state and applying a given assertion to the resulting variable and state. We capture this in the
predicate transformer

..; �� �state� vvar� state�� ���assn� ���assn
vf ..; P� �Y�. let �v,� ��� vf � in P �Var v� ��

Applying it, we obtain the two rules

"&�


�,A��Normal P� .init C. �Q�
�,A��Q� e–� ��Val a:. fvar C stat fn a..; R�

�,A��Normal P� �C,stat�e..fn�� �R�

$&�


�,A��Normal P� e�–� �Q�
a.�,A��Q�Val a� e�–� ��Val i :. avar � i a ..; R�

�,A��Normal P� e��e���� �R�

The auxiliary functionfvar C stat fn acalculates thevvar for field fn (which is static iffstat is True) of
classC contained in the object at locationa. It throws aNullPointer exception if necessary.
Analogously,avar � i a calculates thevvar (cf. �3.2) for the elementi of the array at locationa for a
given state in the context of the program�. It may not only throw aNullPointer, but alsoArrStore
andIndOutBound exception.

9.7. Method Call

A rather complex issue within an axiomatic semantics in general is mutual recursion. For an object-
oriented language, dynamic binding in method calls gives a further challenge. This subsection
motivates and describes the axiomatic semantics for method calls�t,md,mode�e..mn��pTs�args� where
e is the receiver expression,mn the method name,args the argument list,modethe invocation mode,
and the remaining parts in braces are type annotations:t is the type ofe, md the defining class of the
method found at compile time, andpTs the list of its parameter types, which is used to resolve static
overloading.

9.7.1. Dynamic Binding

Handling dynamic binding for method calls is difficult for two reasons.
First, the actual method to be called depends on the classD dynamically computed from the receivere

and thus in general cannot be inferred statically. The usual technique for dealing with term dependence,
as donee.g. for the standard Hoare rule for conditional statements, is to statically enumerate all
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possible values. We cannot use it forD because the variety of possible values is large — but finite
because it is bound by the total number of methods in the given program — and not fixed locally
since it depends on the class hierarchy. We handle this problem with the state extrusion and term
dependence technique introduced in�8, introducing universal quantification forD and the precondition
���x,s�. D� target mode s a md
 � � � � bindingD. An alternative solution is given by Poetzsch-Heffter
and Müller in [51], whereD is referred to viaThis and the possibly large range of values forD is
handled by an abstraction which they callvirtual methods. Verifying such methods amounts to show
(in a cascadic way using two special rules) that all possible implementations fulfil the property required
for the method call.

Second, one should be able to assume that for invocation modeinterface or virtual the
actual valueD is a subtype oft, the (static) type ofe. The intuitive — but absolutely non-trivial —
reason why the relationClass D	RefT t holds is of course type safety. The problem here is how to
establish this relation. The rules given in [51], for example, put the burden of verifying the relation on
the user, which is a legal option, but in general not practically feasible. In contrast, our solution makes
the relation available to the user as a helpful assumption, which transfers the proof burden once and for
all to the soundness proof on the meta-level.

We write the subtype relation in the form

prog� inv mode�tname	ref ty

and give it the definition

��mode�D	t � mode� IntVir��
is class � D 
 �if ��T. t�ArrayT T� then D�Object else ��Class D	RefT t�

reflecting the knowledge onD required for program verification in case of virtual method invocation.

A minor further complication is that we have to transfer the resulta of the expressione not to the
triple directly following but to the one after it. We can cope with this by combining the result extrusion
and value passing techniques.

The remaining parts of the method call rule deals with the unproblematic issues of argument
evaluation, setting up the local variables (including parameters) of the called method and restoring
the previous local variables on return, for which we use the universally quantified variablel.

����

�,A��Normal P� e–� �Q� a.�,A��Q�Val a� args
�
�� �R a�

a vs D l.�,A���R a�Vals vs 
. ���x,s�. D� target mode s a md
 l � locals s� ;.
init lvars � D �mn,pTs� mode a vs� 
. ���. normal � �� ��mode�D	t��

Methd D �mn,pTs�–� �set lvars l .; S�

�,A��Normal P� �t,md,mode�e..mn��pTs�args�–� �S�

Note that��mode�D	t is asserted only if the current state is normal. Otherwise, an exception occurred
evaluatinge (or args) such that we cannot assume anything aboutD. For the same reason the well-
typedness judgment in the definition oftype ok (cf. �6.1) is guarded bynormal � since otherwise
Methd D �mn,pTs� is not necessarily well-typed.
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The above rule is general enough to handle all sorts of method calls, also static ones and those relative
to interfaces orsuper. One may derive simpler specialized versions of the���� rule, for example for
static method calls:

������ �

�,A��Normal P� e–� �Q� �,A��Q�� args
�
�� �R�

vs l.�,A��R�Vals vs
. ���. l� locals �snd ��� ;. init lvars � C �mn,pTs� Static a vs�

Methd C �mn,pTs�–� �set lvars l .; S�

�,A��Normal P� �t,ClassT C,Static�e..mn��pTs�args�–� �S�

Note that the rule can ignore (applying�) the value ofe, and the free variablea acts as a dummy
parameter of the functioninit lvars.

9.7.2. Mutual Recursion

We cope with recursive calls adopting the standard solution of introducing Hoare triples as antecedents
within the derivation judgments. Thanks to the well-known recursion rule (seee.g.[4, �3.2] and [51]),
within an unfolded method body one may appeal to a suitable assumption catering for all further
recursive calls.

As discussed in [44], the recursion rule is sufficient for completeness, but its nested application
required for mutual recursion in general gives rise to replication of proofs for part of the methods
involved. This nuisance can be overcome with rules that allowsimultaneousrather than nested
verification. One such rule is given by Homeier and Martin in [24]. Since they aim at verification
condition generation, they designed a rule for verifying all procedures contained in a program
simultaneously, which requires the user to identify in advance a single specification for each method
suitable to cover all invocation contexts. Our rule can also be used to verify all methods at once, but is
more flexible for interactive verification: each time a call to a cluster of mutually recursive procedures
is encountered, it allows verifying simultaneously as many (and no more) procedures as desired and to
identify the necessary specifications locally.

The����� rule allows verifying the specifications of a set of methodsms (or to be exact, method
implementations) simultaneously by verifying their expansions, that is, the corresponding method
bodies [49]. It is vital that when encountering recursive calls during the verification of the bodies,
one can assume that the method implementations already fulfil their specifications. This explains why
method implementations are separated from method bodies, something that would not be necessary for
the underlying operational semantics itself.

�����
�,A���P�Methd–� �Q� � ms� �� ��P� body �–� �Q� � ms�

�,A����P� Methd–� �Q� � ms�

where��P� tf–� �Q� � ms� � ���C,sig�. �Normal �P C sig�� tf C sig–� �Q C sig�� �ms
yields a family of method triples indexed by the setms (consisting of pairs of a class and signature).
Both the assertionsP andQ and the term functiontf depend on the index values given byms, such that
members like
�Normal �P C sig�� Methd C sig–� �Q C sig� are generated.

The structural rules for handling antecedents and sets of triples in the consequent have been
described in�7.
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The functionbody (cf. �3.5) and the constructorBody for intermediate body terms have been
introduced because the����� rule above is already complex enough. After the functionbody � has
obtained a class name and a signature during applications of the����� rule, handling the method body
is the same as in the operational semantics: the expressionbody � C sigcalculates the intermediate term
Body D c ewith the entries for the defining class of the method, the actual method body, and the result
expression. These are then processed sequentially using the rule

'���
�,A��Normal P� .init D. �Q� �,A��Q� .c.�R� �,A��R� e–� �S�

�,A��Normal P� Body D c e–� �S�

9.7.3. Virtual Methods, Specifications and Behavioral Subtyping
In our axiomatic semantics, interfaces play only an indirect role. This is due to the fact that in Java
they have no semantics other than contributing to the type hierarchy on a purely syntactical basis,viz.
the availability of methods. Furthermore, Java does not support method specifications nor behavioral
subtyping, apparently because this is considered to be too difficult and to limit expressiveness.

From the methodological perspective it would be interesting to take into account behavioral
subtyping. Doing so, one introduces specifications for all method declarations. The specification of
a method declared within some class or interfaces typet has to be fulfilled by all method bodies
implementing or overriding that method withint and any subtype of it. Then a derived rule for method
calls can exploit the semantic subtyping as follows. For verifying calls to methods bound by the static
type t of the receiver expression (as given in the type annotation of the call) one only has to show that
the corresponding specification fulfils the requirements in question, rather than directly showing them
for all method implementations in subclasses oft. This approach would be particularly helpful when
addressing modularity for proofs: when adding new classes to an already verified program, none of the
finished proofs has to be re-done; only the new implementation relations have to be verified.

Note that the “virtual methods” approach mentioned above (cf.�9.7.1) is similar in the sense that
method calls and dynamic binding are decoupled, but does not impose the restrictions of behavioral
subtyping. Thus this approach in itself cannot support modular verification in the way just given.
However, when proof obligations on program extensions are added (in the form of assumptions to be
eliminated after the program is freezed), as explained by M¨uller [39], modular verification is supported
in a rather flexible way. A further source of flexibility is that the method specification to be proved
for a given call may be generated from the call itself or may be derived from an independent general
specification of that virtual method.

Our approach using the���� rule leads to essentially the same verification steps as the “virtual
methods” approach and also allows the use of assumptions. Thus at least in principle the methodology
developed by [39] can be applied as well, though the “virtual methods” approach supports this more
explicitly and conveniently.
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9.8. Expression Lists

Lists of expressions are dealt with canonically. Just note that in Isabelle/HOL the empty list is written
�� and the ‘cons’ operator is the infix ‘
’.

%��
�Normal P�Vals ��� �� ��� �P�

��	�

�,A��Normal P� e–� �Q�
v.�,A��Q�Val v� es

�
�� ��Vals vs:. R�Vals �v
vs��

�,A��Normal P� e
es
�
�� �R�

9.9. Critical Review

The inductively defined Hoare logic rules given in this section precisely cover the axiomatic semantics
of Java�����. Unfortunately, they are not easy to read and to apply by hand. The reason for this is the
inherent complexity of the language, requiring in particular non-trivial transformations of the state. On
the other hand, the format of our rules should facilitate the construction of an automatic verification
condition generator, and our experience with example proofs (�12) shows that even for rather complex
assertions the theorem proving system deals with proof obligations mostly automatically.

One might also get the impression that our axiomatic semantics is rather close to the operational
semantics. We believe that this similarity is not intrinsic but due to our use of the same state
transformers as for the operational semantics. We do this for simplicity in conjunction with our
semantical notion of assertions, but it should be possible to give a more syntactic notion of
assertions and corresponding rules that do not refer to any concept of the operational semantics. The
general advantages of a Hoare logic over the operational semantics for program verification, namely
concentration on the actually relevant properties of the state and powerful tools for dealing with loops
and recursion, are fully realized by our axiomatic semantics.

10. Soundness

A Hoare logic that is unsound would be useless since its very purpose is to verify correctness of
programs. Thus after giving a Hoare logic the proof of its soundness is obligatory, in particular when
— like in our case — the rules are rather involved and thus their correctness is by far not obvious.

10.1. General Approach

The ultimate goal for proving soundness of our axiomatic semantics w.r.t. the operational semantics is

wf prog � �� �,��t �� �,���t

i.e.any triplet that is derivable from the empty set of assumptions is valid. The additional premise that
the program is well-formed is required to show soundness of the method call rule requiring type safety,
as explained in�9.7.1 and 10.3.
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The soundness goal is a direct instance of

wf prog � �� �,A��ts �� �,A���ts

which can be shown as usual by rule induction on the derivation of��.
The different cases emerging in the induction are basically straightforward, with a few notable

exceptions. Since the���� rule involves a loop invariant rather than unfolding the loop as done for
the operational semantics, it requires an auxiliary rule induction on the derivation of the evaluation
judgment as contained in the definition of validity.

10.2. Method Implementation Rule

The����� rule demands special treatment because it adds assumptions about recursive calls, such that
an (inductive) argument on the depth of these calls is needed in order to avoid circularities. This could
be achieved by syntactic manipulations that unfold procedure calls up to a given depth�, as donee.g.in
[19]. Instead, we prefer a semantic approach inspired by the proofs given in [51] and [32]: employing
the notion of recursive depth already introduced in�6.2.

Induction on the recursive depth boils down to showing in the base case

���0:�Normal P� Methd C sig–� �Q�

and in the inductive step

���n:�Normal P� body � C sig–��Q� �� ���n�1:�Normal P�Methd C sig–� �Q�

10.3. Method Call Rule and Type safety

The ���� rule is not only bulky (and thus it helps to treat this case separately from the main rule
induction) but also raises major semantical complications. Interestingly, type safety plays a crucial role
here: The important fact that for virtual method calls the relation� �mode�D	rt holds, can be derived
in general only if the method call is well-typed and the state in which the classD has been dynamically
looked up conforms to its environment.

In order to obtain the desired conformance property, one essentially has to keep it as an invariant.
But rather than requiring the user to prove this property over and over for each program to be verified,
we built it — together with well-typedness — into our notion of validity (cf.�6.1) in the form of the
judgmenttype ok. This also gives rise to a new rule:

��(�
�
�,A��P
. Not Æ type ok � t� t� �Q�

The rule, which will be required for the completeness proof, indicates that if at any time conformance
was violated, anything could happen — something that is in line with our intuition on erroneous
program execution.

Including conformance (and well-typedness) into validity complicates the proof of soundness,
because now we have to show that it is an invariant property of any valid triple, affecting each case of
the main rule induction, not only the one for method calls. Fortunately, we have already proved type
soundness for the operational semantics, as describede.g.in [48]:
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wf prog � 
 ��� �t� �w,��� ��

	 T.���	��,	� 
 ��,	��t��T ��
����	��,	� 
 �normal �� �� �,snd ��

�w��	T�

For a well-formed program, if evaluation of a well-formed term terminates and the initial state
conforms to its environment, so does the final state, and the result conforms to the type of the term
if no exception has been thrown. Making use of this theorem can be simplified — yet not hidden
completely — by using for the main induction actually a variant of our validity notion, namely

���n:�P� t� �Q� � Y� Z. P Y� Z �� 	 T.���	��,	� ��
�normal � �� ��,	��t��T� �� Y� ��. ��� �t:n� �Y�,��� ��

Q Y� �� Z 
 ����	��,	�

One can show easily, exploiting type soundness, that for well-formed programs this variant is
equivalent to the original one. Even with this variant, parts of the type soundness proof have to be
repeated,e.g.to derive well-typedness of the static initializer invoked for class initialization.

11. Completeness

The proof of completeness, stating that the given Hoare logic is useful (at least from the theoretical
perspective), is much more challenging than the proof of soundness. We give the outline of the proof
in a bit more detail since it is the first such proof for an object-oriented language.

We benefit heavily from the MGF approach which is described below. We extend this approach,
which was given for only a single recursive procedure, to mutually recursive methods and static
initialization using auxiliary inductions. As discussed in [44], when dealing with mutual recursion
some complications arise, which could be overcome in three different ways, each with specific
advantages and drawbacks. Here we implement the first two variants involving structural induction that
either is nested as deep as the number of methods involved or handles all these methods simultaneously.
The third variant, not used here, employs rule induction on the operational semantics, which is more
powerful and would save a lot of effort avoiding the auxiliary inductions. On the other hand, it requires
an unpleasant unfolding variant of the���� rule and an additional divergence rule. Thus it is probably
too tightly connected to the operational semantics, and the employment of rule inductions makes its
usability at least doubtful in the light of the proof-theoretical remarks given in�11.5.

Our ultimate goal for proving (relative) completeness is to show that for a well-structured program,
any valid triple is derivable from the empty set of assumptions:

ws prog � �� �,���t �� �,��t

The well-known approach involving weakest preconditionswp t Q for a given term t and
postconditionQ cannot be pursued here, because when verifying recursive method calls the
postcondition changes such that structural induction ont does not go through.
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11.1. MGF Approach

TheMost General Formula (MGF)approach was introduced by Gorelick [16] and promoted by Apt
[4], Kleymann [32] and others.

For partial correctness, the MGF of a termt gives for the most general precondition (which just
remembers the initial state) the strongest postcondition, which is the operational semantics oft. More
precisely, the MGF oft in the context of a program� is defined as

�
�
�� t� ����

where
�P� t� ���� � �P� t� ��Y�� �. ��� �t� �Y,����
�
� � �Y� Z.��Z

Note that here the auxiliary variables have the typestatesince they refer to the initial program state.
In the precondition the state is stored inZ and retrieved in the postcondition in the form of the bound
variable�. Using it, the postcondition asserts that the resultY and state� � are exactly those obtained
from the initial state by evaluatingt. Thus the MGF is trivially valid, and the main task is to show that
it is also derivable.

A property of the MGF used often is that�,A��Normal ��� t� ���� can be interchanged freely with
�,A��

�
�� t� ����, i.e. restricting the precondition to normal states is sufficient, because the case of

an exceptional state can be always dealt with the���� rule.
The main lemma of the MGF approach is

�)" ��
�� ws prog � �� �,���
�
�� t� ����

Once the derivability of the MGF has been proved, completeness is a rather simple consequence, as
follows. We show

�,����P� t� �Q� �� �,���
�
�� t� ���� �� �,���P� t� �Q�

First, we apply the rule

�	� ��(�
��
�,A��P
. type ok � t� t� �Q�

�,A��P� t� �Q�

derived from��(�
� (cf. �10.3), in order to obtain the extra preconditiontype ok � t which is needed
because this judgment is part of our notion of validity. Next, we apply the��	����� rule, and after
unfolding the definitions of validity we are left with the proof obligation

�n Y� Z. �t��. ���n:t� �� P Y� Z �� type ok � t � ��
�Y� ��. ��� �t:n� �Y�, ��� �� Q Y� �� Z�� ��

�Y� Z. P Y� Z 
 type ok � t � �� �Y � ��. ��� �t� �Y�, ����� Q Y� �� Z��

which is a rather trivial predicate-logical theorem, exploiting the fact

��� �t� �w,��� �� ��n.��� �t:n� �w,����

The main lemma is proved basically by structural induction. Complications arise because for method
calls as well as class initialization the terms involved do not become structurally smaller. To solve the
problem we employ auxiliary inductions on the number of methods not yet verified and on the number
of classes not yet initialized, as explained in the two following subsections.
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11.2. Mutual Recursion

The idea for handling mutual recursion is as follows. First prove derivability of the MGF under the
assumption that it has already been proved for all methods:

�)" ���
�C sig.is methd � C sig�� �,A��

�
�� Methd C sig–� �������

�,A��
�
�� t� ����

Then prove��� ����	 applying the lemma, the����� rule, which supplies the required
assumptions for the methods, and the��� rule for exploiting them. There are two alternatives for
collecting the assumptions. Both alternatives rely on the fact that for a well-structured program the
number of methods to consider is finite:

*	��� �� ����� ws prog ��� finite ��C,sig�. is methd � C sig�

It is interesting to note that for the whole proof of completeness — in contrast to soundness — well-
formedness is not required at all, and the only occasion where we need well-structuredness is to ensure
finiteness.

11.2.1. Nested Version

One alternative is to use the classical recursion rule that adds just one assumption per application:

�,A� ��Normal P� Methd C sig–� �Q��� �Normal P� body � C sig–� �Q�

�,A��Normal P�Methd C sig–� �Q�

A minor advantage of this version is that it does not require the rules����� and�	��
� for handling
sets of triples in the consequents. The main disadvantage is that it requires a complicated scheme for
induction on the number of methods not yet considered:

finite U uA����C, sig�. �
�
�� Methd C sig–� ����� �U

A. A� uA�� n� �uA� �� �A�� �uA� – n�� �t. �,A��
�
�� t� �����

which is proved by induction onn. It is applied instantiatingU to ��C,sig�. is methd � C sig�, n to
�U�, and consequentlyA to �, yielding the desired result. Note that without finiteness, calculations on
cardinality like�A�� �uA� – n would be meaningless.

The induction scheme has been inspired by Hofmann [20]. His lecture notes [19] further contain a
proof of completeness using the MGF approach for the language IMP augmented by a single procedure,
which we have simplified and extended for our purposes.
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11.2.2. Simultaneous Version

We invented the����� rule that allows handling procedures simultaneously not only in order to
simplify applications, but also to make the complicated nesting scheme of the first version dispensable
for the meta-theoretic completeness proof. Using its power, the second version becomes rather
straightforward. In this case, the��� rule would be convenient, but it can be circumvented by employing
the derived rule

F � U finite U ���C,sig��F. �,A�f C sig� �� ��C,sig��U. �,A�g C sig��

�,A�����C,sig�. f C sig� �F �� �,A�����C,sig�. g C sig� �F

which is proved by induction on the size ofU. On application, bothF and U get instantiated to
��C,sig�. is methd � C sig�, so finiteness of the number of methods is vital also here.

11.3. Static Initialization

Now it remains to show�,A��
�
�� t� ���� under the assumption that the MGFs for all proper methods

are derivable:

C sig.is methd � C sig�� �,A��
�
�� Methd C sig–� ����

The precondition of the assumption can be discharged because due to the relationtype ok in our notion
of validity, we get the fact thatMethd C sig is well-typed for free. Furthermore, all well-typed methods
are proper, as follows easily from the corresponding definitions:

� ����� �� ����� ��,	��Methd C sig��–T�� is methd � C sig

Static initialization requires an induction on the number of classes not yet initialized. To this end we
define the auxiliary concepts

nyinitcls �� prog� state� �tname�set
nyinitcls � � � �C. is class � C 
 � initd C ��

� init� �� prog� nat� state� bool
�� init�n� ��. �nyinitcls � �� � n

��: � � � �� �� nat� term� prog� �state�triple
��:n� t� ���� � �

�
� 
. �� init�n� t� ����

such thatnyinitcls � � is the set of classes not yet initialized, or to be more precise, whose initialization
has not yet begun, in state�. The triple ��:n� t� ���� is a variant of the MGF with the extra
precondition that the number of classes not yet initialized is not greater thann.

nyinitcls � � is finite because it is a subset of the finite set of proper classes. It cannot grow (and thus
increase its cardinality) during program execution, and it actually shrinks by one when a class is newly
initialized.

Since�,A��
�
�� t� ���� is equivalent ton.�,A���:n� t� ����, it remains to show

n C sig.�,A���:n� Methd C sig–� ���� �� �t. �,A���:n� t� �����

We can do this by full induction onn, i.e. we may assume thatt. �,A���:m� t� ���� already holds
for all smallerm.
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11.4. Main Induction

Finally, we have collected enough assumptions such that the main induction will go through. We show

�n C sig.�,A���:n� Methd C sig–� ����� ��
�m. m�n�� �t. �,A���:m� t� ������ ��
�,A���:n� t� ����

by structural induction ont. We comment on the most interesting cases.
The first premise is exploited for handling theMethd expression itself and its application in the����

case simply by assumption.
We prove the case of the initialization statement as the separate lemma

�m. m�n�� t. �,A���:m� t� ����� �� �,A���:n� .init C. ����

because it is needed several times, namely for all terms that involve potential class initialization. When
applying the lemma, we can of course make use of the second premise. The actual use of the premise
�m. m�n�� � � � � is in the proof of the lemma: for handling the initialization of the superclass and the
static initializer of the current class where we know that the current class is actually being initialized
and thus the number of classes not yet initialized decreases. This proof is one of the rare cases where
we take advantage of the implicit precondition that the current term (init C here) is well-typed and thus
C is a proper class.

For the���� case, we employ an alternative formulation of the MGF, augmented by a predicatep in
the precondition:

�,A��Normal � �� 
. p�� t� ���� �
�,A��Normal ���Y� Z.w� �. ��� �t� w�� �� w���Z� 
. p�� t� ��Y s Z.�Y,s��Z�

In the second line the auxiliary variableZ stores the result and final — rather than initial — state,
which allows formulating a suitable loop invariant. We make use only of the “if” direction of the
above equivalence, which is also the more interesting one: its proof relies on the facts that evaluation
is deterministic and that there are at least two different program states.

Note that the alternative version of the MGF has a different type of auxiliary variable, namely
vals� state. Therefore, we have to apply the��	��� and���� rules with rather general types. Yet due
to the type restrictions of HOL mentioned in�5, the original rules from the inductive definition are not
general enough, and thus we have to state variants of them with identical propositions but generalized
types as axioms.

11.5. Proof-theoretical Remarks

One might wonder if the implication proved,

ws prog � �� �,���t �� �,��t

really means relative completeness, in the sense that for any given concrete program� and valid triple
t there is a derivation fort, requiring only finitely many applications of the Hoare logic rules plus a
complete predicate logic for dealing with side conditions like in the rule of consequence.

One potential problem is the fact that the rules����� and�	�� yield structural expansion of terms
rather than reduction of subterms, as already noted and dealt with in the previous subsections.
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Furthermore, it is a general property of inductively defined setsS that any proof tree for a theorem
x� Shas a finite height but possibly infinite width, for example if the definition ofScontains a rule

y. f y�S

z�S

wherey is of an infinite type. Since in particular for our inductively defined relation, �� there are
rules involving universal quantifications on possibly infinite domains, for example parts of the program
state, we cannot be sure a priori that any proof of�,A��ts is finitary.

Thus we have to ensure ourselves of finiteness by other, more specific means, which we do in two
different ways.

� The formalistic answer is that in our proof of completeness we only use the Hoare rules
mentioned in�7 and�9, structural induction on terms, and induction on the number of methods
and the number of uninitialized classes (both of which are finite). All remaining steps are term
rewriting and finitary predicate-logical derivations (involvinge.g. the rules of the operational
semantics in order to derive the postcondition of the MGF), and in particular we do not employ
rule induction.

� We additionally give a more constructive answer: a recursive procedure, inspired by our proof
of completeness. It generates a proof outline for any (valid) goal�,� �t, assuming that� is well-
structured. We sketch the procedure (glossing over applications of the rules��	��� and����)
and argue informally that this procedure terminates and thus one can conclude that the proof is
finitary.
Assume that M� ��C,sig�. is methd � C sig� is the set of methods in�, the function
spec��tf �C,sig�. ��Pre C sig�� tf C sig–� �Post C sig� forms a triple with the (most general)
method specification,MSpecs� specMethd�M abbreviates the set of all method specifications,
andspecb� spec�body �� gives the body of a method with its specification. Note thatM and thus
alsoMSpecsandspecb�M are finite.
For showing�,��t we use the following initial proof tree.

�,MSpecs��MSpecs
���

�,MSpecs�specb m�
����� ����MSpecs� specb m��


 
 


�,MSpecs��MSpecs
���

�,MSpecs�specb m���

�,MSpecs�specb�M
�M�������������	

�,���MSpecs

����

�,��t
����� ������ t�

����� ����� �� is a proof procedure used for showing�,A��MSpecs�� �,A�t. The
procedure assumes�,A��MSpecsand calls the recursive procedure���	� �������t�. (One could
alternatively use the rule��� and a proof procedure����� �� ���� �� proving�,A�MSpecs� t.)
We define���	� ��������P� t� �Q�� by case distinction ont.

case Methd C sig: use����	 and the assumption.

case init C: prove�,A��P
. initd C� t� �Q� using contradiction or#�	� ;
prove�,A��P
. Not Æ initd C� t� �Q� trying contradiction first and resort to�	�� plus
recursion only if unsuccessful.
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case b.�,A��P
���b� tf �if b then c� else c��� �Q ��: expand to both casesTrue andFalse and

proceed recursively.

case D l. �,A��R
� D l� Methd D sig–� �S� l�: take a fixed but arbitraryD, exploit the

preconditionR� D l in order to restrict the variety ofD, and use����	 and the assumption.

all other universal quantifications: proceed recursively for any fixed but arbitrary value since
the proof is uniform.

otherwise: use the canonical rule plus recursion.

The procedure���	� �������t� terminates (assuming that the proofs of the emerging side
conditions terminate) because for all recursive calls the number of quantifiers is reduced or
the Java����� terms involved become structurally smaller, except forinit C where the number
of uninitialized classes is reduced.

12. Example

To illustrate our approach and for gaining experience how our Hoare logic behaves in practice, we use
the following (artificial) example.

interface HasFoo {
public Base foo(Base z);

}
class Base implements HasFoo {
static boolean arr[] = new boolean[2];
HasFoo vee;
public Base foo(Base z) {

return z;
}

}
class Ext extends Base {
int vee;
public Base foo(Base z) {

((Ext) z).vee = 1;
return null;

}
}

Base e = new Ext();
try {
e.foo(null);

}
catch(NullPointerException z) {
while(Ext.arr[2]) ;

}
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The program fragment consists of three simple but complete type declarations and a block of statements
that might occur in any method body that has access to these declarations. All important features of
Java����� are taken into account.

We can prove that the test program fragment terminates (if at all — this is partial correctness)
abruptly with anIndOutBound exception:

tprg,���Pre� .test. ��Y� Z. fst ��Some IndOutBound�
where
Pre� Normal ��Y� Z. heap free 4 � 
 �initd Base � 
 �initd Ext ��
tprg � ���HasFoo,HasFooInt��, ��Base,BaseCl�,�Ext,ExtCl�� @ standard classes�
arr viewed from C� �Base,True��Cast �Class C� �Lit Null��..arr
test � e :== new Ext;

try Expr��CTBase,CTBase,IntVir�!!e..foo���Class Base���Lit Null���
catch��SXcpt NullPointer� z�
�while�Acc �Acc �arr viewed from Ext��Lit �Intg 2���� Skip�

That is, we derive from the empty set of assumptions that if initially there are at least four free
locations on the heap and the classesBase andExt are not initialized then after termination of the
program the exceptionIndOutBound has been thrown. This property relies on a bunch of more or less
implicit properties of the program control involving class initialization, dynamic binding, and actual
values of method parameters. One could of course prove also other properties like((Ext)e).vee
== 0.

This is because, taking dynamic binding into account,foo of Ext is called, which attempts to
assign to the fieldvee through thenull reference. The resulting exception is caught, and in the loop
condition within the exception handler the static arrayarr, which has been initialized meanwhile, is
accessed at a non-existing index.

We make our way through the control flow as directed by the syntax in the usual “backwards”
style where the current postcondition is fully known and directs the instantiations of schematic
variables typically contained in the precondition mostly automatically. That is, we can apply the
syntax-directed Hoare logic rules mostly without making use of the rule of consequence and explicitly
instantiating assertions. We have reached this desirable convenience by designing the rules such that
the postcondition of the triple in their consequent consists (typically) solely of a free assertion variable
that can always be instantiated as required in the application. Yet in a few places explicit instantiations
are needed, and sometimes we deliberately use them in order to manually simplify assertions.

This example proof takes about 130 steps, 50 of which are applications of syntax-directed Hoare
logic rules. We apply the rule of consequence 13 times and do about 20 explicit instantiations of
schematic assertion variables. The simplifier or classical reasoner (or their combination) is called about
40 times. One third of the proof deals with class initialization.

See [47,�6.3.4] for a commented proof outline.
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13. Conclusion

13.1. Summary and Experience

Extensions of Hoare logic We have introduced a Hoare logic for a (rather extensive) subset of Java
Card. Its design raised interesting general issues like representation of auxiliary variables and
side-effecting expressions with their results, and the exact notion of validity. Furthermore,
strengthened versions of the consequence and method call rule emerged as well as new solutions
for handling exceptions and dependent code.
Unfortunately, many of the rules given are quite complex and thus apparently not easy to use.
This is in part due to our semantical notion of assertions better suited for meta-theoretical
investigations than for practical use. But the main point is that Java is an inherently difficult
language, taking into accounte.g.mutual recursion, dynamic binding, exception handling, and
static initialization. This complexity inevitably carries over to the axiomatic semantics.

Meta-theoretical Proofs We have proven two main theorems.

Theorem 1. For well-formed programs our axiomatic semantics is sound w.r.t. its operational
counterpart.

One interesting aspect of the proof of soundness is to find a suitable notion of validity capable of
capturing an inductive argument on the recursive depth of procedure calls. The other noticeable
thing is the insight that type safety is required to prove correct the rule for handling dynamic
binding.

Theorem 2. For well-structured programs our axiomatic semantics is relatively complete.

The proof of completeness is non-trivial because next to structural induction it requires nested
auxiliary inductions for handling mutual recursion and class initialization. The MGF approach
has been successfully refined and applied. Well-formedness and well-typedness play only a
minor role here.

Application As experience with our example shows, verifying programs heavily dealing with
exceptions and class initialization is tedious, though further machine support might be a relief.
Both our formalization and Isabelle itself as the underlying theorem proving system is tailored
more towards meta-theory rather than proofs on concrete systems of realistic size. Thus large-
scale program verification would require adaptations of the model and extensions to the user
interface and proof management, or possibly even transfer of the Hoare logic rules to a
specialized integrated program development and verification tool like JIVE [38].

After all, using an axiomatic semantics like ours for program verification helps to concentrate
on the interesting properties of a program (rather than fiddling with details of the state as with
an operational semantics) and provides powerful tools for dealing with loops and recursion. This
general experience carries over from procedural to object-oriented languages like Java.
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Machine Support Both for formalizing the Hoare rules and conducting the meta-level proofs, the
support of the theorem proving system was indispensable. With some 400 lines of theories
and about 1600 lines of (already quite condensed) proof scripts on a highly complex subject,
otherwise there would be plenty of opportunity for omissions and inaccuracies like type errors
and inconsistencies. Moreover, the sheer number of definitions to keep in mind and inferences
to perform by hand would be overwhelming. This is particularly true since within such a non-
trivial project many iterations are performed, leading to frequent replay of the large proofs with
often subtle, but possibly crucial differences. Due to the number of rules in the semantics, in the
inductive proofs there are many cases involving a great amount of detail to be considered, for
which the partial automation of the theorem prover is of great help.

13.2. Further Work

There are several ways in which this work can — and probably will — be extended and applied.

Extensions of the Model Two important features of the static semantics, name spaces and visibility
control, are still missing. It should not be too difficult to add them to the formalization and
adapt the proofs accordingly. This is part of the work to be done for the new European Project
VerifiCard [29].

Program Verification Our Hoare logic is not yet fully suited for actual application in program
verification. It should be helpful — and not difficult — to identify and deduce simpler specialized
versions of many rules more convenient to apply in standard,e.g. exception-free, situations.
Furthermore, better support by tailored verification tools like an automatic verification condition
generator and an some advanced methodology for handlinge.g.method specifications and object
references will surely ease the pain.

Support for Program Design Within project Bali [42], work on verifying the implementation of
high-level specifications is planned: formalizing theObject Constraint Language (OCL)of UML
also within Isabelle/HOL and tightly connecting it with our axiomatic semantics.
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