Logic and Proof Method of Recursion

Burgit Schieder

Institut fiir Informatik
der Technischen Universitat Miinchen

Logic and Proof Method of

Recursion

Burgit Schieder

Vollstandiger Abdruck der von der Fakultét fiir Informatik der Tech-
nischen Universitdt Miinchen zur Erlangung des akademischen Grades

eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. T. Nipkow Ph.D.
Priifer der Dissertation:

1. Univ.-Prof. Dr. M. Broy

2. Univ.-Prof. Dr. M. Paul

Die Dissertation wurde am 5. Juli 1994 bei der Technischen Univer-
sitdt Miinchen eingereicht und durch die Fakultat fir Informatik am
10. Oktober 1994 angenommen.

Kurzfassung

Ziel der Arbeit sind ein Kalkiil fiir Rekursion und eine Methode zu

dessen Anwendung, die fiir die Programmentwicklung geeignet sind.

Zuerst werden Kriterien fiir die Brauchbarkeit von Kalkiilen in der Pro-
grammentwicklung aufgestellt. Diese Kriterien betreffen sowohl Term-
und Formelsprache, als auch Schlufiregeln und Ableitungsbegriff. An-
schlieflend werden eine Sprache und ein Kalkiil fiir rekursive Definitio-
nen angegeben, die den gefundenen Kriterien geniigen. Der Kalkiil dient
sowohl zum Beweisen von Eigenschaften rekursiver Definitionen, als
auch zur Entwicklung rekursiver Definitionen aus Spezifikationen. Um
eine systematische, zielgerichtete Anwendung des Rekursionskalkiils zu
unterstiitzen, wird eine Methode angegeben, nach der Beweise und
Entwicklungen gefithrt werden kénnen. Der Finsatz des Kalkiils nach
der vorgestellten Methode wird an einer Reihe nicht-trivialer Beispie-
le von Entwicklungen vorgefiihrt. Die Methode wird zuerst anhand der
Entwicklung einer repetitiv-rekursiven Funktion aus einer geschachtelt-
rekursiven, sowie der Behandlung von Hoares Problem der zwei while-
Schleifen vorgestellt. Daran schlieflen sich zwei umfangreichere Beispiele
an: die Entwicklung eines Ubersetzers fiir eine Sprache mit Rekursion
und die Entwicklung einer operationellen Semantik aus einer denota-

tionellen.

Danksagung

Herrn Prof. Dr. M. Broy danke ich fiir die Anregung zu diesem
Thema sowie fiir zahlreiche Diskussionen und Ratschlége. Herrn
Prof. Dr. M. Paul gebiihrt mein Dank fiir Diskussionen {iber Programm-
entwicklung und die Ubernahme des zweiten Gutachtens. Meinen Kol-
legen Herrn Dr. H. HuBmann und Herrn B. Schétz danke ich herzlich

fiir Diskussionen bzw. das sorgféltige Lesen einer Vorversion.

Vil

Contents

0 Introduction

1 What makes a useful calculus?

1.0 The réle of proofs and calculi in program development

1.1

Choice of the proof environment

1.2 Criteria for the usefulness of calculi

1.3

1.2.0
1.2.1
1.2.2
1.2.3
1.2.4

Proof-oriented syntax
Simpleruleso
Concise calculus 0L
Local proof steps

Combination of the criteria

Influence of the proof environment on the criteria

2 A calculus of recursion

2.1

2.2

2.0 Object language L.
2.0.0 Syntax
2.0.1 Semantics
2.0.2 Discussiono
Formulae. o
2.1.0 Syntaxo
2.1.1 Semantics
Rules o o
2.2.0 Syntactic admissibility 00
2.2.1 Fixed point induction rule

X

14
15
17
23
31
35
38
38

X

2.2.2 Fixedpointrule. 0L 59

2.2.3 Generalization rule 60

2.24 Furtherrules 60

225 Discussiono Lo 61

2.3 Notations for the examples 62

3 Examples of proofs about recursion 65

3.0 Listreversal oL 65

3.1 Nested recursion L. 68

3.2 Two while-loops 0oL 73

3.3 Compiler correctness 79
3.3.0 Common basis of source language, and target lan-

BUALZE .« v v v e e e e e e e e e 30

3.3.1 Source language 80

3.3.2 Target language 83

3.3.3 A compiler development 87

3.4 From a denotational semantics to an operational semantics101

3.4.0 Syntax of the language 101

3.4.1 Denotational semantics 103

3.4.2 Operational basis, 105

3.4.3 Development of an operational semantics 107

4 A proof method for recursion 121

4.0 General development method 122

4.1 Development from inequations 122

4.1.0 Fixed point analysis 123

4.1.1 Context reduction 125

4.1.2 Auxiliary function o L. 126

4.1.3 Design decisiono 127

4.1.4 Fixed point induction 128

4.1.5 Recursive definition 128

CONTENTS

CONTENTS

41.6 Proofs 128
4.2 Development from equations 128
4.3 Discussion e 129

5 Conclusion 133

xi

xii

CONTENTS

Chapter 0

Introduction

Today there is general agreement that program development is impor-
tant and difficult. Much research has been done and still is done, in
order to make program development reliable and manageable. The
main ingredients of program development are a formal calculus, which
ensures correctness of development, and a method for its disciplined,

goal-directed application.

The essence of formal program development is that a program is for-
mally specified, and a program in executable notation is proved to meet
that specification. It is generally agreed that the executable program
should not be guessed and afterwards be proved to meet the specifica-
tion. Instead, the program and its proof should be developed hand in
hand from the specification. Of course, thought and insight into the
problem domain are needed in the development of a program. As is
well-known, program development cannot completely be mechanized.

Therefore human guidance is indispensable to program development.

The next step towards systematic program development consists in bas-
ing decisions rather on the shape of formulae than on insights into the
problem domain. Certainly, knowledge of the problem domain cannot
completely be replaced by consideration of the shape of formulae. But
methods for program development should take the shape of formulae
into account as much as possible in order to guide the development
process. There is evidence that syntactic considerations can avoid the

blind search for ideas to a large extent.

Thus, a calculus for program development should be accompanied by a

2 CHAPTER 0. INTRODUCTION

method for its application. The method should divide the development
as clearly as possible into routine steps, and steps that require thought.
The latter should be guided as much as possible by the shape of for-

mulae. So, more systematic program development could be achieved.

Today many calculi exist for program development and proof. But they
are rarely accompanied by a method for their application. Undoubtedly,
it 1s difficult to give a method that covers program development in
general. But one could concentrate attention on particular development
tasks.

In this work we will concentrate on a special form of specifications,
and find a development method for them. We have chosen formulae of

predicate calculus that contain inequations
tCu

or equations

between terms. Those terms may contain recursive definitions. The

task is to develop recursive programs for the unknowns in the terms.

Into this class of specifications fall, for instance, compiler specifications.
They can be stated as follows: the value of the source program is less
than or equal to the value obtained by executing the compiled program
on the target machine. This example already indicates the practical

importance of the mentioned specifications.

A method for developing programs from specifications essentially de-
pends on the underlying calculus. It can only be as good as the under-
lying calculus. Therefore any methodological consideration must start

with the choice of a suitable calculus.

When studying the literature, one is confronted with a lot of different
rules for recursion. They are of quite different nature: the spectrum
of rules ranges from very simple ones to very technical, elaborate ones.
Some of those rules are intended for development, most of them, how-

ever, for proof.

But hardly any rules are equipped with methodological directions for
their use. Sometimes strategies are given, but they are merely shown
in a number of examples; they are not generalized into methodological
rules. This lack of methodological rules concerns proof, but to a much

larger extent it concerns program development.

Proofs of properties of recursively defined objects are not easy, in gen-
eral. In view of the great amount of rules in the literature, it is difficult
to find a suitable rule in a particular proof situation, and to combine
rules in order to reach a certain goal. A typical example of such a diffi-
cult proof is compiler correctness. It has turned out that being merely
provided with the set of rules known from the literature, with knowl-
edge of the problem domain, and with operational intuition, one can

hardly find a compiler correctness proof.

The situation is no better, if developments are to be found instead of
proofs: in proofs, the solution of a problem is given, and it must be
proved that it is indeed a solution; that is, it must be proved that the
solution meets its specification. In developments, however, the solution

and its proof must be found.

Our aim is a method for the development of programs from specifica-
tions of the form given above: as mentioned before, the inequations and
equations may contain recursive definitions and unknowns, for which
programs must be developed. Of course, these programs themselves

may contain recursion.

We want the development to be as systematic as possible. Ideally,
developments should not be found by striking ideas and deep insights
into the problem domain; instead they should be found by systematic
analysis and design. Even more rigorously, development should largely
be based on the shape of formulae, as we have stated before for program
development in general. The whole development process must be as

calculational as possible.

This idea of calculational development based on syntactic considera-
tions is similar to solving differential equations: when solving a dif-
ferential equation, one proceeds according to its syntactic structure;
methods exist that describe how to proceed. Although thought is still

4 CHAPTER 0. INTRODUCTION

needed, the methods help to derive solutions systematically, and with

a minimum of own ideas.
The work is organized as follows:

Chapter 1. As stated above, the literature provides many rules for
proving about recursion. They differ much in their shape and complex-
ity. It is not clear which rules are most suitable for proof and devel-
opment. Hence we cannot start from a given set of rules. We must
first find out which of them are most convenient for practical use. This
question cannot be answered purely by experiment since the number of
experiments we can do is too restricted. Therefore we first search for
criteria of the practical usefulness of calculi. We do so for program de-
velopment calculi in general; hence chapter 1 is not restricted to calculi

for recursion.

Chapter 2. We first give a language with recursion that respects
the criteria of chapter 1. Thereafter we define formulae and rules for
recursion. They are chosen according to the usefulness criteria. Since
we use essentially an enriched predicate calculus, we will not present
the whole calculus, but only those rules that refer to recursion or that
are particularly important to our development method. We will also

discuss the reasons for our selection of rules.

Chapter 3. We apply our development method to a number of non-
trivial examples. Among them are a compiler development, and the
development of an operational semantics from a denotational one. They
have been chosen for two reasons: firstly, they are difficult enough
to be a touchstone for our development method. Secondly, they are
not known from the literature, and thus are hopefully interesting in
their own right. Other examples are the transformation of an intricate
nested recursion into tail-recursive form, and the simplification of the
sequential composition of two while-loops. All solutions are developed

by the same method.

Chapter 4. After having shown the development method in vari-
ous examples in chapter 3, we describe the method in chapter 4. We
first describe the general proceeding we have chosen for program de-

velopment. Then we explain the method for development of recursive

definitions, which we have used throughout our examples. Finally, we
discuss methodological reasons for which we have excluded certain rules

from the calculus.

(In)dependencies. This work has been written in a way to ease
independent reading of its parts. Chapter 1 is primarily intended for
the reader interested in program design calculi as an object of study,
and in the decisions underlying the present work. Chapter 2 gives
the foundations that are used throughout all our examples; readers,
who are merely interested in application, can confine themselves to
chapter 3 and chapter 4, and read chapter 2 only by need. Chapter 3

and chapter 4 can be read by arbitrary interleaving.

CHAPTER 0. INTRODUCTION

Chapter 1

What makes a useful
calculus?

As stated in the introduction, our ultimate goal is to give a calculus of
recursion and a method for its application suited to program develop-

ment.

In this chapter and the next we shall address the calculus. We are
heading for a recursion calculus that is tailored to practical use. Un-
fortunately, the literature does not present us with criteria for the use-
fulness of calculi. Of course, there are a lot of calculi for program
development, but they are primarily intended to put program develop-
ment on a formal basis. The question, what properties of a calculus
support proof finding and program design, is of secondary interest in
those calculi. Consequently, we cannot expect to be provided with a list
of such properties by the literature. The pragmatic side of proofs has
even almost been denied in the past. An exception to this tradition is
van Gasteren’s work [28]. But whereas she explores the general nature
of presentation and design of mathematical proofs, we want to find out

in what way the formal calculus can contribute to proot design.

Therefore, we must first establish criteria for the usefulness of calculi
in program development. Toward this end, we study the réle of formal
methods in program development. Then we derive criteria that we con-
sider important for calculi to meet their réle in program development.
In doing so, we shall not concentrate on calculi of recursion, but extend
our considerations to program development and verification in general.

Hence this whole chapter is not restricted to the field of recursion.

8 CHAPTER 1. WHAT MAKES A USEFUL CALCULUS?

One could also imagine to find useful calculi purely by experiment: one
could test different calculi by experiment, and choose those that turn
out to be most useful. But we take the analytical approach, which
has been described above, for two reasons: firstly, the number of ex-
periments we can do is strongly restricted, because we are our only
guinea-pigs; secondly, we hope that it will be helpful in the design of
other calculi to have criteria for their usefulness. In spite of taking the
analytical approach, the criteria found by theoretical investigations are

supported by experiments.

Let us now explain how we will use some central notions of this chap-
ter. By program development we mean a formal, stepwise development
of programs from specifications. By program verification we mean a
formal proof that a property of a program holds. Our notion of "pro-
gram development” includes "program verification”. This viewpoint is
possible since we adhere to a notion of flexible program development:
performing a step and verifying it afterwards is a legal design step. By
the term proof we refer both to a whole program development and to
a single step in a development. Throughout this work we understand
proofs as completely formal objects as opposed to the often non-formal
notion of proof in mathematics. Moreover, we always use the term
programmer in the sense of "a person who develops a program from a

specification”.

We do not presuppose a special kind of calculus. Whenever we say
calculus, we include verification calculi, refinement calculi, and trans-
formation calculi. Therefore, besides formulae, terms and programs can
be the objects of manipulation, as they are in transformation calculi.
For convenience we will always refer to the objects of manipulation as
formulae, because we shall work with such a calculus afterwards. But

one can equally imagine terms as objects manipulated by the calculus.

We begin our investigations by studying the role of proofs and calculi
in program development as far as they are independent of the proof en-
vironment. Thereafter we determine the proof environment on which
we will base our considerations throughout this work. Then we derive
criteria for the usefulness of calculi from their roles in program devel-

opment. Finally, we examine in how far these criteria are influenced by

1.0. THE ROLE OF PROOFS

our choice of the proof environment.

In chapter 2 we will apply our results of this chapter in order to build

a calculus of recursion.

1.0 The role of proofs and calculi in pro-
gram development

First we study the role of proofs in program development. We then
derive requirements on proofs, such that proofs meet their réle in pro-
gram development. Finally we examine the role of calculi in program

development, and similarly derive requirements for them.

Réle of proofs

The role of proofs in program development is at least threefold:

1. Proofs guarantee that a property of interest holds.

2. By proving, programmers should understand why their solutions
(i.e. final programs and intermediate steps of developments) are

correct.

3. Proofs serve as formal documentation.

Now we briefly comment on these réles, and discuss how far they deviate

from those of proofs in other areas.

1. Of course the first role of proofs is not specific to program devel-

opment; it is shared by all notions of formal proof.

In mathematics proofs often are non-formal and thus their cor-
rectness cannot be stated formally. Therefore, in [47] mathemat-
ical proof is regarded as a ”"social process”: only after a proof
has been studied and accepted by other mathematicians, it can
be considered correct. In our opinion such an informal notion
of proof is unacceptable in program development for two rea-
sons: firstly, proofs in program development are not studied by

(enough) other programmers so that they are not subjected to a

10

CHAPTER 1. WHAT MAKES A USEFUL CALCULUS?

process of correction. Secondly, proofs in program development
typically contain too much detail to be reliably checked by other
programmers. (At this point mechanical proof support becomes

important.)

. Aid of comprehension is an essential task of proofs in program

development for several reasons:

By understanding why a certain step in the development is cor-
rect, the programmer will get a deeper insight into the problem
at hand. This reinforcement of the programmer’s understanding

may help in further development of the program.

Attempts to prove false conjectures must contradict the program-
mer’s wrong understanding as clearly as possible. Comprehensi-
ble proof attempts facilitate the detection of why a wrong con-

jecture does not hold, and hence help to correct it.

Moreover proofs that reinforce the programmer’s understanding
of a special problem will also increase the programmer’s overall

experience in program development.

Proving will become a rewarding activity for the programmer, if it
increases understanding and experience. The benefit of improving
their programming ability should motivate programmers to do

proofs.

The réle of proof as a vehicle for understanding is of minor im-
portance in mathematical logic and mathematics. In pure logic
proofs are mere formal objects. (This general judgement does not
deny that there are works in mathematical logic on pragmatic
aspects of proofs, first and foremost Gentzen’s work on natural
deduction [29].) When developing a theory, mathematicians usu-
ally are solely interested in correct proofs, and do not strive to
reveal the real argument behind the proved theorem. It is be-
yond the scope of this work to discuss this common practice in

mathematics; instead we refer to van Gasteren’s work [28].

. In its characteristic as formal documentation, a proof provides a

guarantee of the correctness of the derived program. As such, the
proof may sometime later be consulted by the original program-

mer as well as by others.

1.0. THE ROLE OF PROOFS

Sometimes an already existing program development is changed
in order to replace a design decision by a new one. Then the proof

as a record of the program development must be examined.

Consequently, the proof is also a means to acquaint other people
with the development, that is, as an aid to their understanding
of the development. Their understanding must even reach so far

that they can actively work with the development.

The r6le of (formal) documentation is also indispensable to proofs
in mathematics. Proofs of mathematical theorems are primarily
studied by other interested mathematicians. The engineer, who
uses a theorem, usually relies on its correctness without reading
its proof. Moreover, proofs in mathematics are typically not re-
designed or changed in order to derive new theorems. By this
passive role of documentation mathematical proofs differ from

proofs in program development.

(End ”Réle of proofs”.)

Requirements on proofs

In order to formulate requirements that should be fulfilled by proofs
in program development, we make explicit our expectations of the pro-

grammer.

Programmers are assumed to have good capabilities for working for-
mally. In addition, equipped with a suitable formal framework and
method for program derivation, they need to be able to make design
decisions that lead to a correct and efficient program. This character-
ization matches exactly the profile of engineers. In contrast to math-
ematicians, programmers are not supposed to come up with solutions

found by "eureka”.

Now we are ready to derive requirements that are imposed on proofs

in program development by their roles that have been identified above.

o First of all, proofs have to be correct in the following sense: only

properties that hold may have proofs.

11

12 CHAPTER 1. WHAT MAKES A USEFUL CALCULUS?

e Proofs should be done on a level of abstraction that the program-
mer’s understanding can be built on. In particular programmers
should not be confronted with the whole theory (in our case fixed
point theory) that underlies the language they use. That is, se-
mantic details are to be kept away from programmers. Instead
programmers should be provided with properties that they are

inclined to accept as first principles.

e The profile of programmers implies that proofs should be done as
systematically as possible. Proofs should be developed by thor-
ough analysis and design, and not by searching for a striking idea.
Ideally one is heading for completely systematic, almost compu-

tational proofs.

Systematic proof design is, in general, not considered important
in mathematics. On the contrary, mathematicians often proudly
present proofs that contain ”ingenious tricks”. Discussing this
attitude is beyond the scope of this work; again the reader is
referred to van Gasteren’s book [28]. But it should be obvious
from the above stated capabilities of programmers that tricks are

to be kept out of proofs in program development.

e For the purposes of comprehensibility and documentation, proofs
should be well-designed. Well-designedness includes that proofs
should be as explicit as possible about their arguments and de-
cisions, and arrange them in a structured, accessible way. Only
such arguments should enter a proof that are actually needed for
the proved theorem to hold. Moreover design decisions should be

made as clear as possible.

e Proof should be an interesting, pleasant task for programmers. It

should even be fun.

Do we stand a chance that there exist proofs that satisfy our require-
ments? We do certainly, since our requirements are not contradictory
as shown by experiment. The requirements for systematic proof design

and for well-designed proofs even seem to be two sides of the same coin.

(End "Requirements on proofs”.)

1.0. THE ROLE OF PROOFS

Role of calculi

In order to be able to do proofs that meet our requirements, we need a

suitable calculus as well as a method for its application.

Finding criteria for a suitable calculus needs clarification of the role of

calculi in program development:

e The calculus is a tool to "produce” proofs that fulfil the require-

ments that we stated above.

e The calculus also plays a réle in its own right: It is a tool to
be used by programmers. As such it considerably influences the

process of finding proofs.

In particular, in our investigation the calculus is not an object of study
in the same sense as calculi in mathematical logic. Whereas logicians
are interested in the abstract properties of calculi, we are mostly con-

cerned with their properties relating to application.

(End ”Raéle of calculi”.)

Requirements on calculi

As we have done for proofs, we now state requirements for calculi in

their roles in program development:

o Of course the calculus has to be correct in the usual sense that

only valid formulae are derivable.

Besides this formal notion, correctness has also a pragmatic as-
pect: users may make mistakes when applying the (formally cor-
rect) calculus. Hence application of the calculus should be as few

error-prone as possible.

e The rules of the calculus must provide a basis for the program-
mer’s thought. In arithmetic, for example, thought and under-
standing are based on laws such as * + y = y + =. Similarly, the
rules of a calculus for program development must serve as the
basis for the programmer’s thought and understanding. Hence

understanding ought to be based on formula manipulation rather

13

14 CHAPTER 1. WHAT MAKES A USEFUL CALCULUS?

than formula interpretation. We are well-acquainted with this
distinction in arithmetic, where proofs are guided by the laws,

and not by the knowledge of a model of the natural numbers.
e The calculus must support systematic proof design.

e Moreover, as a tool the calculus has to be handy. Often the
formal calculus is felt to be a burden to the programmer. Instead
the calculus should free the programmer for those parts of the

development that require ingenuity.

These are only very general requirements. What they technically mean
for the calculus will be investigated in section 1.2. First we determine

the proof environment.

Undoubtedly, a mere formal calculus cannot guarantee that proof de-
velopment always ends up with a proof that has our desired properties.
Likewise, good proof design cannot solely be assured by the calculus.
For both purposes the calculus also needs to be applied in a disciplined
manner. Hence the calculus ought to be accompanied by a method for
its application. We shall consider methodological aspects in chapter 4.
They will be customized to proofs about recursive definitions since this

1s our primary interest.

In the current chapter, however, we stick to the calculus.

(End "Requirements on calculi”.)

1.1 Choice of the proof environment

As the calculus is a tool, its handiness seems to depend upon the en-
vironment in which it is used. Therefore we now determine the proof

environment.

The main existing proof environments are pen and paper on the one
hand and mechanical systems on the other hand. Throughout this work
we base our considerations on pen and paper as proof environment for

the following reason.

1.2. CRITERIA FOR THE USEFULNESS OF CALCULI

It is well-known that in calculi that comprise predicate logic proofs
cannot completely be automatized. Hence proofs have at least partly to
be done by humans. Therefore theorem proving ought to be tailored to
their needs. Moreover, proofs and calculi should meet our requirements
of the previous section. In order to get rid of peculiarities of mechanical
support, we choose pen and paper as the proof environment that allows

focusing on human needs most genuinely.

We do not doubt the usefulness of mechanical proof support. But we are
of the opinion that mechanical systems should be adapted to the way
in which people do proofs. Whenever human interaction is needed in a
mechanical proof, the user should find a proof status that could stem
from a proof done by hand. The users must not be obliged to familiarize
themselves with the details of the mechanical proof procedure. An
easily understandable proof status becomes even more important when
a proof attempt fails. In that case an understandable proof status can
help the user to get the theorem right. As we saw in the previous
section, not only the existence of a proof but also the proof itself is of
interest in program development. Hence proofs done with mechanical
assistance also have to fulfil the requirements on proofs that we stated

in section 1.0.

Consequently, any methodological consideration of proof should start

with pen and paper as proof environment.

1.2 Criteria for the usefulness of calculi

Now we establish criteria for the usefulness of calculi based on the re-
quirements stated in section 1.0. We again consider program develop-
ment calculiin general, and not only calculi of recursion. In preparation
of the next chapter, our main examples, however, will be taken from

the field of recursion.

We briefly repeat our requirements on calculi. A calculus for program

development must be

e correct,

e a good foundation of thought and understanding,

15

16 CHAPTER 1. WHAT MAKES A USEFUL CALCULUS?

e a good support in systematic proof design, and

e a handy tool.

Having fixed the proof environment, we are ready to concretize these
requirements. We seek for criteria that make calculi fulfil the require-
ments, provided the calculi are used with pen and paper. In section 1.3
we shall discuss in how far the proof environment takes effect on the

usefulness criteria.

As correctness in the usual sense of mathematical logic is well-known,
it needs no further consideration here. Of course, when designing a

calculus, one has to ensure that all rules are correct.

Let us begin with the requirement for handiness. Since we have chosen
pen and paper as proof environment, the calculus must be easily mem-
orizable. It is important for the programmer to have a good survey
of the calculus. In every proof situation the syntactically applicable
rules should suggest themselves. The programmer must not be obliged
to start an annoying process of remembrance and enumeration of the
rules in the calculus. If the programmer had to study a catalogue of
rules in order to find the ones that are applicable in the current situ-
ation, all motivation to do proofs would go down very soon. Whether
a rule is applicable to a certain proof state must easily be seen, and
must not require complicated syntactic comparisons. In addition, the

application of a rule must be a simple syntactic manipulation.

This syntactic familiarity with the calculus is necessary not only for
handiness, but also for systematic proof design. When relieved of the
search for syntactically applicable rules, the programmer can fully con-

centrate on the choice of rules in favour of the intended aim.

Systematic proof design, however, requires an even more intimate fa-
miliarity with the calculus. Programmers must be so familiar with the
calculus that they can assess the profit of rules in order to reach a
certain goal. The calculus must enable the programmer to select an
appropriate rule at any stage of a proof, and even to foresee and plan
the whole structure of a proof beforehand. (Of course, we do not claim

that all proof attempts will be successful, even if the programmer is

1.2. CRITERIA FOR THE USEFULNESS OF CALCULI

familiar with the calculus. Familiarity, however, helps to understand

why a proof attempt fails, and then to correct it.)

Familiarity with the calculus, supported by a proof method, is an es-
sential prerequisite of systematic proof design. Therefore, we will now
investigate what properties of a calculus let the programmer become

intimately familiar with it.

Now we give a number of criteria that we have found out to be impor-
tant for the usefulness of calculi. We arrange these criteria according
to the affected constituents of the calculus: starting with formulae, we
continue with rules, and then with the calculus as a collection of rules,

until we reach the structure of derivations.

1.2.0 Proof-oriented syntax

Parsing and manipulating formulae are the main activities in proofs.
Firstly, these activities have a purely technical aspect: formulae should
be easy to parse by the eye, and comfortably manipulable by a human
user. These properties contribute to the handiness of the syntax. Sec-
ondly, finding proof steps and taking design decisions are also aspects
of manipulation. Apart from supporting the technical side, syntax has
to assist in proof design. Of course, technical manipulability is a neces-
sary prerequisite for design. But, in addition, a customized syntax can

aid to find a proof for example by the mere shape of a formula.

Since programming languages are primarily designed to program in
them, instead of into them, we will first look for criteria for a proof-

oriented syntax. This search will lead us to the following criteria:

e combinatorial freedom

e homogeneous syntax

e explicitness of formulae

e economy of syntactic categories

e syntactic sugar

17

18 CHAPTER 1. WHAT MAKES A USEFUL CALCULUS?

Combinatorial freedom

Combinatorial freedom was identified as essential for the convenience
of formula manipulation by van Gasteren [28]. Combinatorial freedom
means that one is not obliged to use certain distinct concepts or oper-
ators always together, but instead is free to use them separately or to

combine them as needed.

Let us illustrate combinatorial freedom by an example from the field of

recursion.

Example 0 When considering how recursion appears in most pro-

gramming languages, we find combinatorial freedom violated.

In programming languages occurrence of recursion is typically confined
to recursive declarations. Apart from syntactic variations, recursive

function declarations have the form
funct f=(xv): 1,
where identifier f may occur in term ¢, and x is a formal parameter.

The semantics of such a function declaration is the binding of a certain
function to identifier f. That is to say, the operator funct joins two

distinct operators together:

e selection of a certain semantic function,

e binding of a function to an identifier.

Combination of these two operators may be appropriate for coding
problems in a programming language, but it is improper to proof. Dec-
larations as above compel one to refer to the recursively defined func-
tion exclusively by the identifier f within terms, and to remember the

binding as the context one is working in.

On the contrary, direct reference to the recursively defined function
would be rendered possible by separation of the two operators. In
this way the defining expression of the function could immediately be

written in terms without introduction of a binding. Moreover, when

1.2. CRITERIA FOR THE USEFULNESS OF CALCULI

we speak of the equivalence of two recursive function declarations, we
actually mean the equality of the defined functions, and are not inter-
ested in the bindings to identifiers. Hence being able to refer to the

recursively defined function directly turns out to be valuable in proofs.

As regards binding we do not even need a new operator. Since we will
have a logic with equality, binding can be expressed by explicit use of
the equality sign. Therefore, in this example combinatorial freedom is

for free: the number of operators does not increase.

(End of example.)

This example shows how a flexible syntax can be helpful in proofs by

allowing to express things as directly as needed.

(End ”Combinatorial freedom”.)

Homogeneous syntax

By homogeneous syntar we mean that syntactic similarities should be
mirrored by the semantics. To put it the other way, we do not want

semantically different concepts to be expressed by a similar syntax.

The reason for requiring a homogeneous syntax again lies in our striving
for conveniently manipulable formulae. Proving is rendered difficult by
syntactic constructs that look similar but obey quite different laws. In
this way formula manipulation becomes a less mechanical activity than
it could be. Even worse, the syntactic similarities can be misleading

and provoke errors.

Example 1 As discussed in example 0, the semantics of a declaration
funct f=(xz):¢

is the binding of identifier f to a function. Thus the binding is valid

outside the declaration, too.

Let us compare the operator funct to standard binding operators of

functional languages and of predicate logic. All of the operators in

Az.t (function abstraction),

19

20 CHAPTER 1. WHAT MAKES A USEFUL CALCULUS?

Va.A (universal quantification), and

Jx. A (existential quantification)

bind the identifier only within these terms and formulae. Outside

these terms and formulae, the bindings are invisible.

The different binding scopes lead to different réles of the bound iden-
tifiers: The identifier bound by one of the operators A, V and 3 merely
is a means to define a semantic object. It may be exchanged by any
other identifier (provided no name clashes are introduced) without ef-
fect to the semantics. On the contrary the identifier bound by the
operator funct is itself part of the semantics, and consequently cannot
be substituted by another identifier.

Hence, despite the syntactic similarity in their occurrence, the operator
funct on the one hand, and the operators A, V and 4 on the other hand
behave quite differently.

This inhomogeneity can be avoided by replacing the operator funct by

a new operator, say rec, such that the semantics of
rec f.(x):1
merely is a semantic function, instead of a binding to the identifier f.

(End of example.)

Syntactic inhomogeneities can be eluded by restricting the semantics
of similar syntactic constructs to the ”common semantics”, and by in-
troducing additional operators for the differing parts of the semantics.

This is what was done in the above example.

(End "Homogeneous syntax”.)

Explicitness of formulae

We call a formula explicit, if it is independent of context.

1.2. CRITERIA FOR THE USEFULNESS OF CALCULI

Example 2 Let f be recursively declared by

funct f=(z):1t.

Then the formula
Va: f(x)=u,

where v is a term, is not explicit about f, because it refers to the f

declared in the context, and, in general, does not hold for all f.

Having used the operator funct, we are unable to make the formula
explicit. As discussed above, the information about f cannot be in-
cluded in the formula for syntactic reasons (not even as a premise).
Since the operator funct prevents us from writing explicit formulae,

we have another reason for refusing it.

(End of example.)

Explicit formulae are desirable, because they make available all infor-
mation in a compact form. In order to find the next step in a proof,
one must only look at the current formula; one need not keep in mind
a context or switch to a context that stands elsewhere in the proof.
Proofs are hampered especially, if the context changes from time to

time.

Therefore we consider it important for a proof-oriented syntax that it

allows explicit formulae.

Although demanding a syntax, in which explicit formulae can be writ-
ten, we do not say that one should always use explicit formulae. Some-
times it is for example more convenient to take apart a premise from
a formula, and to make it a general assumption. The point is that ex-
plicitness should be enabled by the syntax. Then one can decide freely
to make a formula explicit or not. It is unacceptable to be obliged to
use a non-explicit formula only by syntactic reasons. As we have seen
in the above example, the operator funct prevents explicitness, and

therefore must be refused.

22 CHAPTER 1. WHAT MAKES A USEFUL CALCULUS?

When using contexts, one should make sure that they do not change too
often. But if contexts are forced by the syntax, they are uncontrollable,
and thus may change continuously. Frequent context changes are error-

prone and unhandy.

(End ”Explicitness of formulae”.)

Economy of syntactic categories

By economy of syntactic categories we mean that in the object language

the number of syntactic categories should be kept small.

Example 3 Besides a syntactic category of terms, programming lan-
guages usually contain a syntactic category of declarations. We have
seen in example 0 that one can avoid the syntactic category of function

declarations by introducing a recursion operator in terms.

(End of example.)

Parsing and manipulating formulae become easier, when the number of

syntactic categories decreases.

(End ”Economy of syntactic categories”.)

Syntactic sugar

By syntactic sugar we mean that syntactic patterns that occur fre-
quently in applications are abbreviated by a new syntactic construct.
Introduction of syntactic sugar is particularly attractive, if it makes

another syntactic construct surplus.
Let us consider an example from the field of recursion.

Example 4 Let fix be an operator that allows to define functions

recursively by writing
fix (\f. 7).

Thus, application of fix to a A-abstraction is a frequently occurring

syntactic pattern. If we introduce a special syntax for this pattern, say

1.2. CRITERIA FOR THE USEFULNESS OF CALCULI

rec , then we can rewrite the original function definition by
rec f. 7.

Introduction of rec makes fix surplus as we shall see in the next chap-

ter. Thus fix can completely be eliminated from the language.

(End of example.)

Syntactic sugar makes formula parsing and manipulation more conve-
nient, because formulae can be kept concise. In addition, proof rules for
the original syntactic constructs can also be combined into new rules
for the syntactic abbreviation. This adaptation of rules to frequently

occurring syntactic patterns leads to shorter proofs.

At first sight, syntactic sugar seems to contradict our requirement for
combinatorial freedom. But it does not for the following reason: Com-
binatorial freedom says that two (or more) semantically independent
operators should not be glued together by the syntax. Contrastingly,
when syntactic sugar is introduced, one has a single operator in mind,

and wants a convenient syntax for it.

A typical effect of introducing syntactic sugar and eliminating other
constructs is that non-standard cases become more complicated than
with the original construct. Therefore, syntactic sugar must be chosen
very carefully, that is, the standard cases must carefully be discerned

from the non-standard ones.

(End ”Syntactic sugar”.)

These criteria help the programmer to become syntactically familiar
with the language. In this way the programmer can more intensely
concentrate on those tasks of program development that require in-
genuity. Thus, the above criteria contribute also to systematic proof

design.

1.2.1 Simple rules

As usual, rules consist of premises, a conclusion, and possibly some

applicability conditions. We tacitly include transformation calculi by

23

24 CHAPTER 1. WHAT MAKES A USEFUL CALCULUS?

allowing terms, declarations etc. as premises and conclusions of rules.

In this section we consider rules purely syntactically. No semantic

knowledge is needed to study the examples.

The following two examples give a first visual impression of the differ-

ence between complicated and simple rules.

Example 5 The following complicated rule for recursive declarations
is taken from [41]. It is only intended for purpose of illustration here,
and will not be studied further.

Let X, X', 81, 89, 83, 84 and F| be meta-variables. Let € and dom be a
value and a function respectively. Let S, V', A and ® be meta-variables
bound outside the rule. (It does not concern us here what all these

variables stand for.)

Y =s0{s0)) Y

where (s1, 89, 83, F1) is a WUF(S)-transformation from ¥ to
Y/, and
V' is the set of variables occuring in X, and
s4 18 the term constructed by the algorithm:
dom(sys) C dom(s1) N dom(ss)
YVw € dom(sy)
either s3(w) € V' then s4(w) = s3(w)
or s3(w) € A, if s1(w) = s3(w) then s4(w) = s3(w)
if s1(w) € V' then sy(w) = s4(w)
if s1(w) € ¢ then sy(w) =
or s3(w) € &, if s1(w) # s3(w) then sy4(w) =N
else s4(w) =y
where y is a variable of V — V' with

no occurence in S4

The description of ”WUF-transformation”, and of the syntactic corre-
lation between X, ¥/, 81, 89, 83, 84 and Fj needs another half page, and

a graphical explanation.

1.2. CRITERIA FOR THE USEFULNESS OF CALCULI

(End of example.)

We contrast this complicated rule with two simple ones.

Example 6 The first of the following rules is well-known from pred-

icate logic, the second one is a so-called "fixed point induction rule”.

A= B
A=Vz B

where x is not free in A

rCu=1tCu
rec x.t C u

where x is not free in u

(End of example.)

Now we will examine the simplicity of rules more systematically. Our
search for factors that make a rule simple will lead to the following

criteria:

e obvious syntactic applicability

e decidable applicability conditions
e economy of concepts

e clear presentation

e separation of elementary rules

e small rules

Obvious syntactic applicability

In [19] Courcelle writes about transformations of recursive program

schemes:

Courcelle and Kott have given syntactical conditions [...].
Since these conditions are quite technical we do not even

state them.

25

26 CHAPTER 1. WHAT MAKES A USEFUL CALCULUS?

The mentioned "syntactical conditions” are intended for use in program
transformations. We doubt that rules that are too technical to be
included in a book on theoretical computer science can be helpful in

practice. Let us make this point more precise.

We first define what we mean by syntactic applicability. Assume we use
the calculus in a forward manner, that is, we move from the premises
of a rule to its conclusion. Then syntactic applicability of a rule to a
proof situation means that some derived formulae syntactically match
the premises of the rule, and that all decidable applicability conditions
of the rule hold. The definition is analogous, if we work backwards, that
is, from the conclusion of a rule to its premises. In that case syntactic
applicability means that the current formula matches the conclusion of
the rule, and that all decidable applicability conditions hold.

We say that the syntactic applicability of a rule is obvious, if in every
proof situation the syntactic applicability can be perceived by the eye.
If the rule turns out to be applicable, the resulting formula must also
be perceivable by the eye. In particular, neither the applicability check,
nor the application itself involve non-trivial operations. One only has

to compare the actual proof situation to the rule one has in mind.

Example 7 The syntactic applicability of the complicated rule of ex-
ample 5 is not obvious. The computation of the term s, is too compli-

cated to be performed by the eye.

Contrastingly, the application of the two simple rules given in example
6 is obvious. As one knows from experience, the free variables of a

formula can be determined by the eye.

(End of example.)

A typical technique that leads to non-obvious syntactic applicability is
the use of labels: often for applicability of a rule, certain occurrences
of identifiers in a formula must be labelled, others must not. Applica-
tion of the rule then erases certain labels and introduces others. Such
syntactic applicability conditions are usually too complicated to be per-

ceived at a glance.

1.2. CRITERIA FOR THE USEFULNESS OF CALCULI

Non-obvious applicability is not only caused by complicated applica-
bility conditions. Of course, complicated syntactic conditions can also

directly be coded into the premises or the conclusion of a rule.

(End ”Obvious syntactic applicability”.)

Decidable applicability conditions
Often the applicability conditions of a rule are even undecidable.

Example 8 The complicated rule in example 5 contains an undecid-

able applicability condition:
(81, 82,83, F1) is a WUF(S5)-transformation from ¥ to ¥’

An equality proof is needed in order to show the existence of a WUF(.9)-
transformation from ¥ to ¥'. In fact, a separate transformation calculus

hides behind the applicability conditions.

(End of example.)

As the example shows, undecidable applicability conditions are a means
to take difficult parts out of the calculus. But then a second calculus
for the applicability conditions must be added. Hence one obtains a
calculus consisting of two levels. But a calculus with two levels will

usually be too complicated for practical use.

(End ”Decidable applicability conditions”.)

Economy of concepts

By economy of concepts we mean that a rule should include as few

different concepts as possible.

Example 9 Let us compare two rules from the field of recursion in

regard to the concepts they use.

As usual, the notation [./.] stands for substitution of variables by terms.

27

28 CHAPTER 1. WHAT MAKES A USEFUL CALCULUS?

The so-called ”computational induction rule” relies on natural numbers:

Alto/]
Vn € IN(Alt,/x] = Altnsi/2])
Alrec z. t/x]

where A is syntactically admissible in x,
and the sequence (t,),enof terms is recursively
defined by to = L,
tot1 = tt, /2]

The following rule (known as "fixed point induction”) can be used to
prove the same properties as the previous rule, but does not make use

of natural numbers:

AL /2]
Va(A= Alt/z]) where A is syntactically admissible in x
Alrec z. t/x]

Experience shows that these rules often lead to quite different proofs
of the same theorem. Proofs that use the fixed point induction rule are

more abstract than proofs that use computational induction.

(End of example.)

Obviously, the more concepts a rule contains, the more difficult becomes
its use, and the more concepts are introduced in proofs. Therefore we
claim that economy of concepts generally leads to more abstract proofs

without unnecessary detail.

(End ”Economy of concepts”.)

Clear presentation
First we give an example of how a rule can be stated clearly or not.

Example 10 We again do not study the meaning of the rules, but

merely their syntactic shapes.

1.2. CRITERIA FOR THE USEFULNESS OF CALCULI

The so-called "unfold-rule” for recursively defined functions can be for-

mulated as follows:

functfo = ($071, ceey $07m0) : to
: C

functfn = (Tnaseees Trmy) & tn
funct fo = (201, .-+ Tome) * Uolto/ fos- - tn/ f1]
:functfn = (Tu1se s Tgmn) Unlto/ o5 -5 ta) 1]
where n > 0,

Vi:0<:<n:m; >0
and t; stands for w;[fo/f{, -y fu/fl]

This rule can more simply (and, as we shall see in the next chapter,

even more generally) be formulated as follows:

rec J. T Crec . U[T/g] where T' stands for U[f/¢]

If we had a nondeterministic substitution operator [some ./.] to our

disposal, we could write even more succinctly:

rec f.T Crec f. T[some T/f]

(End of example.)

Clear presentation means that technicalities are avoided as far as pos-
sible. One may only make sparing use of indices, especially of multiple
indices, primes, labels etc. Their use should be restricted to cases where

it is unavoidable.

The example shows how much a clear presentation contributes to read-

ability and memorization of a rule.

(End ”Clear presentation”.)

29

30 CHAPTER 1. WHAT MAKES A USEFUL CALCULUS?

Separation of elementary rules

By separation of elementary rules we mean that elementary rules are

not repeated in other rules.

Example 11 A typical elementary rule is that bound variables may
be substituted by other variables (provided no name clashes are intro-
duced). Using that the names of bound variables are irrelevant, one

could write

rec x.{ =rec y. ufy/z]
rec x. { Jdrec y. uftly/x]/z]

instead of

rec x.{ =rec x. ulzr/z]
rec x.{ Jrec z. uft/z]

It could be argued that the first rule is applicable in situations where
the bound variables of rec are named differently, whereas the second
rule is not. But renaming of bound variables is such a routine matter

that the greater complexity of the first rule does not pay.

(End of example.)

Sometimes it is tempting to repeat an elementary rule, such as substi-
tution of bound variables, in other rules. This is seemingly justified by
the greater generality of the rule, because certain variables need not be
the same. This shortens proofs, because e.g. renaming is unnecessary in
a proof. But as elementary rules are usually applied without thinking
and not written down, in fact proofs do not become shorter. But the
rules become more complicated. Therefore elementary rules should not

be repeated in other rules.

(End ”Separation of elementary rules”.)

Small rules

Even if rules contain only simple formulae and obvious applicability
conditions, they may still be inappropriate for practical use. Users
will not become familiar with rules that contain a lot of premises and

applicability conditions. Therefore rules should be small.

1.2. CRITERIA FOR THE USEFULNESS OF CALCULI

(End ”Small rules”.)

1.2.2 Concise calculus

By concise calculi we mean calculi that consist only of few rules, and

nevertheless are powerful enough for proofs of interest.

Conciseness of a calculus helps the programmer to become familiar
with it. Calculi that consist of few rules are easy to memorize. Thus,
it becomes easier to find all rules that are syntactically applicable in a

proof situation. Conciseness makes a calculus a more handy tool.

Not being overwhelmed by a vast amount of rules, users of a concise
calculus will more easily plan and design their proofs. Hence conciseness

of calculi facilitates their goal-directed application.

In addition, programmers will more readily base their thought and un-
derstanding on a concise calculus than on a huge one. A calculus that
cannot easily be surveyed seems to be unsuitable as a foundation of

understanding.

We provide four techniques that we consider important in order to

obtain concise calculi:

economy of syntactic categories
e parametrized rules
e compact rules

e careful addition of rules

Economy of syntactic categories

In section 1.2.0 we mentioned economy of syntactic categories as a cri-
terion for convenient formula parsing and manipulation. In addition,
economy of syntactic categories contributes to a concise calculus by
avoiding that essentially the same rules must be stated for several syn-

tactic categories.

31

32 CHAPTER 1. WHAT MAKES A USEFUL CALCULUS?

Example 12 Programming languages usually contain the syntactic
categories of declarations and terms. Thus, for reasoning about equality
of function declarations and about equality of terms, the typical rules
of equality must be duplicated, that is, they must be stated for each
of these two categories. This duplication of essentially the same rules
can be avoided, if terms are the only syntactic category as suggested in

example 0.

(End of example.)

Therefore, if objects of different syntactic categories behave essentially
in the same way, one should try to unify these syntactic categories into

one.

(End ”Economy of syntactic categories”.)

Parametrized rules

By parametrization of a rule we mean the replacement of some rules by
a single rule, such that each of the old rules is an instance of the new

one. The new rule is called a parametrized rule.

Example 13 We take the commutativity rules of conjunction and

disjunction as a simple example:

AV B ANB
Bv A BAA

They can be replaced by a single parametrized rule:

where op € {V, A}

(End of example.)

The benefit of parametrized rules is twofold: Firstly, the calculus be-
comes smaller. Secondly, the user of the calculus learns and memorizes
the rules in a structured way: similarities and differences in the prop-

erties of operators are made explicit.

1.2. CRITERIA FOR THE USEFULNESS OF CALCULI

(Of course, a formal language for the applicability conditions of rules
is needed. But it is beyond the scope of this work to define such a
language.)

(End ”Parametrized rules”.)

Compact rules

By a compact rule we mean a rule that includes one or several other rules
as instances or combinations, and makes them surplus. In addition, we
require for compact rules that they lead to shorter and more easily

findable proofs than the original rules do.

Example 14 Logic with equality provides a typical example of the

replacement of a rule by a compact one.
Let s, t and u be meta-variables denoting terms. Then the well-known
rules of reflexivity, symmetry, and transitivity read as follows:

t=u t=u u=s
t:t u:t t:S

Leibniz’s law can be added in form of the rule

to = Ug ce . tn = Up
f(to,...,tn):f(uo,...,un) ’
where f is a meta-variable for function identifiers, and tq,...,%,, and
U, . . ., U, are meta-variables for terms.

Instead of the last rule we could add the rule

tOZUO tn:un

sltoo [z, ..ty x,] = s[ugo [xo, ... w0/ 2y]

where o ranges over substitutions of variables by terms. In application
to terms, substitutions are written as postfixes. As usual, [./.] denotes

substitutions.
The last rule obviously comprises Leibniz’s rule as an instance.

The advantage of the replacement of the Leibniz rule by the more gen-
eral one is well-known: Equality of the application of a composed func-

tion to equal terms can be proved in a single step instead of in a number

33

34 CHAPTER 1. WHAT MAKES A USEFUL CALCULUS?

of steps. Even more important, the introduction of a substitution in
the new rule further facilitates and shortens proofs in special theories

with equality, that is, in presence of non-logical axioms.

(From a theoretical point of view we could also eliminate the reflexiv-
ity, symmetry, and transitivity rules, because they are also included in
the generalized Leibniz rule. For practical application of the calculus,

however, it is more convenient to keep the three rules.)
(End of example.)

As indicated by our last example, compact rules tend to be more com-
plicated than the original ones. Therefore, one must weigh the merit

of a compact rule against its complexity.

(End ”Compact rules”.)

Careful addition of rules

In calculi for practical use, careful consideration whether to add a new
rule to a calculus or not, is even more important than in theoretical
investigations of calculi: if a calculus intended for theoretical investiga-
tion contains unnecessarily many rules, then only skilled logicians are
concerned; but if a calculus intended for practical use contains too many
or too few rules, then the programmer must cope with the problems.
In any case, the criteria for the addition of new rules differ consider-
ably from calculi for theoretical investigations to calculi for practical

application, as we shall see.

Two different kinds of rules can be added to a calculus:

e The new ruleis such that all theorems that can be proved with the
new rule could also be proved exclusively with the original rules.
Derived rules are contained in this group of rules: The application
of a derived rule can always be replaced by a combination of old

rules, without any change in the rest of the proof.

o The new rule enlarges the set of provable valid formulae. Of
course, such rules only exist for incomplete calculi. They make

the calculus less incomplete.

1.2. CRITERIA FOR THE USEFULNESS OF CALCULI

When should a new rule be added to a calculus, if we aim at concise
calculi? Of course, the new rule must meet our requirements of the
remaining sections. In addition, we distinguish between the two kinds

of new rules:

e A rule of the first kind should only be added to a calculus, if it
is very often applicable. Moreover, we require that the new rule
facilitates proofs. That is, an appropriate combination of the old
rules would be much harder to find than a proof using the new
rule. A further reason to add a rule is that it provides a good
basis for understanding. These are the main reasons to include a
new rule. The reduction of the length of proofs should only play

a 1ole if the reduction is considerable.

e A rule of the second kind should only be added to a calculus, if the
formulae that thus become provable are of practical importance.
That is, the new theorems must actually emerge in practical ap-
plications. With new rules of the second kind there is a particular
danger of obtaining complicated rules. We claim that instead of
addition of a complicated rule, one should rather accept a more
incomplete calculus. A too complicated rule will not be used and

in addition hampers familiarity with the calculus.

Whenever a rule is added to a calculus, the application of which is
not obvious, the designer of the calculus should provide the user with
a good method of the application of the rule. At least, examples of

evidence should be given.

(End ”Careful addition of rules”.)

1.2.3 Local proof steps

We call a proof step local, if it depends only on the formulae that have
already been derived. In particular, a local proof step must not depend
on the proof history, that is, on the shape and structure of the preceding
proof.

Let us consider an example of local proof steps.

35

36 CHAPTER 1. WHAT MAKES A USEFUL CALCULUS?

Example 15 In predicate calculi proof steps are local: one may derive
a formula during a proof, if it is an axiom or if it can be obtained from
already derived formulae by application of a rule. Particularly, the

proof step does not depend on how these formulae have been derived.

(End of example.)

This notion of locality of proof steps can immediately be adapted to
transformation calculi, where terms are manipulated instead of formu-
lae: a transformation step is local, if it depends only on the terms that

have already been derived.

In existing calculi, transformation steps often are non-local, because
they depend on the structure of the transformation history. We give

an example of this kind of non-locality.

Example 16 Let us consider the transformation calculus that hides
behind the applicability condition in example 5. This transformation
calculus contains three transformation rules, say, rg, 1 and r3. In every
transformation step, rule rqg may only be applied to a term ¢, if none of
the rules r; and ry have been applied in the transformation that lead
to t. Likewise, rule r;y may only be applied in a transformation step,
if only ro and r; have been applied in the preceding transformation.

Therefore, these transformation steps are non-local.

(End of example.)

In some transformation calculi, the proof history restricts not only the
set of rules applicable in a transformation step; the proof history re-
stricts also the positions in terms, at which rules may be applied. Let

us give an example of this kind of non-locality, too.

Example 17 In [19] Courcelle presents a transformation technique,
which he calls "restricted folding-unfolding”. The objects of transfor-
mation are systems of function declarations. The single function dec-
larations of a system form the positions at which transformation rules
may be applied. In every transformation step, a function declaration

A may only be transformed by use of a declaration I', if no transfor-

1.2. CRITERIA FOR THE USEFULNESS OF CALCULI

mation rule has been applied at position I' throughout the preceding

transformation. Hence the transformation steps are not local.

(End of example.)

Non-locality is often avoided by introducing labels into formulae or
terms. The labels are used to code the proof history or the trans-
formation history into the formulae and terms respectively. Although
this technique makes proof steps local, it does not make the calculus
better: as we have seen in section 1.2.1 the use of labels violates the

requirement for obvious syntactic applicability.

Our discussion suggests that we can restate locality of proof steps as
extensionality of derivation: whether a derivation is continuable by a
certain rule depends only on the derived formulae, and does not depend

on the structure of the derivation.

Although being of theoretical interest, calculi with non-local proof steps
are inappropriate for practical use. Non-locality offends against a num-
ber of requirements that we have stated for program development cal-

culi:

Since a proof step may depend on a wide range of the preceding deriva-
tion, and on its internal structure as well, the legality of proof steps
cannot be perceived easily. Thus the user of the calculus is hindered
from becoming syntactically familiar with it. By forcing its users to
take many properties into account at one time, a calculus with non-
local proof steps becomes an unhandy tool. Moreover, non-local proof
steps make the application of a calculus more error-prone, at least, if

it is performed by hand.

When planning a proof in a calculus with an extensional notion of
derivation, one must only decide which intermediate formulae to prove.
In a calculus with non-local proof steps, however, the structure of the
subderivations must be planned, too. Hence non-local proof steps make

proof design more difficult.

In addition, non-extensional notions of derivation are too complex to

provide a good basis for understanding. They will hardly be accepted

37

38 CHAPTER 1. WHAT MAKES A USEFUL CALCULUS?

by programmers as first principles of their thought.

1.2.4 Combination of the criteria

Unfortunately, not all stated criteria go well together.

When trying to keep a calculus concise, we may be faced with rules
that are not as simple as desired. We encountered this effect when we
replaced Leibniz’s rule by a generalization in example 14. A slightly
increased complexity of a rule is compensated if the rule is often appli-

cable since this helps the user to become familiar with it.

Another conflict arises, when a number of simple rules are to be added

to a calculus. Such a modification contradicts the conciseness criterion.

Moreover we have mentioned that careless observance of local proof

steps can lead to complicated rules.

Hence the design of a calculus must be a trade-off among all criteria.
We consider proof-oriented syntax, simple rules, and local proof steps
as most important. Conciseness of calculi seems to be slightly less

important.

Therefore a calculus for practical use will never be designed in a single
step. Design of a calculus will rather be a process of construction,
experiment, and adjustment. The experiments should become more
and more intricate as the number of cycles increases. At least the
final calculus (better some calculi before) should be accompanied by an

application method.

1.3 Influence of the proof environment on
the criteria

In section 1.1 we determined pen and paper as proof environment.
All criteria for the usefulness of calculi were based on this proof en-
vironment. To what extent would a change of the proof environment

influence the identified criteria?

1.3. INFLUENCE OF THE PROOF ENVIRONMENT

The requirement for systematic proof design was a essential reason of
each of the stated criteria. Systematic proof design is indispensable
even if we change to a mechanical system as proof environment. There-
fore we claim that all criteria remain relevant in a machine-assisted

proof environment.

Not being trivial, the transition from pen and paper as proof envi-
ronment to a mechanically supported one opens an interesting field of
investigation: Having found a method for doing proofs of a certain area
(e.g. proofs about recursive definitions), one could investigate how this
method could best be supported by a mechanical system. That is, one
should refine the method in order to exploit the mechanical support for
routine steps as far as possible. These questions, however, go beyond

the scope of this work.

39

40

CHAPTER 1.

WHAT MAKES A USEFUL CALCULUS?

Chapter 2

A calculus of recursion

Now we apply the criteria of chapter 1 in order to find a useful calculus
for recursion. There exist many different languages with recursion,
and many different rules for reasoning about programs written in those
languages. It is far from obvious, which of them are better suited to
program development than others. Therefore we use the criteria to

judge the usefulness of calculi of recursion.

We will first present a language, then formulae and rules; we will discuss
our choices and compare them to languages and rules in the literature.
Finally we define some notation that we need in the examples of chap-
ter 3.

We will not list an entire calculus for program development, but con-
centrate on the rules relating to recursion. Likewise we prove only such

properties at the meta-level, which relate to recursion.

2.0 Object language

In this section we define a class of languages, in which we will write all
our examples throughout this work. All these languages contain a re-
cursion operator. In order to concentrate on recursion, we leave certain
parts of the language unspecified, such as basic sorts and predefined
functions. Thus we obtain a whole class of languages, which we can
instantiate as it is needed in each of our examples. Those parts of our

examples, however, which refer to recursion, are handled uniformly.

41

42 CHAPTER 2. A CALCULUS OF RECURSION

2.0.0 Syntax

In this section we give the syntax of the class of languages that we will

use throughout this work.
We start with the type system.

Let S be a set of symbols, called sorts, and Bool € S the sort of boolean

values.

Definition (Types) The set of typesis inductively defined as follows:

e Fach sort s € S is a type.

o If 75 and 7y are types, then so are 79 X 71 and 79 — 1.

(End of definition.)

Types of the form 79 x 71 stand for product types; types of the form
79 — 71 stand for function types. (The precise definitions follow in
section 2.0.1.) The set of sorts can be instantiated differently from

application to application.

Notation The operator x binds tighter than —. As usual, the operator

— associates to the left such that p — 0 — 7is parsed as (p — o) — 7.

(End of notation.)

Let F' be a set of symbols, called function symbols, such that a type
is associated with each function symbol f € F. For each type 7 we
assume a distinguished function symbol L, to belong to I'. Whenever
its type can be inferred from the context, we simply write L for 1,.
Function symbols of non-functional types can be considered as nullary
function symbols or as constants. Moreover, let ¢t and ff be function

symbols of type Bool.

The set S of sorts, and the set [’ of function symbols together form a
signature ¥ = (S, F).

Let X be a set of variables such that a type is associated with each
variable z € X.

2.0. OBJECT LANGUAGE

Definition (Terms) The set T of terms is inductively defined as

follows:

o If f € F is a function symbol with type 7, then f is a term of
type 7.

o If + € X is a variable with type 7, then z is a term of type 7.

o If #5 is a term of type Bool, and t; and t, are terms of type 7,

then if ¢y then ¢, else ¢, fi is a term of type 7.

o If t, {5 and t; are terms of types 19 X 71, 7o and 7 respectively,
then (Zo,t1) is a term of type 7o X 74, and fst t and snd t are terms

of types 75 and 71 respectively.

o If x € X is a variable of type o, and ¢ is a term of type 7, then

Ax.tis a term of type o — 7.

o If #is a term of type 0 — 7, and s is a term of type o, then ¢ s is

a term of type 7.

o If z € X is a variable of type 7, and ¢ is a term of type 7, then

rec x.tis a term of type 7.

(End of definition.)

One can understand these terms informally as follows: Function sym-
bols denote predefined functions (inclusive of constants). Variables
may also occur as terms. By if . then . else . fi we denote condi-
tional expressions. Terms of the kind (.,.) denote pairs, the functions
fst and snd denote projection to the first and to the second compo-
nent of pairs, respectively. As usual, A denotes function abstraction,
and juxtaposition denotes function application. Finally, rec denotes

recursive definition. (The precise definitions follow.)

Notation We write = for syntactic equality on terms, and on symbol
sets (such as F' and X). The negation of = is denoted by .

(End of notation.)

43

44 CHAPTER 2. A CALCULUS OF RECURSION

Free and bound variables are defined as usual, where A and rec are the

only binding operators in terms.

Definition (Substitution in terms) The function .[./.] substitutes
terms for variables in terms. It is defined by structural induction on

terms as usual:

fitfz] =1

= {0 s

if t5 then t; else 1, fi[t/z] =

if to[t/x] then t1]t/z] else ty[t/x] fi

(Lo, t)[t /] = (Lot /], [t/ «])
(fstu)[t/x] = fst(ult/z])
(snd w)lt/z] = snd(ult/2])
(Ay. u)[t/x] =

(u[z/y])[t/x]) if #y, and y is free in ¢,
and z is a fresh variable
s)[t/x] = (ult/«])(s[t/x])
(rec y.u)[t/x] =
rec y. u ife=y
rec y. (u[t/x]) if 2 2y, and y is not free in ¢
rec z. ((u[z/y])[t/x]) if @ #y, and y is free in ¢,
and z is a fresh variable

)\y u ife=y
t/:z; if #y, and y is not free in ¢

(End of definition.)

2.0.1 Semantics

Now we give denotational semantics to the languages defined in the
previous section. For that purpose we need some standard definitions

from order theory.

Order-theoretic preliminaries
We start with the well-known notion of partially ordered sets.

Definition (Partially ordered sets) A partially ordered set is a

2.0. OBJECT LANGUAGE

pair (D,C), where D is a set, and C is a binary relation which is

reflexive, antisymmetric and transitive.

(End of definition.)

Partially ordered sets may have least elements:

Definition (Least elements) Let (D,C) be a partially ordered set.
An element d € D is called a least element of D, if d C z holds for all
zeD.

(End of definition.)

Each partially ordered set has at most one least element. This property

is an immediate consequence of the definitions.

The concept of upper bounds, and least upper bounds is also well-

known from order theory:

Definition ((Least) upper bounds) Let (D,C) be a partially
ordered set, and £ C D a subset of D. An element d € D is called an
upper bound of E. if x T d holds for all z € K. An element d € D is
called a least upper bound of E, if d is a least element of the set of all
upper bounds of £ in D.

(End of definition.)

Definition (Directed sets) Let (D,C) be a partially ordered set,
and £ C D a subset of D. F is called directed, if E is not empty, and

if for each two elements x,y € F there is a z € F such that * C z and
y C z hold.

(End of definition.)

Definition (Complete partial orders) A complete partial order,
or cpo for short, is a partially ordered set (D,C) with a least element

such that every directed subset of D has a least upper bound.

(End of definition.)

45

46 CHAPTER 2. A CALCULUS OF RECURSION

Notation We will use the following notations:

o We write = for the identity relation on a set D, that is, for equality
of the elements of set D.

e When the relation C is clear from the context, we briefly write D
for partially ordered sets (D,C).

e We write L for the least element of a partially ordered set, if it

exists.

o We write || D for the least upper bound of a partially ordered set,

if it exists.

(End of notation.)

Continuous functions. A function is called continuous, if it pre-

serves least upper bounds. The precise definitions follow:

Definition (Monotonicity) Let (D,Cp) and (E,Cg) be partially
ordered sets. A function f : D — FE is monotonic, if f(z) Cg f(y)
holds for all x,y € D with « Cp y.

(End of definition.)

Definition (Continuity) Let (D,Cp) and (F,Cg) be cpo’s. A
function f : D — F is continuous, if it is monotonic, and f(LUM) =

L({f(m)|m € M}) holds for every directed subset M C D.

(End of definition.)

Let (D,Cp) and (E,Cg) be cpo’s. Let D — FE be the set of all
continuous functions from D to F. Let T be the pointwise ordering on
D — FE (that is, let f C ¢ if and only if f(z) Cg g(x) holds for all
x € D).

Then (D — F,C) again is a cpo.

For every cpo (D — D, C) the continuous function FIX : (D — D) — D

yields the least fixed point of functions. Formally, for every continuous

2.0. OBJECT LANGUAGE

function f the following properties hold:

FIX(f) = f(FIX(f)) (fixed point)
Vde D: f(dy=d= FIX(f) T d (least fixed point)

The least fixed point of a function can be represented as a least upper

bound:
FIX(f) = |_|f”J_ ,
where f™ denotes n-fold iteration of f.

(End ”Continuous functions”.)

Products. Let (D,Cp) and (E,Cg) be partially ordered sets. Let
D x E be the Cartesian product of sets D and E. Let C be the coor-
dinatewise ordering on D x E (that is, let (d,e) C (d', ¢') if and only if
dCpd and e Cg €).

Then (D x E,C) again is a partially ordered set. If (D,Cp) and (F,Cg)
are cpo’s, then (D x E,C) is a cpo.

(End ”Products”.)

Booleans. The cpo IB of boolean values consists of the three elements
{tt, ff, L}, where L is the least element, and ¢ and ff are incomparable

elements.

(End ”Booleans”.)

(End ”Order-theoretic preliminaries”.)

Notation We use the symbols
><7 ('7 ')7 —>7 A? J‘?

and juxtaposition for function application both in the object language

(cf. section 2.0) and at the meta-level of semantics.

47

48 CHAPTER 2. A CALCULUS OF RECURSION

We write [.,.] for the update of functions: if f: M — N is a function,
and m € M,n € N, then the function fln/m]: M — N is defined as
follows:

n ify=m

flnfml = Ay. { f(y) otherwise

(End of notation.)

Now we are ready to define a denotational semantics for our language.
We will give a non-strict (also known as call-by-name or lazy) denota-
tional semantics. The definition we will give is standard in denotational

semantics (for instance cf. [32]).

We begin with the semantics of types. For sorts we only assume that
they are interpreted as cpo’s. Product types are interpreted as non-
strict products. Function types are interpreted as sets of continuous

functions.

Definition (Semantics of types) Let D be a function, which
associates a cpo with each sort s € S. Then D is extended to types by

the following structural induction:
e D(t xo)=D(r) x D(o)

e D(t —o0)=D(r) — D(o)

(End of definition.)

Definition (Continuous algebras) Let ¥ be a signature. A con-
tinuous Y-algebra C' consists of a function D, which associates a cpo
s with each sort s of the signature, and of an element f € D(r) for
each function symbol f of type 7 of the signature, where sort Bool and
the function symbols L, t¢ and ff are interpreted in the standard way.

For D(7) we write ¢,

(End of definition.)

Let C' be a continuous algebra. Then FEnv is the set of all functions

from variables X into the cpo’s of €' such that each variable x of type 7

2.0. OBJECT LANGUAGE

is associated with a data value of 7¢. The functions in Env are called

environments.

Definition (Semantics of terms) Let ' be a continuous algebra,

and F'nv the set of environments. The function

[

associates a value [t]y of 7¢ with each term ¢ of type 7, and each

environment 7. Function [.] is defined as follows:

[/Tn = £©
[2]n =n =
[t:i]n if [to]n = tt
[if 1o then t; else ¢, filn = < [t2]n if [to]n = ff
1 if [to]ln = L
[(to, 21 = ([to]n, [1a]n)
[fsttlp=do, if[t]n = (do,dr)
[sndt]n =dy, if [t]n = (do,dy)
Do 1ln = M. [A(ald/])

[t sIn = ([tTn) ([sIn)
[rec . t]n = FIX(Ad. [t](n[d/z)))

(End of definition.)

(The reader might wonder why we have not used lifted function spaces.
We have given the above semantics in order to keep things simple, which
are not of primary interest in this work. The choice does not influence

the sequel.)

Note that mutual recursion can be expressed in the language by
rec p. t, where p is of product type. So, if we write (x,y) for p, the
recursion term can written as rec (x,y). (o, 1), where « and y may oc-
cur both in ¢ty and ¢;. Since p can be of any product type, this notation
is more general than mutually recursive function declarations. This is

what we meant in example 10 of chapter 1.

Lemma (Substitution lemma for terms) Substitution in terms

is compatible with update of environments: Let ¢ and u be terms, = a

49

50 CHAPTER 2. A CALCULUS OF RECURSION

variable, and 7 an environment. The following equivalence holds:
[tlu/]n = [e] nllul n/x]

Proof By structural induction on t.

(End of proof.)

2.0.2 Discussion

According to our requirements of chapter 1 we have chosen the recur-
sion operator so that it can be written into terms. No new syntactic
category, such as function declarations, is introduced. Thus the syntax
becomes simple and easily manipulable. We have already discussed the

rec-notation as an example in chapter 1.

Moreover, we have chosen the operator rec instead of fix for the
reasons, which have been discussed in example 4 of chapter 1: Since
in practice the least-fixed-point-operator is in most cases applied to a
A-abstraction, it is worth to introduce the abbreviation rec for that

combination.

2.1 Formulae

Next we define formulae on the class of terms that have been defined in
the previous section. Again we get a whole class of formula languages
since we do not presuppose a concrete signature, and in addition allow

user-defined predicate symbols.

2.1.0 Syntax

Let P be a set of symbols, called predicate symbols, such that a type is
associated with each predicate symbol p € P.

Definition (Atomic formulae) If ¢ and u are terms of 7', which
have the same type 7, and p is a predicate symbol of P with associated

type 7, then

o 1 u

— Y

2.1. FORMULAE 51
e { =u,and
o p(t)

are atomic formulae.

(End of definition.)

The symbols C and = are built-in predicate symbols that denote in-
equality and equality respectively. The predicate symbols of P may be
specified by the user.

Notation We use the symbols C and = both on the syntactic level

and on the semantic level (as in section 2.0.1).

(End of notation.)

Definition (Formulae) The set of formulae is inductively defined

as follows:

e Every atomic formula is a formula.

o If A and B are formulae, and € X is a variable, then
-“AJA= B, A& B AVB ANB,Ve Aand dz A

are formulae.

(End of definition.)

Notation In order to allow omission of brackets, we give binding pow-
ers to the logical connectives. We list them from highest binding power

to lowest:
YA
=, &

=

Connectives of the same line are given equal binding powers.

52 CHAPTER 2. A CALCULUS OF RECURSION

(End of notation.)

Definition (Substitution in formulae) The function .[./.] sub-
stitutes terms for variables in formulae. It is defined by structural

induction on formulae as usual:

(s Cu)[t/z] = (s[t/2]) C (u]
(s = u)[t/z] = (s[t/z])
p(w)lt/x] = p(ult/z])
~A)t/] = (At /z])
Avop B)[t/z] = (Alt/x])op(Blt/x])

where op ranges over =, <, V and A

tfz])
(ult/e])

o~

(opy A)lt/x]
opy A ife=y
op y(Aft/z]) if #y, and y is not free in ¢

op z((Alz/yD[t/x]) if « #y, and y is free in ,
and z is a fresh variable

where op ranges over the binding operators V and 3

(End of definition.)

2.1.1 Semantics

Definition (Truth values) We take {true, false} as the set of
truth values. We presuppose the usual functions = (negation), = (im-
plication), < (bi-implication or equivalence), V (disjunction), and A

(conjunction) on the truth values.

(End of definition.)

Notation We use the following notations:

e The identity relation on the truth values is denoted by =.

o We use the symbols =, =, <,V and A both at the syntactic level

and at the semantic level.

o We use the symbols V and J both at the object level and at the

meta-level.

2.1. FORMULAE

(End of notation.)

Definition (Continuous interpretations) A continuous inter-

pretation [consists of a continuous algebra €, and of a function

pl o 79 — {true, false} for each predicate symbol p € P of type

T.

(End of definition.)

Definition (Interpretation of formulae) For every continuous
interpretation I, and every environment n a truth value is assigned to
each formula in the following way by the function [.], which is defined

recursively on the structure of formulae:

[t € un = ([t]n € [u]n)

[t = un = ([t]n = [uln)
[p(1)In = p' (tTn)

[~Aln = ~([Aln)

[A = Bly = ([Aln = [Bln)
[A < Blp = ([Aln < [Bln)
[Av Bln = ([Aln v [BIn)
[AA Bln = ([Aln A [BIn)
[Va Ay = Vd : [A](n[d/=])
[Fz Allp = 3d : [A](n[d/=])

(End of definition.)

Definition (Validity) A formula A is called valid under a continu-

ous interpretation [, if for all environments 7 of I the following holds:
[Aln = true

(End of definition.)

Lemma (Substitution lemma for formulae) Substitution in for-

mulae is compatible with update of environments: Let A be a formula,

33

54 CHAPTER 2. A CALCULUS OF RECURSION

t a term, x a variable, and n an environment. The following equivalence

holds:

[Alt/2]1n = [AT #llt] 0 /<]

Proof By structural induction on A.

(End of proof.)

2.2 Rules

Now we give the rules relating to recursion. They are rules of a pred-
icate calculus. But as already mentioned, we do not list the entire
calculus; we confine ourselves to those rules that are important in our

development method.

2.2.0 Syntactic admissibility

We have seen that least fixed points can be approximated by function
iterations. This leads to the idea to prove formulae for all elements
of the approximation, and to conclude that the formula holds for the
least fixed point. Unfortunately, as is well-known, this reasoning is not
possible for all formulae. Therefore we first characterize the formulae

for which this pattern of reasoning is allowed.

Definition (Admissibility) A formula A is called admissible in a
variable * € X of type 7, if for all continuous interpretations I, for all

environments 7, and for all directed sets D C 7! the following holds:
It Vd € D : [A](n[d/x]) = true, then [A](n[L D/x]) = true.

(End of definition.)

This semantic notion of admissibility is undecidable. Since we have
required decidable applicability conditions for rules in chapter 1, we
must define a decidable property of formulae, which implies admissibil-
ity. In [53] such a characterization is given, which is sufficient for most

practical applications:

2.2. RULES

Definition (Syntactic admissibility) Let © € X be a variable.
The set of formulae that are syntactically admissible in x is inductively

defined as follows:

o If = is not free in formula A, then A is syntactically admissible in

x.

o If ¢t and u are terms of the same type, then t C u and ¢ = u are

syntactically admissible in z.

o If # and u are terms of the same type, and x is not free in u, then

=(t C u) is syntactically admissible in x.

o If formula A is syntactically admissible in x, and y is any variable,

then Vy A is syntactically admissible in x.

o If formulae A and B are syntactically admissible in x, then so are

AV Band AN B.

o If formulae = A and B are syntactically admissible in x, then so

is A= B.

e If 7 is a term, then —(¢ = 1) is syntactically admissible in x.

(End of definition.)

Since most of the proof is omitted in [53], we now show that syntactic

admissibility indeed implies admissibility.

Proposition (Syntactic admissibility) Syntactic admissibility

implies admissibility.

Proof Let formula A be syntactically admissible in variable x of type
7. Let I be a continuous interpretation, an environment, and D C 7/

a directed set.

We prove the admissibility of A by induction on the generation rules

for syntactically admissible formulae:

e Let o be not free in A. Then the admissibility of A follows from

the coincidence lemma for formulae.

)

56 CHAPTER 2. A CALCULUS OF RECURSION

o If A is of the form ¢ C u, then admissibility follows from mono-
tonicity and continuity of all functions of the object language.
If A is of the form ¢t = w, then admissibility follows from the
admissibility of t C v and u C .

o If A is of the form —(¢ C u), and « is not free in wu, then admis-
sibility follows from the coincidence lemma for terms, and from

monotonicity of all functions of the object language.

o Let A be of the form Vy B, where B is syntactically admissible
in . If y = a, then the admissibility of A follows from the first

case above, because z is not free in Vz B.

If y & @, then the following holds:

Vde D : [y Bl(sld/«))
& {semantics of formulae; update of environments}
vd & D, Ve : [BY(nle/y))d/2])
= {B is syntactically admissible in x;
induction hypothesis}
Ve - [BI((nle/y)IUD/])

& {semantics of formulae; update of environments}

[y Bl(n[UD/x])

o Let A be of the form BV C, where B and C are syntactically

admissible in x.

Vde D: BV Cl(nld/x])
& {semantics of formulae}
vde D ([B)(ald/2]) v [Cl(ald/=)))
= {let Dg C D be the set of all d with
[B](n[d/x]) = true; let D¢ be defined
analogously for C'; distinguish the cases UD € D
and UD¢D; for the latter distinguish further:
Dp or D¢ is finite or both are infinite; for the

latter: both Dg and D¢ are directed or not

2.2. RULES 57

both;
induction hypothesis; semantics of formulae}

[BV Cl(nuD/x])

Let A be of the form B A C, where B and C are syntactically

admissible in x.

v [B A Cnld/a])

& {semantics of formulae}
vd : ([Bl(nld/z]) A TCnld/«]))

= {induction hypothesis on B and C'}
[BI([LD/a]) ACTn[UD/])

& {semantics of formulae}

[BACl(nUD/x])

o If Aisof the form B = (', where =B and (' are syntactically ad-
missible in @, then A is admissible, because B = (' is equivalent

to mB V (', and because of the preceeding case.

e The formula =(¢ = L) is equivalent to =~(¢t C L), and thus admis-

sible according to the third case above.

(End of proof.)

2.2.1 Fixed point induction rule

The fixed point induction rule states that the validity of a formula for a
least fixed point may be inferred from its validity of the approximations,

provided the formula is syntactically admissible:

AlL/z]
Va(A = Alt/x]) where A is syntactically admissible in x
Alrec z. t/x]

We prove the soundness of the fixed point induction rule.

58 CHAPTER 2. A CALCULUS OF RECURSION

Proof Let A be syntactically admissible in x, and 5 an arbitrary en-

vironment in a continuous interpretation.

[Alrec x. t/z]] n

& {substitution lemma for formulae}
[Alnllrec w. t] n/x]

& {semantics of terms}
[Aln[FIX(A. [t] nld/=]) /2]

& {approximation of least fixed point}

(ATl L] dn/2]

neN

dos = [1l]
= {admissibility of A in '}
Vn e IN : [A]n[d, /]
= {mathematical induction}
[Al nldo/x] A
(¥ € IV : [nldn/] = [A] 1l /)
& {definition of dy and d, 1}
[Aln[L/z] A
(Vn e IN : [A] nld,/«] = [A] n[[t] nld./x]/2])
& {semantics of terms; property of update}
[ATn[Ln/x] A
(¥ € IN - [ALnld/a] = [A] (nlde /2] (I nldfa)/f2])
& {substitution lemma for formulae}
[A[L/2]]n A
(¥ € IV : [A] nld /2] = [Alt/x]] nlds /o))
& {semantics of formulae}
[A[L/2]]n A
(Vne IN : [A= Alt/x]] n]d./x])
= {universal quantification on more elements}
[A[L/2]]n A
(Vd: [A = Alt/a]]n[d/z])

& {semantics of formulae}

2.2. RULES

[A[L/]] 7 A
[Va(A = Alt/])]n

(End of proof.)

In the inductive step
Va(A= Alt/z])

we call the induction hypothesis A fully applicable to the conclusion
Alt/z], if its application removes all occurrences of induction variable

x.

2.2.2 Fixed point rule
The fixed point rule is our second rule relating to recursion.

The fixed point rule states that a recursively defined object is a fixed
point of the defining function:

rec z. { = t[rec x. {/z]

We prove the soundness of the fixed point rule.

Proof Let an arbitrary continuous interpretation be given, and n be

an arbitrary environment in that interpretation.

[t[rec x. t/x]] n

= {substitution lemma for terms}

[e(nIrec =. tn/=])

= {semantics of terms}

[D(n[FIX(Ad. [t)(nld/x]))/«])

= {fixed point approximation }

[tI(nlL](©"L)/2]) . where © = Ad. [t](n[d/2])

n

= {continuity of semantics}

LI El(n[©" L /=])

n

39

60 CHAPTER 2. A CALCULUS OF RECURSION

= {definition of O}
| Jor+tL
= {0° = 1 least element}

| j]e"L

n

= {fixed point approximation; definition of O}
FIX(Ad. [t](n[d/x]))
= {semantics of terms}

[rec z. t]n

(End of proof.)

2.2.3 Generalization rule

The generalization rule is well-known from predicate calculus. We re-
peat it here, because it plays an important role in our development
method.

The generalization rule states that all variables (free and bound ones)
of a formula may be universally quantified:

A
Vz A

We prove the soundness of the generalization rule.

Proof Let an arbitrary continuous interpretation be given.
Vn € Env : [A]n
= {environments}
Vn € Env :Vd: [A](n[d/x])
= {semantics of formulae}

Vn € Env : [Va A]n = true

(End of proof.)

2.2.4 Further rules

Fixed point induction, and the fixed point rule are the only rules con-

cerning recursion in our calculus. In addition, we use axioms and rules

2.2. RULES

of predicate logic. But we do not list them. It is well-known that min-
imal predicate calculi, which are used in mathematical logic as objects
of study, are inappropriate to practical proof. Hence we should have
to list many more rules. Since the laws of predicate logic are common

knowledge, we leave them out.

The calculus can also be enriched by other rules, in particular by struc-
tural induction rules. We leave them out, too, because they do not play

a special role in our method.

It would go beyond the scope of this work to include a whole program
development calculus. Hence we have decided to give up full formaliza-

tion in order not to get bogged down into detail.

2.2.5 Discussion

Now we discuss why we have included the above rules, and omitted
other rules for recursion, which are known from the literature. In this
section we confine ourselves to reasons concerning the criteria of chap-
ter 1. Methodological reasons that led to exclusion of rules will be

discussed in chapter 4.

A pair of rules, which is well-known from the literature, is the unfold-
rule together with the fold-rule ([10]). The unfold-rule substitutes in-
side the body of a recursive definition the recursive definition itself for
the variable bound by the recursion operator. The fold-rule does the

converse.

We can express the unfold-rule in our notation as follows:

rec x. t[z/y] = rec z. (t[t[z/y]/y])

The fold-rule can be expressed as follows:

rec z. t{u/y| = rec x. u
rec z. t{u/y] Jdrec . t[x/y]

It is well-known that 3 in the conclusion of the fold-rule cannot be

replaced by =. Application of the fold-rule may lead to smaller values.

61

62 CHAPTER 2. A CALCULUS OF RECURSION

Speaking operationally, the fold-rule preserves only partial correctness,

but termination can get lost.

Therefore the fold-rule has extensively been studied in the literature,
in order to find additional conditions that allow equivalence in the
conclusion. Those investigations led to a great amount rules based
on the unfold/fold-technique. But those extended rules contradict the

criteria found in chapter 1 in two respects:

Firstly, those rules tend to be rather complicated. We have seen such
a rule in example 5 in chapter 1. Because of our requirement for sim-
ple rules, we did not include such modified unfold/fold-rules into our

calculus.

Secondly, the transformation calculi, in which those elaborate rules are
used, do not meet the requirement for local proof steps: typically, the
applicability of a rule depends on the structure of the transformation
history. We have mentioned such a non-local transformation calculus
in example 17 of chapter 1. The loss of locality was another reason for

which we excluded such rules from the calculus.

Although fulfilling the criteria of chapter 1, the pure unfold-rule and
fold-rule given above do not belong to our calculus. They have been ex-

cluded for methodological reasons, which we will discuss in chapter 4.

2.3 Notations for the examples

In this section we introduce notations that we need in the examples of

chapter 3.

Lists. We introduce
List

as the sort of finite lists (also called sequences). Since we need lists on
different element sorts, we use the notation List(7) for lists on elements

of type 7.

2.3. NOTATIONS FOR THE EXAMPLES 63

Sort List has three strict constructors:

¢ List
(.):7 — List
.o Lest, List — List

By ¢ we denote the empty list; the constructor (.) generates lists with
one element; list concatenation is denoted by . o ..

In addition, the functions

hd: List — 1
tl: List — List

are given.

The functions hd and t! stand for selection of the head and tail of a

list, respectively. They are assumed to obey the usual laws.

These notations are understood to enrich the set S of sorts, and the set

F' of function symbols.
(End ”Lists”.)
Pattern matching. For convenience, we use the notation of pattern

matching in our examples. Since it is known from many programming

languages, we do not define it precisely. Instead we give an example:

A function f on lists can be defined by pattern matching:

fle)y=t
f{zyol)=u

This abbreviates the following definition:
f=As. if s =¢ then t else u[hd s/x,tl s/l] fi

(End ”Pattern matching”.)

64

CHAPTER 2. A CALCULUS OF RECURSION

Chapter 3

Examples of proofs about
recursion

In this chapter we develop recursive programs from specifications for
a number of examples. Because of their length, we cannot present the
examples in full detail. But we explain the main steps of the develop-

ments, and how they relate to our method.

3.0 List reversal

In order to acquaint the reader with our development method for re-

cursion, we start with the small example of list reversal.

The task is to develop a tail-recursive function F' from a recursively
defined reverse function rev. In the literature (e.g. [43], [3]) the solution
F1s usually presented, and then proved equal to rev. But it is not said
how F' can be found systematically, and how the lemma used in the

proof can be found.
We use the list notation introduced in section 2.3 in this example.

Assume the following recursive definition of the reverse function rev to

be given:
rev = rec r. As. if s = ¢ then ¢ else r(t/s) o (hd s) fi

Let 7,., denote the functional associated with this recursive definition.

65

66 CHAPTER 3. EXAMPLES OF PROOFS

Our task is to develop a tail-recursive function F' with the property

(Rev) revC F.

Since the left hand side of specification (Rev) is recursively defined,
we will refine this specification by fixed point induction. Therefore we
start with an analysis, whether fixed point induction on rev is possible

and promising.

Fixed point analysis. Let us analyse fixed point induction on rev in
specification (Rev). The base case holds trivially. The inductive step

18

VrerCF = (rer)CF.

By definition of 7,.,, the inductive step is equivalent to

Vr
rC F =
As.if s =¢ then ¢ else r(tls)o(hds) iC F .

The induction hypothesis r C F'is applicable to r(¢ls) in the conclusion
of the inductive step. But since the function o is applied to r(¢/s), and
since we are interested in a tail-recursive definition of F', nothing would

be gained, if we applied the induction hypothesis.

(End of fixed point analysis.)

Thus we have found a fixed point induction in which the induction hy-
pothesis is fully applicable, but application of the induction hypothesis
would lead to a term of an inappropriate shape. Therefore we introduce

an auxiliary function.

Auxiliary function. Now we abstract the term that prevented us

from applying the induction hypothesis to an auxiliary function h:
h=Ar.As,t. (rs)ot

The first argument abstracts the induction variable.

3.0. LIST REVERSAL

From now on we are looking for a tail-recursive function ' that fulfils

the following specification:

(Aux) hrevC G

How can function F' be defined in terms of (G so that the original spec-
ification (Rev) is fulfilled? We calculate:
rev C F
& {definition of h}
As. hrev(s,e) C F
= {specification (Aux) of G}
As. G(s,e) T F
The last inequation can immediately be fulfilled by defining F' as fol-

lows:

(End of auxiliary function.)

Now we recursively apply our development method in order to derive

a function . The start is fixed point analysis.

Fixed point analysis, and fixed point induction. We analyse fixed

point induction on rev in specification (Aux).

The base case is trivially fulfilled, that is, it imposes no restriction on
G-
hl1lCd
& {definition of h; strictness of o}
1CG
& {L least element}

true

Now we turn to the inductive step. Let r be such that the induction

hypothesis A r C G holds.

h(Trew) E G

67

68 CHAPTER 3. EXAMPLES OF PROOFS

& {definition of h}

As,t. ((Trep) 8) 0t C G
& {definition of 7,., }

As,t. (if s =¢ then ¢ else r(t/s)o (hds) fi)ot C G
& {strictness of o}

As,t.if s =¢ then ¢ else r(tls)o(hds)ot iC G
& {definition of h}

As,t.if s =c then t else hr(tls,(hds)ot) i C G
= {induction hypothesis}

(I) As,t.if s = then t else G(tls,(hds)ot) A C G

This time application of the induction hypothesis was reasonable, be-

cause it put G at a tail-recursive position.

(End of fixed point analysis, and fixed point induction.)

In order to fulfil specification (I), we turn it into a recursive definition

of Gt
(G) G =recyg. As,t.if s =¢ then t else g(tls,(hds)ot)fi

By the fixed point rule it immediately follows that (G) implies (I).

Specifications (F) and (G) together form a program for F.

3.1 Nested recursion

Now we come to a more difficult example. It is taken from [3]. There
a function F' is defined with nested recursion, and a function, say G,
with tail-recursion. It is stated that both functions are equivalent, but
unfortunately, no proof is given. The example turns out to be difficult

enough that ad hoc proofs are likely to fail.

Therefore, let us treat this example by our development method. We

will not only prove the equivalence of I’ and &, but develop G from F'.

3.1. NESTED RECURSION
We are given the following definition of I' with nested recursion:
F=rec f. \x.if pa then g else f(f(ha))fi,

where p, ¢ and h are function symbols that are not specified further.

Let 7/ denote the functional associated with the recursive definition of

F.

Our task is to develop a function G that is tail-recursive, and fulfils the

specification

F=dG.

We develop GG from the inequation
(GE) FLCG,

and prove the remaining inequation
(LE) GCF

thereafter.

Fixed point analysis. We analyse fixed point induction on F' in the

specification (GE). The inductive step is
Vi fCG = da.if px then g else f(f(ha)) i CG.

The induction hypothesis is fully applicable in the inductive step, but it
does not lead to a tail-recursive form, because of the nested occurrence
f(f(h x)) of the induction variable f. Therefore we do not apply the
induction hypothesis.

(End of fixed point analysis.)

Since fixed point induction would have lead to a term of an inappro-

priate shape, we define an auxiliary function.

Auxiliary function. We need an auxiliary function that abstracts

the induction variable, and the term that prevented us from applying

69

70 CHAPTER 3. EXAMPLES OF PROOFS

the induction hypothesis. Therefore we define a function iter, which

iterates the induction variable f:

iter = rec tt. Af. Ax,i.if ¢ =0 then z else it f(fa,i—1)fi.

Now we must develop a tail-recursive function () with the property

(Aux) dter F=Q.

We need a definition of function G, which we had to develop originally,
in terms of function () so that specification (GE) is fulfilled. Therefore

we calculate:

FCGQ

& {definition of iter}
Az.iter F(z, 1) C ¢

& {specification (Aux) of @}
Ar. Q(z, 1) C G

The last inequation can immediately be satisfied by defining

(G) G=de.Qa,1).

By requiring iter F' = () in (Aux) instead of iter I' T (), we have
already fulfilled specification (LE).

(End of auxiliary function.)

Now we recursively apply our development method to the new specifi-

cation (Aux). We again develop @) from the inequation
(AuxGE) dter FCQ,

and prove the remaining inequation
(AuxLE) @ Citer F',

thereafter.

Fixed point analysis, and fixed point induction. There are two

possibilities of fixed point induction in (Aux): F and iter.

3.1. NESTED RECURSION

Fixed point induction on F' fails, because the induction hypothesis is

not applicable in the inductive step.

Now we analyse fixed point induction on iter. Let 7., denote the
functional that is associated with the recursive definition of iter. Since
the base case is trivial, we immediately come to the inductive step. Let
1t be such that the induction hypothesis it F' C () holds. We calculate

for the conclusion of the inductive step:

Titer 1t F'C Q)
& {definition of 7, }

Ax,i.if ¢ =0 then z else it F(Fa,i—1)fi CQ
= {induction hypothesis}

Az,i.if © =0 then z else Q(Fz,0—1) fi CQ

Here we did apply the induction hypothesis, because () became an

outermost operation in the else-branch.

(End of fixed point analysis, and fixed point induction.)

The last line cannot yet be turned into a definition of (), because it still
contains F'. Therefore we bring it into a form to which we can again
apply our development method. The last line is implied by conjunction

of the following two inequations:

Va:ax = Q(x,0)
Q) Va,i: Q(F i) EQz,i+1)

We recursively apply our development method to (Q).

Fixed point analysis, and fixed point induction. Since we do not

know (), we can only do fixed point induction on F' in specification

(Q).
By requiring strictness
(S) Vi:Q(L,e)= L1,

we strengthen the base case.

71

72 CHAPTER 3. EXAMPLES OF PROOFS

Let f be such that the induction hypothesis V¢ : Q(fx,7) C Q(x,i41)

holds. We calculate for the conclusion of the inductive step:

Qlrr £ 2,1) € Qe +1)

& {definition of 75}
Q(f px then ga else f(f(hx)) fi,i) C Q(z,i+ 1)

s (o)
if pa then Q(gx,7) else Q(f(f(ha)),i) i C
Qz,i+1)

= {induction hypothesis}
if pa then Q(gx,7) else Q(f(hz),e+1) fi C
Qz,i+1)

= {induction hypothesis}
if pa then Q(gx,7) else Q(hx,0+2) fi CQ(x,i41)

(End of fixed point analysis, and fixed point induction.)

This last requirement on () together with the above requirement on

Q(x,0) leads us to the following recursive definition:
Q) = recq. dr,i.if i =0 then =
else if px then ¢(gx,i—1)
else ¢(hz,i+ 1) fi fi

The fixed point rule immediately shows that this definition meets the
last inequation on (). In addition, the so defined () is strict in its first
argument, and thus fulfils (S).

We still must show (AuxLE):

Q Citer F

Proof We do fixed point induction on (). As the base case holds
trivially, we immediately turn to the inductive step. Let ¢ be such that
the induction hypothesis g C iter F' holds. We prove for the inductive
step:

Az, i.if ¢+ = 0 then «

3.2. TWO WHILE-LOOPS

else if px then ¢(gx,i—1)
else ¢(hx,i+ 1) fi fi
C {induction hypothesis}
Az, i.if ¢+ = 0 then «
else if pa then iter F(gx,i—1)
else iter F(hx,1+1) fi fi

{definition of iter}
Az, i.if ¢+ = 0 then «
else if pa then iter F(gx,i—1)
else ter F(F(F(ha)),i—1)fi fi
{strictness of iter F'}
Az, i.1f ¢ =0 then «
else iter F(if px then g else F(F(ha)) fi,
i—1) fi
{definition of F'}
Az,1.if ¢ =0 then z else iter F(Fz,i—1)fi
{definition of iter}
iter I

(End of proof.)

This proof concludes the development.

3.2 Two while-loops

In this example we will consider the following property of while-loops:

while b do P od ; while bV ¢ do P od =
while b6V ¢ do P od

This property has been proved in [38] by fixed point induction. In
[27] the same property has been proved by an algebraic technique. Al-
though leading to elegant proofs, this algebraic technique has two dis-

advantages: according to the authors, one disadvantage is that certain

73

74 CHAPTER 3. EXAMPLES OF PROOFS

functions are needed that do not always exist. Secondly, it is not (yet)

obvious, how proofs in this technique can systematically be constructed.

We will turn this property of while-loops into a development task: given

the sequential composition of the two while-loops
while b do P od ; while bV ¢ do P od ,

how can we find an equivalent, single while-loop? We will construct
such a while-loop by our development method for recursion. In par-
ticular, we do not use any operational knowledge or reasoning about

while-loops.

First we give a suitable formalization of the problem in our language.
As is well-known, while-loops can be given semantics by use of the
recursion-operator. We choose a presentation that gives a nice prop-
erty to our development: it could literally be understood as a devel-
opment in a generalization of Dijkstra’s guarded command language

using algebraic laws of programming as given in [37].

Let us understand commands as functions on a state space 5. Let F',
GG, H and P be function symbols with functionality S — S. Let f, ¢
and h be variables of type S — S. Let b and ¢ be functions of type
S — Bool such ¢s = 1 implies b s = L that for all s. In addition, we

will use the following four functions:

e The function SKIP : S — S denotes the identity on states.

e The function L : S — S denotes the everywhere undefined func-
tion. It represents the command ABORT'.

e The function ;. : (S — 5) x (S — 5) — (5 — 5) denotes
function composition: f;g = As. g(f(s)). It represents sequential

composition of commands.

e The function .<.. : (S — S)x (S — Bool)x(S — S) — (5 — 9).

It represents the conditional.

We merely needed states S in order to formalize the problem. In the

sequel, we will write programs without explicit use of states. Thus they

3.2. TWO WHILE-LOOPS

look like programs in the generalization of Dijkstra’s guarded command
language, as presented in [37]. Moreover, the programs here obey the

laws of that language.

Now we can write the two while-loops in our notation as follows, and

give them names G and H:

G =recyg.(P;g)abeSKIP
H=rec h.(P;h)abVerSKIP

We are looking for a recursive definition of F' with only one ”iteration”,
which is equivalent to the sequential composition of loops G and H.

Thus we write as a specification of F:

(S) GH=F

We will develop a program for F' from the inequation
(GE) G;HCF,

and prove that the other inequation
(LE) FCG;H

holds for the constructed F'.

Since (¢ and H are recursively defined, we try fixed point induction in

(LE).

Fixed point analysis. It is easy to see that in fixed point induction
on H, the induction hypothesis is not applicable in the inductive step:
in the inductive step h occurs in the subterm G P;h, whereas the
induction hypothesis has the form G;h C F.

Now let us analyse fixed point induction on (. Let 74 denote the
functional associated with the recursive definition of G. We get the

base case
(B) L;HCF,
and the inductive step

I) Vg:¢;HC F= (rq9);HCF.

75

76 CHAPTER 3. EXAMPLES OF PROOFS

By definition of 74, the inductive step is equivalent to

Vg:g; HC F = ((P;g)ab> SKIP); HC F
& {H is strict, and distributes backwards;

SKIP is the identity of sequential composition }
Vg:g; HC F = (P;g; H)<br HC F

The induction hypothesis is applicable to the conclusion of the inductive
step. But its application would leave H in the left hand side of the
inequation. As H is recursively defined, this would not directly lead to

a while-loop for F.

Therefore, we next analyse where a fixed point induction on H in the

conclusion leads. After applying some laws, we obtain as inductive step

Vh:
(P;g;H)<br hC F =
(PygiH)<bo (Pihacer SKIP)C F

Since the induction variable h occurs in the context ... b h in the
induction hypothesis, but in a different context in the conclusion, the
induction hypothesis cannot be applied to the conclusion. Hence fixed

point induction on H fails.

(End of fixed point analysis.)

Fixed point analysis has taken us to a point where typically a design

decision has to be made:

Design decision. We have found a fixed point induction, in which the
induction hypothesis is fully applicable, but which is not promising for
the development, because the recursively defined function H, which we
would like to eliminate, remains in the specification. As we have seen,
no other fixed point induction is possible. Therefore, we make a design

decision based on the current specification

Vg:g;HC F = (P;g;H)<bv HC F.

3.2. TWO WHILE-LOOPS

If b evaluates to false, it is necessary that H C F' holds. The restriction
to this case caused the problem when we tried the inner fixed point
induction on H. Therefore we try to strengthen the specification by
requiring the inequality H C F' independently of the value of b. Hence

we can state our design decision as follows:
Vg:g;HC F = (P;g;H)<be HC F
= {strengthening by conjunction}
(D) Vg:(; HC F = (P;g;H)<bb HC F)ANHLC F

The new conjunct immediately leads us to take the definition of H as

definition of F':
F=rec f.(P;f)<bVerSKIP

(End of design decision.)

We still must prove the remaining conjunct of (D) for the chosen defi-

nition of F'.

Proof

Vg:giHC F = (Pig; H) abs HE F
= {induction hypothesis; definition of F'}
Vg:g:HC F = (P;F)abs FCF
= {law of conditional, and condition on b and ¢}
Vg:g; HC F = ((P;F)<bVer SKIP)<abe FCF
= {definition of F'}
Vg:g;HC F = Fabr FCF
= {law of conditional }
Vg:gHC F = FLCF
= {reflexivity of C}

true

(End of proof.)

The base case (B) follows immediately from the definition of F'.

77

78 CHAPTER 3. EXAMPLES OF PROOFS

Now only (LE) remains to be shown:

FCGH

Proof We again proceed by fixed point induction on F'. The base case
is trivial. The inductive step is proved as follows, where 7 denotes the
functional associated with the recursive definition of F': Let f be such
that the induction hypothesis f C G5 H holds. We prove the conclusion

of the inductive step:

7 f
{definition of 75}
(P;f)abVer SKIP

I

{induction hypothesis}
(P;G; H)abV es SKIP

I

{case analysis}
(P;G5H)<abVer SKIP)a—bAcr
(P;G; H) abV v SKIP)

I

{simplification }
(P;Gs H)a=b Ao (P;G; H) <bo SKTP)
{definition of G and H}
(P;G5H)Ya=bAcer ((GyH)abe (G H))

I

I

{law of conditional }
(P;G5H)<a=bAer (G H)
{already proved inequation (GE), and ' = H}
(P;H)a=bAce (G H)
{definition of H}
Ha-bAcr (G H)
{definition of G'}
Gy Ha=-bAcer (G H)

I

I

I

I

{law of conditional }

G, H

(End of proof.)

3.3. COMPILER CORRECTNESS

Hence we have developed a single while-loop F' that meets the original

specification (S).

3.3 Compiler correctness

In this section we will develop a code generator for a small functional
programming language. Code is generated for a stack machine. We are
only interested in the code generator here, and not in other parts of the
compiler (e.g. the parser). Therefore, whenever we say ”compiler”, we

only refer to the code generator throughout this section.

We have chosen compiler development as an example for the applica-
tion of our method, because it is a rather difficult development task,
when the source language allows recursive function declarations, but

the target language does not.

Although being heavily studied in the literature, compiler correctness
proofs fall into two categories in the literature: in the first category,
the source language of the compiler does not contain recursion (cf. e.g.
[4], [11], [13], [15]). In the second category of compiler correctness
proofs, the source language does contain recursion, but so does the

target language (cf. e.g. [6], [14]).

We are interested in source languages with recursion, and target lan-
guages without recursion. A denotational semantics is given for the
source language, and an operational semantics is given for the target
stack machine. One could define a compiler, and then prove it correct
with respect to these two semantics. But we will develop a compiler
systematically from its specification, thereby establishing its correct-

ness.

Compiler correctness proofs in the same semantic setting as here have
been studied in [8] and [39]. There the difficulties have been shown,
but an unnecessarily complicated solution was presented, which used a
lot of insight into the problem domain. We base our language on those

of these two works.

80 CHAPTER 3. EXAMPLES OF PROOFS

3.3.0 Common basis of source language, and tar-
get language

Both source language, and target language use the sort

Data ,

which we need not specify further. Data contains the data elements
that are manipulated by programs both of the source language, and of
the target language. For convenience, we content ourselves with one

sort of data elements.
In addition, both source language, and target language use the sort

Fsb,

which we again need not specity further. F'sb contains the predefined
function symbols of the source language, and of the target language.

For convenience, all function symbols are unary.
We further assume a function
cfet : Fsb— (Data — Data)

to be given. It assigns a function c¢fet(g) to each predefined function

symbol ¢ € F'sb.

3.3.1 Source language

The source language is kept as simple as possible, in order to concen-

trate on recursive function definition.

Syntax

The abstract syntax of the source language is given by the sorts
Fap

and

3.3. COMPILER CORRECTNESS 81

which represent the syntactic classes of expressions and functional pro-

grams respectively.

The elements of sort Exp are inductively generated by the strict con-
structors

cst 2 Data — Fap

x:— Fzp

of « Exp, Fxp, Exp — Fap , and

app : Fsb, Exp — Exp .

The constructor est stands for constants of sort Data. We assume
that = is the only variable of the source language. The constructor
1 f introduces conditional expressions. The constructor app denotes

application of functions to expressions.

The sort F'p of functional programs has the only strict constructor

(y: Exp, Exp — Fp.

The constructor (.) builds a functional program from two expressions:
the first expression is the body of a recursively defined function, the
second expression represents the main program. For simplicity, we as-
sume that in every program the name of the recursively defined function
is f, where f is a function symbol of F'sb. The recursive declaration

overwrites the predefined meaning of f.

(End ”Syntax”.)

Semantics

We give a denotational semantics of the source language. As meta-

language we use our language of chapter 2.

The semantics of expressions is given by the higher order function

val : Exp — (Data — Data) — (Data — Data) .

The function val assigns a function valer to each expression e and each

function r in the following way: function r is taken as interpretation of

82 CHAPTER 3. EXAMPLES OF PROOFS

function symbol f; under this interpretation, expression ¢ is interpreted

as a function of the value of variable x.

We assume a continuous function
test : Data — Bool ,

which assigns a boolean value to each element of Data. We need not

specify test further.

The function val is strict in its first argument. Now we give a recursive
definition of val. (In order to make the definition more readable, we
use pattern matching as described in chapter 2.)

val(est(e))rd =if d = d then ¢ else ¢ fi

valzrd=d

val(if(eg, e1,e2))r d = if test(valegr d) then valeyrd

else wvaleyrdfi
val(app(g,e))rd =if g = f then r(valerd)
else cfet(g)(valerd) fi

In the sequel we write 7,,; for the functional associated with the recur-

sive definition of val.

The semantics of functional programs is defined by the function

mean : Fp — (Data — Data) .

The semantics of a functional program is a function from the value of
the variable x into Data, where the function symbol f is interpreted ac-
cording to the recursive declaration of the program. As usual, the least
fixed point of the functional associated with the recursive declaration
is bound to f.

The function mean is strict. For b £ L, and m % L we define it by the

following equation (again using pattern matching):

mean(b,m) = val m(rec r.val br)

(End ”Semantics”.)

3.3. COMPILER CORRECTNESS

3.3.2 Target language

Now we turn to the definition of the target language. The architecture

we use is a simple stack machine.

Syntax

The target machine consists of four components:

a (read-only) memory, which stores the assembler program to be

executed,
e a stack of data values and labels,

e a program counter, which contains the postfix of the assembler

program that remains to be executed, and

e an accumulator, which holds one data value.

Formally we define the sort C'onf of machine configurations as the
smash product of the sorts of assembler programs, stacks, assembler

programs, and data values:

Conf = Asp @ Stack ® Asp @ Data

Sort Stack contains all possibly empty, finite lists of data values and
labels. For sake of readability, we let the stack be inhomogeneous, that

is, it may contain both data values, and labels as stack elements

Stack /] .

We use the following operations on stacks:

g :— Stack
(.y : StackEl — Stack
.0.: Stack, Stack — Stack

We write ¢ for the empty stack, and (.) for the stack with one element.
The operator o denotes concatenation of stacks. These three operators

are the constructors of Stack.

83

84 CHAPTER 3. EXAMPLES OF PROOFS

The reader might object that these are not the stack operations, and
thus we are defining lists instead of stacks. We have taken this imple-
mentation of stacks by lists, in order to keep our programs and proofs
readable. But we shall operate on stacks only as we could do with stack

operations, throughout.

We need four sorts to define the syntax of assembler programs:

Com ,
Asp,
Label |, and
Mark .

The sort C'om contains the assembler commands, Asp the assembler
programs. The sort Label contains all labels; most labels are con-

structed of elements of sort Mark.

Now we list the commands of the target language, that is, the strict

constructors of sort C'om:

appcfet : Fsb— Com
lab: Label — Com
jump : Label — Com
cjump : Label — Com
return :— Com

swap :— Com

push : StackFEl — Com
pushA :— Com

The command appefet(g) applies the predefined function efct(g),
which is associated with ¢, to the topmost stack element. The command
lab(l) defines a label. When command jump(l) has been executed, pro-
gram execution continues at label [. When a conditional jump cjump(l)
is executed, program execution switches to label [only, if the topmost
stack element has a certain value. The command return leaves the
topmost element on the stack, but removes the next two elements. The

first of these elements is the label, where program execution is to be

3.3. COMPILER CORRECTNESS 85

continued; the second element is written into the accumulator. The
command swap exchanges the content of the accumulator with the
topmost stack element. The command push pushes a data value or a
label onto the stack, whereas pushA pushes the accumulator content
onto the stack.

Assembler programs are possibly empty, finite lists of commands.
Therefore we again take the strict list constructors as constructors of

sort Asp:

g:— Asp
(. : Com — Asp
.0.: Asp, Asp — Asp

These operators denote the empty assembler program, the assembler
programs of only one command, and concatenation of assembler pro-

grams, in turn.

Labels are non-empty finite sequences of marks:

(.} : Mark — Label
.0.: Label, Label — Label

Sort Mark is generated by the following constructors:

body, main,0,1,2,3 :— Mark

(End ”Syntax”.)

Semantics

Now we define an operational semantics for assembler programs. We
again use the language of chapter 2 as meta-language. For notational

convenience, we again use pattern matching.

The strict function

step: Conf — Conf

86 CHAPTER 3. EXAMPLES OF PROOFS

executes the next command, that is, the first command of the program

counter.

We now define the function step, using the function goto, which we
shall define afterwards.

d) o s, {appcfet(g)) o pe,a) =
(cfet(g))d) o s, pe,a)

step (p, s, (lab(l)) o pe,a) = (p, s, pc, a)

step (p, s, (jump(l)) o pe,a) = (p, s, goto(l, p), a)
step (p, (d) o s, (cjump(l)) o pe,a) =

step (p,

{

{

{

{

(p, s,if test(d) then goto(l,p) else pc fi, a)
{)
{

{

{

{

/\/\

P,

step (p, (do) o (I} o (d1) o s, (return) o pc,a) =
p, (do) 0 s, goto(l,p),dy)

(d) o5, (swap) o pc,a) = (p,(a) o 5, pc, d)
step (p, s, (push(se)) o pe,a) = (p
step (p, s, (pushA) o pe,a) = (p, (a) o s, pe, a)

step (p, (d) o

,(se) o s, pc, a)

The strict function
goto : Label, Asp — Asp ,

which branches to a label in an assembler program, is recursively defined

as follows:
goto(l,e) =«¢
goto(l,(c) op) =if ¢ =lab(l) then p else goto(l,p) fi

The operational semantics of assembler programs is given by the strict

function
exec: Conf — Conf ,

which executes an assembler program by applying function step until

the program counter becomes empty.

The strict function exec is recursively defined as follows:
exec(p,s,e,a) = (p,s,€,a)

exec(p, s, (c) o pe,a) = exec(step(p, s, {(c) o pc,a))

3.3. COMPILER CORRECTNESS

Finally, we define the strict function
res: Conf — Data ,

which extracts a data value as a result from a configuration.

The strict function res is defined as follows:
res(p,(d) o s,pc,a) =d

(End ”Semantics”.)

3.3.3 A compiler development

In this section we will develop a compiler from its specification by step-
wise refinement. We proceed according to our development method for

recursion.

Compiler specification. A compiler from I'p to Asp is a function
comp : Fp— Asp

with the following property: FExecution of each compiled program yields
a value that is greater than or equal to the semantics of the source
program. This specification of the compiler can formally be stated as

follows:

(S) Vfpe€ Fp,de Data:
mean fp d C res(exec({comp fp,e,comp fp,d))

(End ”Compiler specification”.)

Our task is to develop a program for comp that fulfils specification (S).

First we substitute mean by its non-recursive definition. This is the
only transformation we can do in the above specification without know-
ing anything about comp. Thus we obtain the following specification
(Comp), which is equivalent to (S):
(Comp) Vb,m€ Eap,d € Data:b=%£ 1 =
val m(rec r. valbr)d C

res(exec(comp(b,m),e,comp(b,m),d))

88 CHAPTER 3. EXAMPLES OF PROOFS

Specification (Comp) is an inequation with recursion (in val and
rec r) on its left hand side, and the unknown comp on its right hand

side. According to our method, we start with fixed point analysis.

Fixed point analysis. Recursion occurs three times in the left hand

side
val m(rec r. val br)d

of the inequation in (Comp): besides val, which has been defined

recursively, the subterm rec r. val br contains recursion.

To which of the three occurences of the recursion operator shall we best

apply the fixed point induction rule?

For better readability, we abbreviate the right hand side of the inequa-
tion by rhs.

As we have seen, there are three candidates for fixed point induction

in the left hand side of the inequation. Let us consider them in turn.

For convenience, we repeat the fixed point induction rule:

AL /2]
Va(A= Alt/z]) where A is syntactically admissible in x
Alrec z. t/x]

Analysis 0. Let us first analyse fixed point induction on the outer

val in the term val m(rec r. val br)d.

It turns out that the induction hypothesis is applicable in the inductive
step, but leaves the recursion rec r. val br in the term. Therefore we
do not apply the induction hypothesis, and instead apply fixed point
analysis recursively. But both fixed point induction on rec r and on
val fail, because the induction hypotheses are not applicable in the
inductive steps for structural reasons that cannot be circumvented by

generalizations. Hence fixed point induction on the outer val fails.

(End of analysis 0.)

Hence we must try another candidate for fixed point induction.

3.3. COMPILER CORRECTNESS

Analysis 1. Let us now analyse fixed point induction on the inner

val in the term val m(rec r. val br)d.

It is easy to see that the induction hypothesis is not applicable in the
inductive step for similar reasons as in analysis 0. Thus fixed point

induction on the inner val fails, too.

(End of analysis 1.)

As no fixed point induction has been successful so far, we now try the

last candidate for fixed point induction.

Analysis 2. Now we analyse fixed point induction on rec r in the

term

val m(rec r. val br)d .

Variable b is free in the subterm rec r. val b r, on which we will try
fixed point induction. But & is universally quantified in the formula

(Comp), which we will refine. Therefore we must take
Vm,d:b=% L= valmrdCrhs

as formula A of the fixed point induction rule, where r is the induc-
tion variable. In this formula, b is free and not explicitly universally

quantified.

Thus we get the base case
VYm,d:b=F L =valmLdCrhs,

and the inductive step
Vr:

(Ym,d:b* L=valmrdCrhs)=
(Ym,d:b=* L= valm(valbr)d C rhs).

Let us first turn to the base case. We recursively apply fixed point

analysis to val. The base case is trivial. The inductive step is

Yo :

89

90 CHAPTER 3. EXAMPLES OF PROOFS

(Vm,d:bF* L=vm LdC rhs) =
(VYm,d:bF L= (rpav)m LdC rhs).

FEvaluation of 7,4 leads to case distinction on m. All cases of m allow

complete application of the induction hypothesis.

Now we turn to the inductive step. We recursively apply fixed point
analysis to the conclusion. The conclusion contains two occurrences of

val, to which we could apply fixed point induction.

Let us first analyse fixed point induction to the inner val. We get the

inductive step

Yo :
(Ym,d:b=% L=valm(vbr)d Crhs) =
(Ym,d:b=* L= valm((ryav)br)d C rhs).

Hence, if we applied fixed point induction to the inner val, we would
be faced with a problem that arose in analysis 0: since b is bound
outside the inductive step, but v is applied to other expressions than
b when 7,,; v is evaluated, the induction hypothesis is not applicable.

Therefore, fixed point induction on the inner val fails.

Let us now analyse fixed point induction on the outer val in term

val m(val br)d.

The base case is trivial. The inductive step is

Yo :
(Ym,d:b=% L=vm(valbr)d Crhs) =
(Ym,d:b=% L= (rpqv)m(valbr)d C rhs).

If m has one of the forms L, est(c), @, i f(eo, €1, €2), and app(g, €) with
g = f, then the induction hypothesis is fully applicable. The most
difficult case is m = app(f,e). In this case, the conclusion of the

inductive step evaluates to

Vd:b=£ L= (valbr)(ve(valbr)d) C rhs.

3.3. COMPILER CORRECTNESS

The subterm v e(val br)d has the form of the hypothesis of the fixed
point induction on val. The other subterm, val b r, has the form of
the hypothesis of the fixed point induction on rec r. valbr. Therefore,
also in case m = app(f,e), the induction hypotheses are completely

applicable.

Hence in this analysis we have found a proof strategy in which the

induction hypotheses are completely applicable.

(End of analysis 2.)

(End of fixed point analysis.)

Having found a refinement strategy in analysis 2 so that the induction
hypotheses are completely applicable, we will now try to reduce the

context of the unknown comp in specification (Comp).

Context reduction. If the left hand side of the inequation of (Comp)
were surrounded by the same functions as comp on the right hand side,
we could strengthen (Comp) due to monotonicity by removing these

functions from both sides.

From the definition of res and exec we know that specification (Comp)

is equivalent to
Yo,m,d: b= 1=
dp =£ L :
res(exec(p, (valm(rec r.valbr)d),c.d)) C
res(exec(comp(b,m), e, comp(b,m),d)) .
Since res is monotonic, this formula can be strengthened by
(Exec) Vbm,d:b*x L Am=ELl=
comp(b,m) £ L A
exec(comp(b,m), (val m(rec r. valbr)d),e,d) C
exec(comp(b,m),e, comp(b,m),d) .
(Note that p = comp(b, m) is the only choice we have for p in strength-
ening the formula since the first component of the machine state does

not change during execution.) Thus we have at least removed res from

the context of comp. Obviously, the context cannot be reduced further.

91

92 CHAPTER 3. EXAMPLES OF PROOFS

(End of context reduction.)

Fixed point induction. If we try to apply fixed point induction to
(Exec) in the way we found out to be successful for (Comp), the
induction hypothesis turns out to be too weak. In the base case of the
induction on rec r, and the inductive step of the induction on val, we

have to show (case m = if(eg, 1, €2)):

Vb,m,e,d: Ja % L :
vey Ld=1=
exec(comp(b,m),(ve; Ld), e a) C

exec(comp(b,m),e, comp(b,m),d) .

The induction hypothesis is not applicable since m and e¢; do not co-
incide as they do in the hypothesis. Therefore we must generalize the

specification.

(End of fixed point induction.)

Generalization. In
exec(comp(b,m), (val m(rec r. val br)d), e, d)
we must split variable m into two variables, say m and e. Thus we get

exec(comp(b,m), (val e(rec r. val br)d), e, d) .

It we did not change anything else in the formula, we should get the

strengthened specification

Vo,m,e,d:bF* LAm=£ 1=
comp(b,m) £ L A
exec(comp(b,m), (val e(rec r. val br)d),e,d) C

exec(comp(b,m), e, comp(b,m),d) .

When strengthening a specification, we must always be careful not to

strengthen it too much. In our case, the strengthened specification must

3.3. COMPILER CORRECTNESS

still be satisfiable by some function comp. The strengthened specifica-
tion implies that the value of every expression e is less than or equal to
the result of executing program comp(b, m). Certainly, this condition

is not satisfiable by any comp.

Hence we must make the right hand side of the inequation dependent
on e. Can we simply replace comp(b,m) by comp(b,e) in the third
argument of exec? We know about the machine architecture that the
program counter (third component of the machine state) is a postfix
of the entire program (first component of the machine state). Thus
comp(b, €) would have to be a postfix of comp(b, m) for every expression
e. Obviously, this requirement again is not satisfiable by any compiler

comp.

Therefore it seems reasonable to restrict the specification to those ¢, for
which comp(b, e) is a postfix of comp(b, m). Originally, the generaliza-
tion was intended for those e that are subterms of m. But we cannot
expect that the code of each subterm e of m will be a postfix of the code
of m. Therefore we only require that comp(b, e) is the beginning of a
postfix. Let us formalize the postfix relation on assembler programs by
the predicate =< :

p=qgsdr:rop=yq

Thus we get

Vo,m,e,d:bF* LAm=£ 1=

comp(b,m) £ L A

(Vpc : comp(b,) o pc = comp(b,m) =
exec(comp(b,m), (val e(rec r. val br)d), pc,d) C
exec(comp(b,m), e, comp(b, €) o pc,d))

as a new candidate for a generalized specification.

Is this specification still too strong? Let e be a subterm of m. Code
that is generated for e will, in general, depend on the position at which
e occurs in m: if e occurs several times in m, and its code contains some
labelled statement, then the labels must be different for all occurrences

of e. Since comp(b, €) does not depend on m, and thus does not depend

93

94 CHAPTER 3. EXAMPLES OF PROOFS

on the position of e in m, the code for e cannot be generated by comp.

Therefore we introduce a function
cexp: Kap, Label — Asp ,

which compiles expressions, using only labels that are determined by

its second argument.

We base the function comp on cexp in the following way:

(Prog) Vbm:bx Ll Am=ELl=
comp(b,m) = (jump(main)) o (lab(body)) o
cexp(b,(0)) o (return) o (lab(main)) o
ceap(m, (1)) A

cexp(b,(0)) = L A cexp(m, (1)) £ L

Now we can formulate the generalized specification by making use of
cexp. Since it seems too restrictive to assume an empty stack whenever
a compiled expression is executed, we further generalize the specifica-

tion to arbitrary stacks s:
(Cexp) Vb,m,d,e,pe,l,s:bF LAm=£ L=
(cexp(e,l) o pc =< comp(b,m) =
exec(comp(b,m), (val e(rec r. val br)d) o s, pc,d) C
exec(comp(b,m), s, cexp(e,l) o pc,d))

In order that specification (Exec) is implied, we require as a third

property

(JumpMain) Vbm,d:bFf L Am=*x L=
exec(comp(b,m), e, cexp(m, (1)), d) C

exec(comp(b,m), e, comp(b,m), d)

Conjunction of (Prog), (Cexp) and (JumpMain) implies specifica-
tion (Exec).

(End of generalization.)

3.3. COMPILER CORRECTNESS 95

Fixed point induction. Now we carry out the fixed point induction

of analysis 2 for the generalized specification (Cexp).

According to analysis 2, we do fixed point induction on rec r. Let us

first address the base case, and the inductive step thereafter.

Base case. Analogously to the base case in analysis 2, we get the

following base case for the generalization (Cexp):

Vo,m,d,e,pc,l,s:bF L AmE L=
(cexp(e,l) o pc = comp(b,m) =
exec(comp(b,m), (vale L d) o s,pe,d) C
exec(comp(b,m), s, cexp(e,l) o pc,d))

As planned in analysis 2, this formula is refined by fixed point induction
on val. Since the base case is trivial, we immediately turn to the

inductive step.

Inductive step. The inductive step instantiates to

Yo :

(VYo,m,d,e,pe,l,s: b LAm=E L=
(cexp(e,l) o pc = comp(b,m) =
exec(comp(b,m),(ve Ld)os, pec,d) C
exec(comp(b,m), s, cexp(e,l) o pe,d)))

=

(VYo,m,d,e,pe,l,s: b LAm=E L=
(cexp(e,l) o pc = comp(b,m) =
exec(comp(b,m), ((Tya v)e L d) o s,pe,d) C
exec(comp(b,m), s, cexp(e,l) o pe,d))) .

Assume that the induction hypothesis holds.

The definition of 7,,; suggests a case distinction on e:

o If ¢ = L, the conclusion holds trivially.

CHAPTER 3. EXAMPLES OF PROOFS
o If e = c¢st(c) (with ¢ = L), the conclusion is implied by

Vo,m,d,pc,l,s: b L Am=E L=
(cexp(est(e),l) o pc =< comp(b,m) =
exec(comp(b,m),(c) o s,pe,d) C
exec(comp(b,m), s, cexp(cst(c),l) o pe,d)) .

Looking at the machine instructions, we immediately find the
following explicit condition on cexp, which implies the preceeding

formula:

(Cst) VelicxlANlzxl=
cexp(est(c),) = (push(c))

o If ¢ = x, the conclusion is equivalent to

Vo,m,d,pc,l,s: b L Am=E L=
(cexp(x, 1) o pc < comp(b,m) =
exec(comp(b,m), (d) o s,pec,d) C
exec(comp(b,m), s, cexp(x,l) o pc,d)) .

This formula is implied by the following explicit condition on

cexp, which is again suggested by the machine instructions:

(X) Vi:l=£ 1= cexp(a,l)= (pushA)

o If e = if(eo,€1,e2) (With eg,e1,e2 F L), the conclusion is equiv-

alent to

Vo,m,d,pc,l,s: b L Am=E L=
(cexp(ef(eo, €1,€2),1) 0 pc < comp(b,m) =
exec(comp(b, m),
(if test(veg L d) then ve; L d else vey L dfi)
0s,pc,d) C

exec(comp(b,m), s, cexp(if(eo, €1, €2),1) 0 pe,d)) .

3.3. COMPILER CORRECTNESS

Looking at the machine instructions, we immediately find the

following explicit condition on cexp:

(If) Veo,e1,e9,1:
coF LANerEF LNy FLAIEL=
cexp(if(eo,e1,€2),l) =
cexp(eg, 10 (0)) o (cjump(l)) o cexp(es,lo(2)) o
(jump(lo (3))) o (lab(l)) o cexp(es,lo (1)) o
(lab(lo (3)))

This formula implies the preceeding one by induction hypothesis,
but an additional property is needed: we must assure that the
labels [and [o (3), to which the generated code may branch, do
not occur in preceeding program parts. Therefore we require that

no label is defined twice in a program:
(Lab) Vbm:b=Fx LAm=*E 1L =Vp,qrlk:
comp(b,m) = po (lab(l)) o q o (lab(k)) o r =
£k

o If e =app(g,eo0) (withg = f, g £ L, and eg = L), the conclusion
is equivalent to
Vo,m,d,pc,l,s: b L Am=E L=
(cexp(app(g, eo), 1) 0 pc < comp(b,m) =
exec(comp(b,m), (cfet(g)(veg L d))os,pe,d) C

exec(comp(b,m), s, cexp(app(g, eo), 1) o pe,d)) .
The machine instructions together with the induction hypothesis

again suggest an explicit condition on cexp, which implies the

preceeding formula:

(App) Vg.eo,l:gF[AgFLNewEF LAIF L=
cexp(app(g, eo), 1) =
cexp(eo, [0 (0)) o {appefet(g))

o If e =app(f,eo) (with eg F L), the conclusion is trivially true.

98 CHAPTER 3. EXAMPLES OF PROOFS

(End of inductive step.)

(End of base case.)

Inductive step. Now we come to the inductive step of the fixed point
induction on rec r in specification (Cexp). Analogously to analysis 2,

we get the inductive step
Vo, r:
(Ym,d,e,pe,l,s:b%F LAm=E L=
(cexp(e,l) o pc = comp(b,m) =
exec(comp(b,m), (valer d) o s,pe,d) C
exec(comp(b,m), s, cexp(e,l) o pe,d)))
=
(Ym,d,e,pe,l,s:b%F LAm=E L=
(cexp(e,l) o pc = comp(b,m) =
exec(comp(b,m), (val e(val br)d) o s,pe,d) C
exec(comp(b,m), s, cexp(e,l) o pe,d))) .

Assume that the induction hypothesis is true.

As planned in analysis 2, the conclusion is refined by fixed point induc-
tion on the outer val. Since the base case holds trivially, we immediately

turn to the inductive step.

Inductive step. We obtain the following formula as inductive step:

Yo :

(Ym,d,e,pe,l,s:b%F LAm=E L=

(cexp(e,l) o pc = comp(b,m) =
exec(comp(b,m), (v e(val br)d) o s, pe,d) C
exec(comp(b,m), s, cexp(e,l) o pe,d)))

=

(Ym,d,e,pe,l,s:b%F LAm=E L=

(cexp(e,l) o pc = comp(b,m) =
exec(comp(b,m), ((T,a v) e(val br)d) o s, pe,d) C
exec(comp(b,m), s, cexp(e,l) o pe,d)))

3.3. COMPILER CORRECTNESS

Let the induction hypothesis be true.

The definition of 7,,; again suggests case distinction on e:

o If ¢ = L, the conclusion holds trivially.

o If ¢ = cst(c), we get the identical development as in the corre-

sponding case of e within the base case of the induction on rec r.

o If e = z, we get the identical development as in the corresponding

case of e within the base case of the induction on rec r.

If e = if(eo, €1, €2), then we develop the same specifications (If)
and (Lab) as in the corresponding case above, by an analogous

development.

If e = app(g, eo) (with g =£ f), then we develop the same specifica-
tion (App) as in the corresponding case above, by an analogous

development.

If e = app(f,eo) (with eg F L), the conclusion is equivalent to

VYm,d,e,pc,l,s:bE£ L Am=E L=

(cexp(app(f, eo). 1) o pc =X comp(b,m) =
exec(comp(b,m), ((val br)(v eg(val br)d)) o s, pc,d)

C exec(comp(b,m), s, cexp(app(f, o), 1) o pe, d))

Inspection of the machine instructions leads us to the following
explicit condition on cexp, which implies the preceeding formula

because of the induction hypothesis, and because of specification
(Lab):
(Appf) Vepl:egF LAIF L=
cexp(app([, eo), 1) =
cexp(eg, [0(0)) o (swap) o (push(l)) o
(jump(body)) o (lab(1))

(End of inductive step.)

100 CHAPTER 3. EXAMPLES OF PROOFS

(End of inductive step.)

(End of fixed point induction.)

The refinement by fixed point induction has lead to an explicit condition
on cexp for each case of the argument expression. They suggest a

recursive definition of cexp.

Compiler function. By use of the fixed point rule, one can imme-
diately give a recursive definition that meets the specifications (Cst),
(X), (If), (App), and (Appf). (For better readability, we again use

the notation of pattern matching, which was introduced in chapter 2.)

cexp (est(c),l) = (push(c))

cexp (z,1) = (pushA)

cexp (i f(eo, €1, €2),1) = cexpleg, 10 (0)) o (cjump(l)) o
cerples, 1o (2)) o [ump(l'o (3))) o (lab(D)) o

) o (tab(l o (3))

cexp (app(g,e),l) = cexp(eg, 0 {0
if g=17[
then (swap) o (push(l)) o (jump(body)) o (lab(l))
else (appcfet(g)) fi

cexp(er, o (1

~

)o

The first conjunct of specification (Prog) suggests how to base comp

on cexp:
comp(b,m) = (jump(main)) o (lab(body)) o cexp(b, (0)) o
(return) o (lab(main)) o cexp(m, (1))
Thus we have developed a program for comp.

(End ”Compiler function”.)

During the development we introduced some more specifications. They
now remain to be proved for cexp and comp as they have been defined

meanwhile.

3.4. OPERATIONAL AND DENOTATIONAL SEMANTICS

Let us start with (Prog). The first conjunct has directly been taken
as definition of comp. The remaining two conjuncts are implied by the

formula
Ve, l:e £ LAl % L = cexple,l) £ L
which can be shown by structural induction on e.

In order to prove (Lab), one uses the definition of comp in terms of
cexp, and shows by structural induction on expressions that cexp gen-

erates distinct labels.

Finally, specification (JumpMain) is an immediate consequence of

(Lab).

These proofs conclude the compiler development.

3.4 From a denotational semantics to an
operational semantics

In this example we develop an operational semantics from a denota-

tional one by our method.

The literature contains some adequacy proofs of operational and deno-
tational semantics (e.g. [32], [62], [16]). But they are based on natural
operational semantics or on two quite similar semantic definitions. In
addition, we do not assume the operational semantics to be given, but

we develop it from the denotational semantics.

The development in the sequel has been mechanically verified. For
further detail we refer to [34].

3.4.0 Syntax of the language

The sort

D

stands for the data elements of our example language. We assume that

true : D

101

102 CHAPTER 3. EXAMPLES OF PROOFS

false: D

are two constructors of . There may be many more, which we do
not specify. We only presuppose that D carries a flat order, which can

straightforwardly be formalized:

Ve,yeD:eCysae=1LVe=y

The sort

X

stands for the variables of our example language. For our purpose, X

need not be further specified.

The sort

P

stands for the predefined function symbols of our example language.

For convenience we assume that all function symbols of P are unary.

The sort

U

stands for the user-definable function symbols of our example language.

For convenience we assume that all function symbols of U are unary.

The sort
Term

stands for the terms of our example language.

The sort T'erm is generated by the following strict constructors:

cst: D — Term

var : X — Term

() P,Term — Term

() U Term — Term

of cthen . else. fi:Term,Term,Term — Term

(.(.):). UX,Term,Term — Term

3.4. OPERATIONAL AND DENOTATIONAL SEMANTICS

For better readability, the constructors have been overloaded.

We define the set ['V of free variables of a term as usual. It is a subset of
X UU. Function definition is the only binding operator: in (f(x) : to)t1
variables f and x that are free in ¢y are bound by (f(z) : to). Since it

is standard, we omit the formal definition of free variables.
Based on the definition of free variables, we define a predicate
CT

of type Term, which characterizes the set of closed terms: as usual,

closed terms are terms without free variables.
In addition, we need a boolean function
W : Term — Bool

which characterizes the subset of terms that are generated only by
est and application . (.) : P,Term — Term of predefined function
symbols. W can be understood as the word algebra on which terms of

the language T'erm are built.

3.4.1 Denotational semantics

Environments associate data values with variables, and functions with

user-definable function symbols:

Env = List(X x D) x List(U x (D — D))

By votd we denote the empty environment, that is, the product of

empty lists:

void = (e,¢)
The function
mn

checks if a variable or function symbol is in an environment.

103

104 CHAPTER 3. EXAMPLES OF PROOFS

The function

e]

denotes update of environments. As usual, we write n[d/x,r/f] for
the update of environment 7 by data element d for variable z, and by

function r for function symbol f.

The functions
lookupvar
and
lookup fct

yield the data element associated with a variable by an environment,
and the function associated with a function symbol by an environment,
respectively. If no data element or function is associated with a variable
or with a function symbol in an environment, lookupvar and lookup fct
yield L.

Since the formal definitions of all these functions are straightforward,

we do not give them.

The function
I:P— (D — D)

assigns a continuous function to each predefined function symbol. We

assume that for all p € P the associated function I(p) is strict.

It is convenient to overload the symbol I: the function
W —=D

interprets terms of the word algebra as data elements, that is, it assigns
semantics to terms of the word algebra. (Here W stands for the set of all
t with Wt = tt. The function [is defined recursively on the structure

of those terms:
I(est(d)) =d

I(p(t)) = (I p)(It)
(L) =1

3.4. OPERATIONAL AND DENOTATIONAL SEMANTICS 105

The function
T :Term — Env— D

assigns a denotational semantics to terms. For better readability, we
use semantic braces for 7. They are not to be confused with the braces

at the meta-level.

Let T be strict in its first argument.

Test(d)]n =d
T [var(z)]n = lookupvar x n
TIoOln = (1 p)(T[ly)
TLf(t)ln = (lookupfet £ n)(TTiln)
Tif to then ty else ty fi] = if T[to]n = true
then 7[ti]n
else if T[to]n = false
then 7[t;]n
else L fi fi

TI(f() : to)ta]n = (rec r. Ad. Tto](nld/x, r/ 1)) (T [ta]n)

Let 77 be the functional associated with the recursive definition of 7.

3.4.2 Operational basis

We specify that the operational semantics must be a term rewriting

semantics. The semantics is then developed in the next section.

The function
normal : Term — Bool

determines whether a closed term is in normal form.

We presuppose the following properties of normal: all constants are in

normal form:

Vde D:d=£ L = normal(est(d)) =1t

106 CHAPTER 3. EXAMPLES OF PROOFS

Only terms of the word algebra can be normal forms:
Vte Term: CT(t) = (normal t = tt = W(t) = tt)

It a function application is in normal form, then the argument term is

in normal form:
Vpe P teTerm:
W (t) = tt = (normal(p(t)) = tt = normal t = 1t)

The function normal is undefined exactly for the undefined term:

VteTerm:CT(t) = (normalt=1L &t = 1)

The structure of the term rewriting machine is given by the function
val : Term — Term ,

which is defined only on closed terms. It is recursively defined as follows:
val = rec v. M. if normal t then t else v(reducet) fi

Let 7,4 denote the functional associated with the recursive definition

of val.

Our task is to develop a program for reduce such that the operational
semantics corresponds to the denotational semantics in a way to be

made precise below.

In addition, we are given an evaluator
eval : W — W

for terms of the word algebra. We presuppose some properties of this

evaluator: it preserves the interpretation of terms:
Vie W I(evalt) =11
It takes every term to a normal form:
Vie Wt £ L = normal(eval t) =t
Terms that are already in normal form are not changed under eval:

Vte W inormalt=tt = evalt =t

3.4. OPERATIONAL AND DENOTATIONAL SEMANTICS

3.4.3 Development of an operational semantics

Specification. We require of the operational semantics the following

property:

(S) VteTerm:CT(t)= T[t]void C I(val[t])

(End ”Specification”.)

Fixed point analysis. The only recursively defined object in the left
hand side of the inequation of (S) is 7. Thus we analyse fixed point
induction on 7. Since the base case is trivial, we immediately turn to

the inductive step:

Vh
(Vt: CT(t) = hft]void C I(val[t])) =
(Vt: CT(t) = (r7 h)[tJvoed C [(val]t]))

In the conclusion, evaluation of 77 h leads to a case distinction on ¢. If
t is of the form (f(x) : to)t1, then (77 h)[t]void is equal to

(rec r. Ad. h[to](void[d/z,r/ f]))(R[t1]void) .

In general, ¢y is not a closed term, and void[d/x, r/ f] is not void. There-

fore the induction hypothesis is not applicable; it is too weak.

(End of fixed point analysis.)

According to our development method, we look for a generalization of
(S) so that fixed point induction on 7 is possible for this generalization.

For that purpose we must make design decisions.

Design decision. We try to find a suitable generalization by analysing
why fixed point induction on 7 failed. We have seen that ¢ must not be
restricted to closed terms, and that the denotational value of ¢ must be
taken in arbitrary environments, instead of just void. Hence we must

consider an inequation

T[tln C I(valu) ,

107

108 CHAPTER 3. EXAMPLES OF PROOFS

wheret € T'erm,n € Env, and u is a closed term. It is self-evident that
in this generality the inequation is not fulfillable by any val. Hence this

inequation strengthens (S) too much.

Therefore we must weaken this inequation by adding a suitable premise.
Since 1t is not fulfillable for arbitrary ¢, n and u as above, we need a
suitable relation ~ between (t,7) on the one hand, and v on the other

hand. We are heading for a new specification of the form

(G) VYtueTerm,n € Env:
CTw)N(t,n) ~u=T[t]n C [(val u) .

Therefore we need a relation ~ with the following properties:
e The formula (G) implies the original specification (S), that is,
Vte Term: CT(t) = (t,void) ~ 1

holds.
e The formula (G) is fulfillable by some val.
e The formula (G) is refinable by fixed point induction on 7.
Since we are interested in an operational semantics that works by term
rewriting, the free variables and function symbols of ¢ must be substi-

tuted by suitable terms and function declarations in u. Thus we state

as first requirement on ~:

(t,n) ~u= Jo € Subst :to =u

FPunction declarations are of the form

fla):t

where f € U, v € X and t € Term. We write Decl for the set
of all function declarations. We write C' Decl for the set of all closed
function declarations, that is, all function declarations in Decl without

free variables.

3.4. OPERATIONAL AND DENOTATIONAL SEMANTICS

The set Subst consists of functions from X to T'erm, and from U to U
and Decl. We omit the formal definition.

Since only closed terms are operationally evaluated, we immediately
get the following restriction on substitutions: Application of substitu-
tions leads to closed terms. Therefore free variables and free function
symbols of a term are always substituted by closed terms and closed
declarations, respectively. Hence application substitutions to terms can
be defined without the usual renaming of bound variables in order to
avoid name clashes. Application of a substitution o to a term ¢ is writ-
ten in postfix-notation: ¢ o. It is strict and defined recursively on the

structure of terms as follows:

est(d))o = est(d)
var(x))o = o(x)
p(t))o = p(t o)

)
f@))o = (a(N))(t o)

if tothenty elsety fi)o = if(to o)then(ty o)else(ty o) fi
(f(z) +to)ti)o = (f(x) : (Lolofx/a, [/ 1))t o)

g

(
(
(
(
(
(

But this requirement on ~ is not enough: substituting the free variables
of ¢ by arbitrary terms and declarations will not ensure the required
relation between the two semantics. In addition, a relation between the
values that the environment n assigns to the free variables of ¢, and the
terms or declarations that are substituted for the free variables in u is

needed.

Let us first turn to the variables of X that occur free in ¢. It seems
reasonable to require for all x € X that are free in ¢: the value that
n associates with z is less or equal to the value that is obtained by

evaluating the term substituted for = in u operationally.

We summarize the mentioned properties of variables in a predicate WV

("weaker in variable”):

Vn € Env,o € Subst,z € X :
WV(n,o,x)< CT(o(x)) A lookupvar x n C I(val(o(x)))

109

110 CHAPTER 3. EXAMPLES OF PROOFS

Now we require a similar property for function symbols [€ U that
occur free in t: if n associates a function r with f, then o substitutes f
by a declaration A so that the following holds: r is less or equal to the
function that is obtained by operationally evaluating A. If assigns

no value to f, then o does not substitute f.

We formalize this property of function symbols by the following predi-

cate WF ("weaker in function”):

Vn € Env,o € Subst, f € U :
WE(@,o,f) =
(f inw) = CDeel(o() A
Vde Dt € Term:CT(t)ANdC [(valt) =
(lookupfet | 1) © val(o(£)(1))) A
(=(finn) =o(f) =)

We define the relation ~ as follows:

Vt,u € Term,n € Env : CT(u) =

do € Subst : t o =u A
(VeeX:ze FV(t)= WV(y,0o,2)) A
(VfeU: feFV(t)= CDecl(o f)) A
(VfeU:WF(,o,[))

We call o a "substitution belonging to (¢,7) and u”.

For the so defined relation ~ it is obvious that (G) implies the original

(S).

(End of design decision.)

Fixed point analysis, and fixed point induction. The base case

is trivially true. The inductive step for the new specification (G) is

Vh:
(Vt,u,n: CT(u) A (t,n) ~u = h[t]n C I(val u)) =
(Vt,u,n: CT(u) A (t,n) ~u = (rr h)[t]n C [(val u)) .

3.4. OPERATIONAL AND DENOTATIONAL SEMANTICS 111

Let h be such that the induction hypothesis
Vi,u,p: CT(u) A (t) ~u = Aty C I(val u)

holds.

Let £, u and 7 be such that
CT(u) A (t,5) ~u

holds.

Calculation of (77 h)[t]y immediately leads to a case distinction on :

o If t = 1, the conclusion holds trivially.

o If t = c¢st(d) (with d £ L), we calculate:

(r7 h)[est(d)]n C I(val u)
& {definition of 77}
d C I(val u)
& {premise (est(d),n) ~ v implies u = est(d)}
d C I(val(est(d)))
& {definition of val; normal(est(d)) = tt}
d C I(est(d))
& {definition of I}

true

o If ¢t =var(x) (with x £ 1), we calculate:

(r7 h)[var(z)]n C I(val u)
& {definition of 77}
lookupvar x n C I(val u)
& {premise (var(x),n) ~ v implies that there exists
a substitution o such that v = o(x) and
WV (1,000}

true

112 CHAPTER 3. EXAMPLES OF PROOFS

o If 1 = p(ty) (with p=£ L and o % L), let o be a substitu-
tion belonging to (p(to),n) and u (its existence follows from
(p(to),n) ~ u). We calculate:

(rrh)[p(to)In E I(val u)
& {definition of 77; choice of o}

(1 p)(h[toln) E I(val((p(to))a))
= {(to,n) ~ too; CT(teo); induction hypothesis}

(I p)((val(tor))) C I{val((p(to))o))

The last inequation suggests a new specification for val, by which

it is implied:

(P) Vt:CT(t)= (I p)(I(valt)) T I(val(p(t)))

o If t = f(to) (with f=£ L and o % L), let o be a substitu-
tion belonging to (f(to),n) and u (its existence follows from

(f(to),n) ~ u). We calculate:

(77 R)1S (to)]n E I(val u)
& {definition of 77}

(lookupfet fn)(h[to]n) C I(val u)

It finn= ff, then the last line is trivially true.
It finn=tt, we calculate:

- {(thn) ~ (to 0-)7 WF(%Uaf),
induction hypothesis}

TI(val((o f)(to 0))) C I(val u)
& {substitution; choice of o implies (f(to))o = u}

I{val((f(to))o)) E I(val((f(to))o))

& true

o Ift =iftygthenty elsety fi (with to,t1,t2 F L), let o be a sub-
stitution belonging to (if to then t; else ty fi,n) and u (its exis-
tence follows from (i f to then ty else ty fi,n) ~ u). We calculate:

(t7 h)[if to then ty else ty fin C I(valu)

3.4. OPERATIONAL AND DENOTATIONAL SEMANTICS

& {definition of 77; choice of o}
if Afto]n = true then Aftq]y
else if Aflto]ln = false
then A[ty]n
else 1 fi fi
C [(val(if to then ty else ty fi 0))
= {induction hypothesis}
if I(val(tgo)) = true then [(val(t; o))
else if [(val(to o)) = false
then [(val(ty o))
else 1 fi fi
C [(val(if to then ty else ty fi 0))

The last inequation can immediately be refined by conjunction of

the following two specifications:
(True) Vi, t1,t2 € Term :
tok LAt & LAty % LA
CT(to) NCT(t1) NCT(t2) A
(I(val ty) = true) = tt =
T(val t1) C I(val(if to then tq else ty f1))

(False) Vig, t1,t € Term :
loE LALELALE LA
CT(to) NCT(t1) NCT(t2) A
(I(valty) = false) =tt =
I(valty) T I{val(if to then ty else ty f1))

o Ift = (f(x): to)t1, let o be a substitution belonging to ((f(x) :
to)t1,n) and u (its existence follows from ((f(x) : to)t1,n) ~ u).
We calculate:

(rrh)[(f () : to)taJn E I(valu)
& {definition of 77; choice of o}

(rec r. Ad. hfto](nld/x,r/ []))(R[t1]n) E

113

114 CHAPTER 3. EXAMPLES OF PROOFS

T(val((f(x): to)ti0))

& {property of substitutions}
(rec r. Ad. hfto](n[d/x,r/[]))(R[t]n) E
L(val((f(z) : (tolo[z/x, [/]))(ti0)))

Application of the induction hypothesis seems difficult, because
without any knowledge of r a substitution p must be found such
that (to,n[d/x,r/f]) ~ to p. Therefore we analyse fixed point
induction on rec r. In the inductive step a property of the form
Vd : rd C ...is needed, where r is the induction variable; but
the induction hypothesis states only r(h[t1]n) C Therefore

we generalize the last inequation in the following way:
Vde D,u € Term: CT(u)ANdC I(val u) =
(rec r. Ad. hfto](nld/x,r/f]))d C
I{val((f(z): (lo(olz/z, [/ [])))u))

Induction hypothesis: Let r be such that
Vde D,u € Term: CT(u)ANdC I(val u) =
rd E I(val((f(2) : (to(ale/, [/ f1)))u))

holds.

Let d and u be arbitrary with C7'(u) and d C I(val u).

(Ad. hlto](nld/x,r/f1))d E

I{val((f(z): (lo(olz/z, [/ [])))u))
= N

hltol(nld/x,r/f]) E

I{val((f(z): (lo(olz/z, [/ [])))u))

In order to apply the induction hypothesis about h, we need a
substitution p so that

(thU[d/%T/f]) ~lop.

Our choice of o, the predicate WV, and the premise about d and
u suggest to take

p=olufe, Alf],

3.4. OPERATIONAL AND DENOTATIONAL SEMANTICS 115

where A is a still to be determined function declaration. In order
to fulfill the predicate W F', we must choose A such that

VYee D,s € Term:
CT(s)NeC I(val s) = r cC I(val(A s))

holds. The induction hypothesis on r immediately suggests

A= f(z): (tololz/x, f/f])) -

Now we can continue our calculation:

= {induction hypothesis on h}
Hval(to p))

I{val((f(z): (lo(olz/z, [/ [])))u))

= {definition of p}
I(val(to o[u/z, f(x) : (to(olx/z, [/ f]))] f])) E
I(val((f(x): (to(alx/z, f/]]))u))

The last inequation is implied by the following formula:
(Rec) VtueTermaxe X, felU:
CT((f(x):t)u) =
Hval(tfu/x,(f(x) 2 1)/ f])) E I(val((f(x) :)u))

(End of fixed point analysis, and fixed point induction.)

Now we refine the specifications obtained above by applying our devel-

opment method recursively to them.

Refinement of (P). We recursively apply our development method
to (P), refining it by fixed point induction on val. The base case holds
because both I and I(p) are strict. Now we turn to the inductive step.

Let v be arbitrary so that the induction hypothesis

Vi CT(t) = (I p)(I(v1)) E I(val(p(1)))

116 CHAPTER 3. EXAMPLES OF PROOFS

holds. Let ¢ be arbitrary so that C'T'(¢) holds. We calculate:

(I p)(I(Tat v 1)) E I(val(p(1)))
& {definition of 7,4}
(I p)(1(if normalt then t else v(reducet) fi)) C

I{val(p(1)))

We make a case distinction on normal t:

o If normalt = L, then the last line holds trivially.

o If normalt = tt, then the last line is equivalent to

(L p)(L 1) E I(val(p(1))) -

From normal t = tt follows normal(p(t)) =£ L.

If normal(p(t)) = tt, we continue our calculation:

& {definition of val}
(I p)(1t) £ 1(p(1))
& {definition of I}

true

If normal(p(t)) = ff, we continue our calculation:

& {definition of val}
(I p)(It) C I(val(reduce(p(t))))

Since normal t = tt, we know that p(t) € W holds. The oper-
ational basis already provides an evaluator eval for terms of the
word algebra. According to the axioms, eval reduces terms of
the word algebra to normal forms such that their semantics is
preserved. Therefore we define reduce to be this evaluator in the

current case:

(PWRed) p(t) € W = reduce(p(t)) = eval(p(t))

3.4. OPERATIONAL AND DENOTATIONAL SEMANTICS 117

o If normalt = ff, we calculate:

(L p)(I(v(reduce t))) £ I(val(p(t)))
& {normalt = ff = normal(p(t)) = ff;
definition of val}
(I p)(I(v(reducet))) C I(val(reduce(p())))

In order to be able to apply the induction hypothesis, we state a

new requirement on reduce:
(CT) Vt:CT(t)= CT(reducet)

Now we can continue our calculation:
= {induction hypothesis}
(I(val(p(reduce t)))) C I(val(reduce(p(t))))

A comparison of the two sides immediately suggests the following

specification:

(PN) normalt = ff = reduce(p(t)) = p(reduce t)

(End of refinement of (P).)

Refinement of (True). Fixed point analysis, and fixed point

induction. We do fixed point induction on wval in the premise of

(True). Since the negation of this premise is equivalent to
(I(val ty) = true) = LV (I(val ty) = true) = false,

the formula

(IH) Vitg,ty,t3 € Term:
loE LALE LAt % LA
CT(to) NCT(t1) NCT(t2) A
(I(vtg) = true) = tt =
T(val ty) C I(val(if to then tq else ty f1))

is syntactically admissible in v.

118 CHAPTER 3. EXAMPLES OF PROOFS

The base case holds trivially, because [is strict. Assume that the
induction hypothesis (IH) holds. Let ¢y, {1 and 5 be arbitrary terms
such that the premises of (IH) hold, inclusive of

(I(Tyar v to) = true) =1t .

We calculate:

(I(Tyat v o) = true) =t

& {definition of 7,4}
(1(if normal ty then ty else v(reduce to) fi) = true)
=t

Let us make a case distinction on normal t,.

e Because of the strictness of I and the premise, normal tg = L is

impossible.

o If normal ty = tt, the premise reduces to (I 1o = true) = tt. The
axioms on [imply to = cst(true). Now we refine the conclusion

of the inductive step:

I(val t1) C I{val(if to then ty else ty f1))
& {to = est(true)}
I(val t1) C I(val(ef cst(true)then ty else ty f1))
& { normal(if cst(true)then ty elsety fi) = ff}
I(val ty) C
I(val(reduce(if cst(true)then ty else ty f1)))
= {reflexivity of C}
reduce(if est(true)then ty else ty fi) =14

o If normalty = ff, the premise reduces to (I v(reducety) =

true) = tt. Now we refine the conclusion of the inductive step:

I(val t1) C I{val(if to then ty else ty f1))
= {induction hypothesis, and (CT)}
T(val(ef reduce to then ty else ty fi)) C

3.4. OPERATIONAL AND DENOTATIONAL SEMANTICS

I(val(ef to then ty else ty fi))

& { normal(if to then ty else ty fi) = ff}
T(val(ef reduce to then ty else ty fi)) C
I(val(reduce(if to then ty else ty fi)))

= {reflexivity of C}
reduce(if to then ty else ty fi) =
1f reduce tg then ty else ty fi

(End of fixed point analysis, and fixed point induction.)

(End of refinement of (True).)

Refinement of (False). The refinement is analogous to the refine-
ment of (True). Similarly we end up with the explicit specification of

reduce:
reduce(if est(false)then ty else ty fi) =1y

(End of refinement of (False).)

Refinement of (Rec). Let{, u, z and f be arbitrary with CT((f(x) :
tu). Evaluation of val(t[u/x, (f(x):t)/f]) leads to a case distinction

on normal(t[u/x, (f(x): 1)/ f]):
If normal(tju/x, (f(x):t)/f]) = tt, then:
& {definition of val; normal((f(x) : t)u) = ff}
I(tlufz, (f(z): 1)/ f]) E L(val(reduce((f(x) : t)u)))

= {premise of this case}

reduce((f(x): tyu) = tu/z, (f(x): 1)/ f]

If normal(tju/x, (f(x):t)/f]) = tt, then:
& {definition of val; normal((f(x) : t)u) = ff}

Hval(t[u/z, (f(x) = 1)/ f1)) E I(val(reduce((f(x) : t)u)))
& {definition of reduce((f(x): t)u)}
(

[(val(tfufz,(f(z): 1)/ f])) C L(val(tu/z, (f(x): 1)/ 1)

true

119

120 CHAPTER 3. EXAMPLES OF PROOFS

(End of refinement of (Rec).)

Now we are ready to give a recursive definition of reduce by application

of the fixed point rule.

reduce = rec red. At.
if Wt then evalt
else if ¢t = p(u) then p(red u)
else if t =of togthenty elset,
then if t, = est(true) then t;
else if ¢ty = cst(false) then t,
else if redtothen ty elsety fi
else if t = (f(x):s)u
then slu/z, (f(z): s)/f]

So we have developed an operational semantics. In particular, we did

not use the knowledge that function declarations can be unfolded. The

unfolding
reduce((f(x): tu) = tufx, (f(z): 1)/ f]

entered the development merely by calculation.

Chapter 4

A proof method for recursion

In this chapter we describe the development method that we have used

in the examples of chapter 3.

The development task is as follows: A program for an unknown f
must be developed from a specification, which contains an inequation
or an equation on f. This inequation or equation contains recursive

definitions.

This class of specifications is practically important, as we have seen
from the examples: into this class fall, for instance, the transformation
of a nested recursion into a tail-recursive one, and compiler develop-

ment.

As stated in the introduction, we want a development method that
allows systematic development of programs from the mentioned spec-
ifications. We do not want developments that are found by "eureka”.
Moreover, development steps should be oriented at the shape of formu-
lae whenever possible. Knowledge of the problem domain should enter

development only when necessary.

The formal foundation, on which our method is based, has been pro-
vided in chapter 2. It is a predicate calculus with two rules for recursion:
fixed point induction, and the fixed point rule. In particular, we have

an unrestricted generalization rule to our disposal.

We start with a description of the viewpoint of program development,

which we take in our development method for recursion. Then we

121

122 CHAPTER 4. A PROOF METHOD FOR RECURSION

turn to the particular development task described above. Finally, we
discuss methodological reasons for which we have excluded certain rules

for recursion from the calculus.

4.0 General development method

We develop programs from specifications in a predicate calculus with
the two additional rules for recursion. We do so by equivalence trans-
formations and by strengthening formulae. In this way, a specification
of an unknown f is refined until an explicit equation f =t is reached,
where ¢ is a term. Such an equation is a program for f, which by

construction implies the original specification of f.

Hence we develop programs by backwards proof. Instead of ending with

"true” as proofs do, developments end with a program for the unknown.

As usual in developments, the consistency problem arises: strength-
ening a specification of f may lead to a specification to which no f
exists that meets this strengthened specification. Therefore great care

is needed in strengthening specifications.

4.1 Development from inequations

In this section we describe how programs are developed from specifica-

tions that contain inequations.

Development task. Let a formula S be given as a specification of

f. Assume that an inequation

tCu

is a subformula of S, and that f occurs in u (and possibly somewhere
else in t and 5). The task is to develop a program for f that meets

specification S.

(End ”"Development task”.)

Our development method starts with fixed point analysis.

4.1. DEVELOPMENT FROM INEQUATIONS

4.1.0 Fixed point analysis

During fixed point analysis one searches for a refinement by fixed point
induction. Fixed point induction is planned, but not yet performed

during fixed point analysis.

The description of fixed point analysis is devided into two parts: the

analysis process, and the interpretation of its results.

Analysis. Let rec x. r be a subterm of ¢ such that rec x. r is not
allowed to appear in the final program. It is analysed where fixed point

induction on rec z. r leads.

Choice of induction formula. The first step consists in finding an

induction formula A such that A[rec z.r/x] is syntactically identical

with 5.

The formula A must be carefully chosen if a free variable y of r is
universally quantified in S. Note that in this case A is not just S with
x at the position of rec x. r: then the substitution A[rec x. r/z] would
not lead to .S since the bound variable y would be renamed before the
substitution is done. Therefore, typically, the generalization rule must
be applied to S in order to remove the explicit universal quantification
of y. (Note that we apply rules backwards.) Thus y becomes a free
variable of the new specification. Then fixed point analysis starts by

choosing A for the new specification.

But the generalization rule must only be applied if necessary. As many
explicit universal quantifications as possible should remain in the for-
mula: the more explicit universal quantifications remain in the formula,

the stronger the induction hypothesis is.

If the same term rec . r occurs more than once in ¢, one should first
concentrate on a single one of its occurrences. That is, only one occur-
rence is substituted, and hence only fixed point induction on this single

occurrence is analysed.

In addition, one must ensure that the chosen formula A is syntactically

admissible in x.

123

124 CHAPTER 4. A PROOF METHOD FOR RECURSION

(End ”Choice of induction formula”.)

Having found a formula A, one proceeds with the base case, and with

the inductive step of the fixed point induction rule as follows:

e Fixed point analysis is recursively applied to the base case. (Note
that, although one recursion has been removed, the base case may

still contain other recursion operators.)

e For the inductive step it is analysed, whether the induction hy-
pothesis is fully applicable (after equivalence transformations).

Depending on the result, one proceeds as follows:

— If the induction hypothesis is fully applicable, it is not yet
applied, but fixed point analysis is recursively applied to the
conclusion of the inductive step. Recursion operators that
would be removed by application of the induction hypothe-
sis, however, need not be considered in the subsequent fixed

point analysis.

— If the induction hypothesis is not fully applicable, the recur-
sion under consideration is left in the term, and fixed point
analysis 1s applied to a different unwanted recursion term on
the left hand side of the inequation.

(End ” Analysis”.)

Results. The analysis process may lead to the following results:

e A sequence of nested fixed point inductions has been found so
that no unwanted recursion remains on the left hand side of the
inequation, that is, all induction hypotheses are fully applicable.
The further proceeding depends on the form of the left hand side

that arises from application of the induction hypotheses:

— If application of the induction hypotheses takes one closer
to a non-formalized goal (e.g. tail-recursive form), then this
sequence of fixed point inductions is selected for the develop-
ment, but not yet performed. The development is continued

with context reduction (section 4.1.1).

4.1. DEVELOPMENT FROM INEQUATIONS

— If the form contradicts such an additional informal require-

ment, an auxiliary function is introduced (section 4.1.2).

e An unwanted recursion remains on the left hand side, that is, an
induction hypothesis is not fully applicable. Then these recursions
are left in the term. For the successful fixed point inductions one

proceeds as before:

o If application of the induction hypotheses takes one closer to a
non-formalized goal (e.g. tail-recursive form), then this sequence
of fixed point inductions is selected for the development, but not
yet performed. The development is continued with a design deci-

sion (section 4.1.3).

o If the form contradicts such an additional informal requirement,
an auxiliary function is introduced (section 4.1.2) or a design

decision is made (section 4.1.3).

The results have been listed from the most convenient one to the least
convenient. So, if fixed point analysis offers several sequences of fixed
point inductions, then those are preferred that correspond to a situation

mentioned earlier in the list.

(End ”Results”.)

Depending on the result of fixed point analysis, one proceeds with one

of the next steps:

e context reduction
e auxiliary function
o design decision

e fixed point induction

4.1.1 Context reduction

If the unknown f in the right hand side of the inequation is surrounded
by context, one should at next try to remove as much of this context

as possible.

125

126 CHAPTER 4. A PROOF METHOD FOR RECURSION

A means to do so is to introduce the same context on the left hand side
of the inequation, and then to remove (parts of) this context by the

monotonicity argument.

After reducing the context, one must re-analyse whether the fixed point
induction that has been selected during fixed point analysis is still possi-
ble. In general, this will not be the case. Therefore one must generalize
the context-reduced specification so that the original fixed point induc-
tion works again. That is, one must make a design decision, however,
with a particular fixed point induction in mind; one tries to generalize

the inequation in order to make this fixed point induction work.

At first sight, it might seem unreasonable to do fixed point analysis
first, and context reduction thereafter. The reason for this order is
as follows: It is easier to find a working fixed point induction for the
original inequation than having to find a suitable generalization at the
same time. Having a special fixed point induction in mind helps to find

the generalization.

So, if the context of the unknown could be reduced, but the original
fixed point induction has become impossible, one proceeds with a design

decision. In all other cases one proceeds with fixed point induction.

4.1.2 Auxiliary function

One has found a working fixed point induction, but its application
would lead to a formula that does not agree with additional properties

required of the program for the unknown f.

In such a situation one abstracts the term that prevented one from
applying fixed point induction. This abstraction is achieved by intro-

duction of one or more auxiliary functions.

The auxiliary function has an argument that is intended to represent
the induction variable. When developing the body of the auxiliary
function, one should ask: “Why did the shape of the term prevent
application of the induction hypothesis?” Then the identified shape is
built into the body of the auxiliary function. Hence the definition of

an auxiliary function is guided by the shape of the previous formula.

4.1. DEVELOPMENT FROM INEQUATIONS

The auxiliary function is used in a specification of a new unknown g.

This specification is an inequation or equation.

Based on the specification of the new unknown ¢, one must express
the old unknown f in terms of ¢. In order to do so, one refines the
specification of f by making use of the new specification of ¢ until a

term for f is found; this term will contain g¢.

Then the whole development method is recursively applied to the new

specification of the new unknown g¢.

4.1.3 Design decision

One has found a sequence of successful fixed point inductions (possibly
the empty sequence), but in the left hand side of the inequation a
recursion is still left, which is not allowed to appear in the final program

for f.

Then one must make a design decision. The recursion remained in the
inequation, because fixed point induction on it failed during fixed point
analysis. Inspection of the reason of this failure will help to find a design
decision. Of course the new specification must be such that it implies

the old one, that is, it must be a refinement of the old specification.

Often a generalization of the inequation is needed, as is well-known
from induction proofs. The preceeding fixed point analysis can guide

the generalization.

Sometimes a conjunct can be added to the old specification; thus the old
fixed point inductions still work, now followed by a fixed point induc-
tion on the recursion that could not be eliminated from the inequation

before.

After a design decision has been made, the development method is

recursively applied to the new specification.

127

128 CHAPTER 4. A PROOF METHOD FOR RECURSION

4.1.4 Fixed point induction

When all these steps have been carried out (as far as they have been

necessary), the planned fixed point induction can be done.

Fixed point induction leads to a number of new specifications of the

unknown, which in the next step are turned into a recursive definition.

4.1.5 Recursive definition

Typically at the end of the development one has an inequation with
f isolated on the right hand side of =, where f may also occur in the
term on the left hand side. By the fixed point rule, such a specification

can immediately be turned into a recursive definition of f.

4.1.6 Proofs

Specifications that have not been refined, must be proved for the pro-
gram developed for f. This can be done at the end of the development,
or during development: one shows that the actual specification implies
the remaining ones. One faces the usual danger of having introduced

inconcistencies, as described above.

4.2 Development from equations

When a specification contains an equation instead of an inequation, the
development task can immediately be reduced to a development from

two inequations: the given equation
t=u
can be rewritten into the conjunction

tCunhult.

Then one selects the inequation, where the unknown occurs on the right
hand side. The development method of section 4.1 is applied to this
inequation; the remaining inequation must be proved for the developed

program.

4.3. DISCUSSION

Of course, concentration on one inequation can lead to a solution that
does not fulfil the second inequation. But this danger of introducing

inconsistencies is unavoidable in specification refinement.

It is an intrinsic property of general methods that in special cases devel-
opments exist that are shorter and more direct than the development
constructed by the method. Assume that in an equation a function f is
involved, which is defined by direct structural recursion: the argument
of f is of a sort whose elements are generated by a set of constructors,
and f is recursively applied only to direct components of its argument.
Then a development by structural induction could be shorter than a
development by the general method. But a development by fixed point
induction on f would only split the development into two parts; for
each of the inequations it would precisely reflect the structural induc-
tion. Special cases that occur often in practical applications could be

identified, and a special submethod could be formulated for them.

4.3 Discussion

Now we will discuss the methodological reasons for which we have ex-
cluded certain rules from our calculus, which are known from the liter-

ature.

Least (pre-) fixed point rule. The least fixed point rule
tly/r]=y=reca.tCy

and the least pre-fixed point rule
tly/t]Cy=recaz.tCy

are well-known from the literature (e.g. [37], [26]).

Although perfectly fulfilling the criteria for rules of chapter 1, these
two rules have been excluded from our calculus. Remember that we
want a concise calculus; we can best omit rules that we do not need for

methodological reasons.

Assume that a program for y must be developed from the specification

recz.tLCy.

129

130 CHAPTER 4. A PROOF METHOD FOR RECURSION

Then, following our development method, we would do fixed point in-
duction on rec x. The base case is trivially fulfilled, and the inductive

step is

tLy=1tLCy.

Application of the induction hypothesis leads to the refined specification
tly/x]Ey .

This is exactly the specification we would have obtained by application
of the least pre-fixed point induction rule. The least fixed point rule

would have led to an even stronger specification.

(End ”Least (pre-) fixed point rule”.)

Another well-known technique is transformation by unfolding and fold-

ing.

Unfold /fold-transformations. The unfold/fold-technique is due to
Burstall and Darlington [10]. The unfold-rule and the fold-rule have
already been introduced in chapter 2. We repeat them here for conve-

nience:

In our notation we can write the unfold-rule as follows:

rec x. t[z/y] = rec z. (t[t[z/y]/y])

The fold rule can be written as follows:

rec z. t{u/y| = rec x. u
rec z. t{u/y] Jdrec . t[x/y]

Both rules fulfil the criteria for rules of chapter 1. We have omitted
them from the calculus, because they are not necessary in our develop-

ment method:

In the literature (e.g. [54], [1]) the unfold/fold-technique is often ap-

plied in a rather relaxed way: as is well-known, by folding one can

4.3. DISCUSSION

obtain a smaller value (cf. the conclusion of the fold-rule). Speaking
operationally, termination may get lost by folding; the transformations
establish only partial correctness. But in most proofs and developments
in the literature (e.g. [54], [1]) equality = is written instead of J when
the fold-rule is applied. The danger of losing termination is only men-
tioned. It is also mentioned that therefore termination must be proved;

but then no termination proofs are done.

Instead of proving termination after the development, we develop pro-
grams from the inequation that implies termination: we develop a pro-
gram for f from the inequation t C f. This property is sometimes called
robust correctness. If t has a defined value, then so has f. Butif ¢t = L,
then f is allowed to take any value whatsoever. Speaking operationally,
termination is guaranteed by development; the missing property, which
we must prove afterwards, is that f does not terminate more often
than ¢. Contrastingly, unfold/fold-transformations develop f from the
partial correctness formula f C ¢. Unfortunately, termination is not

proved in most publications that use the unfold/fold-technique.

Another problem with the unfold/fold-technique is that there is no
method for its goal-directed application. There do exist a number of
strategies (e.g. generalization and tupling strategies) for unfold/fold-
transformations; but they rather coexist independently of each other:
it is far from obvious, which one of them is best applied to a prob-
lem at hand. Moreover, applicability of those strategies is rather re-
stricted, since they were invented for transformation of recursion into

linear form.

In addition, unfold/fold-techniques use a lot of operational reasoning:
often, some computation traces are computed, and solutions are derived
from those examples. We are of the opinion that instead of reasoning
operationally, one should derive solutions by application of laws, and
by exploration of the shape of formulae. Therefore solutions should

neither be derived from examples.

(End ”Unfold /fold-transformations”.)

131

132 CHAPTER 4. A PROOF METHOD FOR RECURSION

Chapter 5

Conclusion

The present work has tried to make development of recursive definitions
from specifications more systematic. We have considered specifications
that contain inequations or equations on terms with recursive defini-
tions. For the unknowns of such specifications, recursively defined pro-
grams are developed in a refinement style. It has turned out that even

in non-trivial examples solutions can to a large extent be calculated.
Let us briefly review the main results of the previous chapters.

We started with program development in general, and searched for
criteria for the usefulness of calculi. It turned out that proof design
strongly depends on the calculus. Simplicity turned out to be very
important at all levels of a calculus: the syntax of terms and formulae
must be tailored to manipulation, rather than to manifestation of truths
once and for all. Applicability of rules is substantially influenced by
their simplicity: applicability of a rule must be easily perceivable. The
careful composition of rules into a calculus contributes much to good
proof design. A mere aggregation of rules will not be sufficient. And
also the interplay of rules has a great impact on proof design: good

proof design needs a simple interplay of rules in the calculus.

Then we applied the criteria in order to get a recursion calculus. A
recursion operator rec was introduced into the language, which can
be written into terms. According to the criteria, we preferred the re-
cursion operator to function declarations as known from programming
languages. We introduced only two rules for recursion into the calcu-

lus: the fixed point induction rule, and the fixed point rule. This choice

133

134 CHAPTER 5.

was confirmed by all our examples. The two rules for recursion were
added to a predicate calculus. In developments, we applied the calculus
backwards, and, in particular, we applied the fixed point induction rule
backwards. We have chosen a predicate calculus since it has simple

rules, and a simple proof structure in the sense of chapter 1.

We have been able to apply the same method to all our examples. Even
the more difficult examples (such as the nested recursion, the compiler
development, and the development of an operational semantics from a
denotational one) could be treated systematically, without deep insights
into the problem domain. When design decisions were needed, they
were largely guided by the shape of formulae. So, wide parts of the

developments were calculational.

In the presented method, development starts with an analysis whether
the specification is amenable to fixed point induction. The next step
in the development depends on the outcome of the analysis: in the
best case, fixed point induction can immediately be applied; it leads
to a refined specification. If fixed point induction is not immediately
applicable or unreasonable, the next step is selected according to the
shape of the formula, in which the fixed point induction failed. Al-
though requiring thought, all these steps are guided by the formulae
that resulted from fixed point analysis. In our examples, the formulae
gave valuable hints for the design decisions. After a design decision
has been made, the development method is recursively applied to the

refined specification.
We conclude with an outlook to possible future work.

A number of steps in the development process are routine, for instance,
generation of formulae during fixed point analysis, and calculation of
programs after a suitable fixed point induction has been found. There-
fore, the method could well be supported by machine. Thus the pro-
grammer could concentrate on those parts that need thought and con-
sideration. Design of such a mechanical support system seems to be
straightforward, because the method clearly divides routine steps from
those that need thought.

CONCLUSION

Bibliography

1]

Arsac, J., Kodratoff, Y.: Some techniques for recursion removal
from recursive functions. ACM TOPLAS, Vol. 4, No. 2, April
1982, 295-322

Bauer, F.L., Ehler, H., Horsch, A., Moller, B., Partsch, H.,
Paukner, O., Pepper, P.: The Munich Project CIP. Vol. II: The
Program Transformation System CIP-S. LNCS 292, Springer,
Berlin 1987

Bauer, F.L., Wossner, H.: Algorithmische Sprache und Pro-
grammentwicklung. Springer 1984, Berlin, Heidelberg, New York,
Tokyo, 2. Auflage (in German)

Berghammer, R., Ehler, H., Zierer, H.: Towards an algebraic
specification of code generation. Science of Computer Program-

ming 11, 45-63 (1988)

Bird, R.S.: The promotion and accumulation strategies in trans-
formational programming. ACM TOPLAS, Vol. 6, No. 4, October
1984, 487-504

Bjgrner, D.: Rigorous development of interpreters and compil-
ers. In: Bjorner, D., Jones, C.B. (eds.) Formal Specification and
Software Development. 271-320, Prentice Hall, 1982

Broy, M.: Deductive program development: evaluation in reverse
polish notation as an example. In: Broy, M., Wirsing, M. (eds.):
Methods of Programming. LNCS 544, Springer, Berlin, 1991

Broy, M.: Experiences with Software Specification and Verifica-
tion Using LP, the Larch Proof Assistant. Technical Report SRC
93, Digital Systems Research Center, Palo Alto, California, 1992

135

136

[9]

[10]

[11]

[14]

[15]

[16]

[17]

[18]

[19]

Broy, M.: Functional specification of time-sensitive communicat-
ing systems. In: Broy, M. (ed.) Programming and Mathematical
Method. NATO ASI Series F: Computer and Systems Sciences,
Vol. 88, 325-367, Springer, Berlin 1993; also: ACM Transactions
on Software Engineering and Methodology. Vol. 2, No. 1, January
1993, 1-46

Burstall, R.M., Darlington, J.: A transformation system for de-
veloping recursive programs. Journal of the ACM, Vol. 24, No. 1,
January 1977, 44-67

Burstall, R.M., Landin, P.J.: Programs and their proofs: an al-
gebraic approach. In: Meltzer, B., Michie, D. (eds.) Machine In-
telligence 4, Edinburgh University Press, 1969

Cartwright, R.: Recursive programs as definitions in first order

logic. STAM J. Comput., Vol. 13, No. 2, May 1984, 374-408

Chirica, L.M., Martin, D.F.: An approach to compiler correct-
ness. International Conference on Reliable Software, Proceedings,

1975

Choppy, C., Guiho, G., Kaplan, S.: A Lisp compiler for FP lan-
guage and its proof via algebraic semantics. LNCS 185, Springer,

Berlin

Cohn, A.: High level proof in LCF. In: Joyner, W.H. (ed.) 4th
Workshop on Automated Deduction, 1979, 73-80

Cohn, A.: The equivalence of two semantic definitions: a case
study in LCF. STAM J. Comput., Vol. 12, No. 2, May 1983, 267-
285

Courcelle, B.: Equivalences and transformations of recursive def-
initions. 26th Annual Symposium on Foundations of Computer

Science, 1985, 354-359

Courcelle, B.: Fundamental properties of infinite trees. Theoret-

ical Computer Science 25, 1983, 95-169

Courcelle, B.: Recursive applicative program schemes. In:
Leeuwen, J. van (ed.) Handbook of Theoretical Computer Sci-
ence, 459-492, Elsevier Science Publishers B.V., 1990

BIBLIOGRAPHY

BIBLIOGRAPHY

[20]

[21]

[22]

23]

[24]

[25]

[26]

[29]

30]

31]

Cousot, P., Cousot, R.: Inductive definitions, semantics and ab-
stract interpretation. 19th POPL 1992, 83-94

Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: Leeuwen,
J. van (ed.) Handbook of Theoretical Computer Science, 243-320,
Elsevier Science Publishers B.V., 1990

Despeyroux, J.: Proof of translation in natural semantics. Sympo-
sium on Logic in Computer Science, Cambridge, Massachusetts,

1986, 193-205

Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, En-
glewood Cliffs 1976

Dijkstra, E.W.: The unification of three calculi. In: Broy, M.
(ed.): Program Design Calculi. NATO ASI Series F: Computer
and Systems Sciences, Vol. 118, 197-231, Springer, Berlin 1993

Dybjer, P.: Using domain algebras to prove the correctness of a

compiler. In: Mehlhorn, K. (ed.) STACS 85, Proceedings. LNCS
182, 98-108, Springer, Berlin 1985

Dybjer, P., Sander, H.P.: A functional programming approach to
the specification and verification of concurrent systems. Formal

Aspects of Computing 1, 303-319, 1989

Gardiner, P.H.B., Pandya, P.K.: Reasoning algebraically about

recursion. Science of Computer Programming 18, 271-280, 1992

Gasteren, A.J.M. van: On the Shape of Mathematical Argu-
ments. In: Goos, G., Hartmanis, J. (eds.) Lecture Notes in Com-
puter Science, vol. 445, 1990

Gentzen, G.: Untersuchungen tber das logische Schlieflen. Math-
ematische Zeitschrift 39. I 176-210, II: 405-431

Gries, D.: Influences (or lack thereof) of formalism in teaching
programming and software engineering. In: Dijkstra, E.W. (ed.)
Formal Development of Programs and Proofs, 229-236, Addison
Wesley 1990

Gries, D.: The Science of Programming. Springer, New York,
1981

137

138

32]

33]

[34]

[35]

[36]

37]

[39]

[40]

[41]

[42]

[43]

[44]

Gunter, C.A.: Semantics of Programming Languages. The MIT
Press, Cambridge, Massachusetts, London, England, 1992

He, J., Bowen, J.: Compiling specification for ProCoS language
PLE. Internal ProCoS report OU HJF 6/3, February 1991

Hinkel, U.: Maschineller Beweis der Korrektheit eines Interpre-
ters. M.Sc. Thesis (in German), Technische Universitat Miinchen,

1992

Hoare, C.A.R.: Algebra and models. In: Broy, M. (ed.): Program
Design Calculi. NATO ASI Series F: Computer and Systems Sci-
ences, Vol. 118, 161-195, Springer, Berlin 1993

Hoare, C.A.R.: Mathematics of programming. In: Colburn, T.R.
et al. (eds.) Program Verification, 135-154

Hoare, C.A.R., Hayes, [.J., He, J., Morgan, C.C., Roscoe, A.W.,
Sanders, J.W., Sorenson, [.H., Spivey, J.M., Sufrin, B.A.: Laws of

programming. In: Broy, M. (ed.) Programming and Mathematical
Method. 95-122, Nato Asi Series F, Vol. 88, Springer 1992

Hoare, C.A.R., He, J.: Refinement algebra proves correctness of
compilation. In: Broy, M. (ed.) Programming and Mathematical
Method. 245-269, Nato Asi Series F, Vol. 88, Springer 1992

HuBimann, H.: A case study towards algebraic verification of code

generation. AMASTI1, lowa, 1991

Kott, L.: A system for proving equivalences of recursive pro-

grams. LNCS 87, 63-69

Kott, L.: Unfold/fold program transformations. In: Nivat, M.,
Reynolds, J.C. (eds.) Algebraic methods in semantics. 1982

Manna, Z.: Mathematical Theory of Computation. McGraw-Hill,
New York 1974

Manna, 7., Waldinger, R.: The Logical Basis for Computer Pro-
gramming. Vol. 2: Deductive Systems. Addison-Wesley 1990

McCarthy, J., Painter, J.: Correctness of a compiler for arith-
metic expressions. Proceedings of Symposia in Applied Mathe-
matics, Vol. 19, ed.: J.T. Schwartz

BIBLIOGRAPHY

BIBLIOGRAPHY

[45]

[53]

[54]

[55]

McGowan, C.: An inductive proof technique for interpreter equiv-
alence. In: Rustin, R. (ed.) Formal Semantics of Programming

Languages.1972

Mendelson, E.: Introduction to Mathematical Logic. Van Nos-
trand Company, 2nd edition, 1979

Millo, R.A. de; Lipton, R.J.; Perlis, A.J.: Social processes and
proofs of theorems and programs. In: Colburn, T.R. et al.
(eds.) Program Verification, 297-319, Kluwer Academic Publish-
ers, 1993

Moller, B.: Higher-order Algebraic Specifications. Habilitationss-
chrift, Technische Universitat Minchen, February 1987

Morris, F.L.: Advice on structuring compilers and proving them

correct. POPL73

Morris, J.H.: Another recursion induction principle. Communi-

cations of the ACM, Vol. 14, No. 5, May 1971, 351-354

Mosses, P.D.: Denotational Semantics. In: Leeuwen, J. van (ed.)
Handbook of Theoretical Computer Science, 575-631 Elsevier Sci-
ence Publishers B.V., 1990

Nelson, G.: Some generalizations and applications of Dijkstra’s
guarded commands. In: Broy, M. (ed.) Programming and Math-
ematical Method. NATO ASI Series F: Computer and Systems
Sciences, Vol. 88, 157-191, Springer, Berlin 1993

Paulson, L.C.: Logic and computation - Interactive proof with
Cambridge LCF. Cambridge Tracts in Theoretical Computer Sci-
ence 2, Cambridge University Press, 1987

Pettorossi, A., Proietti, M.: Rules and strategies for program
transformation. In: Moller, B., Partsch, H., Schuman, S. (eds.)
Formal Program Development. LNCS 755, 263-304, Springer,
Berlin 1993

Polak, W.: Compiler Specification and Verification. LNCS 124,
Springer 1981

139

140

[56]

[57]

[58]

[59]

[62]

[63]

Park, D.: Fixpoint induction and proofs of program properties.
In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 5, 1969,
59-78

Pepper, P.: A simple calculus for program transformation (inclu-

sive of induction), Science of Computer Programming 9, 221-262,

1987

Raoult, J.-C., Vuillemin, J.: Operational and semantic equiva-

lence between recursive programs. Journal of the ACM, Vol. 27,

No. 4, October 1980, 772-796

Scherlis, W.L, Scott, D.S.: First steps towards inferential pro-
gramming. In: Colburn, T.R. et al. (eds.) Program Verification,
99-133, Kluwer Academic Publishers, 1993

Tarski, A.: A lattice-theoretical fixpoint theorem and its appli-
cations. Pacific J. Math. 5, 285-309, 1955

Thatcher, J.W., Wagner, E.G.; Wright, J.B.: More on advice
on structuring compilers and proving them correct. Theoretical
Computer Science 15, 223-249, 1981

Winskel, G.: The Formal Semantics of Programming Languages
- An Introduction. The MIT Press, Cambridge, Massachusetts,
1993

Young, W.D.: A mechanically verified code generator. Journal of

Automated Reasoning 5, 493-518, 1989

BIBLIOGRAPHY

