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Kurzfassung

Ziel der Arbeit sind ein Kalk�ul f�ur Rekursion und eine Methode zu

dessen Anwendung� die f�ur die Programmentwicklung geeignet sind�

Zuerst werden Kriterien f�ur die Brauchbarkeit von Kalk�ulen in der Pro�

grammentwicklung aufgestellt� Diese Kriterien betre
en sowohl Term�

und Formelsprache� als auch Schlu�regeln und Ableitungsbegri
� An�

schlie�end werden eine Sprache und ein Kalk�ul f�ur rekursive De�nitio�

nen angegeben� die den gefundenen Kriterien gen�ugen� Der Kalk�ul dient

sowohl zum Beweisen von Eigenschaften rekursiver De�nitionen� als

auch zur Entwicklung rekursiver De�nitionen aus Spezi�kationen� Um

eine systematische� zielgerichtete Anwendung des Rekursionskalk�uls zu

unterst�utzen� wird eine Methode angegeben� nach der Beweise und

Entwicklungen gef�uhrt werden k�onnen� Der Einsatz des Kalk�uls nach

der vorgestellten Methode wird an einer Reihe nicht�trivialer Beispie�

le von Entwicklungen vorgef�uhrt� Die Methode wird zuerst anhand der

Entwicklung einer repetitiv�rekursiven Funktion aus einer geschachtelt�

rekursiven� sowie der Behandlung von Hoares Problem der zwei while�

Schleifen vorgestellt� Daran schlie�en sich zwei umfangreichereBeispiele

an� die Entwicklung eines �Ubersetzers f�ur eine Sprache mit Rekursion

und die Entwicklung einer operationellen Semantik aus einer denota�

tionellen�
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Chapter �

Introduction

Today there is general agreement that program development is impor�

tant and di�cult� Much research has been done and still is done� in

order to make program development reliable and manageable� The

main ingredients of program development are a formal calculus� which

ensures correctness of development� and a method for its disciplined�

goal�directed application�

The essence of formal program development is that a program is for�

mally speci�ed� and a program in executable notation is proved to meet

that speci�cation� It is generally agreed that the executable program

should not be guessed and afterwards be proved to meet the speci�ca�

tion� Instead� the program and its proof should be developed hand in

hand from the speci�cation� Of course� thought and insight into the

problem domain are needed in the development of a program� As is

well�known� program development cannot completely be mechanized�

Therefore human guidance is indispensable to program development�

The next step towards systematic program development consists in bas�

ing decisions rather on the shape of formulae than on insights into the

problem domain� Certainly� knowledge of the problem domain cannot

completely be replaced by consideration of the shape of formulae� But

methods for program development should take the shape of formulae

into account as much as possible in order to guide the development

process� There is evidence that syntactic considerations can avoid the

blind search for ideas to a large extent�

Thus� a calculus for program development should be accompanied by a

�
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method for its application� The method should divide the development

as clearly as possible into routine steps� and steps that require thought�

The latter should be guided as much as possible by the shape of for�

mulae� So� more systematic program development could be achieved�

Today many calculi exist for program development and proof� But they

are rarely accompanied by a method for their application� Undoubtedly�

it is di�cult to give a method that covers program development in

general� But one could concentrate attention on particular development

tasks�

In this work we will concentrate on a special form of speci�cations�

and �nd a development method for them� We have chosen formulae of

predicate calculus that contain inequations

t v u

or equations

t � u

between terms� Those terms may contain recursive de�nitions� The

task is to develop recursive programs for the unknowns in the terms�

Into this class of speci�cations fall� for instance� compiler speci�cations�

They can be stated as follows� the value of the source program is less

than or equal to the value obtained by executing the compiled program

on the target machine� This example already indicates the practical

importance of the mentioned speci�cations�

A method for developing programs from speci�cations essentially de�

pends on the underlying calculus� It can only be as good as the under�

lying calculus� Therefore any methodological consideration must start

with the choice of a suitable calculus�

When studying the literature� one is confronted with a lot of di
erent

rules for recursion� They are of quite di
erent nature� the spectrum

of rules ranges from very simple ones to very technical� elaborate ones�

Some of those rules are intended for development� most of them� how�

ever� for proof�
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But hardly any rules are equipped with methodological directions for

their use� Sometimes strategies are given� but they are merely shown

in a number of examples� they are not generalized into methodological

rules� This lack of methodological rules concerns proof� but to a much

larger extent it concerns program development�

Proofs of properties of recursively de�ned objects are not easy� in gen�

eral� In view of the great amount of rules in the literature� it is di�cult

to �nd a suitable rule in a particular proof situation� and to combine

rules in order to reach a certain goal� A typical example of such a di��

cult proof is compiler correctness� It has turned out that being merely

provided with the set of rules known from the literature� with knowl�

edge of the problem domain� and with operational intuition� one can

hardly �nd a compiler correctness proof�

The situation is no better� if developments are to be found instead of

proofs� in proofs� the solution of a problem is given� and it must be

proved that it is indeed a solution� that is� it must be proved that the

solution meets its speci�cation� In developments� however� the solution

and its proof must be found�

Our aim is a method for the development of programs from speci�ca�

tions of the form given above� as mentioned before� the inequations and

equations may contain recursive de�nitions and unknowns� for which

programs must be developed� Of course� these programs themselves

may contain recursion�

We want the development to be as systematic as possible� Ideally�

developments should not be found by striking ideas and deep insights

into the problem domain� instead they should be found by systematic

analysis and design� Even more rigorously� development should largely

be based on the shape of formulae� as we have stated before for program

development in general� The whole development process must be as

calculational as possible�

This idea of calculational development based on syntactic considera�

tions is similar to solving di
erential equations� when solving a dif�

ferential equation� one proceeds according to its syntactic structure�

methods exist that describe how to proceed� Although thought is still
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needed� the methods help to derive solutions systematically� and with

a minimum of own ideas�

The work is organized as follows�

Chapter �	 As stated above� the literature provides many rules for

proving about recursion� They di
er much in their shape and complex�

ity� It is not clear which rules are most suitable for proof and devel�

opment� Hence we cannot start from a given set of rules� We must

�rst �nd out which of them are most convenient for practical use� This

question cannot be answered purely by experiment since the number of

experiments we can do is too restricted� Therefore we �rst search for

criteria of the practical usefulness of calculi� We do so for program de�

velopment calculi in general� hence chapter � is not restricted to calculi

for recursion�

Chapter �	 We �rst give a language with recursion that respects

the criteria of chapter �� Thereafter we de�ne formulae and rules for

recursion� They are chosen according to the usefulness criteria� Since

we use essentially an enriched predicate calculus� we will not present

the whole calculus� but only those rules that refer to recursion or that

are particularly important to our development method� We will also

discuss the reasons for our selection of rules�

Chapter �	 We apply our development method to a number of non�

trivial examples� Among them are a compiler development� and the

development of an operational semantics from a denotational one� They

have been chosen for two reasons� �rstly� they are di�cult enough

to be a touchstone for our development method� Secondly� they are

not known from the literature� and thus are hopefully interesting in

their own right� Other examples are the transformation of an intricate

nested recursion into tail�recursive form� and the simpli�cation of the

sequential composition of two while�loops� All solutions are developed

by the same method�

Chapter �	 After having shown the development method in vari�

ous examples in chapter �� we describe the method in chapter 
� We

�rst describe the general proceeding we have chosen for program de�

velopment� Then we explain the method for development of recursive



�

de�nitions� which we have used throughout our examples� Finally� we

discuss methodological reasons for which we have excluded certain rules

from the calculus�


In�dependencies	 This work has been written in a way to ease

independent reading of its parts� Chapter � is primarily intended for

the reader interested in program design calculi as an object of study�

and in the decisions underlying the present work� Chapter � gives

the foundations that are used throughout all our examples� readers�

who are merely interested in application� can con�ne themselves to

chapter � and chapter 
� and read chapter � only by need� Chapter �

and chapter 
 can be read by arbitrary interleaving�
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Chapter �

What makes a useful

calculus�

As stated in the introduction� our ultimate goal is to give a calculus of

recursion and a method for its application suited to program develop�

ment�

In this chapter and the next we shall address the calculus� We are

heading for a recursion calculus that is tailored to practical use� Un�

fortunately� the literature does not present us with criteria for the use�

fulness of calculi� Of course� there are a lot of calculi for program

development� but they are primarily intended to put program develop�

ment on a formal basis� The question� what properties of a calculus

support proof �nding and program design� is of secondary interest in

those calculi� Consequently� we cannot expect to be provided with a list

of such properties by the literature� The pragmatic side of proofs has

even almost been denied in the past� An exception to this tradition is

van Gasteren�s work ����� But whereas she explores the general nature

of presentation and design of mathematical proofs� we want to �nd out

in what way the formal calculus can contribute to proof design�

Therefore� we must �rst establish criteria for the usefulness of calculi

in program development� Toward this end� we study the r�ole of formal

methods in program development� Then we derive criteria that we con�

sider important for calculi to meet their r�ole in program development�

In doing so� we shall not concentrate on calculi of recursion� but extend

our considerations to program development and veri�cation in general�

Hence this whole chapter is not restricted to the �eld of recursion�

�
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One could also imagine to �nd useful calculi purely by experiment� one

could test di
erent calculi by experiment� and choose those that turn

out to be most useful� But we take the analytical approach� which

has been described above� for two reasons� �rstly� the number of ex�

periments we can do is strongly restricted� because we are our only

guinea�pigs� secondly� we hope that it will be helpful in the design of

other calculi to have criteria for their usefulness� In spite of taking the

analytical approach� the criteria found by theoretical investigations are

supported by experiments�

Let us now explain how we will use some central notions of this chap�

ter� By program development we mean a formal� stepwise development

of programs from speci�cations� By program veri�cation we mean a

formal proof that a property of a program holds� Our notion of �pro�

gram development� includes �program veri�cation�� This viewpoint is

possible since we adhere to a notion of �exible program development�

performing a step and verifying it afterwards is a legal design step� By

the term proof we refer both to a whole program development and to

a single step in a development� Throughout this work we understand

proofs as completely formal objects as opposed to the often non�formal

notion of proof in mathematics� Moreover� we always use the term

programmer in the sense of �a person who develops a program from a

speci�cation��

We do not presuppose a special kind of calculus� Whenever we say

calculus� we include veri�cation calculi� re�nement calculi� and trans�

formation calculi� Therefore� besides formulae� terms and programs can

be the objects of manipulation� as they are in transformation calculi�

For convenience we will always refer to the objects of manipulation as

formulae� because we shall work with such a calculus afterwards� But

one can equally imagine terms as objects manipulated by the calculus�

We begin our investigations by studying the r�ole of proofs and calculi

in program development as far as they are independent of the proof en�

vironment� Thereafter we determine the proof environment on which

we will base our considerations throughout this work� Then we derive

criteria for the usefulness of calculi from their r�oles in program devel�

opment� Finally� we examine in how far these criteria are in�uenced by
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our choice of the proof environment�

In chapter � we will apply our results of this chapter in order to build

a calculus of recursion�

��� The r�ole of proofs and calculi in pro�

gram development

First we study the r�ole of proofs in program development� We then

derive requirements on proofs� such that proofs meet their r�ole in pro�

gram development� Finally we examine the r�ole of calculi in program

development� and similarly derive requirements for them�

R�ole of proofs

The r�ole of proofs in program development is at least threefold�

�� Proofs guarantee that a property of interest holds�

�� By proving� programmers should understand why their solutions

�i�e� �nal programs and intermediate steps of developments� are

correct�

�� Proofs serve as formal documentation�

Now we brie�y comment on these r�oles� and discuss how far they deviate

from those of proofs in other areas�

�� Of course the �rst r�ole of proofs is not speci�c to program devel�

opment� it is shared by all notions of formal proof�

In mathematics proofs often are non�formal and thus their cor�

rectness cannot be stated formally� Therefore� in �
�� mathemat�

ical proof is regarded as a �social process�� only after a proof

has been studied and accepted by other mathematicians� it can

be considered correct� In our opinion such an informal notion

of proof is unacceptable in program development for two rea�

sons� �rstly� proofs in program development are not studied by

�enough� other programmers so that they are not subjected to a
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process of correction� Secondly� proofs in program development

typically contain too much detail to be reliably checked by other

programmers� �At this point mechanical proof support becomes

important��

�� Aid of comprehension is an essential task of proofs in program

development for several reasons�

By understanding why a certain step in the development is cor�

rect� the programmer will get a deeper insight into the problem

at hand� This reinforcement of the programmer�s understanding

may help in further development of the program�

Attempts to prove false conjectures must contradict the program�

mer�s wrong understanding as clearly as possible� Comprehensi�

ble proof attempts facilitate the detection of why a wrong con�

jecture does not hold� and hence help to correct it�

Moreover proofs that reinforce the programmer�s understanding

of a special problem will also increase the programmer�s overall

experience in program development�

Proving will become a rewarding activity for the programmer� if it

increases understanding and experience� The bene�t of improving

their programming ability should motivate programmers to do

proofs�

The r�ole of proof as a vehicle for understanding is of minor im�

portance in mathematical logic and mathematics� In pure logic

proofs are mere formal objects� �This general judgement does not

deny that there are works in mathematical logic on pragmatic

aspects of proofs� �rst and foremost Gentzen�s work on natural

deduction ��	��� When developing a theory� mathematicians usu�

ally are solely interested in correct proofs� and do not strive to

reveal the real argument behind the proved theorem� It is be�

yond the scope of this work to discuss this common practice in

mathematics� instead we refer to van Gasteren�s work �����

�� In its characteristic as formal documentation� a proof provides a

guarantee of the correctness of the derived program� As such� the

proof may sometime later be consulted by the original program�

mer as well as by others�
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Sometimes an already existing program development is changed

in order to replace a design decision by a new one� Then the proof

as a record of the program development must be examined�

Consequently� the proof is also a means to acquaint other people

with the development� that is� as an aid to their understanding

of the development� Their understanding must even reach so far

that they can actively work with the development�

The r�ole of �formal� documentation is also indispensable to proofs

in mathematics� Proofs of mathematical theorems are primarily

studied by other interested mathematicians� The engineer� who

uses a theorem� usually relies on its correctness without reading

its proof� Moreover� proofs in mathematics are typically not re�

designed or changed in order to derive new theorems� By this

passive r�ole of documentation mathematical proofs di
er from

proofs in program development�


End 
R�ole of proofs
	�

Requirements on proofs

In order to formulate requirements that should be ful�lled by proofs

in program development� we make explicit our expectations of the pro�

grammer�

Programmers are assumed to have good capabilities for working for�

mally� In addition� equipped with a suitable formal framework and

method for program derivation� they need to be able to make design

decisions that lead to a correct and e�cient program� This character�

ization matches exactly the pro�le of engineers� In contrast to math�

ematicians� programmers are not supposed to come up with solutions

found by �eureka��

Now we are ready to derive requirements that are imposed on proofs

in program development by their r�oles that have been identi�ed above�

� First of all� proofs have to be correct in the following sense� only

properties that hold may have proofs�
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� Proofs should be done on a level of abstraction that the program�

mer�s understanding can be built on� In particular programmers

should not be confronted with the whole theory �in our case �xed

point theory� that underlies the language they use� That is� se�

mantic details are to be kept away from programmers� Instead

programmers should be provided with properties that they are

inclined to accept as �rst principles�

� The pro�le of programmers implies that proofs should be done as

systematically as possible� Proofs should be developed by thor�

ough analysis and design� and not by searching for a striking idea�

Ideally one is heading for completely systematic� almost compu�

tational proofs�

Systematic proof design is� in general� not considered important

in mathematics� On the contrary� mathematicians often proudly

present proofs that contain �ingenious tricks�� Discussing this

attitude is beyond the scope of this work� again the reader is

referred to van Gasteren�s book ����� But it should be obvious

from the above stated capabilities of programmers that tricks are

to be kept out of proofs in program development�

� For the purposes of comprehensibility and documentation� proofs

should be well�designed� Well�designedness includes that proofs

should be as explicit as possible about their arguments and de�

cisions� and arrange them in a structured� accessible way� Only

such arguments should enter a proof that are actually needed for

the proved theorem to hold� Moreover design decisions should be

made as clear as possible�

� Proof should be an interesting� pleasant task for programmers� It

should even be fun�

Do we stand a chance that there exist proofs that satisfy our require�

ments� We do certainly� since our requirements are not contradictory

as shown by experiment� The requirements for systematic proof design

and for well�designed proofs even seem to be two sides of the same coin�


End 
Requirements on proofs
	�
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R�ole of calculi

In order to be able to do proofs that meet our requirements� we need a

suitable calculus as well as a method for its application�

Finding criteria for a suitable calculus needs clari�cation of the r�ole of

calculi in program development�

� The calculus is a tool to �produce� proofs that ful�l the require�

ments that we stated above�

� The calculus also plays a r�ole in its own right� It is a tool to

be used by programmers� As such it considerably in�uences the

process of �nding proofs�

In particular� in our investigation the calculus is not an object of study

in the same sense as calculi in mathematical logic� Whereas logicians

are interested in the abstract properties of calculi� we are mostly con�

cerned with their properties relating to application�


End 
R�ole of calculi
	�

Requirements on calculi

As we have done for proofs� we now state requirements for calculi in

their r�oles in program development�

� Of course the calculus has to be correct in the usual sense that

only valid formulae are derivable�

Besides this formal notion� correctness has also a pragmatic as�

pect� users may make mistakes when applying the �formally cor�

rect� calculus� Hence application of the calculus should be as few

error�prone as possible�

� The rules of the calculus must provide a basis for the program�

mer�s thought� In arithmetic� for example� thought and under�

standing are based on laws such as x� y � y � x� Similarly� the

rules of a calculus for program development must serve as the

basis for the programmer�s thought and understanding� Hence

understanding ought to be based on formula manipulation rather
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than formula interpretation� We are well�acquainted with this

distinction in arithmetic� where proofs are guided by the laws�

and not by the knowledge of a model of the natural numbers�

� The calculus must support systematic proof design�

� Moreover� as a tool the calculus has to be handy� Often the

formal calculus is felt to be a burden to the programmer� Instead

the calculus should free the programmer for those parts of the

development that require ingenuity�

These are only very general requirements� What they technically mean

for the calculus will be investigated in section ���� First we determine

the proof environment�

Undoubtedly� a mere formal calculus cannot guarantee that proof de�

velopment always ends up with a proof that has our desired properties�

Likewise� good proof design cannot solely be assured by the calculus�

For both purposes the calculus also needs to be applied in a disciplined

manner� Hence the calculus ought to be accompanied by a method for

its application� We shall consider methodological aspects in chapter 
�

They will be customized to proofs about recursive de�nitions since this

is our primary interest�

In the current chapter� however� we stick to the calculus�


End 
Requirements on calculi
	�

��� Choice of the proof environment

As the calculus is a tool� its handiness seems to depend upon the en�

vironment in which it is used� Therefore we now determine the proof

environment�

The main existing proof environments are pen and paper on the one

hand and mechanical systems on the other hand� Throughout this work

we base our considerations on pen and paper as proof environment for

the following reason�
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It is well�known that in calculi that comprise predicate logic proofs

cannot completely be automatized� Hence proofs have at least partly to

be done by humans� Therefore theorem proving ought to be tailored to

their needs� Moreover� proofs and calculi should meet our requirements

of the previous section� In order to get rid of peculiarities of mechanical

support� we choose pen and paper as the proof environment that allows

focusing on human needs most genuinely�

We do not doubt the usefulness of mechanical proof support� But we are

of the opinion that mechanical systems should be adapted to the way

in which people do proofs� Whenever human interaction is needed in a

mechanical proof� the user should �nd a proof status that could stem

from a proof done by hand� The users must not be obliged to familiarize

themselves with the details of the mechanical proof procedure� An

easily understandable proof status becomes even more important when

a proof attempt fails� In that case an understandable proof status can

help the user to get the theorem right� As we saw in the previous

section� not only the existence of a proof but also the proof itself is of

interest in program development� Hence proofs done with mechanical

assistance also have to ful�l the requirements on proofs that we stated

in section ����

Consequently� any methodological consideration of proof should start

with pen and paper as proof environment�

��� Criteria for the usefulness of calculi

Now we establish criteria for the usefulness of calculi based on the re�

quirements stated in section ���� We again consider program develop�

ment calculi in general� and not only calculi of recursion� In preparation

of the next chapter� our main examples� however� will be taken from

the �eld of recursion�

We brie�y repeat our requirements on calculi� A calculus for program

development must be

� correct�

� a good foundation of thought and understanding�
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� a good support in systematic proof design� and

� a handy tool�

Having �xed the proof environment� we are ready to concretize these

requirements� We seek for criteria that make calculi ful�l the require�

ments� provided the calculi are used with pen and paper� In section ���

we shall discuss in how far the proof environment takes e
ect on the

usefulness criteria�

As correctness in the usual sense of mathematical logic is well�known�

it needs no further consideration here� Of course� when designing a

calculus� one has to ensure that all rules are correct�

Let us begin with the requirement for handiness� Since we have chosen

pen and paper as proof environment� the calculus must be easily mem�

orizable� It is important for the programmer to have a good survey

of the calculus� In every proof situation the syntactically applicable

rules should suggest themselves� The programmer must not be obliged

to start an annoying process of remembrance and enumeration of the

rules in the calculus� If the programmer had to study a catalogue of

rules in order to �nd the ones that are applicable in the current situ�

ation� all motivation to do proofs would go down very soon� Whether

a rule is applicable to a certain proof state must easily be seen� and

must not require complicated syntactic comparisons� In addition� the

application of a rule must be a simple syntactic manipulation�

This syntactic familiarity with the calculus is necessary not only for

handiness� but also for systematic proof design� When relieved of the

search for syntactically applicable rules� the programmer can fully con�

centrate on the choice of rules in favour of the intended aim�

Systematic proof design� however� requires an even more intimate fa�

miliarity with the calculus� Programmers must be so familiar with the

calculus that they can assess the pro�t of rules in order to reach a

certain goal� The calculus must enable the programmer to select an

appropriate rule at any stage of a proof� and even to foresee and plan

the whole structure of a proof beforehand� �Of course� we do not claim

that all proof attempts will be successful� even if the programmer is
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familiar with the calculus� Familiarity� however� helps to understand

why a proof attempt fails� and then to correct it��

Familiarity with the calculus� supported by a proof method� is an es�

sential prerequisite of systematic proof design� Therefore� we will now

investigate what properties of a calculus let the programmer become

intimately familiar with it�

Now we give a number of criteria that we have found out to be impor�

tant for the usefulness of calculi� We arrange these criteria according

to the a
ected constituents of the calculus� starting with formulae� we

continue with rules� and then with the calculus as a collection of rules�

until we reach the structure of derivations�

����� Proof�oriented syntax

Parsing and manipulating formulae are the main activities in proofs�

Firstly� these activities have a purely technical aspect� formulae should

be easy to parse by the eye� and comfortably manipulable by a human

user� These properties contribute to the handiness of the syntax� Sec�

ondly� �nding proof steps and taking design decisions are also aspects

of manipulation� Apart from supporting the technical side� syntax has

to assist in proof design� Of course� technical manipulability is a neces�

sary prerequisite for design� But� in addition� a customized syntax can

aid to �nd a proof for example by the mere shape of a formula�

Since programming languages are primarily designed to program in

them� instead of into them� we will �rst look for criteria for a proof�

oriented syntax� This search will lead us to the following criteria�

� combinatorial freedom

� homogeneous syntax

� explicitness of formulae

� economy of syntactic categories

� syntactic sugar
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Combinatorial freedom

Combinatorial freedom was identi�ed as essential for the convenience

of formula manipulation by van Gasteren ����� Combinatorial freedom

means that one is not obliged to use certain distinct concepts or oper�

ators always together� but instead is free to use them separately or to

combine them as needed�

Let us illustrate combinatorial freedom by an example from the �eld of

recursion�

Example � When considering how recursion appears in most pro�

gramming languages� we �nd combinatorial freedom violated�

In programming languages occurrence of recursion is typically con�ned

to recursive declarations� Apart from syntactic variations� recursive

function declarations have the form

funct f � �x� � t �

where identi�er f may occur in term t� and x is a formal parameter�

The semantics of such a function declaration is the binding of a certain

function to identi�er f � That is to say� the operator funct joins two

distinct operators together�

� selection of a certain semantic function�

� binding of a function to an identi�er�

Combination of these two operators may be appropriate for coding

problems in a programming language� but it is improper to proof� Dec�

larations as above compel one to refer to the recursively de�ned func�

tion exclusively by the identi�er f within terms� and to remember the

binding as the context one is working in�

On the contrary� direct reference to the recursively de�ned function

would be rendered possible by separation of the two operators� In

this way the de�ning expression of the function could immediately be

written in terms without introduction of a binding� Moreover� when



���� CRITERIA FOR THE USEFULNESS OF CALCULI �	

we speak of the equivalence of two recursive function declarations� we

actually mean the equality of the de�ned functions� and are not inter�

ested in the bindings to identi�ers� Hence being able to refer to the

recursively de�ned function directly turns out to be valuable in proofs�

As regards binding we do not even need a new operator� Since we will

have a logic with equality� binding can be expressed by explicit use of

the equality sign� Therefore� in this example combinatorial freedom is

for free� the number of operators does not increase�


End of example	�

This example shows how a �exible syntax can be helpful in proofs by

allowing to express things as directly as needed�


End 
Combinatorial freedom
	�

Homogeneous syntax

By homogeneous syntax we mean that syntactic similarities should be

mirrored by the semantics� To put it the other way� we do not want

semantically di
erent concepts to be expressed by a similar syntax�

The reason for requiring a homogeneous syntax again lies in our striving

for conveniently manipulable formulae� Proving is rendered di�cult by

syntactic constructs that look similar but obey quite di
erent laws� In

this way formula manipulation becomes a less mechanical activity than

it could be� Even worse� the syntactic similarities can be misleading

and provoke errors�

Example � As discussed in example �� the semantics of a declaration

funct f � �x� � t

is the binding of identi�er f to a function� Thus the binding is valid

outside the declaration� too�

Let us compare the operator funct to standard binding operators of

functional languages and of predicate logic� All of the operators in

�x�t �function abstraction��
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�x�A �universal quanti�cation�� and

�x�A �existential quanti�cation�

bind the identi�er x only within these terms and formulae� Outside

these terms and formulae� the bindings are invisible�

The di
erent binding scopes lead to di
erent r�oles of the bound iden�

ti�ers� The identi�er bound by one of the operators �� � and � merely

is a means to de�ne a semantic object� It may be exchanged by any

other identi�er �provided no name clashes are introduced� without ef�

fect to the semantics� On the contrary the identi�er bound by the

operator funct is itself part of the semantics� and consequently cannot

be substituted by another identi�er�

Hence� despite the syntactic similarity in their occurrence� the operator

funct on the one hand� and the operators �� � and � on the other hand

behave quite di
erently�

This inhomogeneity can be avoided by replacing the operator funct by

a new operator� say rec� such that the semantics of

rec f��x� � t

merely is a semantic function� instead of a binding to the identi�er f �


End of example	�

Syntactic inhomogeneities can be eluded by restricting the semantics

of similar syntactic constructs to the �common semantics�� and by in�

troducing additional operators for the di
ering parts of the semantics�

This is what was done in the above example�


End 
Homogeneous syntax
	�

Explicitness of formulae

We call a formula explicit� if it is independent of context�
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Example � Let f be recursively declared by

funct f � �x� � t �

Then the formula

�x � f�x� � u �

where u is a term� is not explicit about f � because it refers to the f

declared in the context� and� in general� does not hold for all f �

Having used the operator funct� we are unable to make the formula

explicit� As discussed above� the information about f cannot be in�

cluded in the formula for syntactic reasons �not even as a premise��

Since the operator funct prevents us from writing explicit formulae�

we have another reason for refusing it�


End of example	�

Explicit formulae are desirable� because they make available all infor�

mation in a compact form� In order to �nd the next step in a proof�

one must only look at the current formula� one need not keep in mind

a context or switch to a context that stands elsewhere in the proof�

Proofs are hampered especially� if the context changes from time to

time�

Therefore we consider it important for a proof�oriented syntax that it

allows explicit formulae�

Although demanding a syntax� in which explicit formulae can be writ�

ten� we do not say that one should always use explicit formulae� Some�

times it is for example more convenient to take apart a premise from

a formula� and to make it a general assumption� The point is that ex�

plicitness should be enabled by the syntax� Then one can decide freely

to make a formula explicit or not� It is unacceptable to be obliged to

use a non�explicit formula only by syntactic reasons� As we have seen

in the above example� the operator funct prevents explicitness� and

therefore must be refused�
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When using contexts� one should make sure that they do not change too

often� But if contexts are forced by the syntax� they are uncontrollable�

and thus may change continuously� Frequent context changes are error�

prone and unhandy�


End 
Explicitness of formulae
	�

Economy of syntactic categories

By economy of syntactic categories we mean that in the object language

the number of syntactic categories should be kept small�

Example � Besides a syntactic category of terms� programming lan�

guages usually contain a syntactic category of declarations� We have

seen in example � that one can avoid the syntactic category of function

declarations by introducing a recursion operator in terms�


End of example	�

Parsing and manipulating formulae become easier� when the number of

syntactic categories decreases�


End 
Economy of syntactic categories
	�

Syntactic sugar

By syntactic sugar we mean that syntactic patterns that occur fre�

quently in applications are abbreviated by a new syntactic construct�

Introduction of syntactic sugar is particularly attractive� if it makes

another syntactic construct surplus�

Let us consider an example from the �eld of recursion�

Example � Let �x be an operator that allows to de�ne functions

recursively by writing

�x ��f� � � �

Thus� application of �x to a ��abstraction is a frequently occurring

syntactic pattern� If we introduce a special syntax for this pattern� say
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rec � then we can rewrite the original function de�nition by

rec f� � �

Introduction of rec makes �x surplus as we shall see in the next chap�

ter� Thus �x can completely be eliminated from the language�


End of example	�

Syntactic sugar makes formula parsing and manipulation more conve�

nient� because formulae can be kept concise� In addition� proof rules for

the original syntactic constructs can also be combined into new rules

for the syntactic abbreviation� This adaptation of rules to frequently

occurring syntactic patterns leads to shorter proofs�

At �rst sight� syntactic sugar seems to contradict our requirement for

combinatorial freedom� But it does not for the following reason� Com�

binatorial freedom says that two �or more� semantically independent

operators should not be glued together by the syntax� Contrastingly�

when syntactic sugar is introduced� one has a single operator in mind�

and wants a convenient syntax for it�

A typical e
ect of introducing syntactic sugar and eliminating other

constructs is that non�standard cases become more complicated than

with the original construct� Therefore� syntactic sugar must be chosen

very carefully� that is� the standard cases must carefully be discerned

from the non�standard ones�


End 
Syntactic sugar
	�

These criteria help the programmer to become syntactically familiar

with the language� In this way the programmer can more intensely

concentrate on those tasks of program development that require in�

genuity� Thus� the above criteria contribute also to systematic proof

design�

����� Simple rules

As usual� rules consist of premises� a conclusion� and possibly some

applicability conditions� We tacitly include transformation calculi by
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allowing terms� declarations etc� as premises and conclusions of rules�

In this section we consider rules purely syntactically� No semantic

knowledge is needed to study the examples�

The following two examples give a �rst visual impression of the di
er�

ence between complicated and simple rules�

Example � The following complicated rule for recursive declarations

is taken from �
��� It is only intended for purpose of illustration here�

and will not be studied further�

Let �� ��� s�� s�� s�� s� and F� be meta�variables� Let  and dom be a

value and a function respectively� Let S� V � A and ! be meta�variables

bound outside the rule� �It does not concern us here what all these

variables stand for��

� �S�f�s����g �
�

where hs�� s�� s�� F�i is a WUF�S��transformation from � to

��� and

V � is the set of variables occuring in �� and

s� is the term constructed by the algorithm�

dom�s�� � dom�s�� � dom�s��

�w � dom�s��

either s��w� � V � then s��w� � s��w�

or s��w� � A� if s��w� � s��w� then s��w� � s��w�

if s��w� � V � then s��w� � s��w�

if s��w� � ! then s��w� �  

or s��w� � !� if s��w� �� s��w� then s��w� �  

else s��w� � y

where y is a variable of V � V � with

no occurence in s�

The description of �WUF�transformation�� and of the syntactic corre�

lation between �� ��� s�� s�� s�� s� and F� needs another half page� and

a graphical explanation�
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End of example	�

We contrast this complicated rule with two simple ones�

Example � The �rst of the following rules is well�known from pred�

icate logic� the second one is a so�called ��xed point induction rule��

A	 B

A	 �xB
where x is not free in A

x v u	 t v u

rec x� t v u
where x is not free in u


End of example	�

Now we will examine the simplicity of rules more systematically� Our

search for factors that make a rule simple will lead to the following

criteria�

� obvious syntactic applicability

� decidable applicability conditions

� economy of concepts

� clear presentation

� separation of elementary rules

� small rules

Obvious syntactic applicability

In ��	� Courcelle writes about transformations of recursive program

schemes�

Courcelle and Kott have given syntactical conditions ������

Since these conditions are quite technical we do not even

state them�
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The mentioned �syntactical conditions� are intended for use in program

transformations� We doubt that rules that are too technical to be

included in a book on theoretical computer science can be helpful in

practice� Let us make this point more precise�

We �rst de�ne what we mean by syntactic applicability� Assume we use

the calculus in a forward manner� that is� we move from the premises

of a rule to its conclusion� Then syntactic applicability of a rule to a

proof situation means that some derived formulae syntactically match

the premises of the rule� and that all decidable applicability conditions

of the rule hold� The de�nition is analogous� if we work backwards� that

is� from the conclusion of a rule to its premises� In that case syntactic

applicability means that the current formula matches the conclusion of

the rule� and that all decidable applicability conditions hold�

We say that the syntactic applicability of a rule is obvious� if in every

proof situation the syntactic applicability can be perceived by the eye�

If the rule turns out to be applicable� the resulting formula must also

be perceivable by the eye� In particular� neither the applicability check�

nor the application itself involve non�trivial operations� One only has

to compare the actual proof situation to the rule one has in mind�

Example � The syntactic applicability of the complicated rule of ex�

ample � is not obvious� The computation of the term s� is too compli�

cated to be performed by the eye�

Contrastingly� the application of the two simple rules given in example

� is obvious� As one knows from experience� the free variables of a

formula can be determined by the eye�


End of example	�

A typical technique that leads to non�obvious syntactic applicability is

the use of labels� often for applicability of a rule� certain occurrences

of identi�ers in a formula must be labelled� others must not� Applica�

tion of the rule then erases certain labels and introduces others� Such

syntactic applicability conditions are usually too complicated to be per�

ceived at a glance�
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Non�obvious applicability is not only caused by complicated applica�

bility conditions� Of course� complicated syntactic conditions can also

directly be coded into the premises or the conclusion of a rule�


End 
Obvious syntactic applicability
	�

Decidable applicability conditions

Often the applicability conditions of a rule are even undecidable�

Example � The complicated rule in example � contains an undecid�

able applicability condition�

hs�� s�� s�� F�i is a WUF�S��transformation from � to ��

An equality proof is needed in order to show the existence of a WUF�S��

transformation from � to ��� In fact� a separate transformation calculus

hides behind the applicability conditions�


End of example	�

As the example shows� undecidable applicability conditions are a means

to take di�cult parts out of the calculus� But then a second calculus

for the applicability conditions must be added� Hence one obtains a

calculus consisting of two levels� But a calculus with two levels will

usually be too complicated for practical use�


End 
Decidable applicability conditions
	�

Economy of concepts

By economy of concepts we mean that a rule should include as few

di
erent concepts as possible�

Example � Let us compare two rules from the �eld of recursion in

regard to the concepts they use�

As usual� the notation ����� stands for substitution of variables by terms�
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The so�called �computational induction rule� relies on natural numbers�

A�t��x�
�n � IN�A�tn�x�	 A�tn���x��

A�rec x� t�x�

where A is syntactically admissible in x�

and the sequence �tn�n�INof terms is recursively

de�ned by t� � 
�

tn�� � t�tn�x�

The following rule �known as ��xed point induction�� can be used to

prove the same properties as the previous rule� but does not make use

of natural numbers�

A�
�x�
�x�A	 A�t�x��
A�rec x� t�x�

where A is syntactically admissible in x

Experience shows that these rules often lead to quite di
erent proofs

of the same theorem� Proofs that use the �xed point induction rule are

more abstract than proofs that use computational induction�


End of example	�

Obviously� the more concepts a rule contains� the more di�cult becomes

its use� and the more concepts are introduced in proofs� Therefore we

claim that economy of concepts generally leads to more abstract proofs

without unnecessary detail�


End 
Economy of concepts
	�

Clear presentation

First we give an example of how a rule can be stated clearly or not�

Example �� We again do not study the meaning of the rules� but

merely their syntactic shapes�
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The so�called �unfold�rule� for recursively de�ned functions can be for�

mulated as follows�

�
���
functf� � �x���� � � � � x��m�

� � t�
���
functfn � �xn��� � � � � xn�mn

� � tn

�
��� v

�
���
functf� � �x���� � � � � x��m�

� � u��t��f ��� � � � � tn�f
�
n�

���
functfn � �xn��� � � � � xn�mn

� � un�t��f ��� � � � � tn�f
�
n�

�
���

where n � ��
�i � � � i � n � mi � �
and ti stands for ui�f��f ��� � � � � fn�f

�
n�

This rule can more simply �and� as we shall see in the next chapter�

even more generally� be formulated as follows�

rec f� T v rec f� U �T���
where T stands for U �f���

If we had a nondeterministic substitution operator �some ���� to our

disposal� we could write even more succinctly�

rec f� T v rec f� T �some T�f �


End of example	�

Clear presentation means that technicalities are avoided as far as pos�

sible� One may only make sparing use of indices� especially of multiple

indices� primes� labels etc� Their use should be restricted to cases where

it is unavoidable�

The example shows how much a clear presentation contributes to read�

ability and memorization of a rule�


End 
Clear presentation
	�
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Separation of elementary rules

By separation of elementary rules we mean that elementary rules are

not repeated in other rules�

Example �� A typical elementary rule is that bound variables may

be substituted by other variables �provided no name clashes are intro�

duced�� Using that the names of bound variables are irrelevant� one

could write

rec x� t � rec y� u�y�z�
rec x� t w rec y� u�t�y�x��z�

instead of

rec x� t � rec x� u�x�z�
rec x� t w rec x� u�t�z�

�

It could be argued that the �rst rule is applicable in situations where

the bound variables of rec are named di
erently� whereas the second

rule is not� But renaming of bound variables is such a routine matter

that the greater complexity of the �rst rule does not pay�


End of example	�

Sometimes it is tempting to repeat an elementary rule� such as substi�

tution of bound variables� in other rules� This is seemingly justi�ed by

the greater generality of the rule� because certain variables need not be

the same� This shortens proofs� because e�g� renaming is unnecessary in

a proof� But as elementary rules are usually applied without thinking

and not written down� in fact proofs do not become shorter� But the

rules become more complicated� Therefore elementary rules should not

be repeated in other rules�


End 
Separation of elementary rules
	�

Small rules

Even if rules contain only simple formulae and obvious applicability

conditions� they may still be inappropriate for practical use� Users

will not become familiar with rules that contain a lot of premises and

applicability conditions� Therefore rules should be small�
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End 
Small rules
	�

����� Concise calculus

By concise calculi we mean calculi that consist only of few rules� and

nevertheless are powerful enough for proofs of interest�

Conciseness of a calculus helps the programmer to become familiar

with it� Calculi that consist of few rules are easy to memorize� Thus�

it becomes easier to �nd all rules that are syntactically applicable in a

proof situation� Conciseness makes a calculus a more handy tool�

Not being overwhelmed by a vast amount of rules� users of a concise

calculus will more easily plan and design their proofs� Hence conciseness

of calculi facilitates their goal�directed application�

In addition� programmers will more readily base their thought and un�

derstanding on a concise calculus than on a huge one� A calculus that

cannot easily be surveyed seems to be unsuitable as a foundation of

understanding�

We provide four techniques that we consider important in order to

obtain concise calculi�

� economy of syntactic categories

� parametrized rules

� compact rules

� careful addition of rules

Economy of syntactic categories

In section ����� we mentioned economy of syntactic categories as a cri�

terion for convenient formula parsing and manipulation� In addition�

economy of syntactic categories contributes to a concise calculus by

avoiding that essentially the same rules must be stated for several syn�

tactic categories�
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Example �� Programming languages usually contain the syntactic

categories of declarations and terms� Thus� for reasoning about equality

of function declarations and about equality of terms� the typical rules

of equality must be duplicated� that is� they must be stated for each

of these two categories� This duplication of essentially the same rules

can be avoided� if terms are the only syntactic category as suggested in

example ��


End of example	�

Therefore� if objects of di
erent syntactic categories behave essentially

in the same way� one should try to unify these syntactic categories into

one�


End 
Economy of syntactic categories
	�

Parametrized rules

By parametrization of a rule we mean the replacement of some rules by

a single rule� such that each of the old rules is an instance of the new

one� The new rule is called a parametrized rule�

Example �� We take the commutativity rules of conjunction and

disjunction as a simple example�

A 
 B
B 
 A

A � B
B � A

They can be replaced by a single parametrized rule�

A op B
B op A

where op � f
��g


End of example	�

The bene�t of parametrized rules is twofold� Firstly� the calculus be�

comes smaller� Secondly� the user of the calculus learns and memorizes

the rules in a structured way� similarities and di
erences in the prop�

erties of operators are made explicit�
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�Of course� a formal language for the applicability conditions of rules

is needed� But it is beyond the scope of this work to de�ne such a

language��


End 
Parametrized rules
	�

Compact rules

By a compact rule we mean a rule that includes one or several other rules

as instances or combinations� and makes them surplus� In addition� we

require for compact rules that they lead to shorter and more easily

�ndable proofs than the original rules do�

Example �� Logic with equality provides a typical example of the

replacement of a rule by a compact one�

Let s� t and u be meta�variables denoting terms� Then the well�known

rules of re�exivity� symmetry� and transitivity read as follows�

t � t

t � u

u � t

t � u u � s

t � s

Leibniz�s law can be added in form of the rule

t� � u� � � � tn � un
f�t�� � � � � tn� � f�u�� � � � � un�

�

where f is a meta�variable for function identi�ers� and t�� � � � � tn� and

u�� � � � � un are meta�variables for terms�

Instead of the last rule we could add the rule

t� � u� � � � tn � un
s�t���x�� � � � � tn��xn� � s�u���x�� � � � � un��xn�

�

where � ranges over substitutions of variables by terms� In application

to terms� substitutions are written as post�xes� As usual� ����� denotes

substitutions�

The last rule obviously comprises Leibniz�s rule as an instance�

The advantage of the replacement of the Leibniz rule by the more gen�

eral one is well�known� Equality of the application of a composed func�

tion to equal terms can be proved in a single step instead of in a number
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of steps� Even more important� the introduction of a substitution in

the new rule further facilitates and shortens proofs in special theories

with equality� that is� in presence of non�logical axioms�

�From a theoretical point of view we could also eliminate the re�exiv�

ity� symmetry� and transitivity rules� because they are also included in

the generalized Leibniz rule� For practical application of the calculus�

however� it is more convenient to keep the three rules��


End of example	�

As indicated by our last example� compact rules tend to be more com�

plicated than the original ones� Therefore� one must weigh the merit

of a compact rule against its complexity�


End 
Compact rules
	�

Careful addition of rules

In calculi for practical use� careful consideration whether to add a new

rule to a calculus or not� is even more important than in theoretical

investigations of calculi� if a calculus intended for theoretical investiga�

tion contains unnecessarily many rules� then only skilled logicians are

concerned� but if a calculus intended for practical use contains too many

or too few rules� then the programmer must cope with the problems�

In any case� the criteria for the addition of new rules di
er consider�

ably from calculi for theoretical investigations to calculi for practical

application� as we shall see�

Two di
erent kinds of rules can be added to a calculus�

� The new rule is such that all theorems that can be proved with the

new rule could also be proved exclusively with the original rules�

Derived rules are contained in this group of rules� The application

of a derived rule can always be replaced by a combination of old

rules� without any change in the rest of the proof�

� The new rule enlarges the set of provable valid formulae� Of

course� such rules only exist for incomplete calculi� They make

the calculus less incomplete�
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When should a new rule be added to a calculus� if we aim at concise

calculi� Of course� the new rule must meet our requirements of the

remaining sections� In addition� we distinguish between the two kinds

of new rules�

� A rule of the �rst kind should only be added to a calculus� if it

is very often applicable� Moreover� we require that the new rule

facilitates proofs� That is� an appropriate combination of the old

rules would be much harder to �nd than a proof using the new

rule� A further reason to add a rule is that it provides a good

basis for understanding� These are the main reasons to include a

new rule� The reduction of the length of proofs should only play

a r�ole if the reduction is considerable�

� A rule of the second kind should only be added to a calculus� if the

formulae that thus become provable are of practical importance�

That is� the new theorems must actually emerge in practical ap�

plications� With new rules of the second kind there is a particular

danger of obtaining complicated rules� We claim that instead of

addition of a complicated rule� one should rather accept a more

incomplete calculus� A too complicated rule will not be used and

in addition hampers familiarity with the calculus�

Whenever a rule is added to a calculus� the application of which is

not obvious� the designer of the calculus should provide the user with

a good method of the application of the rule� At least� examples of

evidence should be given�


End 
Careful addition of rules
	�

����� Local proof steps

We call a proof step local� if it depends only on the formulae that have

already been derived� In particular� a local proof step must not depend

on the proof history� that is� on the shape and structure of the preceding

proof�

Let us consider an example of local proof steps�
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Example �� In predicate calculi proof steps are local� one may derive

a formula during a proof� if it is an axiom or if it can be obtained from

already derived formulae by application of a rule� Particularly� the

proof step does not depend on how these formulae have been derived�


End of example	�

This notion of locality of proof steps can immediately be adapted to

transformation calculi� where terms are manipulated instead of formu�

lae� a transformation step is local� if it depends only on the terms that

have already been derived�

In existing calculi� transformation steps often are non�local� because

they depend on the structure of the transformation history� We give

an example of this kind of non�locality�

Example �� Let us consider the transformation calculus that hides

behind the applicability condition in example �� This transformation

calculus contains three transformation rules� say� r�� r� and r�� In every

transformation step� rule r� may only be applied to a term t� if none of

the rules r� and r� have been applied in the transformation that lead

to t� Likewise� rule r� may only be applied in a transformation step�

if only r� and r� have been applied in the preceding transformation�

Therefore� these transformation steps are non�local�


End of example	�

In some transformation calculi� the proof history restricts not only the

set of rules applicable in a transformation step� the proof history re�

stricts also the positions in terms� at which rules may be applied� Let

us give an example of this kind of non�locality� too�

Example �� In ��	� Courcelle presents a transformation technique�

which he calls �restricted folding�unfolding�� The objects of transfor�

mation are systems of function declarations� The single function dec�

larations of a system form the positions at which transformation rules

may be applied� In every transformation step� a function declaration

" may only be transformed by use of a declaration #� if no transfor�
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mation rule has been applied at position # throughout the preceding

transformation� Hence the transformation steps are not local�


End of example	�

Non�locality is often avoided by introducing labels into formulae or

terms� The labels are used to code the proof history or the trans�

formation history into the formulae and terms respectively� Although

this technique makes proof steps local� it does not make the calculus

better� as we have seen in section ����� the use of labels violates the

requirement for obvious syntactic applicability�

Our discussion suggests that we can restate locality of proof steps as

extensionality of derivation� whether a derivation is continuable by a

certain rule depends only on the derived formulae� and does not depend

on the structure of the derivation�

Although being of theoretical interest� calculi with non�local proof steps

are inappropriate for practical use� Non�locality o
ends against a num�

ber of requirements that we have stated for program development cal�

culi�

Since a proof step may depend on a wide range of the preceding deriva�

tion� and on its internal structure as well� the legality of proof steps

cannot be perceived easily� Thus the user of the calculus is hindered

from becoming syntactically familiar with it� By forcing its users to

take many properties into account at one time� a calculus with non�

local proof steps becomes an unhandy tool� Moreover� non�local proof

steps make the application of a calculus more error�prone� at least� if

it is performed by hand�

When planning a proof in a calculus with an extensional notion of

derivation� one must only decide which intermediate formulae to prove�

In a calculus with non�local proof steps� however� the structure of the

subderivations must be planned� too� Hence non�local proof steps make

proof design more di�cult�

In addition� non�extensional notions of derivation are too complex to

provide a good basis for understanding� They will hardly be accepted
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by programmers as �rst principles of their thought�

����� Combination of the criteria

Unfortunately� not all stated criteria go well together�

When trying to keep a calculus concise� we may be faced with rules

that are not as simple as desired� We encountered this e
ect when we

replaced Leibniz�s rule by a generalization in example �
� A slightly

increased complexity of a rule is compensated if the rule is often appli�

cable since this helps the user to become familiar with it�

Another con�ict arises� when a number of simple rules are to be added

to a calculus� Such a modi�cation contradicts the conciseness criterion�

Moreover we have mentioned that careless observance of local proof

steps can lead to complicated rules�

Hence the design of a calculus must be a trade�o
 among all criteria�

We consider proof�oriented syntax� simple rules� and local proof steps

as most important� Conciseness of calculi seems to be slightly less

important�

Therefore a calculus for practical use will never be designed in a single

step� Design of a calculus will rather be a process of construction�

experiment� and adjustment� The experiments should become more

and more intricate as the number of cycles increases� At least the

�nal calculus �better some calculi before� should be accompanied by an

application method�

��� In�uence of the proof environment on

the criteria

In section ��� we determined pen and paper as proof environment�

All criteria for the usefulness of calculi were based on this proof en�

vironment� To what extent would a change of the proof environment

in�uence the identi�ed criteria�
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The requirement for systematic proof design was a essential reason of

each of the stated criteria� Systematic proof design is indispensable

even if we change to a mechanical system as proof environment� There�

fore we claim that all criteria remain relevant in a machine�assisted

proof environment�

Not being trivial� the transition from pen and paper as proof envi�

ronment to a mechanically supported one opens an interesting �eld of

investigation� Having found a method for doing proofs of a certain area

�e�g� proofs about recursive de�nitions�� one could investigate how this

method could best be supported by a mechanical system� That is� one

should re�ne the method in order to exploit the mechanical support for

routine steps as far as possible� These questions� however� go beyond

the scope of this work�
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Chapter �

A calculus of recursion

Now we apply the criteria of chapter � in order to �nd a useful calculus

for recursion� There exist many di
erent languages with recursion�

and many di
erent rules for reasoning about programs written in those

languages� It is far from obvious� which of them are better suited to

program development than others� Therefore we use the criteria to

judge the usefulness of calculi of recursion�

We will �rst present a language� then formulae and rules� we will discuss

our choices and compare them to languages and rules in the literature�

Finally we de�ne some notation that we need in the examples of chap�

ter ��

We will not list an entire calculus for program development� but con�

centrate on the rules relating to recursion� Likewise we prove only such

properties at the meta�level� which relate to recursion�

��� Object language

In this section we de�ne a class of languages� in which we will write all

our examples throughout this work� All these languages contain a re�

cursion operator� In order to concentrate on recursion� we leave certain

parts of the language unspeci�ed� such as basic sorts and prede�ned

functions� Thus we obtain a whole class of languages� which we can

instantiate as it is needed in each of our examples� Those parts of our

examples� however� which refer to recursion� are handled uniformly�


�




� CHAPTER �� A CALCULUS OF RECURSION

����� Syntax

In this section we give the syntax of the class of languages that we will

use throughout this work�

We start with the type system�

Let S be a set of symbols� called sorts� and Bool � S the sort of boolean

values�

De�nition 
Types� The set of types is inductively de�ned as follows�

� Each sort s � S is a type�

� If �� and �� are types� then so are �� � �� and �� � ���


End of de�nition	�

Types of the form �� � �� stand for product types� types of the form

�� � �� stand for function types� �The precise de�nitions follow in

section ������� The set of sorts can be instantiated di
erently from

application to application�

Notation The operator � binds tighter than�� As usual� the operator

� associates to the left such that �� � � � is parsed as ��� ��� � �


End of notation	�

Let F be a set of symbols� called function symbols� such that a type

is associated with each function symbol f � F � For each type � we

assume a distinguished function symbol 
� to belong to F � Whenever

its type can be inferred from the context� we simply write 
 for 
� �

Function symbols of non�functional types can be considered as nullary

function symbols or as constants� Moreover� let tt and ff be function

symbols of type Bool�

The set S of sorts� and the set F of function symbols together form a

signature � � �S�F ��

Let X be a set of variables such that a type is associated with each

variable x � X�
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De�nition 
Terms� The set T of terms is inductively de�ned as

follows�

� If f � F is a function symbol with type � � then f is a term of

type � �

� If x � X is a variable with type � � then x is a term of type � �

� If t� is a term of type Bool� and t� and t� are terms of type � �

then if t� then t� else t� � is a term of type � �

� If t� t� and t� are terms of types �� � ��� �� and �� respectively�

then �t�� t�� is a term of type ������ and fst t and snd t are terms

of types �� and �� respectively�

� If x � X is a variable of type �� and t is a term of type � � then

�x� t is a term of type �� � �

� If t is a term of type � � � � and s is a term of type �� then t s is

a term of type � �

� If x � X is a variable of type � � and t is a term of type � � then

rec x� t is a term of type � �


End of de�nition	�

One can understand these terms informally as follows� Function sym�

bols denote prede�ned functions �inclusive of constants�� Variables

may also occur as terms� By if � then � else � � we denote condi�

tional expressions� Terms of the kind ��� �� denote pairs� the functions

fst and snd denote projection to the �rst and to the second compo�

nent of pairs� respectively� As usual� � denotes function abstraction�

and juxtaposition denotes function application� Finally� rec denotes

recursive de�nition� �The precise de�nitions follow��

Notation We write
�
� for syntactic equality on terms� and on symbol

sets �such as F and X�� The negation of
�
� is denoted by

�
�� �


End of notation	�
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Free and bound variables are de�ned as usual� where � and rec are the

only binding operators in terms�

De�nition 
Substitution in terms� The function ������ substitutes

terms for variables in terms� It is de�ned by structural induction on

terms as usual�

f �t�x�
�
� f

y�t�x�
�
�

�
t if x

�
� y

y if x
�
�� y

if t� then t� else t� ��t�x�
�
�

if t��t�x� then t��t�x� else t��t�x� �

�t�� t���t�x�
�
� �t��t�x�� t��t�x��

�fst u��t�x�
�
� fst�u�t�x��

�snd u��t�x�
�
� snd�u�t�x��

��y� u��t�x�
�
�����	

���

�y� u if x

�
� y

�y� �u�t�x�� if x
�
�� y� and y is not free in t

�z� ��u�z�y���t�x�� if x
�
�� y� and y is free in t�

and z is a fresh variable

�u s��t�x�
�
� �u�t�x���s�t�x��

�rec y� u��t�x�
�
�����	

���

rec y� u if x

�
� y

rec y� �u�t�x�� if x
�
�� y� and y is not free in t

rec z� ��u�z�y���t�x�� if x
�
�� y� and y is free in t�

and z is a fresh variable


End of de�nition	�

����� Semantics

Now we give denotational semantics to the languages de�ned in the

previous section� For that purpose we need some standard de�nitions

from order theory�

Order�theoretic preliminaries

We start with the well�known notion of partially ordered sets�

De�nition 
Partially ordered sets� A partially ordered set is a
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pair �D�v�� where D is a set� and v is a binary relation which is

re�exive� antisymmetric and transitive�


End of de�nition	�

Partially ordered sets may have least elements�

De�nition 
Least elements� Let �D�v� be a partially ordered set�

An element d � D is called a least element of D� if d v x holds for all

x � D�


End of de�nition	�

Each partially ordered set has at most one least element� This property

is an immediate consequence of the de�nitions�

The concept of upper bounds� and least upper bounds is also well�

known from order theory�

De�nition 

Least� upper bounds� Let �D�v� be a partially

ordered set� and E � D a subset of D� An element d � D is called an

upper bound of E� if x v d holds for all x � E� An element d � D is

called a least upper bound of E� if d is a least element of the set of all

upper bounds of E in D�


End of de�nition	�

De�nition 
Directed sets� Let �D�v� be a partially ordered set�

and E � D a subset of D� E is called directed� if E is not empty� and

if for each two elements x� y � E there is a z � E such that x v z and

y v z hold�


End of de�nition	�

De�nition 
Complete partial orders� A complete partial order�

or cpo for short� is a partially ordered set �D�v� with a least element

such that every directed subset of D has a least upper bound�


End of de�nition	�
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Notation We will use the following notations�

� We write� for the identity relation on a setD� that is� for equality

of the elements of set D�

� When the relation v is clear from the context� we brie�y write D

for partially ordered sets �D�v��

� We write 
 for the least element of a partially ordered set� if it

exists�

� We write
F
D for the least upper bound of a partially ordered set�

if it exists�


End of notation	�

Continuous functions	 A function is called continuous� if it pre�

serves least upper bounds� The precise de�nitions follow�

De�nition 
Monotonicity� Let �D�vD� and �E�vE� be partially

ordered sets� A function f � D � E is monotonic� if f�x� vE f�y�

holds for all x� y � D with x vD y�


End of de�nition	�

De�nition 
Continuity� Let �D�vD� and �E�vE� be cpo�s� A

function f � D � E is continuous� if it is monotonic� and f�
F
M� �F

�ff�m�jm �Mg� holds for every directed subset M � D�


End of de�nition	�

Let �D�vD� and �E�vE� be cpo�s� Let D � E be the set of all

continuous functions from D to E� Let v be the pointwise ordering on

D � E �that is� let f v g if and only if f�x� vE g�x� holds for all

x � D��

Then �D � E�v� again is a cpo�

For every cpo �D � D�v� the continuous function FIX � �D� D�� D

yields the least �xed point of functions� Formally� for every continuous
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function f the following properties hold�

FIX�f� � f�FIX�f�� ��xed point�

�d � D � f�d� � d	 FIX�f� v d �least �xed point�

The least �xed point of a function can be represented as a least upper

bound�

FIX�f� �
G
n

fn
 �

where fn denotes n�fold iteration of f �


End 
Continuous functions
	�

Products	 Let �D�vD� and �E�vE� be partially ordered sets� Let

D � E be the Cartesian product of sets D and E� Let v be the coor�

dinatewise ordering on D�E �that is� let �d� e� v �d�� e�� if and only if

d vD d� and e vE e���

Then �D�E�v� again is a partially ordered set� If �D�vD� and �E�vE�

are cpo�s� then �D � E�v� is a cpo�


End 
Products
	�

Booleans	 The cpo IB of boolean values consists of the three elements

ftt� ff�
g� where
 is the least element� and tt and ff are incomparable

elements�


End 
Booleans
	�


End 
Order�theoretic preliminaries
	�

Notation We use the symbols

�� ��� ����� ��
�

and juxtaposition for function application both in the object language

�cf� section ���� and at the meta�level of semantics�
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We write ��� �� for the update of functions� if f �M � N is a function�

and m � M�n � N � then the function f �n�m� � M � N is de�ned as

follows�

f �n�m� � �y�

�
n if y � m
f�y� otherwise


End of notation	�

Now we are ready to de�ne a denotational semantics for our language�

We will give a non�strict �also known as call�by�name or lazy� denota�

tional semantics� The de�nition we will give is standard in denotational

semantics �for instance cf� ������

We begin with the semantics of types� For sorts we only assume that

they are interpreted as cpo�s� Product types are interpreted as non�

strict products� Function types are interpreted as sets of continuous

functions�

De�nition 
Semantics of types� Let D be a function� which

associates a cpo with each sort s � S� Then D is extended to types by

the following structural induction�

� D�� � �� � D�� � �D���

� D�� � �� � D�� �� D���


End of de�nition	�

De�nition 
Continuous algebras� Let � be a signature� A con�

tinuous ��algebra C consists of a function D� which associates a cpo

sC with each sort s of the signature� and of an element fC � D�� � for

each function symbol f of type � of the signature� where sort Bool and

the function symbols 
� tt and ff are interpreted in the standard way�

For D�� � we write �C�


End of de�nition	�

Let C be a continuous algebra� Then Env is the set of all functions

from variables X into the cpo�s of C such that each variable x of type �
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is associated with a data value of �C� The functions in Env are called

environments�

De�nition 
Semantics of terms� Let C be a continuous algebra�

and Env the set of environments� The function

�����

associates a value ��t��� of �C with each term t of type � � and each

environment �� Function ����� is de�ned as follows�

��f ��� � fC

��x��� � � x

��if t� then t� else t� ���� �

��	
�

��t���� if ��t���� � tt
��t���� if ��t���� � ff

 if ��t���� � 


���t�� t����� � ���t����� ��t�����

��fst t��� � d� � if ��t��� � �d�� d��

��snd t��� � d� � if ��t��� � �d�� d��

���x� t��� � �d� ��t�����d�x��

��t s��� � ���t�������s����

��rec x� t��� � FIX��d� ��t�����d�x���


End of de�nition	�

�The reader might wonder why we have not used lifted function spaces�

We have given the above semantics in order to keep things simple� which

are not of primary interest in this work� The choice does not in�uence

the sequel��

Note that mutual recursion can be expressed in the language by

rec p� t� where p is of product type� So� if we write �x� y� for p� the

recursion term can written as rec �x� y�� �t�� t��� where x and y may oc�

cur both in t� and t�� Since p can be of any product type� this notation

is more general than mutually recursive function declarations� This is

what we meant in example �� of chapter ��

Lemma 
Substitution lemma for terms� Substitution in terms

is compatible with update of environments� Let t and u be terms� x a
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variable� and � an environment� The following equivalence holds�

��t�u�x��� � � ��t�� ����u�� ��x�

Proof By structural induction on t�


End of proof	�

����� Discussion

According to our requirements of chapter � we have chosen the recur�

sion operator so that it can be written into terms� No new syntactic

category� such as function declarations� is introduced� Thus the syntax

becomes simple and easily manipulable� We have already discussed the

rec�notation as an example in chapter ��

Moreover� we have chosen the operator rec instead of �x for the

reasons� which have been discussed in example 
 of chapter �� Since

in practice the least��xed�point�operator is in most cases applied to a

��abstraction� it is worth to introduce the abbreviation rec for that

combination�

��� Formulae

Next we de�ne formulae on the class of terms that have been de�ned in

the previous section� Again we get a whole class of formula languages

since we do not presuppose a concrete signature� and in addition allow

user�de�ned predicate symbols�

����� Syntax

Let P be a set of symbols� called predicate symbols� such that a type is

associated with each predicate symbol p � P �

De�nition 
Atomic formulae� If t and u are terms of T � which

have the same type � � and p is a predicate symbol of P with associated

type � � then

� t v u �
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� t � u � and

� p�t�

are atomic formulae�


End of de�nition	�

The symbols v and � are built�in predicate symbols that denote in�

equality and equality respectively� The predicate symbols of P may be

speci�ed by the user�

Notation We use the symbols v and � both on the syntactic level

and on the semantic level �as in section �������


End of notation	�

De�nition 
Formulae� The set of formulae is inductively de�ned

as follows�

� Every atomic formula is a formula�

� If A and B are formulae� and x � X is a variable� then

�A�A	 B�A� B�A 
B�A � B��xA and �x A

are formulae�


End of de�nition	�

Notation In order to allow omission of brackets� we give binding pow�

ers to the logical connectives� We list them from highest binding power

to lowest�

�


��

	��

���

Connectives of the same line are given equal binding powers�
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End of notation	�

De�nition 
Substitution in formulae� The function ������ sub�

stitutes terms for variables in formulae� It is de�ned by structural

induction on formulae as usual�

�s v u��t�x�
�
� �s�t�x�� v �u�t�x��

�s � u��t�x�
�
� �s�t�x�� � �u�t�x��

p�u��t�x�
�
� p�u�t�x��

��A��t�x�
�
� ��A�t�x��

�A op B��t�x�
�
� �A�t�x��op�B�t�x��

where op ranges over	� �� 
 and �

�op y A��t�x�����	
���


op y A if x
�
� y

op y�A�t�x�� if x
�
�� y� and y is not free in t

op z��A�z�y���t�x�� if x
�
�� y� and y is free in t�

and z is a fresh variable

where op ranges over the binding operators � and �


End of de�nition	�

����� Semantics

De�nition 
Truth values� We take ftrue� falseg as the set of

truth values� We presuppose the usual functions � �negation�� 	 �im�

plication�� � �bi�implication or equivalence�� 
 �disjunction�� and �

�conjunction� on the truth values�


End of de�nition	�

Notation We use the following notations�

� The identity relation on the truth values is denoted by ��

� We use the symbols ��	��� 
 and � both at the syntactic level

and at the semantic level�

� We use the symbols � and � both at the object level and at the

meta�level�
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End of notation	�

De�nition 
Continuous interpretations� A continuous inter�

pretation I consists of a continuous algebra C� and of a function

pI � �C � ftrue� falseg for each predicate symbol p � P of type

� �


End of de�nition	�

De�nition 
Interpretation of formulae� For every continuous

interpretation I� and every environment � a truth value is assigned to

each formula in the following way by the function ������ which is de�ned

recursively on the structure of formulae�

��t v u��� � ���t��� v ��u����

��t � u��� � ���t��� � ��u����

��p�t���� � pI���t����

���A��� � ����A����

��A	 B��� � ���A���	 ��B����

��A� B��� � ���A���� ��B����

��A 
 B��� � ���A��� 
 ��B����

��A � B��� � ���A��� � ��B����

���xA��� � �d � ��A�����d�x��

���x A��� � �d � ��A�����d�x��


End of de�nition	�

De�nition 
Validity� A formula A is called valid under a continu�

ous interpretation I� if for all environments � of I the following holds�

��A��� � true


End of de�nition	�

Lemma 
Substitution lemma for formulae� Substitution in for�

mulae is compatible with update of environments� Let A be a formula�
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t a term� x a variable� and � an environment� The following equivalence

holds�

��A�t�x��� � � ��A�� ����t�� ��x�

Proof By structural induction on A�


End of proof	�

��� Rules

Now we give the rules relating to recursion� They are rules of a pred�

icate calculus� But as already mentioned� we do not list the entire

calculus� we con�ne ourselves to those rules that are important in our

development method�

����� Syntactic admissibility

We have seen that least �xed points can be approximated by function

iterations� This leads to the idea to prove formulae for all elements

of the approximation� and to conclude that the formula holds for the

least �xed point� Unfortunately� as is well�known� this reasoning is not

possible for all formulae� Therefore we �rst characterize the formulae

for which this pattern of reasoning is allowed�

De�nition 
Admissibility� A formula A is called admissible in a

variable x � X of type � � if for all continuous interpretations I� for all

environments �� and for all directed sets D � � I the following holds�

If �d � D � ��A�����d�x�� � true� then ��A�����
F
D�x�� � true�


End of de�nition	�

This semantic notion of admissibility is undecidable� Since we have

required decidable applicability conditions for rules in chapter �� we

must de�ne a decidable property of formulae� which implies admissibil�

ity� In ���� such a characterization is given� which is su�cient for most

practical applications�
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De�nition 
Syntactic admissibility� Let x � X be a variable�

The set of formulae that are syntactically admissible in x is inductively

de�ned as follows�

� If x is not free in formula A� then A is syntactically admissible in

x�

� If t and u are terms of the same type� then t v u and t � u are

syntactically admissible in x�

� If t and u are terms of the same type� and x is not free in u� then

��t v u� is syntactically admissible in x�

� If formulaA is syntactically admissible in x� and y is any variable�

then �y A is syntactically admissible in x�

� If formulae A and B are syntactically admissible in x� then so are

A 
B and A �B�

� If formulae �A and B are syntactically admissible in x� then so

is A	 B�

� If t is a term� then ��t � 
� is syntactically admissible in x�


End of de�nition	�

Since most of the proof is omitted in ����� we now show that syntactic

admissibility indeed implies admissibility�

Proposition 
Syntactic admissibility� Syntactic admissibility

implies admissibility�

Proof Let formula A be syntactically admissible in variable x of type

� � Let I be a continuous interpretation� � an environment� and D v � I

a directed set�

We prove the admissibility of A by induction on the generation rules

for syntactically admissible formulae�

� Let x be not free in A� Then the admissibility of A follows from

the coincidence lemma for formulae�
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� If A is of the form t v u� then admissibility follows from mono�

tonicity and continuity of all functions of the object language�

If A is of the form t � u� then admissibility follows from the

admissibility of t v u and u v t�

� If A is of the form ��t v u�� and x is not free in u� then admis�

sibility follows from the coincidence lemma for terms� and from

monotonicity of all functions of the object language�

� Let A be of the form �y B� where B is syntactically admissible

in x� If y
�
� x� then the admissibility of A follows from the �rst

case above� because x is not free in �xB�

If y
�
�� x� then the following holds�

�d � D � ���y B�����d�x��

� fsemantics of formulae� update of environmentsg

�d � D��e � ��B������e�y���d�x��

	 fB is syntactically admissible in x�

induction hypothesisg

�e � ��B������e�y���tD�x��

� fsemantics of formulae� update of environmentsg

���y B�����tD�x��

� Let A be of the form B 
 C� where B and C are syntactically

admissible in x�

�d � D � ��B 
 C�����d�x��

� fsemantics of formulaeg

�d � D � ���B�����d�x�� 
 ��C�����d�x���

	 flet DB � D be the set of all d with

��B�����d�x�� � true� let DC be de�ned

analogously for C� distinguish the cases tD � D

and tD��D� for the latter distinguish further�

DB or DC is �nite or both are in�nite� for the

latter� both DB and DC are directed or not
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both�

induction hypothesis� semantics of formulaeg

��B 
 C�����tD�x��

Let A be of the form B � C� where B and C are syntactically

admissible in x�

�d � ��B � C�����d�x��

� fsemantics of formulaeg

�d � ���B�����d�x�� � ��C�����d�x���

	 finduction hypothesis on B and Cg

��B�����tD�x�� � ��C�����tD�x��

� fsemantics of formulaeg

��B � C�����tD�x��

� If A is of the form B 	 C� where �B and C are syntactically ad�

missible in x� then A is admissible� because B 	 C is equivalent

to �B 
 C� and because of the preceeding case�

� The formula ��t � 
� is equivalent to ��t v 
�� and thus admis�

sible according to the third case above�


End of proof	�

����� Fixed point induction rule

The �xed point induction rule states that the validity of a formula for a

least �xed point may be inferred from its validity of the approximations�

provided the formula is syntactically admissible�

A�
�x�
�x�A	 A�t�x��
A�rec x� t�x�

where A is syntactically admissible in x

We prove the soundness of the �xed point induction rule�
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Proof Let A be syntactically admissible in x� and � an arbitrary en�

vironment in a continuous interpretation�

��A�rec x� t�x��� �

� fsubstitution lemma for formulaeg

��A�� ����rec x� t�� ��x�

� fsemantics of termsg

��A�� ��FIX��d� ��t�� ��d�x���x�

� fapproximation of least �xed pointg

��A�� ��
G
n�IN

dn�x�

with d� � 


dn�� � ��t�� ��dn�x�

� fadmissibility of A in xg

�n � IN � ��A����dn�x�

� fmathematical inductiong

��A�� ��d��x� �

��n � IN � ��A�� ��dn�x�	 ��A�� ��dn���x��

� fde�nition of d� and dn��g

��A�� ��
�x� �

��n � IN � ��A�� ��dn�x�	 ��A�� ����t�� ��dn�x��x��

� fsemantics of terms� property of updateg

��A�� ��
 ��x� �

��n � IN � ��A�� ��dn�x�	 ��A�� ���dn�x�����t�� ��dn�x��x��

� fsubstitution lemma for formulaeg

��A�
�x��� � �

��n � IN � ��A�� ��dn�x�	 ��A�t�x��� ��dn�x��

� fsemantics of formulaeg

��A�
�x��� � �

��n � IN � ��A	 A�t�x��� ��dn�x��

� funiversal quanti�cation on more elementsg

��A�
�x��� � �

��d � ��A	 A�t�x��� ��d�x��

� fsemantics of formulaeg
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��A�
�x��� � �

���x�A	 A�t�x���� �


End of proof	�

In the inductive step

�x�A	 A�t�x��

we call the induction hypothesis A fully applicable to the conclusion

A�t�x�� if its application removes all occurrences of induction variable

x�

����� Fixed point rule

The �xed point rule is our second rule relating to recursion�

The �xed point rule states that a recursively de�ned object is a �xed

point of the de�ning function�

rec x� t � t�rec x� t�x�

We prove the soundness of the �xed point rule�

Proof Let an arbitrary continuous interpretation be given� and � be

an arbitrary environment in that interpretation�

��t�rec x� t�x��� �

� fsubstitution lemma for termsg

��t�������rec x� t����x��

� fsemantics of termsg

��t�����FIX��d� ��t�����d�x����x��

� f�xed point approximationg

��t�����
G
n

�$n
��x�� � where $ � �d� ��t�����d�x��

� fcontinuity of semanticsgG
n

��t�����$n
�x��
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� fde�nition of $gG
n

$n��


� f$� � 
 least elementgG
n

$n


� f�xed point approximation� de�nition of $g

FIX��d� ��t�����d�x���

� fsemantics of termsg

��rec x� t���


End of proof	�

����� Generalization rule

The generalization rule is well�known from predicate calculus� We re�

peat it here� because it plays an important r�ole in our development

method�

The generalization rule states that all variables �free and bound ones�

of a formula may be universally quanti�ed�

A

�xA

We prove the soundness of the generalization rule�

Proof Let an arbitrary continuous interpretation be given�

�� � Env � ��A���

� fenvironmentsg

�� � Env � �d � ��A�����d�x��

� fsemantics of formulaeg

�� � Env � ���xA��� � true


End of proof	�

����� Further rules

Fixed point induction� and the �xed point rule are the only rules con�

cerning recursion in our calculus� In addition� we use axioms and rules
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of predicate logic� But we do not list them� It is well�known that min�

imal predicate calculi� which are used in mathematical logic as objects

of study� are inappropriate to practical proof� Hence we should have

to list many more rules� Since the laws of predicate logic are common

knowledge� we leave them out�

The calculus can also be enriched by other rules� in particular by struc�

tural induction rules� We leave them out� too� because they do not play

a special r�ole in our method�

It would go beyond the scope of this work to include a whole program

development calculus� Hence we have decided to give up full formaliza�

tion in order not to get bogged down into detail�

����� Discussion

Now we discuss why we have included the above rules� and omitted

other rules for recursion� which are known from the literature� In this

section we con�ne ourselves to reasons concerning the criteria of chap�

ter �� Methodological reasons that led to exclusion of rules will be

discussed in chapter 
�

A pair of rules� which is well�known from the literature� is the unfold�

rule together with the fold�rule ������� The unfold�rule substitutes in�

side the body of a recursive de�nition the recursive de�nition itself for

the variable bound by the recursion operator� The fold�rule does the

converse�

We can express the unfold�rule in our notation as follows�

rec x� t�x�y� � rec x� �t�t�x�y��y��

The fold�rule can be expressed as follows�

rec x� t�u�y� � rec x� u

rec x� t�u�y� w rec x� t�x�y�

It is well�known that w in the conclusion of the fold�rule cannot be

replaced by �� Application of the fold�rule may lead to smaller values�
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Speaking operationally� the fold�rule preserves only partial correctness�

but termination can get lost�

Therefore the fold�rule has extensively been studied in the literature�

in order to �nd additional conditions that allow equivalence in the

conclusion� Those investigations led to a great amount rules based

on the unfold%fold�technique� But those extended rules contradict the

criteria found in chapter � in two respects�

Firstly� those rules tend to be rather complicated� We have seen such

a rule in example � in chapter �� Because of our requirement for sim�

ple rules� we did not include such modi�ed unfold%fold�rules into our

calculus�

Secondly� the transformation calculi� in which those elaborate rules are

used� do not meet the requirement for local proof steps� typically� the

applicability of a rule depends on the structure of the transformation

history� We have mentioned such a non�local transformation calculus

in example �� of chapter �� The loss of locality was another reason for

which we excluded such rules from the calculus�

Although ful�lling the criteria of chapter �� the pure unfold�rule and

fold�rule given above do not belong to our calculus� They have been ex�

cluded for methodological reasons� which we will discuss in chapter 
�

��� Notations for the examples

In this section we introduce notations that we need in the examples of

chapter ��

Lists	 We introduce

List

as the sort of �nite lists �also called sequences�� Since we need lists on

di
erent element sorts� we use the notation List�� � for lists on elements

of type � �
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Sort List has three strict constructors�

	 � List

h�i � � � List

� � � � List� List� List

By 	 we denote the empty list� the constructor h�i generates lists with

one element� list concatenation is denoted by � � ��

In addition� the functions

hd � List� �

tl � List� List

are given�

The functions hd and tl stand for selection of the head and tail of a

list� respectively� They are assumed to obey the usual laws�

These notations are understood to enrich the set S of sorts� and the set

F of function symbols�


End 
Lists
	�

Pattern matching	 For convenience� we use the notation of pattern

matching in our examples� Since it is known from many programming

languages� we do not de�ne it precisely� Instead we give an example�

A function f on lists can be de�ned by pattern matching�

f�	� � t

f�hxi � l� � u

This abbreviates the following de�nition�

f � �s� if s � 	 then t else u�hd s�x� tl s�l� �


End 
Pattern matching
	�
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Chapter �

Examples of proofs about

recursion

In this chapter we develop recursive programs from speci�cations for

a number of examples� Because of their length� we cannot present the

examples in full detail� But we explain the main steps of the develop�

ments� and how they relate to our method�

��� List reversal

In order to acquaint the reader with our development method for re�

cursion� we start with the small example of list reversal�

The task is to develop a tail�recursive function F from a recursively

de�ned reverse function rev� In the literature �e�g� �
��� ���� the solution

F is usually presented� and then proved equal to rev� But it is not said

how F can be found systematically� and how the lemma used in the

proof can be found�

We use the list notation introduced in section ��� in this example�

Assume the following recursive de�nition of the reverse function rev to

be given�

rev � rec r� �s� if s � 	 then 	 else r�tl s� � hhd si �

Let �rev denote the functional associated with this recursive de�nition�

��
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Our task is to develop a tail�recursive function F with the property


Rev� rev v F �

Since the left hand side of speci�cation 
Rev� is recursively de�ned�

we will re�ne this speci�cation by �xed point induction� Therefore we

start with an analysis� whether �xed point induction on rev is possible

and promising�

Fixed point analysis	 Let us analyse �xed point induction on rev in

speci�cation 
Rev�� The base case holds trivially� The inductive step

is

�r � r v F 	 ��rev r� v F �

By de�nition of �rev� the inductive step is equivalent to

�r �

r v F 	

�s� if s � 	 then 	 else r�tl s� � hhd si � v F �

The induction hypothesis r v F is applicable to r�tls� in the conclusion

of the inductive step� But since the function � is applied to r�tl s�� and

since we are interested in a tail�recursive de�nition of F � nothing would

be gained� if we applied the induction hypothesis�


End of �xed point analysis	�

Thus we have found a �xed point induction in which the induction hy�

pothesis is fully applicable� but application of the induction hypothesis

would lead to a term of an inappropriate shape� Therefore we introduce

an auxiliary function�

Auxiliary function	 Now we abstract the term that prevented us

from applying the induction hypothesis to an auxiliary function h�

h � �r� �s� t� �r s� � t

The �rst argument abstracts the induction variable�
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From now on we are looking for a tail�recursive function G that ful�ls

the following speci�cation�


Aux� h rev v G

How can function F be de�ned in terms of G so that the original spec�

i�cation 
Rev� is ful�lled� We calculate�

rev v F

� fde�nition of hg

�s� h rev�s� 	� v F

� fspeci�cation 
Aux� of Gg

�s� G�s� 	� v F

The last inequation can immediately be ful�lled by de�ning F as fol�

lows�


F� F � �s� G�s� 	�


End of auxiliary function	�

Now we recursively apply our development method in order to derive

a function G� The start is �xed point analysis�

Fixed point analysis� and �xed point induction	 We analyse �xed

point induction on rev in speci�cation 
Aux��

The base case is trivially ful�lled� that is� it imposes no restriction on

G�

h
 v G

� fde�nition of h� strictness of �g


 v G

� f
 least elementg

true

Now we turn to the inductive step� Let r be such that the induction

hypothesis h r v G holds�

h��rev r� v G
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� fde�nition of hg

�s� t� ���rev r� s� � t v G

� fde�nition of �revg

�s� t� �if s � 	 then 	 else r�tl s� � hhd si �� � t v G

� fstrictness of �g

�s� t� if s � 	 then t else r�tl s� � hhd si � t � v G

� fde�nition of hg

�s� t� if s � 	 then t else h r�tl s� hhd si � t� � v G

� finduction hypothesisg


I� �s� t� if s � 	 then t else G�tl s� hhd si � t� � v G

This time application of the induction hypothesis was reasonable� be�

cause it put G at a tail�recursive position�


End of �xed point analysis� and �xed point induction	�

In order to ful�l speci�cation 
I�� we turn it into a recursive de�nition

of G�


G� G � rec g� �s� t� if s � 	 then t else g�tl s� hhd si � t� �

By the �xed point rule it immediately follows that 
G� implies 
I��

Speci�cations 
F� and 
G� together form a program for F �

��� Nested recursion

Now we come to a more di�cult example� It is taken from ���� There

a function F is de�ned with nested recursion� and a function� say G�

with tail�recursion� It is stated that both functions are equivalent� but

unfortunately� no proof is given� The example turns out to be di�cult

enough that ad hoc proofs are likely to fail�

Therefore� let us treat this example by our development method� We

will not only prove the equivalence of F and G� but develop G from F �
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We are given the following de�nition of F with nested recursion�

F � rec f� �x� if p x then g x else f�f�h x�� � �

where p� g and h are function symbols that are not speci�ed further�

Let �F denote the functional associated with the recursive de�nition of

F �

Our task is to develop a function G that is tail�recursive� and ful�ls the

speci�cation

F � G �

We develop G from the inequation


GE� F v G �

and prove the remaining inequation


LE� G v F

thereafter�

Fixed point analysis	 We analyse �xed point induction on F in the

speci�cation 
GE�� The inductive step is

�f � f v G	 �x� if p x then g x else f�f�h x�� � v G �

The induction hypothesis is fully applicable in the inductive step� but it

does not lead to a tail�recursive form� because of the nested occurrence

f�f�h x�� of the induction variable f � Therefore we do not apply the

induction hypothesis�


End of �xed point analysis	�

Since �xed point induction would have lead to a term of an inappro�

priate shape� we de�ne an auxiliary function�

Auxiliary function	 We need an auxiliary function that abstracts

the induction variable� and the term that prevented us from applying
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the induction hypothesis� Therefore we de�ne a function iter� which

iterates the induction variable f �

iter � rec it� �f� �x� i� if i � � then x else it f�f x� i� �� � �

Now we must develop a tail�recursive function Q with the property


Aux� iter F � Q �

We need a de�nition of function G� which we had to develop originally�

in terms of function Q so that speci�cation 
GE� is ful�lled� Therefore

we calculate�

F v G

� fde�nition of iterg

�x� iter F �x� �� v G

� fspeci�cation 
Aux� of Qg

�x� Q�x� �� v G

The last inequation can immediately be satis�ed by de�ning


G� G � �x� Q�x� �� �

By requiring iter F � Q in 
Aux� instead of iter F v Q� we have

already ful�lled speci�cation 
LE��


End of auxiliary function	�

Now we recursively apply our development method to the new speci��

cation 
Aux�� We again develop Q from the inequation


AuxGE� iter F v Q �

and prove the remaining inequation


AuxLE� Q v iter F �

thereafter�

Fixed point analysis� and �xed point induction	 There are two

possibilities of �xed point induction in 
Aux�� F and iter�
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Fixed point induction on F fails� because the induction hypothesis is

not applicable in the inductive step�

Now we analyse �xed point induction on iter� Let �iter denote the

functional that is associated with the recursive de�nition of iter� Since

the base case is trivial� we immediately come to the inductive step� Let

it be such that the induction hypothesis it F v Q holds� We calculate

for the conclusion of the inductive step�

�iter it F v Q

� fde�nition of �iterg

�x� i� if i � � then x else it F �F x� i� �� � v Q

� finduction hypothesisg

�x� i� if i � � then x else Q�F x� i� �� � v Q

Here we did apply the induction hypothesis� because Q became an

outermost operation in the else�branch�


End of �xed point analysis� and �xed point induction	�

The last line cannot yet be turned into a de�nition of Q� because it still

contains F � Therefore we bring it into a form to which we can again

apply our development method� The last line is implied by conjunction

of the following two inequations�

�x � x � Q�x� ��


Q� �x� i � Q�F x� i� v Q�x� i� ��

We recursively apply our development method to 
Q��

Fixed point analysis� and �xed point induction	 Since we do not

know Q� we can only do �xed point induction on F in speci�cation


Q��

By requiring strictness


S� �i � Q�
� i� � 
 �

we strengthen the base case�
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Let f be such that the induction hypothesis �x� i � Q�fx� i� v Q�x� i���

holds� We calculate for the conclusion of the inductive step�

Q��F f x� i� v Q�x� i� ��

� fde�nition of �F g

Q�if p x then g x else f�f�h x�� �� i� v Q�x� i� ��

� f
S�g

if p x then Q�g x� i� else Q�f�f�h x��� i� � v

Q�x� i� ��

� finduction hypothesisg

if p x then Q�g x� i� else Q�f�h x�� i� �� � v

Q�x� i� ��

� finduction hypothesisg

if p x then Q�g x� i� else Q�h x� i� �� � v Q�x� i� ��


End of �xed point analysis� and �xed point induction	�

This last requirement on Q together with the above requirement on

Q�x� �� leads us to the following recursive de�nition�

Q � rec q� �x� i� if i � � then x

else if p x then q�g x� i� ��

else q�h x� i� �� � �

The �xed point rule immediately shows that this de�nition meets the

last inequation on Q� In addition� the so de�ned Q is strict in its �rst

argument� and thus ful�ls 
S��

We still must show 
AuxLE��

Q v iter F

Proof We do �xed point induction on Q� As the base case holds

trivially� we immediately turn to the inductive step� Let q be such that

the induction hypothesis q v iter F holds� We prove for the inductive

step�

�x� i� if i � � then x



���� TWO WHILE�LOOPS ��

else if p x then q�g x� i� ��

else q�h x� i� �� � �

v finduction hypothesisg

�x� i� if i � � then x

else if p x then iter F �g x� i� ��

else iter F �h x� i� �� � �

� fde�nition of iterg

�x� i� if i � � then x

else if p x then iter F �g x� i� ��

else iter F �F �F �h x��� i� �� � �

� fstrictness of iter Fg

�x� i� if i � � then x

else iter F �if p x then g x else F �F �h x�� ��

i� �� �

� fde�nition of Fg

�x� i� if i � � then x else iter F �F x� i� �� �

� fde�nition of iterg

iter F


End of proof	�

This proof concludes the development�

��� Two while�loops

In this example we will consider the following property of while�loops�

while b do P od � while b 
 c do P od �

while b 
 c do P od

This property has been proved in ���� by �xed point induction� In

���� the same property has been proved by an algebraic technique� Al�

though leading to elegant proofs� this algebraic technique has two dis�

advantages� according to the authors� one disadvantage is that certain
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functions are needed that do not always exist� Secondly� it is not �yet�

obvious� how proofs in this technique can systematically be constructed�

We will turn this property of while�loops into a development task� given

the sequential composition of the two while�loops

while b do P od � while b 
 c do P od �

how can we �nd an equivalent� single while�loop� We will construct

such a while�loop by our development method for recursion� In par�

ticular� we do not use any operational knowledge or reasoning about

while�loops�

First we give a suitable formalization of the problem in our language�

As is well�known� while�loops can be given semantics by use of the

recursion�operator� We choose a presentation that gives a nice prop�

erty to our development� it could literally be understood as a devel�

opment in a generalization of Dijkstra�s guarded command language

using algebraic laws of programming as given in �����

Let us understand commands as functions on a state space S� Let F �

G� H and P be function symbols with functionality S � S� Let f � g

and h be variables of type S � S� Let b and c be functions of type

S � Bool such c s � 
 implies b s � 
 that for all s� In addition� we

will use the following four functions�

� The function SKIP � S � S denotes the identity on states�

� The function 
 � S � S denotes the everywhere unde�ned func�

tion� It represents the command ABORT �

� The function �� � � �S � S� � �S � S� � �S � S� denotes

function composition� f � g � �s� g�f�s��� It represents sequential

composition of commands�

� The function �
��� � �S � S���S � Bool���S � S�� �S � S��

It represents the conditional�

We merely needed states S in order to formalize the problem� In the

sequel� we will write programs without explicit use of states� Thus they
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look like programs in the generalization of Dijkstra�s guarded command

language� as presented in ����� Moreover� the programs here obey the

laws of that language�

Now we can write the two while�loops in our notation as follows� and

give them names G and H�

G � rec g� �P � g� 
 b � SKIP

H � rec h� �P �h� 
 b 
 c � SKIP

We are looking for a recursive de�nition of F with only one �iteration��

which is equivalent to the sequential composition of loops G and H�

Thus we write as a speci�cation of F �


S� G�H � F

We will develop a program for F from the inequation


GE� G�H v F �

and prove that the other inequation


LE� F v G�H

holds for the constructed F �

Since G and H are recursively de�ned� we try �xed point induction in


LE��

Fixed point analysis	 It is easy to see that in �xed point induction

on H� the induction hypothesis is not applicable in the inductive step�

in the inductive step h occurs in the subterm G�P �h� whereas the

induction hypothesis has the form G�h v F �

Now let us analyse �xed point induction on G� Let �G denote the

functional associated with the recursive de�nition of G� We get the

base case


B� 
�H v F �

and the inductive step


I� �g � g�H v F 	 ��G g��H v F �
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By de�nition of �G� the inductive step is equivalent to

�g � g�H v F 	 ��P � g� 
 b � SKIP ��H v F

� fH is strict� and distributes backwards�

SKIP is the identity of sequential compositiong

�g � g�H v F 	 �P � g�H� 
 b � H v F

The induction hypothesis is applicable to the conclusion of the inductive

step� But its application would leave H in the left hand side of the

inequation� As H is recursively de�ned� this would not directly lead to

a while�loop for F �

Therefore� we next analyse where a �xed point induction on H in the

conclusion leads� After applying some laws� we obtain as inductive step

�h �

�P � g�H� 
 b � h v F 	

�P � g�H� 
 b � �P �h 
 c � SKIP � v F

Since the induction variable h occurs in the context � � � 
 b � h in the

induction hypothesis� but in a di
erent context in the conclusion� the

induction hypothesis cannot be applied to the conclusion� Hence �xed

point induction on H fails�


End of �xed point analysis	�

Fixed point analysis has taken us to a point where typically a design

decision has to be made�

Design decision	 We have found a �xed point induction� in which the

induction hypothesis is fully applicable� but which is not promising for

the development� because the recursively de�ned function H� which we

would like to eliminate� remains in the speci�cation� As we have seen�

no other �xed point induction is possible� Therefore� we make a design

decision based on the current speci�cation

�g � g�H v F 	 �P � g�H� 
 b � H v F �
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If b evaluates to false� it is necessary that H v F holds� The restriction

to this case caused the problem when we tried the inner �xed point

induction on H� Therefore we try to strengthen the speci�cation by

requiring the inequality H v F independently of the value of b� Hence

we can state our design decision as follows�

�g � g�H v F 	 �P � g�H� 
 b � H v F

� fstrengthening by conjunctiong


D� �g � �g�H v F 	 �P � g�H� 
 b � H v F � �H v F

The new conjunct immediately leads us to take the de�nition of H as

de�nition of F �

F � rec f� �P � f� 
 b 
 c � SKIP


End of design decision	�

We still must prove the remaining conjunct of 
D� for the chosen de��

nition of F �

Proof

�g � g�H v F 	 �P � g�H� 
 b � H v F

� finduction hypothesis� de�nition of Fg

�g � g�H v F 	 �P �F � 
 b � F v F

� flaw of conditional� and condition on b and cg

�g � g�H v F 	 ��P �F � 
 b 
 c � SKIP � 
 b � F v F

� fde�nition of Fg

�g � g�H v F 	 F 
 b � F v F

� flaw of conditionalg

�g � g�H v F 	 F v F

� fre�exivity of vg

true


End of proof	�

The base case 
B� follows immediately from the de�nition of F �
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Now only 
LE� remains to be shown�

F v G�H

Proof We again proceed by �xed point induction on F � The base case

is trivial� The inductive step is proved as follows� where �F denotes the

functional associated with the recursive de�nition of F � Let f be such

that the induction hypothesis f v G�H holds� We prove the conclusion

of the inductive step�

�F f

� fde�nition of �Fg

�P � f� 
 b 
 c � SKIP

v finduction hypothesisg

�P �G�H� 
 b 
 c � SKIP

v fcase analysisg

��P �G�H� 
 b 
 c � SKIP � 
 �b � c �

��P �G�H� 
 b 
 c � SKIP �

v fsimpli�cationg

�P �G�H� 
 �b � c � ��P �G�H� 
 b � SKIP �

v fde�nition of G and Hg

�P �G�H� 
 �b � c � ��G�H� 
 b � �G�H��

v flaw of conditionalg

�P �G�H� 
 �b � c � �G�H�

v falready proved inequation 
GE�� and F � Hg

�P �H� 
 �b � c � �G�H�

v fde�nition of Hg

H 
 �b � c � �G�H�

v fde�nition of Gg

G�H 
 �b � c � �G�H�

v flaw of conditionalg

G�H


End of proof	�
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Hence we have developed a single while�loop F that meets the original

speci�cation 
S��

��� Compiler correctness

In this section we will develop a code generator for a small functional

programming language� Code is generated for a stack machine� We are

only interested in the code generator here� and not in other parts of the

compiler �e�g� the parser�� Therefore� whenever we say �compiler�� we

only refer to the code generator throughout this section�

We have chosen compiler development as an example for the applica�

tion of our method� because it is a rather di�cult development task�

when the source language allows recursive function declarations� but

the target language does not�

Although being heavily studied in the literature� compiler correctness

proofs fall into two categories in the literature� in the �rst category�

the source language of the compiler does not contain recursion �cf� e�g�

�
�� ����� ����� ������ In the second category of compiler correctness

proofs� the source language does contain recursion� but so does the

target language �cf� e�g� ���� ��
���

We are interested in source languages with recursion� and target lan�

guages without recursion� A denotational semantics is given for the

source language� and an operational semantics is given for the target

stack machine� One could de�ne a compiler� and then prove it correct

with respect to these two semantics� But we will develop a compiler

systematically from its speci�cation� thereby establishing its correct�

ness�

Compiler correctness proofs in the same semantic setting as here have

been studied in ��� and ��	�� There the di�culties have been shown�

but an unnecessarily complicated solution was presented� which used a

lot of insight into the problem domain� We base our language on those

of these two works�
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����� Common basis of source language� and tar�

get language

Both source language� and target language use the sort

Data �

which we need not specify further� Data contains the data elements

that are manipulated by programs both of the source language� and of

the target language� For convenience� we content ourselves with one

sort of data elements�

In addition� both source language� and target language use the sort

Fsb �

which we again need not specify further� Fsb contains the prede�ned

function symbols of the source language� and of the target language�

For convenience� all function symbols are unary�

We further assume a function

cfct � Fsb� �Data� Data�

to be given� It assigns a function cfct�g� to each prede�ned function

symbol g � Fsb�

����� Source language

The source language is kept as simple as possible� in order to concen�

trate on recursive function de�nition�

Syntax

The abstract syntax of the source language is given by the sorts

Exp

and

Fp �
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which represent the syntactic classes of expressions and functional pro�

grams respectively�

The elements of sort Exp are inductively generated by the strict con�

structors

cst � Data� Exp �

x �� Exp �

if � Exp�Exp�Exp� Exp � and

app � Fsb�Exp� Exp �

The constructor cst stands for constants of sort Data� We assume

that x is the only variable of the source language� The constructor

if introduces conditional expressions� The constructor app denotes

application of functions to expressions�

The sort Fp of functional programs has the only strict constructor

h�i � Exp�Exp� Fp �

The constructor h�i builds a functional program from two expressions�

the �rst expression is the body of a recursively de�ned function� the

second expression represents the main program� For simplicity� we as�

sume that in every program the name of the recursively de�ned function

is f � where f is a function symbol of Fsb� The recursive declaration

overwrites the prede�ned meaning of f �


End 
Syntax
	�

Semantics

We give a denotational semantics of the source language� As meta�

language we use our language of chapter ��

The semantics of expressions is given by the higher order function

val � Exp� �Data� Data�� �Data� Data� �

The function val assigns a function valer to each expression e and each

function r in the following way� function r is taken as interpretation of
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function symbol f � under this interpretation� expression e is interpreted

as a function of the value of variable x�

We assume a continuous function

test � Data� Bool �

which assigns a boolean value to each element of Data� We need not

specify test further�

The function val is strict in its �rst argument� Now we give a recursive

de�nition of val� �In order to make the de�nition more readable� we

use pattern matching as described in chapter ���

val�cst�c��r d � if d � d then c else c �

val x r d � d

val�if�e�� e�� e���r d � if test�val e� r d� then val e� r d

else val e� r d �

val�app�g� e��r d � if g � f then r�val e r d�

else cfct�g��val e r d� �

In the sequel we write �val for the functional associated with the recur�

sive de�nition of val�

The semantics of functional programs is de�ned by the function

mean � Fp� �Data� Data� �

The semantics of a functional program is a function from the value of

the variable x intoData� where the function symbol f is interpreted ac�

cording to the recursive declaration of the program� As usual� the least

�xed point of the functional associated with the recursive declaration

is bound to f �

The function mean is strict� For b �j 
� and m �j 
 we de�ne it by the

following equation �again using pattern matching��

meanhb�mi � val m�rec r� val b r�


End 
Semantics
	�
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����� Target language

Now we turn to the de�nition of the target language� The architecture

we use is a simple stack machine�

Syntax

The target machine consists of four components�

� a �read�only� memory� which stores the assembler program to be

executed�

� a stack of data values and labels�

� a program counter� which contains the post�x of the assembler

program that remains to be executed� and

� an accumulator� which holds one data value�

Formally we de�ne the sort Conf of machine con�gurations as the

smash product of the sorts of assembler programs� stacks� assembler

programs� and data values�

Conf � Asp� Stack �Asp�Data

Sort Stack contains all possibly empty� �nite lists of data values and

labels� For sake of readability� we let the stack be inhomogeneous� that

is� it may contain both data values� and labels as stack elements

StackEl �

We use the following operations on stacks�

	 �� Stack

h�i � StackEl� Stack

� � � � Stack� Stack� Stack

We write 	 for the empty stack� and h�i for the stack with one element�

The operator � denotes concatenation of stacks� These three operators

are the constructors of Stack�
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The reader might object that these are not the stack operations� and

thus we are de�ning lists instead of stacks� We have taken this imple�

mentation of stacks by lists� in order to keep our programs and proofs

readable� But we shall operate on stacks only as we could do with stack

operations� throughout�

We need four sorts to de�ne the syntax of assembler programs�

Com �

Asp �

Label � and

Mark �

The sort Com contains the assembler commands� Asp the assembler

programs� The sort Label contains all labels� most labels are con�

structed of elements of sort Mark�

Now we list the commands of the target language� that is� the strict

constructors of sort Com�

appcfct � Fsb� Com

lab � Label� Com

jump � Label� Com

cjump � Label� Com

return �� Com

swap �� Com

push � StackEl� Com

pushA �� Com

The command appcfct�g� applies the prede�ned function cfct�g��

which is associated with g� to the topmost stack element� The command

lab�l� de�nes a label� When command jump�l� has been executed� pro�

gram execution continues at label l� When a conditional jump cjump�l�

is executed� program execution switches to label l only� if the topmost

stack element has a certain value� The command return leaves the

topmost element on the stack� but removes the next two elements� The

�rst of these elements is the label� where program execution is to be
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continued� the second element is written into the accumulator� The

command swap exchanges the content of the accumulator with the

topmost stack element� The command push pushes a data value or a

label onto the stack� whereas pushA pushes the accumulator content

onto the stack�

Assembler programs are possibly empty� �nite lists of commands�

Therefore we again take the strict list constructors as constructors of

sort Asp�

	 �� Asp

h�i � Com� Asp

� � � � Asp�Asp� Asp

These operators denote the empty assembler program� the assembler

programs of only one command� and concatenation of assembler pro�

grams� in turn�

Labels are non�empty �nite sequences of marks�

h�i �Mark � Label

� � � � Label� Label� Label

Sort Mark is generated by the following constructors�

body�main� �� �� �� � ��Mark


End 
Syntax
	�

Semantics

Now we de�ne an operational semantics for assembler programs� We

again use the language of chapter � as meta�language� For notational

convenience� we again use pattern matching�

The strict function

step � Conf � Conf
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executes the next command� that is� the �rst command of the program

counter�

We now de�ne the function step� using the function goto� which we

shall de�ne afterwards�

step hp� hdi � s� happcfct�g�i � pc� ai �

hp� h�cfct�g��di � s� pc� ai

step hp� s� hlab�l�i � pc� ai � hp� s� pc� ai

step hp� s� hjump�l�i � pc� ai � hp� s� goto�l� p�� ai

step hp� hdi � s� hcjump�l�i � pc� ai �

hp� s� if test�d� then goto�l� p� else pc �� ai

step hp� hd�i � hli � hd�i � s� hreturni � pc� ai �

hp� hd�i � s� goto�l� p�� d�i

step hp� hdi � s� hswapi � pc� ai � hp� hai � s� pc� di

step hp� s� hpush�se�i � pc� ai � hp� hsei � s� pc� ai

step hp� s� hpushAi � pc� ai � hp� hai � s� pc� ai

The strict function

goto � Label�Asp� Asp �

which branches to a label in an assembler program� is recursively de�ned

as follows�

goto�l� 	� � 	

goto�l� hci � p� � if c � lab�l� then p else goto�l� p� �

The operational semantics of assembler programs is given by the strict

function

exec � Conf � Conf �

which executes an assembler program by applying function step until

the program counter becomes empty�

The strict function exec is recursively de�ned as follows�

exechp� s� 	� ai � hp� s� 	� ai

exechp� s� hci � pc� ai � exechstephp� s� hci � pc� aii
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Finally� we de�ne the strict function

res � Conf � Data �

which extracts a data value as a result from a con�guration�

The strict function res is de�ned as follows�

reshp� hdi � s� pc� ai � d


End 
Semantics
	�

����� A compiler development

In this section we will develop a compiler from its speci�cation by step�

wise re�nement� We proceed according to our development method for

recursion�

Compiler speci�cation	 A compiler from Fp to Asp is a function

comp � Fp� Asp

with the following property� Execution of each compiled program yields

a value that is greater than or equal to the semantics of the source

program� This speci�cation of the compiler can formally be stated as

follows�


S� �fp � Fp� d � Data �

mean fp d v res�exechcomp fp� 	� comp fp� di�


End 
Compiler speci�cation
	�

Our task is to develop a program for comp that ful�ls speci�cation 
S��

First we substitute mean by its non�recursive de�nition� This is the

only transformation we can do in the above speci�cation without know�

ing anything about comp� Thus we obtain the following speci�cation


Comp�� which is equivalent to 
S��


Comp� �b�m � Exp� d � Data � b �j 
 	

val m�rec r� val b r�d v

res�exechcomphb�mi� 	� comphb�mi� di�
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Speci�cation 
Comp� is an inequation with recursion �in val and

rec r� on its left hand side� and the unknown comp on its right hand

side� According to our method� we start with �xed point analysis�

Fixed point analysis	 Recursion occurs three times in the left hand

side

val m�rec r� val b r�d

of the inequation in 
Comp�� besides val� which has been de�ned

recursively� the subterm rec r� val b r contains recursion�

To which of the three occurences of the recursion operator shall we best

apply the �xed point induction rule�

For better readability� we abbreviate the right hand side of the inequa�

tion by rhs�

As we have seen� there are three candidates for �xed point induction

in the left hand side of the inequation� Let us consider them in turn�

For convenience� we repeat the �xed point induction rule�

A�
�x�
�x�A	 A�t�x��
A�rec x� t�x�

where A is syntactically admissible in x

Analysis �	 Let us �rst analyse �xed point induction on the outer

val in the term val m�rec r� val b r�d�

It turns out that the induction hypothesis is applicable in the inductive

step� but leaves the recursion rec r� val b r in the term� Therefore we

do not apply the induction hypothesis� and instead apply �xed point

analysis recursively� But both �xed point induction on rec r and on

val fail� because the induction hypotheses are not applicable in the

inductive steps for structural reasons that cannot be circumvented by

generalizations� Hence �xed point induction on the outer val fails�


End of analysis �	�

Hence we must try another candidate for �xed point induction�
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Analysis �	 Let us now analyse �xed point induction on the inner

val in the term val m�rec r� val b r�d�

It is easy to see that the induction hypothesis is not applicable in the

inductive step for similar reasons as in analysis �� Thus �xed point

induction on the inner val fails� too�


End of analysis �	�

As no �xed point induction has been successful so far� we now try the

last candidate for �xed point induction�

Analysis �	 Now we analyse �xed point induction on rec r in the

term

val m�rec r� val b r�d �

Variable b is free in the subterm rec r� val b r� on which we will try

�xed point induction� But b is universally quanti�ed in the formula


Comp�� which we will re�ne� Therefore we must take

�m�d � b �j 
 	 val m r d v rhs

as formula A of the �xed point induction rule� where r is the induc�

tion variable� In this formula� b is free and not explicitly universally

quanti�ed�

Thus we get the base case

�m�d � b �j 
 	 val m
 d v rhs �

and the inductive step

�r �

��m�d � b �j 
 	 val m r d v rhs�	

��m�d � b �j 
 	 val m�val b r�d v rhs� �

Let us �rst turn to the base case� We recursively apply �xed point

analysis to val� The base case is trivial� The inductive step is

�v �
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��m�d � b �j 
 	 v m
 d v rhs�	

��m�d � b �j 
 	 ��val v�m
 d v rhs� �

Evaluation of �val leads to case distinction on m� All cases of m allow

complete application of the induction hypothesis�

Now we turn to the inductive step� We recursively apply �xed point

analysis to the conclusion� The conclusion contains two occurrences of

val� to which we could apply �xed point induction�

Let us �rst analyse �xed point induction to the inner val� We get the

inductive step

�v �

��m�d � b �j 
 	 val m�v b r�d v rhs�	

��m�d � b �j 
 	 val m���val v� b r�d v rhs� �

Hence� if we applied �xed point induction to the inner val� we would

be faced with a problem that arose in analysis �� since b is bound

outside the inductive step� but v is applied to other expressions than

b when �val v is evaluated� the induction hypothesis is not applicable�

Therefore� �xed point induction on the inner val fails�

Let us now analyse �xed point induction on the outer val in term

val m�val b r�d�

The base case is trivial� The inductive step is

�v �

��m�d � b �j 
 	 v m�val b r�d v rhs�	

��m�d � b �j 
 	 ��val v�m�val b r�d v rhs� �

If m has one of the forms 
� cst�c�� x� if�e�� e�� e��� and app�g� e� with

g �j f � then the induction hypothesis is fully applicable� The most

di�cult case is m � app�f� e�� In this case� the conclusion of the

inductive step evaluates to

�d � b �j 
 	 �val b r��v e�val b r�d� v rhs �
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The subterm v e�val b r�d has the form of the hypothesis of the �xed

point induction on val� The other subterm� val b r� has the form of

the hypothesis of the �xed point induction on rec r� val b r� Therefore�

also in case m � app�f� e�� the induction hypotheses are completely

applicable�

Hence in this analysis we have found a proof strategy in which the

induction hypotheses are completely applicable�


End of analysis �	�


End of �xed point analysis	�

Having found a re�nement strategy in analysis � so that the induction

hypotheses are completely applicable� we will now try to reduce the

context of the unknown comp in speci�cation 
Comp��

Context reduction	 If the left hand side of the inequation of 
Comp�

were surrounded by the same functions as comp on the right hand side�

we could strengthen 
Comp� due to monotonicity by removing these

functions from both sides�

From the de�nition of res and execwe know that speci�cation 
Comp�

is equivalent to

�b�m� d � b �j 
 	

�p �j 
 �

res�exec�p� hval m�rec r� val b r�di� 	� d�� v

res�exec�comphb�mi� 	� comphb�mi� d�� �

Since res is monotonic� this formula can be strengthened by


Exec� �b�m� d � b �j 
 �m �j 
 	

comphb�mi �j 
 �

exec�comphb�mi� hval m�rec r� val b r�di� 	� d� v

exec�comphb�mi� 	� comphb�mi� d� �

�Note that p � comp�b�m� is the only choice we have for p in strength�

ening the formula since the �rst component of the machine state does

not change during execution�� Thus we have at least removed res from

the context of comp� Obviously� the context cannot be reduced further�
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End of context reduction	�

Fixed point induction	 If we try to apply �xed point induction to


Exec� in the way we found out to be successful for 
Comp�� the

induction hypothesis turns out to be too weak� In the base case of the

induction on rec r� and the inductive step of the induction on val� we

have to show �case m � if�e�� e�� e����

�b�m� e� d � �a �j 
 �

v e� 
 d � tt	

exec�comp�b�m�� hv e� 
 di� 	� a� v

exec�comp�b�m�� 	� comp�b�m�� d� �

The induction hypothesis is not applicable since m and e� do not co�

incide as they do in the hypothesis� Therefore we must generalize the

speci�cation�


End of �xed point induction	�

Generalization	 In

exec�comphb�mi� hval m�rec r� val b r�di� 	� d�

we must split variable m into two variables� say m and e� Thus we get

exec�comphb�mi� hval e�rec r� val b r�di� 	� d� �

If we did not change anything else in the formula� we should get the

strengthened speci�cation

�b�m� e� d � b �j 
 �m �j 
 	

comphb�mi �j 
 �

exec�comphb�mi� hval e�rec r� val b r�di� 	� d� v

exec�comphb�mi� 	� comphb�mi� d� �

When strengthening a speci�cation� we must always be careful not to

strengthen it too much� In our case� the strengthened speci�cation must
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still be satis�able by some function comp� The strengthened speci�ca�

tion implies that the value of every expression e is less than or equal to

the result of executing program comphb�mi� Certainly� this condition

is not satis�able by any comp�

Hence we must make the right hand side of the inequation dependent

on e� Can we simply replace comphb�mi by comphb� ei in the third

argument of exec� We know about the machine architecture that the

program counter �third component of the machine state� is a post�x

of the entire program ��rst component of the machine state�� Thus

comphb� ei would have to be a post�x of comphb�mi for every expression

e� Obviously� this requirement again is not satis�able by any compiler

comp�

Therefore it seems reasonable to restrict the speci�cation to those e� for

which comphb� ei is a post�x of comphb�mi� Originally� the generaliza�

tion was intended for those e that are subterms of m� But we cannot

expect that the code of each subterm e ofm will be a post�x of the code

of m� Therefore we only require that comphb� ei is the beginning of a

post�x� Let us formalize the post�x relation on assembler programs by

the predicate � �

p � q� �r � r � p � q

Thus we get

�b�m� e� d � b �j 
 �m �j 
 	

comphb�mi �j 
 �

��pc � comphb� ei � pc � comphb�mi 	

exec�comphb�mi� hval e�rec r� val b r�di� pc� d� v

exec�comphb�mi� 	� comphb� ei � pc� d��

as a new candidate for a generalized speci�cation�

Is this speci�cation still too strong� Let e be a subterm of m� Code

that is generated for e will� in general� depend on the position at which

e occurs in m� if e occurs several times inm� and its code contains some

labelled statement� then the labels must be di
erent for all occurrences

of e� Since comphb� ei does not depend on m� and thus does not depend



	
 CHAPTER �� EXAMPLES OF PROOFS

on the position of e in m� the code for e cannot be generated by comp�

Therefore we introduce a function

cexp � Exp�Label� Asp �

which compiles expressions� using only labels that are determined by

its second argument�

We base the function comp on cexp in the following way�


Prog� �b�m � b �j 
 �m �j 
 	

comphb�mi � hjump�main�i � hlab�body�i �

cexp�b� h�i� � hreturni � hlab�main�i �

cexp�m� h�i� �

cexp�b� h�i� �j 
 � cexp�m� h�i� �j 


Now we can formulate the generalized speci�cation by making use of

cexp� Since it seems too restrictive to assume an empty stack whenever

a compiled expression is executed� we further generalize the speci�ca�

tion to arbitrary stacks s�


Cexp� �b�m� d� e� pc� l� s � b �j 
 �m �j 
 	

�cexp�e� l� � pc � comphb�mi 	

exec�comphb�mi� hval e�rec r� val b r�di � s� pc� d� v

exec�comphb�mi� s� cexp�e� l� � pc� d��

In order that speci�cation 
Exec� is implied� we require as a third

property


JumpMain� �b�m� d � b �j 
 �m �j 
 	

exec�comphb�mi� 	� cexp�m� h�i�� d� v

exec�comphb�mi� 	� comphb�mi� d�

Conjunction of 
Prog�� 
Cexp� and 
JumpMain� implies speci�ca�

tion 
Exec��


End of generalization	�
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Fixed point induction	 Now we carry out the �xed point induction

of analysis � for the generalized speci�cation 
Cexp��

According to analysis �� we do �xed point induction on rec r� Let us

�rst address the base case� and the inductive step thereafter�

Base case	 Analogously to the base case in analysis �� we get the

following base case for the generalization 
Cexp��

�b�m� d� e� pc� l� s � b �j 
 �m �j 
 	

�cexp�e� l� � pc � comphb�mi 	

exec�comphb�mi� hval e
 di � s� pc� d� v

exec�comphb�mi� s� cexp�e� l� � pc� d��

As planned in analysis �� this formula is re�ned by �xed point induction

on val� Since the base case is trivial� we immediately turn to the

inductive step�

Inductive step	 The inductive step instantiates to

�v �

��b�m� d� e� pc� l� s � b �j 
 �m �j 
 	

�cexp�e� l� � pc � comphb�mi 	

exec�comphb�mi� hv e
 di � s� pc� d� v

exec�comphb�mi� s� cexp�e� l� � pc� d���

	

��b�m� d� e� pc� l� s � b �j 
 �m �j 
 	

�cexp�e� l� � pc � comphb�mi 	

exec�comphb�mi� h��val v�e
 di � s� pc� d� v

exec�comphb�mi� s� cexp�e� l� � pc� d��� �

Assume that the induction hypothesis holds�

The de�nition of �val suggests a case distinction on e�

� If e � 
� the conclusion holds trivially�
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� If e � cst�c� �with c �j 
�� the conclusion is implied by

�b�m� d� pc� l� s � b �j 
 �m �j 
 	

�cexp�cst�c�� l� � pc � comphb�mi 	

exec�comphb�mi� hci � s� pc� d� v

exec�comphb�mi� s� cexp�cst�c�� l� � pc� d�� �

Looking at the machine instructions� we immediately �nd the

following explicit condition on cexp� which implies the preceeding

formula�


Cst� �c� l � c �j 
 � l �j 
 	

cexp�cst�c�� l� � hpush�c�i

� If e � x� the conclusion is equivalent to

�b�m� d� pc� l� s � b �j 
 �m �j 
 	

�cexp�x� l� � pc � comphb�mi 	

exec�comphb�mi� hdi � s� pc� d� v

exec�comphb�mi� s� cexp�x� l� � pc� d�� �

This formula is implied by the following explicit condition on

cexp� which is again suggested by the machine instructions�


X� �l � l �j 
 	 cexp�x� l� � hpushAi

� If e � if�e�� e�� e�� �with e�� e�� e� �j 
�� the conclusion is equiv�

alent to

�b�m� d� pc� l� s � b �j 
 �m �j 
 	

�cexp�if�e�� e�� e��� l� � pc � comphb�mi 	

exec�comphb�mi�

hif test�v e� 
 d� then v e� 
 d else v e� 
 d �i

� s� pc� d� v

exec�comphb�mi� s� cexp�if�e�� e�� e��� l� � pc� d�� �
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Looking at the machine instructions� we immediately �nd the

following explicit condition on cexp�


If� �e�� e�� e�� l �

e� �j 
 � e� �j 
 � e� �j 
 � l �j 
 	

cexp�if�e�� e�� e��� l� �

cexp�e�� l � h�i� � hcjump�l�i � cexp�e�� l � h�i� �

hjump�l � h�i�i � hlab�l�i � cexp�e�� l � h�i� �

hlab�l � h�i�i

This formula implies the preceeding one by induction hypothesis�

but an additional property is needed� we must assure that the

labels l and l � h�i� to which the generated code may branch� do

not occur in preceeding program parts� Therefore we require that

no label is de�ned twice in a program�


Lab� �b�m � b �j 
 �m �j 
 	 �p� q� r� l� k �

comphb�mi � p � hlab�l�i � q � hlab�k�i � r	

l �j k

� If e � app�g� e�� �with g �j f � g �j 
� and e� �j 
�� the conclusion

is equivalent to

�b�m� d� pc� l� s � b �j 
 �m �j 
 	

�cexp�app�g� e��� l� � pc � comphb�mi 	

exec�comphb�mi� hcfct�g��v e� 
 d�i � s� pc� d� v

exec�comphb�mi� s� cexp�app�g� e��� l� � pc� d�� �

The machine instructions together with the induction hypothesis

again suggest an explicit condition on cexp� which implies the

preceeding formula�


App� �g� e�� l � g �j f � g �j 
 � e� �j 
 � l �j 
 	

cexp�app�g� e��� l� �

cexp�e�� l � h�i� � happcfct�g�i

� If e � app�f� e�� �with e� �j 
�� the conclusion is trivially true�
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End of inductive step	�


End of base case	�

Inductive step	 Now we come to the inductive step of the �xed point

induction on rec r in speci�cation 
Cexp�� Analogously to analysis ��

we get the inductive step

�b� r �

��m�d� e� pc� l� s � b �j 
 �m �j 
 	

�cexp�e� l� � pc � comphb�mi 	

exec�comphb�mi� hval e r di � s� pc� d� v

exec�comphb�mi� s� cexp�e� l� � pc� d���

	

��m�d� e� pc� l� s � b �j 
 �m �j 
 	

�cexp�e� l� � pc � comphb�mi 	

exec�comphb�mi� hval e�val b r�di � s� pc� d� v

exec�comphb�mi� s� cexp�e� l� � pc� d��� �

Assume that the induction hypothesis is true�

As planned in analysis �� the conclusion is re�ned by �xed point induc�

tion on the outer val� Since the base case holds trivially� we immediately

turn to the inductive step�

Inductive step	 We obtain the following formula as inductive step�

�v �

��m�d� e� pc� l� s � b �j 
 �m �j 
 	

�cexp�e� l� � pc � comphb�mi 	

exec�comphb�mi� hv e�val b r�di � s� pc� d� v

exec�comphb�mi� s� cexp�e� l� � pc� d���

	

��m�d� e� pc� l� s � b �j 
 �m �j 
 	

�cexp�e� l� � pc � comphb�mi 	

exec�comphb�mi� h��val v� e�val b r�di � s� pc� d� v

exec�comphb�mi� s� cexp�e� l� � pc� d���
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Let the induction hypothesis be true�

The de�nition of �val again suggests case distinction on e�

� If e � 
� the conclusion holds trivially�

� If e � cst�c�� we get the identical development as in the corre�

sponding case of e within the base case of the induction on rec r�

� If e � x� we get the identical development as in the corresponding

case of e within the base case of the induction on rec r�

If e � if�e�� e�� e��� then we develop the same speci�cations 
If�

and 
Lab� as in the corresponding case above� by an analogous

development�

If e � app�g� e�� �with g �j f�� then we develop the same speci�ca�

tion 
App� as in the corresponding case above� by an analogous

development�

If e � app�f� e�� �with e� �j 
�� the conclusion is equivalent to

�m�d� e� pc� l� s � b �j 
 �m �j 
 	

�cexp�app�f� e��� l� � pc � comphb�mi 	

exec�comphb�mi� h�val b r��v e��val b r�d�i � s� pc� d�

v exec�comphb�mi� s� cexp�app�f� e��� l� � pc� d��

Inspection of the machine instructions leads us to the following

explicit condition on cexp� which implies the preceeding formula

because of the induction hypothesis� and because of speci�cation


Lab��


Appf� �e�� l � e� �j 
 � l �j 
 	

cexp�app�f� e��� l� �

cexp�e�� l � h�i� � hswapi � hpush�l�i �

hjump�body�i � hlab�l�i


End of inductive step	�
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End of inductive step	�


End of �xed point induction	�

The re�nement by �xed point induction has lead to an explicit condition

on cexp for each case of the argument expression� They suggest a

recursive de�nition of cexp�

Compiler function	 By use of the �xed point rule� one can imme�

diately give a recursive de�nition that meets the speci�cations 
Cst��


X�� 
If�� 
App�� and 
Appf�� �For better readability� we again use

the notation of pattern matching� which was introduced in chapter ���

cexp �cst�c�� l� � hpush�c�i

cexp �x� l� � hpushAi

cexp �if�e�� e�� e��� l� � cexp�e�� l � h�i� � hcjump�l�i �

cexp�e�� l � h�i� � hjump�l � h�i�i � hlab�l�i �

cexp�e�� l � h�i� � hlab�l � h�i�i

cexp �app�g� e�� l� � cexp�e�� l � h�i� �

if g � f

then hswapi � hpush�l�i � hjump�body�i � hlab�l�i

else happcfct�g�i �

The �rst conjunct of speci�cation 
Prog� suggests how to base comp

on cexp�

comphb�mi � hjump�main�i � hlab�body�i � cexp�b� h�i� �

hreturni � hlab�main�i � cexp�m� h�i�

Thus we have developed a program for comp�


End 
Compiler function
	�

During the development we introduced some more speci�cations� They

now remain to be proved for cexp and comp as they have been de�ned

meanwhile�
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Let us start with 
Prog�� The �rst conjunct has directly been taken

as de�nition of comp� The remaining two conjuncts are implied by the

formula

�e� l � e �j 
 � l �j 
 	 cexp�e� l� �j 


which can be shown by structural induction on e�

In order to prove 
Lab�� one uses the de�nition of comp in terms of

cexp� and shows by structural induction on expressions that cexp gen�

erates distinct labels�

Finally� speci�cation 
JumpMain� is an immediate consequence of


Lab��

These proofs conclude the compiler development�

��� From a denotational semantics to an

operational semantics

In this example we develop an operational semantics from a denota�

tional one by our method�

The literature contains some adequacy proofs of operational and deno�

tational semantics �e�g� ����� ����� ������ But they are based on natural

operational semantics or on two quite similar semantic de�nitions� In

addition� we do not assume the operational semantics to be given� but

we develop it from the denotational semantics�

The development in the sequel has been mechanically veri�ed� For

further detail we refer to ��
��

����� Syntax of the language

The sort

D

stands for the data elements of our example language� We assume that

true � D
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false � D

are two constructors of D� There may be many more� which we do

not specify� We only presuppose that D carries a �at order� which can

straightforwardly be formalized�

�x� y � D � x v y� x � 
 
 x � y

The sort

X

stands for the variables of our example language� For our purpose� X

need not be further speci�ed�

The sort

P

stands for the prede�ned function symbols of our example language�

For convenience we assume that all function symbols of P are unary�

The sort

U

stands for the user�de�nable function symbols of our example language�

For convenience we assume that all function symbols of U are unary�

The sort

Term

stands for the terms of our example language�

The sort Term is generated by the following strict constructors�

cst � D� Term

var � X � Term

� � � � � P� Term� Term

� � � � � U� Term� Term

if � then � else � fi � Term� Term� Term� Term

� � � � � � � � � � U�X� Term� Term� Term
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For better readability� the constructors have been overloaded�

We de�ne the set FV of free variables of a term as usual� It is a subset of

X �U � Function de�nition is the only binding operator� in �f�x� � t��t�

variables f and x that are free in t� are bound by �f�x� � t��� Since it

is standard� we omit the formal de�nition of free variables�

Based on the de�nition of free variables� we de�ne a predicate

CT

of type Term� which characterizes the set of closed terms� as usual�

closed terms are terms without free variables�

In addition� we need a boolean function

W � Term� Bool

which characterizes the subset of terms that are generated only by

cst and application � � � � � P� Term � Term of prede�ned function

symbols� W can be understood as the word algebra on which terms of

the language Term are built�

����� Denotational semantics

Environments associate data values with variables� and functions with

user�de�nable function symbols�

Env � List�X �D�� List�U � �D� D��

By void we denote the empty environment� that is� the product of

empty lists�

void � �	� 	�

The function

in

checks if a variable or function symbol is in an environment�
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The function

� � � � � �

denotes update of environments� As usual� we write ��d�x� r�f � for

the update of environment � by data element d for variable x� and by

function r for function symbol f �

The functions

lookupvar

and

lookupfct

yield the data element associated with a variable by an environment�

and the function associated with a function symbol by an environment�

respectively� If no data element or function is associated with a variable

or with a function symbol in an environment� lookupvar and lookupfct

yield 
�

Since the formal de�nitions of all these functions are straightforward�

we do not give them�

The function

I � P � �D � D�

assigns a continuous function to each prede�ned function symbol� We

assume that for all p � P the associated function I�p� is strict�

It is convenient to overload the symbol I� the function

I � W � D

interprets terms of the word algebra as data elements� that is� it assigns

semantics to terms of the word algebra� �HereW stands for the set of all

t with W t � tt� The function I is de�ned recursively on the structure

of those terms�

I�cst�d�� � d

I�p�t�� � �I p��I t�

I�
� � 
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The function

T � Term� Env � D

assigns a denotational semantics to terms� For better readability� we

use semantic braces for T � They are not to be confused with the braces

at the meta�level�

Let T be strict in its �rst argument�

T ��cst�d���� � d

T ��var�x���� � lookupvar x �

T ��p�t���� � �I p��T ��t����

T ��f�t���� � �lookupfct f ���T ��t����

T ��if t� then t� else t� fi�� � if T ��t���� � true

then T ��t����

else if T ��t���� � false

then T ��t����

else 
 � �

T ���f�x� � t��t���� � �rec r� �d� T ��t������d�x� r�f ����T ��t�����

Let �T be the functional associated with the recursive de�nition of T �

����� Operational basis

We specify that the operational semantics must be a term rewriting

semantics� The semantics is then developed in the next section�

The function

normal � Term� Bool

determines whether a closed term is in normal form�

We presuppose the following properties of normal� all constants are in

normal form�

�d � D � d �j 
 	 normal�cst�d�� � tt
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Only terms of the word algebra can be normal forms�

�t � Term � CT �t�	 �normal t � tt	 W �t� � tt�

If a function application is in normal form� then the argument term is

in normal form�

�p � P� t � Term �

W �t� � tt	 �normal�p�t�� � tt	 normal t � tt�

The function normal is unde�ned exactly for the unde�ned term�

�t � Term � CT �t�	 �normal t � 
� t � 
�

The structure of the term rewriting machine is given by the function

val � Term� Term �

which is de�ned only on closed terms� It is recursively de�ned as follows�

val � rec v� �t� if normal t then t else v�reduce t� �

Let �val denote the functional associated with the recursive de�nition

of val�

Our task is to develop a program for reduce such that the operational

semantics corresponds to the denotational semantics in a way to be

made precise below�

In addition� we are given an evaluator

eval �W � W

for terms of the word algebra� We presuppose some properties of this

evaluator� it preserves the interpretation of terms�

�t � W � I�eval t� � I t

It takes every term to a normal form�

�t � W � t �j 
 	 normal�eval t� � tt

Terms that are already in normal form are not changed under eval�

�t � W � normal t � tt	 eval t � t
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����� Development of an operational semantics

Speci�cation	 We require of the operational semantics the following

property�


S� �t � Term � CT �t�	 T ��t��void v I�val��t���


End 
Speci�cation
	�

Fixed point analysis	 The only recursively de�ned object in the left

hand side of the inequation of 
S� is T � Thus we analyse �xed point

induction on T � Since the base case is trivial� we immediately turn to

the inductive step�

�h �

��t � CT �t�	 h��t��void v I�val��t����	

��t � CT �t�	 ��T h���t��void v I�val��t����

In the conclusion� evaluation of �T h leads to a case distinction on t� If

t is of the form �f�x� � t��t�� then ��T h���t��void is equal to

�rec r� �d� h��t����void�d�x� r�f ����h��t���void� �

In general� t� is not a closed term� and void�d�x� r�f � is not void� There�

fore the induction hypothesis is not applicable� it is too weak�


End of �xed point analysis	�

According to our development method� we look for a generalization of


S� so that �xed point induction on T is possible for this generalization�

For that purpose we must make design decisions�

Design decision	 We try to �nd a suitable generalization by analysing

why �xed point induction on T failed� We have seen that t must not be

restricted to closed terms� and that the denotational value of t must be

taken in arbitrary environments� instead of just void� Hence we must

consider an inequation

T ��t��� v I�val u� �
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where t � Term� � � Env� and u is a closed term� It is self�evident that

in this generality the inequation is not ful�llable by any val� Hence this

inequation strengthens 
S� too much�

Therefore we must weaken this inequation by adding a suitable premise�

Since it is not ful�llable for arbitrary t� � and u as above� we need a

suitable relation � between �t� �� on the one hand� and u on the other

hand� We are heading for a new speci�cation of the form


G� �t� u � Term� � � Env �

CT �u�� �t� �� � u	 T ��t��� v I�val u� �

Therefore we need a relation � with the following properties�

� The formula 
G� implies the original speci�cation 
S�� that is�

�t � Term � CT �t�	 �t� void� � t

holds�

� The formula 
G� is ful�llable by some val�

� The formula 
G� is re�nable by �xed point induction on T �

Since we are interested in an operational semantics that works by term

rewriting� the free variables and function symbols of t must be substi�

tuted by suitable terms and function declarations in u� Thus we state

as �rst requirement on ��

�t� �� � u	 �� � Subst � t �
�
� u

Function declarations are of the form

f�x� � t

where f � U � x � X and t � Term� We write Decl for the set

of all function declarations� We write CDecl for the set of all closed

function declarations� that is� all function declarations in Decl without

free variables�
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The set Subst consists of functions from X to Term� and from U to U

and Decl� We omit the formal de�nition�

Since only closed terms are operationally evaluated� we immediately

get the following restriction on substitutions� Application of substitu�

tions leads to closed terms� Therefore free variables and free function

symbols of a term are always substituted by closed terms and closed

declarations� respectively� Hence application substitutions to terms can

be de�ned without the usual renaming of bound variables in order to

avoid name clashes� Application of a substitution � to a term t is writ�

ten in post�x�notation� t �� It is strict and de�ned recursively on the

structure of terms as follows�

�cst�d��� � cst�d�

�var�x��� � ��x�

�p�t��� � p�t ��

�f�t��� � ���f���t ��

�if t� then t� else t� fi�� � if�t� ��then�t� ��else�t� ��fi

��f�x� � t��t��� � �f�x� � �t����x�x� f�f �����t� ��

But this requirement on � is not enough� substituting the free variables

of t by arbitrary terms and declarations will not ensure the required

relation between the two semantics� In addition� a relation between the

values that the environment � assigns to the free variables of t� and the

terms or declarations that are substituted for the free variables in u is

needed�

Let us �rst turn to the variables of X that occur free in t� It seems

reasonable to require for all x � X that are free in t� the value that

� associates with x is less or equal to the value that is obtained by

evaluating the term substituted for x in u operationally�

We summarize the mentioned properties of variables in a predicateWV

��weaker in variable���

�� � Env� � � Subst� x � X �

WV ��� �� x�� CT ���x��� lookupvar x � v I�val���x���
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Now we require a similar property for function symbols f � U that

occur free in t� if � associates a function r with f � then � substitutes f

by a declaration " so that the following holds� r is less or equal to the

function that is obtained by operationally evaluating "� If � assigns

no value to f � then � does not substitute f �

We formalize this property of function symbols by the following predi�

cate WF ��weaker in function���

�� � Env� � � Subst� f � U �

WF ��� �� f��

��f in ��	 CDecl���f�� �

�d � D� t � Term � CT �t�� d v I�val t�	

�lookupfct f �� v I�val����f���t�����

���f in ��	 ��f� � f�

We de�ne the relation � as follows�

�t� u � Term� � � Env � CT �u�	

�� � Subst � t � � u �

��x � X � x � FV �t�	 WV ��� �� x�� �

��f � U � f � FV �t�	 CDecl�� f�� �

��f � U � WF ��� �� f��

We call � a �substitution belonging to �t� �� and u��

For the so de�ned relation � it is obvious that 
G� implies the original


S��


End of design decision	�

Fixed point analysis� and �xed point induction	 The base case

is trivially true� The inductive step for the new speci�cation 
G� is

�h �

��t� u� � � CT �u�� �t� �� � u	 h��t��� v I�val u��	

��t� u� � � CT �u�� �t� �� � u	 ��T h���t��� v I�val u�� �
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Let h be such that the induction hypothesis

�t� u� � � CT �u�� �t� �� � u	 h��t��� v I�val u�

holds�

Let t� u and � be such that

CT �u� � �t� �� � u

holds�

Calculation of ��T h���t��� immediately leads to a case distinction on t�

� If t � 
� the conclusion holds trivially�

� If t � cst�d� �with d �j 
�� we calculate�

��T h���cst�d���� v I�val u�

� fde�nition of �T g

d v I�val u�

� fpremise �cst�d�� �� � u implies u � cst�d�g

d v I�val�cst�d���

� fde�nition of val� normal�cst�d�� � ttg

d v I�cst�d��

� fde�nition of Ig

true

� If t � var�x� �with x �j 
�� we calculate�

��T h���var�x���� v I�val u�

� fde�nition of �T g

lookupvar x � v I�val u�

� fpremise �var�x�� �� � u implies that there exists

a substitution � such that u � ��x� and

WV ��� �� x�g

true
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� If t � p�t�� �with p �j 
 and t� �j 
�� let � be a substitu�

tion belonging to �p�t��� �� and u �its existence follows from

�p�t��� �� � u�� We calculate�

��T h���p�t����� v I�val u�

� fde�nition of �T � choice of �g

�I p��h��t����� v I�val��p�t������

� f�t�� �� � t��� CT �t���� induction hypothesisg

�I p��I�val�t����� v I�val��p�t������

The last inequation suggests a new speci�cation for val� by which

it is implied�


P� �t � CT �t�	 �I p��I�val t�� v I�val�p�t���

� If t � f�t�� �with f �j 
 and t� �j 
�� let � be a substitu�

tion belonging to �f�t��� �� and u �its existence follows from

�f�t��� �� � u�� We calculate�

��T h���f�t����� v I�val u�

� fde�nition of �T g

�lookupfct f ���h��t����� v I�val u�

If f in � � ff � then the last line is trivially true�

If f in � � tt� we calculate�

� f�t�� �� � �t� ��� WF ��� �� f��

induction hypothesisg

I�val��� f��t� ���� v I�val u�

� fsubstitution� choice of � implies �f�t���� � ug

I�val��f�t������ v I�val��f�t������

� true

� If t � if t� then t� else t� fi �with t�� t�� t� �j 
�� let � be a sub�

stitution belonging to �if t� then t� else t� fi� �� and u �its exis�

tence follows from �if t� then t� else t� fi� �� � u�� We calculate�

��T h���if t� then t� else t� fi��� v I�val u�
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� fde�nition of �T � choice of �g

if h��t���� � true then h��t����

else if h��t���� � false

then h��t����

else 
 � �

v I�val�if t� then t� else t� fi ���

� finduction hypothesisg

if I�val�t� ��� � true then I�val�t� ���

else if I�val�t� ��� � false

then I�val�t� ���

else 
 � �

v I�val�if t� then t� else t� fi ���

The last inequation can immediately be re�ned by conjunction of

the following two speci�cations�


True� �t�� t�� t� � Term �

t� �j 
 � t� �j 
 � t� �j 
 �

CT �t�� � CT �t�� � CT �t�� �

�I�val t�� � true� � tt	

I�val t�� v I�val�if t� then t� else t� fi��


False� �t�� t�� t� � Term �

t� �j 
 � t� �j 
 � t� �j 
 �

CT �t�� � CT �t�� � CT �t�� �

�I�val t�� � false� � tt	

I�val t�� v I�val�if t� then t� else t� fi��

� If t � �f�x� � t��t�� let � be a substitution belonging to ��f�x� �

t��t�� �� and u �its existence follows from ��f�x� � t��t�� �� � u��

We calculate�

��T h����f�x� � t��t���� v I�val u�

� fde�nition of �T � choice of �g

�rec r� �d� h��t������d�x� r�f ����h��t����� v
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I�val��f�x� � t��t����

� fproperty of substitutionsg

�rec r� �d� h��t������d�x� r�f ����h��t����� v

I�val��f�x� � �t����x�x� f�f �����t�����

Application of the induction hypothesis seems di�cult� because

without any knowledge of r a substitution � must be found such

that �t�� ��d�x� r�f �� � t� �� Therefore we analyse �xed point

induction on rec r� In the inductive step a property of the form

�d � r d v � � � is needed� where r is the induction variable� but

the induction hypothesis states only r�h��t����� v � � �� Therefore

we generalize the last inequation in the following way�

�d � D�u � Term � CT �u� � d v I�val u�	

�rec r� �d� h��t������d�x� r�f ���d v

I�val��f�x� � �t����x�x� f�f ����u��

Induction hypothesis� Let r be such that

�d � D�u � Term � CT �u� � d v I�val u�	

r d v I�val��f�x� � �t����x�x� f�f ����u��

holds�

Let d and u be arbitrary with CT �u� and d v I�val u��

��d� h��t������d�x� r�f ���d v

I�val��f�x� � �t����x�x� f�f ����u��

� f�g

h��t������d�x� r�f �� v

I�val��f�x� � �t����x�x� f�f ����u��

In order to apply the induction hypothesis about h� we need a

substitution � so that

�t�� ��d�x� r�f �� � t� � �

Our choice of �� the predicate WV � and the premise about d and

u suggest to take

� � ��u�x�"�f � �
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where " is a still to be determined function declaration� In order

to ful�ll the predicate WF � we must choose " such that

�c � D� s � Term �

CT �s� � c v I�val s�	 r c v I�val�" s��

holds� The induction hypothesis on r immediately suggests

" � f�x� � �t����x�x� f�f ��� �

Now we can continue our calculation�

� finduction hypothesis on hg

I�val�t� ��� v

I�val��f�x� � �t����x�x� f�f ����u��

� fde�nition of �g

I�val�t� ��u�x� f�x� � �t����x�x� f�f ����f ��� v

I�val��f�x� � �t����x�x� f�f ����u��

The last inequation is implied by the following formula�


Rec� �t� u � Term� x � X� f � U �

CT ��f�x� � t�u�	

I�val�t�u�x� �f�x� � t��f ��� v I�val��f�x� � t�u��


End of �xed point analysis� and �xed point induction	�

Now we re�ne the speci�cations obtained above by applying our devel�

opment method recursively to them�

Re�nement of 
P�	 We recursively apply our development method

to 
P�� re�ning it by �xed point induction on val� The base case holds

because both I and I�p� are strict� Now we turn to the inductive step�

Let v be arbitrary so that the induction hypothesis

�t � CT �t�	 �I p��I�v t�� v I�val�p�t���
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holds� Let t be arbitrary so that CT �t� holds� We calculate�

�I p��I��val v t�� v I�val�p�t���

� fde�nition of �valg

�I p��I�if normal t then t else v�reduce t� ��� v

I�val�p�t���

We make a case distinction on normal t�

� If normal t � 
� then the last line holds trivially�

� If normal t � tt� then the last line is equivalent to

�I p��I t� v I�val�p�t��� �

From normal t � tt follows normal�p�t�� �j 
�

If normal�p�t�� � tt� we continue our calculation�

� fde�nition of valg

�I p��I t� v I�p�t��

� fde�nition of Ig

true

If normal�p�t�� � ff � we continue our calculation�

� fde�nition of valg

�I p��I t� v I�val�reduce�p�t����

Since normal t � tt� we know that p�t� � W holds� The oper�

ational basis already provides an evaluator eval for terms of the

word algebra� According to the axioms� eval reduces terms of

the word algebra to normal forms such that their semantics is

preserved� Therefore we de�ne reduce to be this evaluator in the

current case�


PWRed� p�t� � W 	 reduce�p�t�� � eval�p�t��
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� If normal t � ff � we calculate�

�I p��I�v�reduce t��� v I�val�p�t���

� fnormal t � ff 	 normal�p�t�� � ff �

de�nition of valg

�I p��I�v�reduce t��� v I�val�reduce�p�t����

In order to be able to apply the induction hypothesis� we state a

new requirement on reduce�


CT� �t � CT �t�	 CT �reduce t�

Now we can continue our calculation�

� finduction hypothesisg

�I�val�p�reduce t���� v I�val�reduce�p�t����

A comparison of the two sides immediately suggests the following

speci�cation�


PN� normal t � ff 	 reduce�p�t�� � p�reduce t�


End of re�nement of 
P�	�

Re�nement of 
True�	 Fixed point analysis� and �xed point

induction	 We do �xed point induction on val in the premise of


True�� Since the negation of this premise is equivalent to

�I�val t�� � true� � 
 
 �I�val t�� � true� � false �

the formula


IH� �t�� t�� t� � Term �

t� �j 
 � t� �j 
 � t� �j 
 �

CT �t�� � CT �t�� � CT �t�� �

�I�v t�� � true� � tt	

I�val t�� v I�val�if t� then t� else t� fi��

is syntactically admissible in v�
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The base case holds trivially� because I is strict� Assume that the

induction hypothesis 
IH� holds� Let t�� t� and t� be arbitrary terms

such that the premises of 
IH� hold� inclusive of

�I��val v t�� � true� � tt �

We calculate�

�I��val v t�� � true� � tt

� fde�nition of �valg

�I�if normal t� then t� else v�reduce t�� �� � true�

� tt

Let us make a case distinction on normal t��

� Because of the strictness of I and the premise� normal t� � 
 is

impossible�

� If normal t� � tt� the premise reduces to �I t� � true� � tt� The

axioms on I imply t� � cst�true�� Now we re�ne the conclusion

of the inductive step�

I�val t�� v I�val�if t� then t� else t� fi��

� ft� � cst�true�g

I�val t�� v I�val�if cst�true�then t� else t� fi��

� f normal�if cst�true�then t� else t� fi� � ffg

I�val t�� v

I�val�reduce�if cst�true�then t� else t� fi���

� fre�exivity of vg

reduce�if cst�true�then t� else t� fi� � t�

� If normal t� � ff � the premise reduces to �I v�reduce t�� �

true� � tt� Now we re�ne the conclusion of the inductive step�

I�val t�� v I�val�if t� then t� else t� fi��

� finduction hypothesis� and 
CT�g

I�val�if reduce t� then t� else t� fi�� v
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I�val�if t� then t� else t� fi��

� f normal�if t� then t� else t� fi� � ffg

I�val�if reduce t� then t� else t� fi�� v

I�val�reduce�if t� then t� else t� fi���

� fre�exivity of vg

reduce�if t� then t� else t� fi� �

if reduce t� then t� else t� fi


End of �xed point analysis� and �xed point induction	�


End of re�nement of 
True�	�

Re�nement of 
False�	 The re�nement is analogous to the re�ne�

ment of 
True�� Similarly we end up with the explicit speci�cation of

reduce�

reduce�if cst�false�then t� else t� fi� � t�


End of re�nement of 
False�	�

Re�nement of 
Rec�	 Let t� u� x and f be arbitrary with CT ��f�x� �

t�u�� Evaluation of val�t�u�x� �f�x� � t��f �� leads to a case distinction

on normal�t�u�x� �f�x� � t��f ���

If normal�t�u�x� �f�x� � t��f �� � tt� then�

� fde�nition of val� normal��f�x� � t�u� � ffg

I�t�u�x� �f�x� � t��f �� v I�val�reduce��f�x� � t�u���

� fpremise of this caseg

reduce��f�x� � t�u� � t�u�x� �f�x� � t��f �

If normal�t�u�x� �f�x� � t��f �� � tt� then�

� fde�nition of val� normal��f�x� � t�u� � ffg

I�val�t�u�x� �f�x� � t��f ��� v I�val�reduce��f�x� � t�u���

� fde�nition of reduce��f�x� � t�u�g

I�val�t�u�x� �f�x� � t��f ��� v I�val�t�u�x� �f�x� � t��f ���

�

true
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End of re�nement of 
Rec�	�

Now we are ready to give a recursive de�nition of reduce by application

of the �xed point rule�

reduce � rec red� �t�

if W t then eval t

else if t � p�u� then p�red u�

else if t � if t� then t� else t�

then if t� � cst�true� then t�

else if t� � cst�false� then t�

else if red t� then t� else t� �

else if t � �f�x� � s�u

then s�u�x� �f�x� � s��f �

So we have developed an operational semantics� In particular� we did

not use the knowledge that function declarations can be unfolded� The

unfolding

reduce��f�x� � t�u� � t�u�x� �f�x� � t��f �

entered the development merely by calculation�
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A proof method for recursion

In this chapter we describe the development method that we have used

in the examples of chapter ��

The development task is as follows� A program for an unknown f

must be developed from a speci�cation� which contains an inequation

or an equation on f � This inequation or equation contains recursive

de�nitions�

This class of speci�cations is practically important� as we have seen

from the examples� into this class fall� for instance� the transformation

of a nested recursion into a tail�recursive one� and compiler develop�

ment�

As stated in the introduction� we want a development method that

allows systematic development of programs from the mentioned spec�

i�cations� We do not want developments that are found by �eureka��

Moreover� development steps should be oriented at the shape of formu�

lae whenever possible� Knowledge of the problem domain should enter

development only when necessary�

The formal foundation� on which our method is based� has been pro�

vided in chapter �� It is a predicate calculus with two rules for recursion�

�xed point induction� and the �xed point rule� In particular� we have

an unrestricted generalization rule to our disposal�

We start with a description of the viewpoint of program development�

which we take in our development method for recursion� Then we

���
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turn to the particular development task described above� Finally� we

discuss methodological reasons for which we have excluded certain rules

for recursion from the calculus�

��� General development method

We develop programs from speci�cations in a predicate calculus with

the two additional rules for recursion� We do so by equivalence trans�

formations and by strengthening formulae� In this way� a speci�cation

of an unknown f is re�ned until an explicit equation f � t is reached�

where t is a term� Such an equation is a program for f � which by

construction implies the original speci�cation of f �

Hence we develop programs by backwards proof� Instead of ending with

�true� as proofs do� developments end with a program for the unknown�

As usual in developments� the consistency problem arises� strength�

ening a speci�cation of f may lead to a speci�cation to which no f

exists that meets this strengthened speci�cation� Therefore great care

is needed in strengthening speci�cations�

��� Development from inequations

In this section we describe how programs are developed from speci�ca�

tions that contain inequations�

Development task	 Let a formula S be given as a speci�cation of

f � Assume that an inequation

t v u

is a subformula of S� and that f occurs in u �and possibly somewhere

else in t and S�� The task is to develop a program for f that meets

speci�cation S�


End 
Development task
	�

Our development method starts with �xed point analysis�
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����� Fixed point analysis

During �xed point analysis one searches for a re�nement by �xed point

induction� Fixed point induction is planned� but not yet performed

during �xed point analysis�

The description of �xed point analysis is devided into two parts� the

analysis process� and the interpretation of its results�

Analysis	 Let rec x� r be a subterm of t such that rec x� r is not

allowed to appear in the �nal program� It is analysed where �xed point

induction on rec x� r leads�

Choice of induction formula	 The �rst step consists in �nding an

induction formula A such that A�rec x� r�x� is syntactically identical

with S�

The formula A must be carefully chosen if a free variable y of r is

universally quanti�ed in S� Note that in this case A is not just S with

x at the position of rec x� r� then the substitution A�rec x� r�x� would

not lead to S since the bound variable y would be renamed before the

substitution is done� Therefore� typically� the generalization rule must

be applied to S in order to remove the explicit universal quanti�cation

of y� �Note that we apply rules backwards�� Thus y becomes a free

variable of the new speci�cation� Then �xed point analysis starts by

choosing A for the new speci�cation�

But the generalization rule must only be applied if necessary� As many

explicit universal quanti�cations as possible should remain in the for�

mula� the more explicit universal quanti�cations remain in the formula�

the stronger the induction hypothesis is�

If the same term rec x� r occurs more than once in t� one should �rst

concentrate on a single one of its occurrences� That is� only one occur�

rence is substituted� and hence only �xed point induction on this single

occurrence is analysed�

In addition� one must ensure that the chosen formula A is syntactically

admissible in x�
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End 
Choice of induction formula
	�

Having found a formula A� one proceeds with the base case� and with

the inductive step of the �xed point induction rule as follows�

� Fixed point analysis is recursively applied to the base case� �Note

that� although one recursion has been removed� the base case may

still contain other recursion operators��

� For the inductive step it is analysed� whether the induction hy�

pothesis is fully applicable �after equivalence transformations��

Depending on the result� one proceeds as follows�

� If the induction hypothesis is fully applicable� it is not yet

applied� but �xed point analysis is recursively applied to the

conclusion of the inductive step� Recursion operators that

would be removed by application of the induction hypothe�

sis� however� need not be considered in the subsequent �xed

point analysis�

� If the induction hypothesis is not fully applicable� the recur�

sion under consideration is left in the term� and �xed point

analysis is applied to a di
erent unwanted recursion term on

the left hand side of the inequation�


End 
Analysis
	�

Results	 The analysis process may lead to the following results�

� A sequence of nested �xed point inductions has been found so

that no unwanted recursion remains on the left hand side of the

inequation� that is� all induction hypotheses are fully applicable�

The further proceeding depends on the form of the left hand side

that arises from application of the induction hypotheses�

� If application of the induction hypotheses takes one closer

to a non�formalized goal �e�g� tail�recursive form�� then this

sequence of �xed point inductions is selected for the develop�

ment� but not yet performed� The development is continued

with context reduction �section 
������
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� If the form contradicts such an additional informal require�

ment� an auxiliary function is introduced �section 
������

� An unwanted recursion remains on the left hand side� that is� an

induction hypothesis is not fully applicable� Then these recursions

are left in the term� For the successful �xed point inductions one

proceeds as before�

� If application of the induction hypotheses takes one closer to a

non�formalized goal �e�g� tail�recursive form�� then this sequence

of �xed point inductions is selected for the development� but not

yet performed� The development is continued with a design deci�

sion �section 
������

� If the form contradicts such an additional informal requirement�

an auxiliary function is introduced �section 
����� or a design

decision is made �section 
������

The results have been listed from the most convenient one to the least

convenient� So� if �xed point analysis o
ers several sequences of �xed

point inductions� then those are preferred that correspond to a situation

mentioned earlier in the list�


End 
Results
	�

Depending on the result of �xed point analysis� one proceeds with one

of the next steps�

� context reduction

� auxiliary function

� design decision

� �xed point induction

����� Context reduction

If the unknown f in the right hand side of the inequation is surrounded

by context� one should at next try to remove as much of this context

as possible�
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A means to do so is to introduce the same context on the left hand side

of the inequation� and then to remove �parts of� this context by the

monotonicity argument�

After reducing the context� one must re�analyse whether the �xed point

induction that has been selected during �xed point analysis is still possi�

ble� In general� this will not be the case� Therefore one must generalize

the context�reduced speci�cation so that the original �xed point induc�

tion works again� That is� one must make a design decision� however�

with a particular �xed point induction in mind� one tries to generalize

the inequation in order to make this �xed point induction work�

At �rst sight� it might seem unreasonable to do �xed point analysis

�rst� and context reduction thereafter� The reason for this order is

as follows� It is easier to �nd a working �xed point induction for the

original inequation than having to �nd a suitable generalization at the

same time� Having a special �xed point induction in mind helps to �nd

the generalization�

So� if the context of the unknown could be reduced� but the original

�xed point induction has become impossible� one proceeds with a design

decision� In all other cases one proceeds with �xed point induction�

����� Auxiliary function

One has found a working �xed point induction� but its application

would lead to a formula that does not agree with additional properties

required of the program for the unknown f �

In such a situation one abstracts the term that prevented one from

applying �xed point induction� This abstraction is achieved by intro�

duction of one or more auxiliary functions�

The auxiliary function has an argument that is intended to represent

the induction variable� When developing the body of the auxiliary

function� one should ask� &Why did the shape of the term prevent

application of the induction hypothesis�� Then the identi�ed shape is

built into the body of the auxiliary function� Hence the de�nition of

an auxiliary function is guided by the shape of the previous formula�
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The auxiliary function is used in a speci�cation of a new unknown g�

This speci�cation is an inequation or equation�

Based on the speci�cation of the new unknown g� one must express

the old unknown f in terms of g� In order to do so� one re�nes the

speci�cation of f by making use of the new speci�cation of g until a

term for f is found� this term will contain g�

Then the whole development method is recursively applied to the new

speci�cation of the new unknown g�

����� Design decision

One has found a sequence of successful �xed point inductions �possibly

the empty sequence�� but in the left hand side of the inequation a

recursion is still left� which is not allowed to appear in the �nal program

for f �

Then one must make a design decision� The recursion remained in the

inequation� because �xed point induction on it failed during �xed point

analysis� Inspection of the reason of this failure will help to �nd a design

decision� Of course the new speci�cation must be such that it implies

the old one� that is� it must be a re�nement of the old speci�cation�

Often a generalization of the inequation is needed� as is well�known

from induction proofs� The preceeding �xed point analysis can guide

the generalization�

Sometimes a conjunct can be added to the old speci�cation� thus the old

�xed point inductions still work� now followed by a �xed point induc�

tion on the recursion that could not be eliminated from the inequation

before�

After a design decision has been made� the development method is

recursively applied to the new speci�cation�
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����� Fixed point induction

When all these steps have been carried out �as far as they have been

necessary�� the planned �xed point induction can be done�

Fixed point induction leads to a number of new speci�cations of the

unknown� which in the next step are turned into a recursive de�nition�

����� Recursive de	nition

Typically at the end of the development one has an inequation with

f isolated on the right hand side of v� where f may also occur in the

term on the left hand side� By the �xed point rule� such a speci�cation

can immediately be turned into a recursive de�nition of f �

����
 Proofs

Speci�cations that have not been re�ned� must be proved for the pro�

gram developed for f � This can be done at the end of the development�

or during development� one shows that the actual speci�cation implies

the remaining ones� One faces the usual danger of having introduced

inconcistencies� as described above�

��� Development from equations

When a speci�cation contains an equation instead of an inequation� the

development task can immediately be reduced to a development from

two inequations� the given equation

t � u

can be rewritten into the conjunction

t v u � u v t �

Then one selects the inequation� where the unknown occurs on the right

hand side� The development method of section 
�� is applied to this

inequation� the remaining inequation must be proved for the developed

program�
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Of course� concentration on one inequation can lead to a solution that

does not ful�l the second inequation� But this danger of introducing

inconsistencies is unavoidable in speci�cation re�nement�

It is an intrinsic property of general methods that in special cases devel�

opments exist that are shorter and more direct than the development

constructed by the method� Assume that in an equation a function f is

involved� which is de�ned by direct structural recursion� the argument

of f is of a sort whose elements are generated by a set of constructors�

and f is recursively applied only to direct components of its argument�

Then a development by structural induction could be shorter than a

development by the general method� But a development by �xed point

induction on f would only split the development into two parts� for

each of the inequations it would precisely re�ect the structural induc�

tion� Special cases that occur often in practical applications could be

identi�ed� and a special submethod could be formulated for them�

��� Discussion

Now we will discuss the methodological reasons for which we have ex�

cluded certain rules from our calculus� which are known from the liter�

ature�

Least 
pre�� �xed point rule	 The least �xed point rule

t�y�x� � y	 rec x� t v y

and the least pre��xed point rule

t�y�x� v y	 rec x� t v y

are well�known from the literature �e�g� ����� ������

Although perfectly ful�lling the criteria for rules of chapter �� these

two rules have been excluded from our calculus� Remember that we

want a concise calculus� we can best omit rules that we do not need for

methodological reasons�

Assume that a program for y must be developed from the speci�cation

rec x� t v y �
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Then� following our development method� we would do �xed point in�

duction on rec x� The base case is trivially ful�lled� and the inductive

step is

x v y	 t v y �

Application of the induction hypothesis leads to the re�ned speci�cation

t�y�x� v y �

This is exactly the speci�cation we would have obtained by application

of the least pre��xed point induction rule� The least �xed point rule

would have led to an even stronger speci�cation�


End 
Least 
pre�� �xed point rule
	�

Another well�known technique is transformation by unfolding and fold�

ing�

Unfold�fold�transformations	 The unfold%fold�technique is due to

Burstall and Darlington ����� The unfold�rule and the fold�rule have

already been introduced in chapter �� We repeat them here for conve�

nience�

In our notation we can write the unfold�rule as follows�

rec x� t�x�y� � rec x� �t�t�x�y��y��

The fold rule can be written as follows�

rec x� t�u�y� � rec x� u

rec x� t�u�y� w rec x� t�x�y�

Both rules ful�l the criteria for rules of chapter �� We have omitted

them from the calculus� because they are not necessary in our develop�

ment method�

In the literature �e�g� ��
�� ���� the unfold%fold�technique is often ap�

plied in a rather relaxed way� as is well�known� by folding one can
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obtain a smaller value �cf� the conclusion of the fold�rule�� Speaking

operationally� termination may get lost by folding� the transformations

establish only partial correctness� But in most proofs and developments

in the literature �e�g� ��
�� ���� equality � is written instead of w when

the fold�rule is applied� The danger of losing termination is only men�

tioned� It is also mentioned that therefore termination must be proved�

but then no termination proofs are done�

Instead of proving termination after the development� we develop pro�

grams from the inequation that implies termination� we develop a pro�

gram for f from the inequation t v f � This property is sometimes called

robust correctness� If t has a de�ned value� then so has f � But if t � 
�

then f is allowed to take any value whatsoever� Speaking operationally�

termination is guaranteed by development� the missing property� which

we must prove afterwards� is that f does not terminate more often

than t� Contrastingly� unfold%fold�transformations develop f from the

partial correctness formula f v t� Unfortunately� termination is not

proved in most publications that use the unfold%fold�technique�

Another problem with the unfold%fold�technique is that there is no

method for its goal�directed application� There do exist a number of

strategies �e�g� generalization and tupling strategies� for unfold%fold�

transformations� but they rather coexist independently of each other�

it is far from obvious� which one of them is best applied to a prob�

lem at hand� Moreover� applicability of those strategies is rather re�

stricted� since they were invented for transformation of recursion into

linear form�

In addition� unfold%fold�techniques use a lot of operational reasoning�

often� some computation traces are computed� and solutions are derived

from those examples� We are of the opinion that instead of reasoning

operationally� one should derive solutions by application of laws� and

by exploration of the shape of formulae� Therefore solutions should

neither be derived from examples�


End 
Unfold�fold�transformations
	�
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Conclusion

The present work has tried to make development of recursive de�nitions

from speci�cations more systematic� We have considered speci�cations

that contain inequations or equations on terms with recursive de�ni�

tions� For the unknowns of such speci�cations� recursively de�ned pro�

grams are developed in a re�nement style� It has turned out that even

in non�trivial examples solutions can to a large extent be calculated�

Let us brie�y review the main results of the previous chapters�

We started with program development in general� and searched for

criteria for the usefulness of calculi� It turned out that proof design

strongly depends on the calculus� Simplicity turned out to be very

important at all levels of a calculus� the syntax of terms and formulae

must be tailored to manipulation� rather than to manifestation of truths

once and for all� Applicability of rules is substantially in�uenced by

their simplicity� applicability of a rule must be easily perceivable� The

careful composition of rules into a calculus contributes much to good

proof design� A mere aggregation of rules will not be su�cient� And

also the interplay of rules has a great impact on proof design� good

proof design needs a simple interplay of rules in the calculus�

Then we applied the criteria in order to get a recursion calculus� A

recursion operator rec was introduced into the language� which can

be written into terms� According to the criteria� we preferred the re�

cursion operator to function declarations as known from programming

languages� We introduced only two rules for recursion into the calcu�

lus� the �xed point induction rule� and the �xed point rule� This choice

���
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was con�rmed by all our examples� The two rules for recursion were

added to a predicate calculus� In developments� we applied the calculus

backwards� and� in particular� we applied the �xed point induction rule

backwards� We have chosen a predicate calculus since it has simple

rules� and a simple proof structure in the sense of chapter ��

We have been able to apply the same method to all our examples� Even

the more di�cult examples �such as the nested recursion� the compiler

development� and the development of an operational semantics from a

denotational one� could be treated systematically� without deep insights

into the problem domain� When design decisions were needed� they

were largely guided by the shape of formulae� So� wide parts of the

developments were calculational�

In the presented method� development starts with an analysis whether

the speci�cation is amenable to �xed point induction� The next step

in the development depends on the outcome of the analysis� in the

best case� �xed point induction can immediately be applied� it leads

to a re�ned speci�cation� If �xed point induction is not immediately

applicable or unreasonable� the next step is selected according to the

shape of the formula� in which the �xed point induction failed� Al�

though requiring thought� all these steps are guided by the formulae

that resulted from �xed point analysis� In our examples� the formulae

gave valuable hints for the design decisions� After a design decision

has been made� the development method is recursively applied to the

re�ned speci�cation�

We conclude with an outlook to possible future work�

A number of steps in the development process are routine� for instance�

generation of formulae during �xed point analysis� and calculation of

programs after a suitable �xed point induction has been found� There�

fore� the method could well be supported by machine� Thus the pro�

grammer could concentrate on those parts that need thought and con�

sideration� Design of such a mechanical support system seems to be

straightforward� because the method clearly divides routine steps from

those that need thought�



Bibliography

��� Arsac� J�� Kodrato
� Y�� Some techniques for recursion removal

from recursive functions� ACM TOPLAS� Vol� 
� No� �� April

�	��� �	�����

��� Bauer� F�L�� Ehler� H�� Horsch� A�� M�oller� B�� Partsch� H��

Paukner� O�� Pepper� P�� The Munich Project CIP� Vol� II� The

Program Transformation System CIP�S� LNCS �	�� Springer�

Berlin �	��

��� Bauer� F�L�� W�ossner� H�� Algorithmische Sprache und Pro�

grammentwicklung� Springer �	�
� Berlin� Heidelberg� New York�

Tokyo� �� Au�age �in German�

�
� Berghammer� R�� Ehler� H�� Zierer� H�� Towards an algebraic

speci�cation of code generation� Science of Computer Program�

ming ��� 
���� ��	���

��� Bird� R�S�� The promotion and accumulation strategies in trans�

formational programming� ACM TOPLAS� Vol� �� No� 
� October

�	�
� 
�����


��� Bj'rner� D�� Rigorous development of interpreters and compil�

ers� In� Bj'rner� D�� Jones� C�B� �eds�� Formal Speci�cation and

Software Development� �������� Prentice Hall� �	��

��� Broy� M�� Deductive program development� evaluation in reverse

polish notation as an example� In� Broy� M�� Wirsing� M� �eds���

Methods of Programming� LNCS �

� Springer� Berlin� �		�

��� Broy� M�� Experiences with Software Speci�cation and Veri�ca�

tion Using LP� the Larch Proof Assistant� Technical Report SRC

	�� Digital Systems Research Center� Palo Alto� California� �		�

���



��� BIBLIOGRAPHY

�	� Broy� M�� Functional speci�cation of time�sensitive communicat�

ing systems� In� Broy� M� �ed�� Programming and Mathematical

Method� NATO ASI Series F� Computer and Systems Sciences�

Vol� ��� �������� Springer� Berlin �		�� also� ACM Transactions

on Software Engineering and Methodology� Vol� �� No� �� January

�		�� ��
�

���� Burstall� R�M�� Darlington� J�� A transformation system for de�

veloping recursive programs� Journal of the ACM� Vol� �
� No� ��

January �	��� 

���

���� Burstall� R�M�� Landin� P�J�� Programs and their proofs� an al�

gebraic approach� In� Meltzer� B�� Michie� D� �eds�� Machine In�

telligence 
� Edinburgh University Press� �	�	

���� Cartwright� R�� Recursive programs as de�nitions in �rst order

logic� SIAM J� Comput�� Vol� ��� No� �� May �	�
� ��
�
��

���� Chirica� L�M�� Martin� D�F�� An approach to compiler correct�

ness� International Conference on Reliable Software� Proceedings�

�	��

��
� Choppy� C�� Guiho� G�� Kaplan� S�� A Lisp compiler for FP lan�

guage and its proof via algebraic semantics� LNCS ���� Springer�

Berlin

���� Cohn� A�� High level proof in LCF� In� Joyner� W�H� �ed�� 
th

Workshop on Automated Deduction� �	�	� �����

���� Cohn� A�� The equivalence of two semantic de�nitions� a case

study in LCF� SIAM J� Comput�� Vol� ��� No� �� May �	��� ����

���

���� Courcelle� B�� Equivalences and transformations of recursive def�

initions� ��th Annual Symposium on Foundations of Computer

Science� �	��� ��
���	

���� Courcelle� B�� Fundamental properties of in�nite trees� Theoret�

ical Computer Science ��� �	��� 	����	

��	� Courcelle� B�� Recursive applicative program schemes� In�

Leeuwen� J� van �ed�� Handbook of Theoretical Computer Sci�

ence� 
�	�
	�� Elsevier Science Publishers B�V�� �		�



BIBLIOGRAPHY ���

���� Cousot� P�� Cousot� R�� Inductive de�nitions� semantics and ab�

stract interpretation� �	th POPL �		�� ���	


���� Dershowitz� N�� Jouannaud� J�P�� Rewrite systems� In� Leeuwen�

J� van �ed�� Handbook of Theoretical Computer Science� �
������

Elsevier Science Publishers B�V�� �		�

���� Despeyroux� J�� Proof of translation in natural semantics� Sympo�

sium on Logic in Computer Science� Cambridge� Massachusetts�

�	��� �	�����

���� Dijkstra� E�W�� A Discipline of Programming� Prentice�Hall� En�

glewood Cli
s �	��

��
� Dijkstra� E�W�� The uni�cation of three calculi� In� Broy� M�

�ed��� Program Design Calculi� NATO ASI Series F� Computer

and Systems Sciences� Vol� ���� �	������ Springer� Berlin �		�

���� Dybjer� P�� Using domain algebras to prove the correctness of a

compiler� In� Mehlhorn� K� �ed�� STACS ��� Proceedings� LNCS

���� 	������ Springer� Berlin �	��

���� Dybjer� P�� Sander� H�P�� A functional programming approach to

the speci�cation and veri�cation of concurrent systems� Formal

Aspects of Computing �� ������	� �	�	

���� Gardiner� P�H�B�� Pandya� P�K�� Reasoning algebraically about

recursion� Science of Computer Programming ��� �������� �		�

���� Gasteren� A�J�M� van� On the Shape of Mathematical Argu�

ments� In� Goos� G�� Hartmanis� J� �eds�� Lecture Notes in Com�

puter Science� vol� 

�� �		�

��	� Gentzen� G�� Untersuchungen �uber das logische Schlie�en� Math�

ematische Zeitschrift �	� I� �������� II� 
���
��

���� Gries� D�� In�uences �or lack thereof� of formalism in teaching

programming and software engineering� In� Dijkstra� E�W� �ed��

Formal Development of Programs and Proofs� ��	����� Addison

Wesley �		�

���� Gries� D�� The Science of Programming� Springer� New York�

�	��



��� BIBLIOGRAPHY

���� Gunter� C�A�� Semantics of Programming Languages� The MIT

Press� Cambridge� Massachusetts� London� England� �		�

���� He� J�� Bowen� J�� Compiling speci�cation for ProCoS language

PLR
� � Internal ProCoS report OU HJF �%�� February �		�

��
� Hinkel� U�� Maschineller Beweis der Korrektheit eines Interpre�

ters� M�Sc� Thesis �in German�� Technische Universit�at M�unchen�

�		�

���� Hoare� C�A�R�� Algebra and models� In� Broy� M� �ed��� Program

Design Calculi� NATO ASI Series F� Computer and Systems Sci�

ences� Vol� ���� �����	�� Springer� Berlin �		�

���� Hoare� C�A�R�� Mathematics of programming� In� Colburn� T�R�

et al� �eds�� Program Veri�cation� ������


���� Hoare� C�A�R�� Hayes� I�J�� He� J�� Morgan� C�C�� Roscoe� A�W��

Sanders� J�W�� Sorenson� I�H�� Spivey� J�M�� Sufrin� B�A�� Laws of

programming� In� Broy� M� �ed�� Programming and Mathematical

Method� 	������ Nato Asi Series F� Vol� ��� Springer �		�

���� Hoare� C�A�R�� He� J�� Re�nement algebra proves correctness of

compilation� In� Broy� M� �ed�� Programming and Mathematical

Method� �
����	� Nato Asi Series F� Vol� ��� Springer �		�

��	� Hu�mann� H�� A case study towards algebraic veri�cation of code

generation� AMAST	�� Iowa� �		�

�
�� Kott� L�� A system for proving equivalences of recursive pro�

grams� LNCS ��� ����	

�
�� Kott� L�� Unfold%fold program transformations� In� Nivat� M��

Reynolds� J�C� �eds�� Algebraic methods in semantics� �	��

�
�� Manna� Z�� Mathematical Theory of Computation� McGraw�Hill�

New York �	�


�
�� Manna� Z�� Waldinger� R�� The Logical Basis for Computer Pro�

gramming� Vol� �� Deductive Systems� Addison�Wesley �		�

�

� McCarthy� J�� Painter� J�� Correctness of a compiler for arith�

metic expressions� Proceedings of Symposia in Applied Mathe�

matics� Vol� �	� ed�� J�T� Schwartz



BIBLIOGRAPHY ��	

�
�� McGowan� C�� An inductive proof technique for interpreter equiv�

alence� In� Rustin� R� �ed�� Formal Semantics of Programming

Languages��	��

�
�� Mendelson� E�� Introduction to Mathematical Logic� Van Nos�

trand Company� �nd edition� �	�	

�
�� Millo� R�A� de� Lipton� R�J�� Perlis� A�J�� Social processes and

proofs of theorems and programs� In� Colburn� T�R� et al�

�eds�� Program Veri�cation� �	����	� Kluwer Academic Publish�

ers� �		�

�
�� M�oller� B�� Higher�order Algebraic Speci�cations� Habilitationss�

chrift� Technische Universit�at M�unchen� February �	��

�
	� Morris� F�L�� Advice on structuring compilers and proving them

correct� POPL��

���� Morris� J�H�� Another recursion induction principle� Communi�

cations of the ACM� Vol� �
� No� �� May �	��� ������


���� Mosses� P�D�� Denotational Semantics� In� Leeuwen� J� van �ed��

Handbook of Theoretical Computer Science� ������� Elsevier Sci�

ence Publishers B�V�� �		�

���� Nelson� G�� Some generalizations and applications of Dijkstra�s

guarded commands� In� Broy� M� �ed�� Programming and Math�

ematical Method� NATO ASI Series F� Computer and Systems

Sciences� Vol� ��� �����	�� Springer� Berlin �		�

���� Paulson� L�C�� Logic and computation � Interactive proof with

Cambridge LCF� Cambridge Tracts in Theoretical Computer Sci�

ence �� Cambridge University Press� �	��

��
� Pettorossi� A�� Proietti� M�� Rules and strategies for program

transformation� In� M�oller� B�� Partsch� H�� Schuman� S� �eds��

Formal Program Development� LNCS ���� ������
� Springer�

Berlin �		�

���� Polak� W�� Compiler Speci�cation and Veri�cation� LNCS ��
�

Springer �	��



�
� BIBLIOGRAPHY

���� Park� D�� Fixpoint induction and proofs of program properties�

In� Meltzer� B�� Michie� D� �eds�� Machine Intelligence �� �	�	�

�	���

���� Pepper� P�� A simple calculus for program transformation �inclu�

sive of induction�� Science of Computer Programming 	� ��������

�	��

���� Raoult� J��C�� Vuillemin� J�� Operational and semantic equiva�

lence between recursive programs� Journal of the ACM� Vol� ���

No� 
� October �	��� �����	�

��	� Scherlis� W�L� Scott� D�S�� First steps towards inferential pro�

gramming� In� Colburn� T�R� et al� �eds�� Program Veri�cation�

		����� Kluwer Academic Publishers� �		�

���� Tarski� A�� A lattice�theoretical �xpoint theorem and its appli�

cations� Paci�c J� Math� �� ������	� �	��

���� Thatcher� J�W�� Wagner� E�G�� Wright� J�B�� More on advice

on structuring compilers and proving them correct� Theoretical

Computer Science ��� �����
	� �	��

���� Winskel� G�� The Formal Semantics of Programming Languages

� An Introduction� The MIT Press� Cambridge� Massachusetts�

�		�

���� Young� W�D�� A mechanically veri�ed code generator� Journal of

Automated Reasoning �� 
	������ �	�	


