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Abstract. The UML 2.0 integrates a dialect of High-Level Message Sequence
Charts (HMSCs) for interaction modelling. The most noteworthy addition of
UML 2.0 interactions to HMSCs is the introduction of negated specifications
which can be used to rule out behaviour from implementations. A trace-based
semantics for UML 2.0 interactions is proposed which captures both the standard
composition operators for UML 2.0 interactions from HMSCs, and the propri-
etary negation and assertion operators. The semantics lays the ground for dis-
cussing several alternatives for treating negation in interactions. In particular, the
semantics decides whether a trace is positive or negative for a given interaction;
all other traces are deemed to be inconclusive. Based on these verdicts, notions
of implementation and refinement for interactions are defined.

1 Introduction

UML interactions describe possible message exchanges between system instances. In
UML 2.0, a dialect of High-Level Messages Sequence Charts (HMSC [4]) replaced the
quite inexpressive notion of UML 1.x interactions [5]. Besides integrating the standard
HMSC primitives like sequential, parallel, and iterative composition of interactions,
UML 2.0 provides means to specify negative behaviour, i.e., behaviour forbidden in
system implementations. The ensuing increase in expressiveness makes UML 2.0 an ac-
ceptable choice for modelling safety-critical systems. However, in order to put UML 2.0
interactions on an equal footing with HMSCs or Live Sequence Charts (LSC [2]), a for-
mal understanding of the semantics of its interaction language is indispensable. More-
over, the notion of implementation and refinement, based on the formal semantics, form
a necessary prerequisite for using UML 2.0 interactions as a formal design language.

In fact, the UML 2.0 specification document [6] is rather vague on the innovative
features of the interaction language, like negation. The semantics of what may be called
the positive fragment of UML 2.0 interactions, i.e., the language part that does not con-
tain negation, can be equipped straightforwardly with a formal semantics following the
specification [9]. Not surprisingly, however, different interpretations of negative inter-
actions have been proposed in the literature. According to the specification, a UML 2.0
interaction describes valid (or positive) and invalid (or negative) traces of event occur-
rences where invalid traces are induced by using the unary interaction operatorsneg(−)
andassert(−). The set of positive and negative traces defined by an interaction need
not cover all possible interactions, so the remaining traces may be called inconclusive



for the interaction. Sẗorrle [8] discusses several alternatives for the negated interaction
neg(S) ranging from “not the [valid] traces ofS” over “anything but the [valid] traces of
S” to exchanging the valid and the invalid traces ofS; he finally adopts the last view in
order ensure that double negation is the identity. Each of these interpretations shows a
drawback: In general, the first and the last approach assign no positive traces toneg(S)
and thus the combination of negation with non-negated interaction fragments leads to
an empty set of positive traces. The second approach discards the possibility of incon-
clusive traces. In contrast, Haugen and Stølen [3] interpret the valid traces ofneg(S) as
consisting just of the empty trace; a formal definition of valid and invalid traces of an
interaction, however, is not given.

We propose a trace-based, formal semantics for UML 2.0 interactions including
part of the positive fragment but concentrating on the language constructs for specify-
ing negative traces. For the definition of the semantics we employ Pratt’s framework
of partially ordered multisets or pomsets [7] for modelling concurrency. On the one
hand, this framework simplifies the definition of the various composition operators for
interactions; on the other hand, traces are subsumed by linear pomsets. The semantics
decides if a trace is positive or if it is negative for an interaction. We only briefly sum-
marise the semantics of the positive interaction fragment which coincides with Störrle’s
interpretation [9]. For negated interactions, we build on Haugen and Stølen’s view [3]
and define the negative traces of combined interaction fragments. We detail the con-
sequences of this approach and contrast it with Störrle’s interpretations. Moreover, we
provide means for reducing the semantics to only calculating the positive traces of an
interaction, albeit at the expense of a classical not-operator. The semantics is put to use
by introducing a notion of an implementation of an interaction as a process that shows
a least one positive trace of the interaction and no negative trace. In particular, our in-
teraction semantics implies that a trace may be simultaneously positive and negative for
the same interaction. We discern between such overspecified interactions and interac-
tions that are contradictory in the sense that they do not admit an implementation. Based
on interaction implementations, we introduce a model-theoretic notion of refinement of
interactions.

The remainder of this paper is structured as follows: In Sect. 2 we briefly recall the
notion of pomsets and traces. The fragment of the interaction language of UML 2.0
considered here is introduced in Sect. 3, together with its abstract syntax. In Sect. 4
the language of interactions is equipped with a trace-based formal semantics, which in-
cludes both valid and invalid traces. In Sect. 5 the reduction of the semantics of negation
to the semantics of valid traces is studied. The semantics is used in Sect. 6 to define the
concepts of implementation and refinement of interactions. In Sect. 7 we analyse impli-
cations of the introduced notions with respect to related work. We conclude in Sect. 8
with an outlook to future research.

2 Preliminaries

We briefly review the basic definitions on partially ordered, labelled multisets as intro-
duced by Pratt [7] for modelling concurrency. In particular, we define sequential and
parallel composition operators and the notion of traces and processes.



A partially ordered, labelled multiset, orpomset, is the isomorphism class[(X,≤X ,
λX)] of a labelled partial order(X,≤X , λX) w.r.t. monotone, label-preserving maps.
A trace is a pomset whose ordering is total. We writelin(p) for all possible linearisa-
tions of a pomsetp, i.e., all traces that extend the ordering ofp: [(X ′,≤X′ , λX′)] ∈
lin([(X,≤X , λX)]) if, and only if X ′ = X, λX′ = λX , and≤X ⊆ ≤X′ where
x1 ≤X′ x2 or x2 ≤X′ x1 for all x1, x2 ∈ X ′.

Theemptypomset, represented by(∅, ∅, ∅), is denoted byε. Letp = [(X,≤X , λX)]
andq = [(Y,≤Y , λY )] be pomsets such thatX ∩ Y = ∅. Theconcurrenceof p andq,
written asp‖q, is given by[(X∪Y,≤X∪≤Y , λX∪λY )]. Theconcatenationof p andq,
written asp ;q, is given by[(X∪Y, (≤X ∪≤Y ∪(X×Y ))∗, λX ∪λY )]. Given a binary,
symmetric relation<> on labels, the<>-concatenationof p andq, written asp ;<> q, is
given by[(X∪Y, (≤X∪≤Y ∪{(x, y) ∈ X×Y | λX(x) <> λY (y)})∗, λX∪λY )]. Note
that concatenation and<>-concatenation are associative, and concurrence is associative
and commutative.

A processis a set of pomsets. Ann-ary functionf on pomsets is lifted to processes
P1, . . . , Pn by definingf(P1, . . . , Pn) = {f(p1, . . . , pn) | p1 ∈ P1, . . . , pn ∈ Pn}.

3 UML 2.0 Interactions

UML 2.0 interactions describe message exchanges between instances. Consider the
sample basic interaction in Fig. 1(a) which specifies two instancesx andy which ex-
change the messagesa andb. The dispatch of a message (depicted by the arrow tail)
and the arrival of a message (arrow head) on the lifeline of an instance (dashed line)
are called event occurrences. The pictorial representation of a basic interaction carries
the intuitive meaning of a partial order of event occurrences: The dispatch of a message
occurs before the arrival of the same message; and the event occurrences on the lifeline
of an instance are ordered from top to bottom. Thus, the interaction in Fig. 1(a) defines
a single valid trace in which the following event occurrences appear in this order:a is
sent fromx to y; a is received byy from x; b is sent fromy to x; b is received byx
from y. In particular, all other traces are inconclusive for this interaction. On the other
hand, the interaction in Fig. 1(b) defines both negative and positive traces. The trace of
first sending and receivinga and then sending and receivingb is negative, whereas the
trace just consisting of sending and receivinga is positive. Again, all other traces are
inconclusive, as the interaction provides no verdicts on these traces.
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(a) Basic interaction diagram
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(b) Interaction diagram with negation

Fig. 1.Sample interactions



More generally, a UML 2.0 basic interaction consists of event occurrences and a
general ordering relation which induces an arbitrary partial order on the set of event oc-
currences, subject to the following constraints: The dispatch of a message occurs before
the arrival of the message; and all event occurrences for the same lifeline are totally or-
dered. Moreover, UML 2.0 puts a number of interaction-building operators at disposal.
In sequential composition, the behaviour of the resulting interaction is the behaviour
of the first given interaction followed by the behaviour of the second given interaction.
There are two kinds of sequential composition which differ in the meaning of the word
“followed”. Strict composition requires the behaviour of the first interaction to be com-
pletely performed before starting with the behaviour of the second interaction. Weak
composition only requires the behaviour specified for an instance in the first interaction
to be completely performed before starting with the behaviour for that instance in the
second interaction. Other operators are parallel composition, disjunction, loop, ignore,
assert, and negation. Two parallel interactions are to be executed simultaneously. Dis-
junction means to execute any one of two given interactions. Loop repeatedly executes
its interaction argument, as long as given by two additional natural numbersm andn
passed as parameter: at leastm and at mostn times, wheren can also be∞meaning an
arbitrary number of times. Ignore allows additional messages to occur besides the ones
specified in its interaction argument. Finally, assertion discards inconclusive traces, and
negation prohibits the behaviour specified by its argument.

We define the abstract syntax of the fragment of the language of UML 2.0 inter-
actions introduced above, by first characterising basic interactions as pomsets and then
capturing the interaction operators by a context-free grammar. We assume two primitive
domains forinstancesI andmessagesM. An evente is either of the formsnd(s, r,m)
or of the formrcv(s, r,m), representing the dispatch and the arrival of messagem from
senderinstances to receiverinstancer, respectively. The set of events is denoted byE.
We say that the instances is activefor snd(s, r,m) and, similarly, that the instancer is
active for rcv(s, r, m). We define a binary, symmetricconflict relation<> on events: If
an instance is active for both eventse ande′ thene <> e′.

A basic interaction is given by an event-labelled pomset[(E,≤E , λE)] such that
conflicting events do not occur concurrently, i.e., ife1, e2 ∈ E with λE(e1) <> λE(e2),
thene1 ≤E e2 or e2 ≤E e1.

Interaction ::= Basic
| CombinedFragment

CombinedFragment::= strict(Interaction, Interaction)
| seq(Interaction, Interaction)
| par(Interaction, Interaction)
| loop(Nat, (Nat | ∞), Interaction)
| ignore(Messages, Interaction)
| alt(Interaction, Interaction)
| neg(Interaction)
| assert(Interaction)

Table 1.Abstract syntax of interactions (fragment)



The abstract syntax of interactions is given by the grammar in Tab. 1. Therein,Basic
ranges over the basic interactions,Nat ranges over the natural numbers, andMessages
over the subsets ofM.

From the notion of basic interactions and the interaction operators in Tab. 1 a num-
ber of auxiliary interaction operators can be derived. We use the nameskip for the
empty (basic) interaction, which is given by the pomset[(∅, ∅, ∅)]. The operatoropt(−)
is defined byopt(S) = alt(skip, S), the operatorconsider(−,−) by consider(M , S) =
ignore(M \ M , S). In fact, the UML 2.0 specification defines several other interaction
operators, in particularbreak andcritical; these operators, as well as message parameters
and conditions, are not considered in this work.

4 Semantics

We define a classical satisfaction relation between traces and interactions that do not
contain occurrences of the operator for negation. We afterwards extend this definition
for negation, and complement it with a negative satisfaction relation. After presenting
some notorious examples, we show some properties of the notions introduced so far.

4.1 Semantic Domains

The domainP comprises all pomsets[(E,≤E , λE)] labelled with events fromE
such that ife1, e2 ∈ E with λE(e1) <> λE(e2), then e1 ≤E e2 or e2 ≤E e1.
The subdomainT of P comprises all pomsets inP that are traces. In particular, the
empty pomsetε is in T. When representing a finite pomset inP we will also use a
more concrete, set-based notation like writing{snd(s, r,m) ≤ rcv(s, r, m)} instead of
[({e1, e2}, {(e1, e1), (e1, e2), (e2, e2)}, {e1 7→ snd(s, r, m), e2 7→ rcv(s, r,m)})]. Sim-
ilarly, for the representation of finite traces inT, as in the example above, we also
employ the more succinct notationsnd(s, r,m) · rcv(s, r,m).

On pomsets inP, the filtering relationfilter(M) : P → ℘P removes some el-
ements ofp whose labels show a message inM . More precisely, we first define
filter(M) on event-labelled sets: LetE be a set andλ : E → E a labelling func-
tion; thenE′ ∈ filter(M)(E, λ) if E′ ⊆ E and, if e ∈ E \ E′, then (λ(e) =
snd(s, r, m) ∨ λ(e) = rcv(s, r, m)) ∧ m ∈ M . For an event-labelled partial or-
der (E,≤E , λE) we set(E′,≤E ∩ (E′ × E′), λE�E′) ∈ filter(M)(E,≤E , λE) if
E′ ∈ filter(M)(E, λE). Finally, we extend these definitions to event-labelled pom-
sets by setting[(E′,≤E′ , λE′)] ∈ filter(M)([(E,≤E , λE)]) if (E′,≤E′ , λE′) ∈
filter(M)(E,≤E , λE), which is obviously well-defined. Note thatfilter(M) restricted
to traces delivers traces, i.e.,filter(M) is also a relationfilter(M) : T → ℘T.

4.2 The Positive Fragment

Let us begin considering interactions with no occurrence of negation or assertion, which
we call thepositive fragmentof the language. The positive satisfaction relation between
traces and interactions, denoted byt |=p S and readt positively satisfiesS, wheret
is a trace andS an interaction of the positive fragment, is inductively defined on the



t |=p B if t ∈ lin(B)

t |=p strict(S1, S2) if ∃t1, t2 . t = t1 ; t2 ∧ t1 |=p S1 ∧ t2 |=p S2

t |=p seq(S1, S2) if ∃t1, t2 . t ∈ lin(t1 ;<> t2) ∧ t1 |=p S1 ∧ t2 |=p S2

t |=p par(S1, S2) if ∃t1, t2 . t ∈ lin(t1 ‖ t2) ∧ t1 |=p S1 ∧ t2 |=p S2

t |=p loop(0, 0, S) if t = ε

t |=p loop(0, n + 1, S) if t = ε ∨ t |=p seq(S, loop(0, n, S))

t |=p loop(m + 1, n + 1, S) if t |=p seq(S, loop(m, n, S))

t |=p loop(m,∞, S) if ∃n ≥ m . t |=p loop(m, n, S)

t |=p ignore(M , S) if ∃t1 . t1 ∈ filter(M)(t) ∧ t1 |=p S

t |=p alt(S1, S2) if t |=p S1 ∨ t |=p S2

(a) Semantics of the positive fragment

t |=p neg(S) if t = ε

t |=p assert(S) if t |=p S

t |=n strict(S1, S2) if ∃t1, t2 . t = t1 ; t2 ∧ (t1 |=n S1 ∨ (t1 |=p S1 ∧ t2 |=n S2))

t |=n seq(S1, S2) if ∃t1, t2 . t ∈ lin(t1 ;<> t2) ∧ (t1 |=n S1 ∨ (t1 |=p S1 ∧ t2 |=n S2))

t |=n par(S1, S2) if ∃t1, t2 . t ∈ lin(t1 ‖ t2) ∧ ((t1 |=n S1 ∧ t2 |=n S2) ∨
(t1 |=n S1 ∧ t2 |=p S2) ∨ (t1 |=p S1 ∧ t2 |=n S2))

t |=n loop(0, n + 1, S) if t |=n seq(S, loop(0, n, S))

t |=n loop(m + 1, n + 1, S) if t |=n seq(S, loop(m, n, S))

t |=n loop(m,∞, S) if ∃n ≥ m . t |=n loop(m, n, S)

t |=n ignore(M , S) if ∃t1 . t1 ∈ filter(M)(t) ∧ t1 |=n S

t |=n alt(S1, S2) if t |=n S1 ∧ t |=n S2

t |=n neg(S) if t 6= ε ∧ t |=p S

t |=n assert(S) if t 6|=p S

(b) Extended semantics for negation

Table 2.Semantics of interactions

structure ofS as shown in Tab. 2(a). Therein,B ranges over basic interactions. This
semantics is a reformulation of Störrle’s definition [9] using pomsets.

In particular, the only trace positively satisfying the emtpy interactionskip is the
empty pomset. A basic interactionB = {snd(s, r,m) ≤ rcv(s, r,m)} is positively
satisfied solely by the tracetB = snd(s, r,m) · rcv(s, r,m).

4.3 Negation

The semantics of a negated interactionneg(S) is classically defined by making positive
for neg(S) all those traces that are not positive forS and making negative forneg(S) all
those traces that are positive forS. Such a definition, however, rules out inconclusive



traces. In general, thus, we need to distinguishpositive, negative, andinconclusiveruns
for an interaction. We writet |=n S if t negativelysatisfiesS. The inductive definition
of |=p is extended and the relation|=n is inductively defined on the structure ofS as
shown in Tab. 2(b).

In particular, we define|=n for all combined interaction fragments and, in accor-
dance with Haugen and Stølen [3], we regard the empty trace as being positive for
neg(S). For the combined fragmentsstrict(−,−) andseq(−,−) we adopt the view that
only those traces are negative that either run through the first operand negatively or fulfil
the first operand positively but the second operand negatively. A similar stance is taken
towardspar(−,−) where either both operands have to be run through negatively or one
of the operands negatively the other one positively in order to make a run negative. In
alt(−,−) both operands have to be run through negatively. Our semantics for assertion
is the “assertion as affirmation” interpretation of Störrle [8].

Störrle [8] considers three different interpretations ofneg(S). All of them coincide
in declaring negative forneg(S) all those traces that are positive forS. For the positive
traces ofneg(S), interpretation (1), called “not the [valid] traces ofS”, assigns no pos-
itive traces toneg(S); interpretation (2), called “anything but the [valid] traces ofS”,
makes all traces that are not positive forS the positive traces ofneg(S); interpretation
(3) declares the negative traces ofS to be the positive traces forneg(S). Employing
the interpretations (1) or (3), the usage of negation inside combined fragments leads to
the undesirable consequence that the overall interaction shows no positive traces at all.
Interpretation (2) excludes the possibility of inconclusive traces forneg(S).

4.4 Examples

Let Bi be the basic interactions{snd(si, ri,mi) ≤ rcv(si, ri,mi)} (i = 1, 2, 3), where
all mi are different, and letti be the tracessnd(si, ri,mi) · rcv(si, ri,mi) (i = 1, 2, 3).
We then have that

– t1 |=p strict(B1, neg(B2))
– t1; t2 |=n strict(B1, neg(B2))
– t1; t2 |=n strict(B1, strict(neg(B2), B3))
– t1; t3 |=p strict(B1, strict(neg(B2), B3))
– t1; t2; t3 |=n strict(B1, strict(neg(B2), B3))
– t2 |=p par(neg(B2), B2) and
– t2 6|=n par(neg(B2), B2).

A more interesting case is given by the following two facts:

– t2 |=p strict(neg(B2), B2) and
– t2 |=n strict(neg(B2), B2).

Thus,t2 is simultaneously positive and negative forstrict(neg(B2), B2). We therefore
call strict(neg(B2), B2) an overspecified interaction.

Definition 1. An interactionS is overspecifiedif there exists a tracet with t |=p S and
t |=n S.

For the sameB2, a further overspecified interaction ispar(assert(B2), neg(B2)). The
tracet2 satisfies this interaction both positively and negatively.



4.5 Properties

It is easy to check that both forms of sequential composition are associative, and that
parallel and alternative composition are associative and commutative.

Lemma 1. LetS1, S2, andS3 be interactions, andt be a trace.

1. t |=p strict(S1, strict(S2, S3)) iff t |=p strict(strict(S1, S2), S3)
2. t |=p seq(S1, seq(S2, S3)) iff t |=p seq(seq(S1, S2), S3)
3. t |=p par(S1, par(S2, S3)) iff t |=p par(par(S1, S2), S3)
4. t |=p par(S1, S2) iff t |=p par(S2, S1)
5. t |=p alt(S1, alt(S2, S3)) iff t |=p alt(alt(S1, S2), S3)
6. t |=p alt(S1, S2) iff t |=p alt(S2, S1)

Furthermore, all these propositions also hold when replacing|=p by |=n.

By abuse of notation we thus abbreviate e.g.strict(S1, strict(S2, strict(. . . , Sn))) to
strict(S1, S2, . . . , Sn) andalt(S1, alt(S2, alt( . . . , Sn))) to alt(S1, S2, . . . , Sn).

Basic interactions are not negatively satisfiable.

Lemma 2. t 6|=n B for any basic interactionB and any tracet.

The satisfaction relations|=p and|=n as defined in Sects. 4.2 and 4.3 are not con-
clusive, that is, there exist inconclusive traces.

Lemma 3. There exist a tracet and an interactionS with t 6|=p S andt 6|=n S.

Proof. Take forS the basic interactionB = {snd(s, r, m) ≤ rcv(s, r,m)} and fort the
tracercv(s, r,m) · snd(s, r,m).

The operatorassert(−) discards inconclusive traces of its operand, that is, it estab-
lishes the link between the semantics of interactions and classical two-valued logic.

Lemma 4. Let S be an interaction andt be a trace. Thent |=p assert(S) or t |=n

assert(S).

On the syntactic structure of interactions we define a well-founded ordering, which
can be used to demonstrate further properties of interactions by induction.

Definition 2. We define a partial order on interaction terms as the reflexive and transi-
tive closure of the following binary relation:

skip ≤ S S ≤ neg(S)
S1 ≤ strict(S1, S2) S2 ≤ strict(S1, S2)
S1 ≤ seq(S1, S2) S2 ≤ seq(S1, S2)
S1 ≤ par(S1, S2) S2 ≤ par(S1, S2)
S1 ≤ alt(S1, S2) S2 ≤ alt(S1, S2)
S ≤ ignore(M , S) S ≤ assert(S)

seq(S, loop(m, n, S)) ≤ loop(m, n + 1, S) loop(m, n, S) ≤ loop(m,∞, S)

whereS, S1, andS2 are arbitrary interactions, andm andn natural numbers.

Lemma 5. The above defined ordering≤ on interactions is well founded, i.e., there
exists no infinite descending chainS1 ≥ S2 ≥ · · · ≥ Sn ≥ · · · .



5 Negation Revisited

The non-classical interpretation of negation is difficult to deal with. Above all, the need
for two satisfaction relations, one positive and one negative, makes it hard to decide
what kind of trace is a given one for an interaction, i.e., if the trace is positive, inconclu-
sive, or negative for the interaction. When reconsidering the semantics introduced in the
previous section, we firstly discover that negation is unnecessary for testing positive sat-
isfaction. Secondly, when handling negative satisfaction, negation is of course needed,
but it can be replaced by a classical version. We introduce therefore the language of
interactions in the classical senseas opposed to the language of UML 2.0 interactions
considered so far.

We begin by reinvestigating the interplay between negation and positive satisfaction.
Observe that a negative interaction can only be positively satisfied by the empty process,
the same asskip. It therefore seems natural, when it comes to check positive satisfaction,
to replace any negative subinteraction byskip.

Definition 3. The functionσ from interactions to interactions of the positive fragment
is given by induction on the syntactic structure of its argument as follows:

σ(B) = B

σ(strict(S1, S2)) = strict(σ(S1), σ(S2))
σ(seq(S1, S2)) = seq(σ(S1), σ(S2))
σ(par(S1, S2)) = par(σ(S1), σ(S2))

σ(loop(m, n, S)) = loop(m, n, σ(S))
σ(ignore(M , S)) = ignore(M , σ(S))

σ(alt(S1, S2)) = alt(σ(S1), σ(S2))
σ(neg(S)) = skip

σ(assert(S)) = σ(S)

whereB ranges over basic interactions,S, S1, andS2 over interactions,M over sets
of messages,m over the natural numbers, andn over the natural numbers or∞.

Lemma 6. LetS be an interaction andt be a trace. Then,t |=p S iff t |=p σ(S).

This means that the positive fragment of the language and the positive satisfaction
relation defined for it as given in Sect. 4.2 and in Tab. 2(a) are sufficient for testing
positive satisfaction of arbitrary interactions.

Now we turn our attention to negative satisfaction. The question is if something
similar cannot be done for it as well. More precisely, it would be advantageous to get
rid of the negative satisfaction relation by defining it in terms of the positive one. This
is obviously true for a sublanguage, namely for sequences of interactions involving a
negated subinteraction.

Lemma 7. Let S = strict(S1, neg(S′), S2) be an interaction withS1, S′, andS2 from
the positive fragment andt be a trace. Then,t |=n S iff there exists a prefixt′ of t such
that t′ |=p strict(S1, S′).



This result, however, cannot be generalised to the full language of interactions: a
binary logic without negation is not enough. A binary logic with classical negation,
on the contrary, does suffice. We add an operatornot(−) to the positive fragment of
UML 2.0 interactions, which gives rise to the so-called interactions in classical sense.
This new unary operator is provided with the classical semantics of negation. We define
a transformation from UML 2.0 interactions to interactions in the classical sense, and
show that the positive satisfaction of the resulting interaction is equivalent to negative
satisfaction of the given one.

Definition 4. The syntax ofinteractions in the classical senseis given by the syn-
tax in Tab. 1 whereneg(−) and assert(−) are removed andnot(−) is added to
CombinedFragment.

The positive semantics of interactions in the classical sense is given by the semantics
for the positive fragment of UML 2.0 interactions in Tab. 2(a) and

t |=p not(S) if t 6|=p S

We furthermore use the following abbreviations:

Any = ignore(M, skip)

None = not(Any)

and(S1, S2) = not(alt(not(S1), not(S2)))

Definition 5. The functionν from UML 2.0 interactions to interactions in the classical
sense is given by induction on the syntactic structure of its argument as follows:

ν(B) = None

ν(strict(S1, S2)) = alt(strict(ν(S1), Any), strict(σ(S1), ν(S2)))
ν(seq(S1, S2)) = alt(seq(ν(S1), Any), seq(σ(S1), ν(S2)))
ν(par(S1, S2)) = alt(par(ν(S1), ν(S2)), par(ν(S1), σ(S2)), par(σ(S1), ν(S2)))

ν(loop(m, n, S)) = and(loop(m, n, ν(S)), not(skip))

ν(ignore(M , S)) = ignore(M , ν(S))
ν(alt(S1, S2)) = and(ν(S1), ν(S2))

ν(neg(S)) = and(σ(S), not(skip))

ν(assert(S)) = not(σ(S))

whereB ranges over basic interactions,S, S1, andS2 over interactions,M over sets
of messages,m over the natural numbers, andn over the natural numbers or∞.

Lemma 8. LetS be a UML 2.0 interaction andt be trace. Thent |=n S iff t |=p ν(S).

Proof. By induction on the partial ordering≤ on UML 2.0 interactions.

Summarising, a closer look at negation leads to the following two results:

t |=p S if t |=p σ(S)
t |=n S if t |=p ν(S)



whereS is an arbitrary UML 2.0 interaction,σ(S) is an interaction of the positive frag-
ment of the language of UML 2.0 interactions obtained in terms ofS, andν(S) is an
interaction in the classical sense in terms ofS. Notice that the positive fragment of the
language of UML 2.0 interactions is also the positive fragment of the language of inter-
actions in classical sense. More importantly, by means of these two transformations,σ
andν, we do not need to test negative satisfaction. This observation may be useful for
checking overspecification, but we defer a closer investigation to future work.

6 Implementation and Refinement

Having a formal semantics for interactions, further concepts can be defined in terms
of it. We introduce the notions of implementation of an interaction by a process, of
equivalence of interactions, and of refinement of an interaction by another one. These
notions show a number of useful properties, and are intended for formal verification.

Definition 6. A processI is an implementationof an interactionS, writtenI |= S, if

1. there existst ∈ lin(I) with t |=p S, and
2. t 6|=n S for everyt ∈ lin(I).

An interactionS is implementableif there is a processI such thatI |= S; it is contra-
dictory if it is not implementable.

The following lemma ensures that any interaction admits positive traces and thus
that the first condition of the implementation relation is always satisfiable.

Lemma 9. For every interactionS there exists a tracet with t |=p S.

Proof. By induction on the partial ordering≤ and the fact thatε |=p neg(S).

This lemma, however, does not imply that any interaction is implementable.
Indeed, having a positive trace is not enough, since this very trace may also be
negative for the same interaction. Take for instance the overspecified interaction
strict(neg(B2), B2) of Sect. 4.4: its only positive tracet2 is at the same time nega-
tive. Nonetheless, an overspecified interaction may be implementable, that is, overspec-
ified interactions are not necessarily contradictory. Take for instance the interaction
S = alt(seq(neg(B2), B1), seq(neg(B2), B2)) with B1 andB2 as in Sect. 4.4. The trace
t2 is both positive and negative forS, i.e., botht2 |=p S andt2 |=n S, whereas the
tracet1 is only positive forS, i.e.,t1 |=p S andt1 6|=n S. Thus{t1} |= S.

Moreover, note that a combination of interactions, each equipped with its own im-
plementation, not necessarily is implemented by the same combination of the corre-
sponding implementations. Take for instanceS1 = neg(B1), S2 = neg(B2), I1 =
{t2, ε}, andI2 = {t1, ε}, with Bi andti as defined in Sect. 4.4 (i = 1, 2). It is easy to
check that, whileIi |= Si (i = 1, 2), it is not true thatI1 ‖ I2 |= par(S1, S2).

A notion of implementation allows the definition of an equivalence relation.

Definition 7. Two interactionsS1 andS2 are equivalent, denoted byS1 ≡ S2, when-
everI |= S1 iff I |= S2 for any processI.



Furthermore, the implementation relation gives rise to a model-theoretic notion of
refinement.

Definition 8. An interactionS′ refinesan interactionS, writtenS ; S′, if any imple-
mentation ofS′ is also an implementation ofS, i.e., if I |= S′ impliesI |= S for any
implementationI.

Lemma 10. Refinement is a partial order w.r.t. the equivalence on interactions, i.e.,
refinement is reflexive, transitive, and antisymmetric w.r.t.≡.

An example of an interaction refinement is provided by the removal of disjunctions.

Lemma 11. alt(S1, S2) ; Si for i = 1, 2.

Proof. Let I |= S1. On the one hand, there existst ∈ lin(I) with t |=p S1 and thus
t |=p alt(S1, S2). On the other hand,t 6|=n S1 and hencet 6|=n alt(S1, S2) for all t ∈
lin(I). The caseI |= S2 is treated analogously.

Let us now investigate the properties of the refinement relation. As the following
lemma shows, in refinement the set of genuine positive traces cannot be enlarged, neg-
ative traces remain negative, and at least one positive trace is kept.

Lemma 12. LetS andS′ be interaction withS ; S′.

1. For all tracest, if t 6|=p S or t |=n S, thent 6|=p S′ or t |=n S′.
2. If S′ is implementable, then for all tracest, t |=n S impliest |=n S′.
3. If S′ is implementable, then there is a tracet such thatt |=p S andt |=p S′.

Proof. For claim (1), supposet |=p S′ andt 6|=n S′. Then{t} |= S′, and also{t} |= S
sinceS ; S′. Thust |=p S andt 6|=n S which contradictst 6|=p S or t |=n S.

For claim (2), supposet 6|=n S′ and letI be any process such thatI |= S′. Then
alsoI ∪ {t} |= S′, and thusI ∪ {t} |= S becauseS ; S′, which contradictst |=n S.

For claim (3), assume thatt 6|=p S for all t |=p S′. SinceS′ is implementable, there
is a trace such thatt |=p S′ but t 6|=n S′. Then{t} |= S′, but{t} 6|= S.

An inconclusive trace can indeed become negative. Recall for instance the interac-
tion B2 and the tracet2 from Sect. 4.4: tracet2 is inconclusive forskip and negative
for neg(B2), whereskip ; neg(B2). On the other hand, a positive trace may become
inconclusive, as witnessed by Lemma 11.

A desirable property of refinement is that the operators be monotonic with respect
to it. For instance, for a proof of monotonicity of disjunction w.r.t. refinement, we need
to show that a process implementingalt(S′

1, S2) also implementsalt(S1, S2) if S1 ; S′
1.

Unfortunately this is not true. Consider the following constellation:

S1 = B1 S′
1 = alt(seq(neg(B2), B1), seq(neg(B2), B2))

S2 = B3 t = t2

whereB1, B2, B3, and t2 are the interactions resp. trace of Sect. 4.4; in particular,
S1 ; S′

1. We have then the following facts:

t |=p S′
1 andt |=n S′

1 t 6|=p S1

t 6|=p S2 andt 6|=n S2



S1 ;p S′
1

strict(S1, S2) ;p strict(S′
1, S2)

S2 ; S′
2

strict(S1, S2) ; strict(S1, S′
2)

S1 ;p S′
1

seq(S1, S2) ;p seq(S′
1, S2)

S2 ; S′
2

seq(S1, S2) ; seq(S1, S′
2)

S1 ;p S′
1

par(S1, S2) ;p par(S′
1, S2)

S1 ; S′
1

alt(S1, S2) ; alt(S′
1, S2)

S ; S′

neg(S′) ; neg(S)

S ; S′

assert(S) ; assert(S′)

Table 3.Compositional refinements of interactions

that is,{t} |= alt(S′
1, S2) and{t} 6|= alt(S1, S2), i.e.,alt(S1, S2) 6; alt(S′

1, S2).
When restricting ourselves to refinements by non-overspecified interactions, dis-

junction indeed is monotonic w.r.t. refinement.

Lemma 13. Let S1, S′
1, andS2 be interactions and letS′

1 be implementable and not
overspecified. IfS1 ; S′

1, thenalt(S1, S2) ; alt(S′
1, S2).

Proof. Let I be a process such thatI |= alt(S′
1, S2). Let t ∈ lin(I) be a trace ofI. Then

t 6|=n alt(S′
1, S2). In particular,t 6|=n S′

1 or t 6|=n S2 and thus, by Lemma 12(2),t 6|=n S1

or t 6|=n S2, that is,t 6|=n alt(S1, S2).
Moreover, there is at ∈ lin(I) with t |=p alt(S′

1, S2), i.e., t |=p S′
1 or t |=p S2. If

t |=p S2 thent |=p alt(S1, S2). If t |=p S′
1 thent 6|=n S′

1, asS′
1 is not overspecified, and

thust |=p S1 by Lemma 12(1); hence againt |=p alt(S1, S2).

However, for proving the monotonicity of the sequential operators in the first ar-
gument w.r.t. refinement, the restriction to refinements by non-overspecified interac-
tions is not enough. In fact, in demonstrating thatS1 ; S′

1 implies strict(S1, S2) ;

strict(S′
1, S2), we have to assume that all positive traces ofS1 are still positive inS′

1: If
a positive trace ofS1 becomes inconclusive inS′

1, there may be more negative traces in
strict(S1, S2) than instrict(S′

1, S2). We therefore introduce a restricted refinement rela-
tion ;p that keeps all positive traces.

Definition 9. An interactionS′ positively refinesan interactionS, writtenS ;p S′, if
S′ refinesS and for all tracest it holds: if t |=p S thent |=p S′.

Some results on the monotonicity of interaction operators w.r.t. the refinement rela-
tions; and;p are summarised in Tab. 3, whereS, S1, S2, S′, S′

1, andS′
2 are inter-

actions andS′, S′
1 andS′

2 are implementable and not overspecified. A more complete
calculus for interaction refinement is subject of future study.

7 Discussion

Lemma 7 concludes that, for a given interaction, any trace is negative if it completely
traverses a negative region, independently of the steps performed afterwards, if any. The



proposal of Haugen and Stølen [3] states that “[. . . ] any trace that [completely traverses
a negative region] is a negative scenario. Anything may happen [afterwards], it will
never make it positive.” It is not explicitly said that further steps cannot make the trace
inconclusive. If in particular their proposal allows the trace to become inconclusive,
then the semantics of Sect. 4 above is more restrictive.

Indeed, this is not a merely speculation of ours. The example used there is that of a
restaurant, where a customer orders and is served a beef, including an inbetween neg-
ative subinteraction that forbids to burn the meat. Intuitively, hence, if in fact the meat
burns in the oven, the obvious thing to do is to take it from the oven and not to bring
it to the customer’s table. This means that a trace is only negative if, after traversing
the negative region, the next positive region is exhaustively traversed as well. It there-
fore seems that a trace is negative if it traverses all positive regions plus at least one
negative region. A big disadvantage of this interpretation is that a semantic definition
for it cannot be compositional. Compositionality is not just a comfortable mathematical
property, it allows for instance an on-the-fly recognition of a negative trace (or to warn
a running system from generating a negative trace), since decisions are taken locally,
i.e., independently of what happened before or what will happen henceforth.

The semantics of Sect. 4, plainly worded, states that “the trace isbad as soon as it
leaves a negative region, it isgoodif both it is exhaustive (i.e., the interaction does not
specify any event beyond the trace’s last event) and it only traverses positive regions,
and it is inconclusiveotherwise.” The key point here is that a trace, which has com-
pletely traversed a negative region, is definitively negative. We do think that this is a
better choice, and hence put it at the community’s disposal for discussion.

A further deviation from the proposal of Haugen and Stølen [3] is the existence
of overspecified interactions. The cited work states that “the same trace cannot be both
positive and negative.” We dispute the convenience of this requirement. Consider any of
the overspecified interactions shown above, and a trace that is both positive and negative
for the interaction. It is by far not obvious how to rule out one of both possibilities (i.e.,
deciding if the trace is positive or negative) in a non-arbitrary manner, and making this
trace inconclusive is capricious.

Let us finally consider the concepts of supplementing, narrowing and detailing by
Haugen and Stølen [3]. Supplementing means reducing the set of inconclusive traces
by making some of them either positive or negative; in doing so, positive (negative)
traces remain positive (negative). Narrowing means reducing the set of positive traces
by making some of them negative; inconclusive (negative) traces remain inconclusive
(negative). Detailing consists in providing a translation from a more detailed (concrete)
interaction to a given (abstract) interaction; it leaves the sets of positive, negative, and
inconclusive traces unchanged. These notions are colloquially defined using the three
types of traces associated with an interaction; as with our refinement relation, there is
no clue on how to define those in syntactical terms. Our refinement relation is some-
how supplementing and narrowing at the same time; supplementing cannot be defined
in terms of refinement, since supplementing may make positive an inconclusive trace.
The spirit behind all these concepts, however, makes them difficult to compare, since
supplementing and narrowing address design evolution, whereas refinement is a tool for
formal verification.



8 Conclusions and Outlook

The contribution of the present article is twofold. On the one hand, it defines a seman-
tics for UML 2.0 interactions that is both formal and consistent with the standard [6].
This proposal is compared with earlier ones. On the other hand, a formal semantics al-
lows a mathematically precise definition of implementation and of refinement, such that
these relations can be formally proved. These notions show some desirable and some
questionable properties, so that they may be subject to further adjustments. They never-
theless set the ground for lifting UML 2.0 to a formal design technique, a sine qua non
for its use in the development of critical systems.

Some UML 2.0 operators for interactions were disregarded, namelybreak and
critical, and also message parameters, conditions, and time. We plan to extend the se-
mantics above to include these other features of UML 2.0. The semantics for OCL/RT
of [1] can be a good starting point for traces which include time and on which con-
ditions are checkable. A calculus for formal verification is the utmost challenge. This
matter can be addressed once implementation and refinement have reached a stable, i.e.,
broadly accepted, definition.
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