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Abstract

Despite all the benefits of object-oriented user interfaces, there are still domains that call for a form-
based user interface. Business information systems that support fast processing of few, well-defined
use cases are typical examples. This pattern language helps to develop the software architecture for
such systems.

The paper is part of a larger effort to collect patterns for business information systems, currently
pursued by the ARCUS team.1

1 Introduction

1.1 Form-Based and Object-Oriented User Interfaces

When you design user interfaces you have to decide for a basic interaction style. In the recent years
object-oriented user interfaces (OOUI) have become more and more popular [Col95]. These inter-
faces feature sophisticated selection and navigation techniques to select objects and context-sensitive
menus to manipulate them. Figure 1 shows an example of an OOUI.

                                                     

1 This work is sponsored by the German Ministry of Research and Technology under project name ENTSTAND



Figure 1: Example of a news reader with an object-oriented user interface. Beneath the menu bar there are two
subwindows for navigation among object groups and selection of objects. The larger window below
shows the contents of the object. Context sensitive pop-up menus provide actions to manipulate the
selected objects.

An alternative to OOUIs are form-based user interfaces. Instead of context-sensitive menus and ob-
ject navigation they provide a set of forms organized in dialog sequences, which model the work flow
of the user. Have a look at Figure 2 on page 4 for an example of this interaction style.

It is tempting, to confuse the interaction style with the implementation technique of the interface.
Both examples use the elements of a graphical user interface and both have an object-oriented imple-
mentation. However, Figure 1 shows the typical elements to navigate between objects without sug-
gesting any workflow. Figure 2 on the other hand shows no objects but is one particular step in the
workflow.

As the following table shows, you may implement both styles on GUIs. Many 4GL tools generate
FBUIs on a GUI. Alphanumeric terminals and Web-Browsers imply certain restrictions.

Alphanumeric Terminal GUI Web-Browser

Form-based User Interface � � HTML forms

OO User Interface � � only with JAVA or
Active-X



Though most modern user interfaces provide OOUIs, the need for traditional form-based interfaces
persists for several reasons:

• Often, skilled users need to process well-defined use cases as fast as possible. The users know
what data the system needs and have all the data at hand; they need a user interface, which re-
flects their work flow and needs as few key strokes as possible. “Media switching” between
keyboard and mouse slows down their work. For instance, consider a passenger check-in sys-
tem at an airport.

• Untrained or semi-skilled users often need step-by-step assistance while performing their tasks.
For instance, an ATM supports only one or two use cases (getting money and displaying ac-
count information) but should serve customers of all skill-levels. Because FBUIs direct the
workflow, the user does not necessarily need to know the next step to go. However, well-
designed FBUIs provide enough shortcuts to serve skilled users too.

• The system might not have enough resources to support an OOUI. These can  cause significant
load to a database server while retrieving information of which only a small fraction may be
relevant to the user. For instance, you need to evaluate consistency rules to determine the se-
lectable menu items or push buttons, as well as data to fill list boxes and navigation controls.
This may sum up to several times the load you need to process the use case. Therefore, OOUIs
cause more traffic between the client and the server. World-wide distributed applications, such
as reservation systems or WWW servers, often have low-bandwidth connections between cli-
ents and servers. You can use elaborate caching techniques to at least reduce the traffic but that
increases design, implementation, and test effort considerably.

• The existing hardware infrastructure may not support an OOUI. You need a high-resolution
screen and a pointing device to use an OOUI effectively. Yet, many industrial customers still
have thousands of alphanumeric terminals. Replacing the latter with graphical terminals may
sum up to several million dollars in hardware costs alone.

In all these cases it may be a good choice to implement a form-based user interface (FBUI) and to
accept several drawbacks:

• An FBUI is less flexible than an OOUI. Because the user interface determines the work flow,
any unforeseen use case is hard to handle - if it is manageable at all. New use cases often re-
quire changes of the user interface, resulting in changes of the software. Minor flaws in the
analysis often lead to non-optimal support for the users and impede acceptance, because the
system dictates a non-intuitive work-flow. Hence you have to take care during analysis and de-
sign to make the FBUI extensible, which is harder than with an OOUI.

• Working with a complex FBUI is harder to learn. An FBUI usually works with a sequence of
forms you have to fill out to complete a task. The user has to be familiar with the use cases and
the corresponding forms to work with the system. This may imply an increased training effort
if the users are not too familiar with the workflow. On the other hand, it enables the user to
process a known use case quickly.

• FBUIs are not optimal to support strategic decision systems. If users work with the system only
every now and then to analyze data and collect information for strategic decisions, they can
take advantage from the flexibility of an OOUI. Hence, OOUIs are preferable for management
information systems or data warehouse applications.

Of course, you may mix form-based elements into an OOUI and vice versa to tune for the user’s re-
quirements.



This pattern language describes an architecture for the design and implementation of FBUIs.

1.2 Running Example

We will use a running example of a flight reservation system to describe the patterns. The reservation
form depicted in Figure 2 corresponds to the layout of the flight tickets. There are three subdialogs to
find reservations, to have a look at available flights, and to get help. The user can issue three different
domain level actions: She can start a new reservation, change an existing one, or cancel a reservation.
Figure 3 models this behavior as a state event diagram. Note that there are two transitions named
“Find...”: If the user presses the Find... button with a reservation id entered, the system just fills the
current form. If she presses the button without a reservation id, the system opens a new form to find
reservations. We have skipped additional transitions in the subdialogs, as well as general actions, such
as processing help.

Figure 2: Reservation form of a flight reservation system.
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Figure 3: State diagram of the flight reservation dialog. The shaded states represent forms while the unshaded
ellipses represent actions. The reservation form of Figure 2 is the central form with two subdialogs to
find a flight and a reservation respectively.

2 The Pattern Language
The pattern language consists of ten patterns, shown in Figure 4. This paper describes only the shaded
patterns in depth and provides summaries (“pattlets”) for the rest.

Form Based User
Interface

Platform Patterns

Control
Dispatcher

Terminal Session

Form Comparator

Logical Form

Conceptual
Patterns

Dialog Category

General Action
Architectural Patterns

Abstract Event Dialog Automaton

Action Object

Figure 4: The patterns of the Form-Based User Interface language.

The language is contains three parts: Architectural patterns describe classes and subsystems of the
architecture that do not depend on a specific platform. Conceptual patterns describe analysis concepts
that help to organize the architecture. The Platform Patterns encapsulate different hardware and oper-
ating system aspects.



This paper starts with the Form Based User Interface pattern. The three architectural patterns follow
in the order, in which events are processed: Abstract Event, Dialog Automaton, and  Action Object.
Finally, we summarize the other patterns.

����������	

[Den91] describes a 3GL architecture conforming to this language. Several mainframe projects at
sd&m use the architecture, for instance the Thyssen/IAB project [Zeh88] and the TLR project
[Bis96]. They all use Dialog Automaton, Dialog Category, General Actions, Form Comparator,
Control Dispatcher, and Terminal Session.

You find some of the patterns in most user interface frameworks. Microsoft Foundation Classes and
StarView use Abstract Event, Logical Form, and General Action. The DD35 project [KuR96], as well
as the EASY-C project [SaZ96] also use elements of the pattern language. Action Object is a variant
of the Command object of ET++ [Gam92], which is also used in the SIGMAPLAN project [RCo95].
Taskmaster [MNR97] uses Dialog Automaton.

2.1 Form-Based User Interface


������

This pattern describes an architecture for systems using form-based user interfaces. It shows how to
combine the other patterns of this paper.

�������

You are developing a business information system with a form-based user interface.

������

How do you structure the user interface software?

�����

• Technical reuse versus domain level reuse: We distinguish two different approaches to reuse
for our purposes; the technical approach tries to identify technical components, such as con-
tainers or state machines and makes them as generic as possible. This approach offers reusabil-
ity across a large variety of domains. On the other hand it usually does not encourage a design
that identifies recurring domain level components, such as customers or orders. If you design
software for a specific domain area, you may earn more value from reusing domain level com-
ponents. However, you may scale down most technical concepts to subsystems of a component.
Therefore, these two approaches are not necessarily contradictory.

• Supporting additional interfaces: The user interface is only one of several access points to a
large system. Batch interfaces and neighborhood systems may also rely on services of your
system. A user interface architecture should allow isolated changes of the user interface with-
out affecting the other interfaces. Changes at the domain level should propagate consistently to
all interfaces.

                                                     

2 Most known uses of our pattern language are very similar. To save space we collect them here.



• Communication cost versus software distribution cost: This is a particular force for client
server systems. If the server controls the user interface, both user interface control and every
user activity cause network traffic. Shifting control to the client relieves the server from proc-
essing and, therefore, raises additional freedom for user interface design. However, with this
approach, you need a homogenous client landscape and a technique to distribute updated soft-
ware to the clients. With several thousands of clients, this may be a severe challenge.

��������

Use a layered architecture [BMR+96], separating the user interface and the domain kernel. Partition
the user interface into five subsystems according to Figure 5. Control Dispatching and I/O Wrappers
encapsulate the operating system. These two subsystems are specific to the platform you work on.
Event Abstraction, Dialog Control and Domain Kernel Interface represent the logical part of the user
interface. They are independent of any specific implementation platform.

Domain Kernel

Event
Abstraction

Domain Kernel
Interface

I/O Wrapper

Control Dispatching

Dialog Control

Control
Dispatcher

Dialog Session

Dialog Control Dialog Dynamics

Global Actions

Logical Form

Form Comparator

Action

Abstract Event

Technical Event
Analyzer

[queue]

Concrete
Command

Concrete Action

Figure 5: Class design of the form based user interface. Shaded areas indicate generic subsystems, dashed areas
denote subsystems specific to the implementation platform. The Logical Form and Action
classes need to be subclassed according to the application. This class design is one possible instantia-
tion of the pattern language, tailored for mainframe systems. We have skipped minor helper classes,
such as  factories and adapters.

Logically, any user activity arrives at the TechnicalEventAnalyzer. This class generates
AbstractEvents, representing the semantic of the user activity. This event is forwarded to the
DialogControl, which raises the appropriate Action. Finally the LogicalForm provides a plat-
form independent way to access the forms. The ControlDispatcher and the DialogSession
provide session and state information for transaction monitors, according to the Control Dispatcher
and the Terminal Session patterns.



������������

• Technical reuse: The pattern language promotes a technical reuse strategy. It is sensible in a
component based approach only if the components have user interface parts of considerable
complexity. If the dialogs of the system span several components, this architecture makes it is
hard to integrate their dialogs: the design does not follow the object structure of the domain
kernel adequately, but corresponds to the use case structure of the domain, i nstead.

• Other interfaces: Due to the layered architecture, the pattern language separates domain level
issues from user interface issues. This enables you to provide additional interfaces to the same
domain kernel without affecting the user interface code.

• Communication cost and software distribution: The design enables you to optimize the traffic
between the operating system and the user interface control as well as between the subsystems
of the user interface. Therefore, you can place a client server cut anywhere between the sub-
systems. Consequently you can tailor communication traffic to your needs. In particular, the
design works well with mainframe systems and WWW-Servers.

���������������

Abstract Event discusses the event abstraction subsystem. Dialog Automaton, General Action and
Dialog Category form the Dialog Control subsystem. Action Object deals with the domain kernel
interface. Control Dispatcher and Terminal Session discuss control dispatching, Logical Form and
Form Comparator address issues of I/O wrapping.

2.2 Abstract Event


������

Abstract Event presents a way to process events regardless of their physical or igin.

�������

The operating system signals user interactions by means of technical events, such as keystrokes or
menu selections. In general, these technical events do not directly correspond to a single domain spe-
cific task or to a user interface activity. Several technical events may cause the same domain task and
a single technical event may result in several domain tasks.

������

How do you facilitate a flexible mapping between technical events and the corresponding actions?

�����

• Flexibility versus complexity: A mapping mechanism increases flexibility. This pays off during
maintenance if you change the physical appearance of the interface without changing the logi-
cal behavior. It may also avoid code duplication. On the other hand the mapping adds an addi-
tional level of indirection. You have to define and maintain the mapping semantics and you
need additional code to interpret the semantics.

• Call technique of the user interface API: Most user interface APIs have their own mechanism
to transfer technical events to the application program. For instance, Web-Servers or CICS
transaction monitors, call a certain script or program according to the address or the transaction
code the user entered. Windows environments usually supply the main application loop with
messages that describe the technical events. Most user interface frameworks provide mecha-
nisms to distribute these messages.



��������

Define a separate level of abstraction called Abstract Event. A TechnicalEventAnalyzer maps
technical events to AbstractEvents (Figure 6). The reaction of the system depends on these
AbstractEvents rather than on the technical events of the operating system. The
AbstractEvents contain arbitrary parameters. An AbstractEventInterpreter interprets the
events. An AbstractEventQueue buffers prioritized abstract events. Model the queue as a
Singleton [GHJ+94].

analyzeEvent()

TechnicalEvent
Analyzer

id=analyzeEvent(techEvent);
event=new AbstractEvent(id);
event->setParameter(analyzeParams(techEvent));
queue = AbstractEventQueue::Instance();
queue->add(event);

processNextEvent

AbstractEvent
Interpreter

getNextEventadd
AbstractEvent

Queue

AbstractEvent

Figure 6: Structure of an Abstract Event

����������������

You can derive the abstract events for flight reservation from the state event model in Figure 3. The
following table shows the technical events, the corresponding abstract events and the parameters that
come (at least) with every abstract event. Note that the same technical event “Find... button pressed”
leads to two different abstract events, depending on the contents of the reservation id field (second
and third row).

Technical Event Abstract Event Parameter

“New” button pressed New

“Find...” button pressed with reservation id field set Fill reservation id

“Find...” button pressed with reservation id field
empty

Find all data the user has entered

Any of the “Flight...” buttons pressed Flight flight number in the current row

“Abort” button pressed Abort

“Cancel” button pressed Cancel Reservation number

“Submit” button pressed Submit All data the user has entered



������������

• Flexibility: The extra level of abstraction allows arbitrary mappings between the physical ac-
tion the user invokes and the domain level effect. You can handle function keys and other
events easily by changing the TechnicalEventAnalyzer according to the current state of the
interface. Making the TechnicalEventAnalyzer configurable facilitates user definable key
assignments. The sophistication level of the TechnicalEventAnalyzer determines the level
of flexibility you can achieve.

• Complexity: The AbstractEvent and the AbstractEventQueue are simple classes you can
code in a few lines or draw from a  container library. The most complex part is the
TechnicalEventAnalyzer. Its complexity determines the overall complexity of an
AbstractEvent.

• Compatibility to user interface API call technique: If the user interface API does not support
the additional level of indirection this pattern may add significant complexity. Especially many
4GL tools may cause trouble. They couple user actions or transaction codes to program entry
points, such as methods or program modules, respectively. Depending on the flexibility of the
tool, implementing AbstractEvent may just be a matter of convention or it may result in con-
siderable design and implementation effort.

��������������

• Increased flexibility with other sources of abstract events: So far, we have considered the
TechnicalEventAnalyzer as the only source of AbstractEvents. The concept is flexible
enough to allow other sources, too. In particular, the AbstractEventInterpreter may gen-
erate new AbstractEvents. This technique results in a cascade of AbstractEvents in re-
action to a single technical event, providing a powerful approach to structuring the reaction of a
system to user input.

• Several abstract events from one technical event: In mainframe environments you often find
forms containing a list of items. For every item you can specify an action you would like to
perform. Changing the data of the item may result in an update operation; checking a delete
row may result in a delete action. This technique gives the user the chance to issue several use
cases with one submit key, thus reducing the number of transactions. It is straightforward to
extend the TechnicalEventAnalyzer to generate more than one AbstractEvent in reac-
tion to a single technical event.

• Prioritizing Abstract Events: Consider two queued AbstractEvents: The first one results in
a new form, which shows order items instead of customers, the second deletes the currently
displayed object. Clearly, the order of these two operations is crucial for the result: If you
change the form first, the order item will be deleted, if you perform the delete operation first,
the customer object is erased. In implementations that support this kind of interaction, you have
to prioritize the AbstractEvents to ensure predictable results. You may put events into the
same priority category that do not interfere with one another.

 ������

Instead of the sketched producer-consumer solution, you may also split the abstraction process into
several levels. For example, in a window system a control may abstract technical events to low-level
abstract events and propagate them to their parent window. The parent - perhaps a complete form or a
part of it - turns this abstract event into another higher-level event and transfers it to the enclosing
window and so on. This is a Chain of Responsibility [GHJ+94, p. 223]. In this scenario, the system
does not interpret the abstract events in one big step, but every part of the user interface interprets an
event on its own level of abstraction. This is a suitable approach if the user interface contains many
different parts that work independently from one another.



���������������

Dialog Automaton is an approach to design the AbstractEventInterpreter. Form Comparator
shows how to analyze technical events on a web server or a mainframe.

2.3 Dialog Automaton


������

Dialog Automaton describes how to implement the dynamic aspects of dialogs3 and the coordination
of a dialog’s forms using a finite state machine.

�������

You have specified the dialogs of your system using a state event model. Every state corresponds to a
form while every event corresponds to an Abstract Event. The resulting state event model is of con-
siderable complexity.

������

How do you implement sequences of forms flexible and maintainable?

�����

• Table-driven versus hard-coded behavior: You have the choice either to define the behavior in
a table, interpreted by general classes, or to write specialized code that directly implements the
behavior. A table-driven solution offers easy maintenance but usually results in complex data
structures that are hard to understand. Hard-coded behavior often is easier to understand but re-
quires recompilation after every change.

• Maintainability: The users often ask for changes that affect mainly the state event model of the
interface. Consider additional shortcuts and navigation possibilities as an example. Note that
this demand is specific to form-based user interfaces, because they are more restrictive with re-
spect to the interaction sequence than carefully designed object-oriented interfaces.

• Extensibility: Adding additional forms is another important aspect of maintainability. It is not
as often as changes to the navigation. Often the extension requirements arise after the system
worked for several years and nobody of the original design team is in duty anymore.

��������

Use a finite state machine to control the sequence of forms and the actions to perform in reaction to a
certain AbstractEvent. An AutomatonDescription table contains the state event model of the
dialog; the DialogAutomaton interprets this table and starts the appropriate actions.

                                                     

3 We use “dialog” denotes a sequence of forms the user may traverse to complete a certain task. Note that this is differ-
ent from a “dialog box” in GUI environments. Their counterpart in this document is a “form”.



getAction (State,
AbstractEvent) : Action

getNextState (State,
AbstractEvent, Result)

Automaton Description

analyzeEvent
(AbstractEvent);

currentState : State

DialogAutomaton

doIt (AbstractEvent) :
Result

ConcreteAction

theAction := myDescription -> getAction
(currentState, theEvent);

theResult := theAction -> doIt (theEvent);
currentState := myDescription ->

getNextState (currentState, theEvent,
theResult);

myDescription

Figure 7: The structure of the Dialog Automaton. The pattern links Abstract Events to Action Objects using a
finite state machine.

����������������

There are six Abstract Events in the preceding flight reservation example: New, Submit, Cancel,
Fill, Find, Flight and Abort. The AutomatonDescription contains the following table to
model the state event diagram:

State Abstract
EventId

ActionId Result NextState

ReservationForm New ActNewReservation ReservationForm

Submit ActChangeReservation ReservationForm

Cancel ActCancelReservation OK end

Error ReservationForm

Fill ActFindReservation ReservationForm

Find ActOpenForm FindReservationFo
rm

Flight ActFindFlight FindFlightForm

Abort ActCloseForm end

FindReservationForm OK ActPopForm ReservationForm

Abort ActCloseForm ReservationForm

FindFlightForm OK ActPopForm ReservationForm

Abort ActCloseForm ReservationForm

Note that the ActCloseForm action replaces the end state of the state event model.
AutomatonDescription extracts the EventId from the Abstract Event it gets. It transfers the
ActionId to a ConcreteAction to initiate the corresponding action. The AbstractEvent also
contains the parameters of the action. The ReservationForm allows two possible states on a
Cancel event, depending on the result of the ActCancelReservation action.



������������

• Table-driven solution: The pattern uses tables to represent the state event model. This enables
you to implement the generic parts by code while a table contains the dialog specific parts. The
solution decreases code size on the expense of introducing constant data. Changes to the state
event model result in changes of the data and need no recompilation. However, you have to
keep the state event table consistent, which is a notable issue with large automata.

• Maintainability and Extensibility: Dialog Automaton supports changes of the dynamic behav-
ior adequately. Integrating additional forms into a dialog results in changes of the table entries
of all states from which the new form is accessible. There are no code changes necessary in ei-
ther case.

• Separation of concerns: The pattern takes a technical approach to separate concerns. The
AutomatonDescription represents dynamic behavior, while other classes represent static
aspects of the user interface. However, you may cluster static and dynamic aspects of a dialog
in one component as long as all the forms of a dialog belong to the same component. If a dialog
spans several components, the automatons of the components have to interact, which may be
difficult to accomplish.

 ������

Instead of implementing the automaton with table, you can apply the State pattern [GHJ+94, p. 305]:
For every form define a subclass of LogicalForm (Figure 5). These subclasses correspond to the
ConcreteStates of the State pattern, while the LogicalForm takes the role of the State partici-
pant. The DialogAutomaton class is the Context of the State.

Note that this approach is not data-driven. Instead, the ConcreteForms “know” their specific transi-
tions. This variant does not separate layout from dynamics. Therefore, it supports independent forms
and thus increases reusability of individual forms. On the other hand, this approach does not support
Dialog Categories and leads to impenetrable code if you have a complex state model. Use it with
form-based user interfaces only if you cannot apply Dialog Categories and the state model is not too
complex.

���������������

The pattern works best if you combine it with Abstract Events and Action Object. You can simplify
the state event table using General Action.

2.4 Action Object


������

Action Object provides a standardized interface to all activities of a user interface. It addresses both
accessing the domain kernel, and performing actions inside the user interface, such as opening and
closing forms.

�������

You are using Abstract Event to decouple technical events from logical events and a
DialogAutomaton to interpret the Abstract Events.

������

How do you provide a uniform way to start actions?



�����

• Decoupling versus number of classes: Different actions require different parameters. It is good
practice to hide these differences from the interpreter of the Abstract Events, thus making the
interpreter generic. On the other hand, the information hiding raises the need for additional
classes.

• Maintenance: User interfaces vary faster than the domain kernel, because most changes of the
domain requirements result in a change of the user interface but not vice versa. Typical changes
ask for additional information presented in a form or additional actions the user can start in a
dialog step.

• Uniform reaction: Actions may raise errors and other spontaneous events, which the user inter-
face needs to process (see [Rnz96, chapter 2.5]). A user interface should provide a uniform re-
action to errors without code duplication.

��������

Build up a hierarchy of Action Objects. Define ConcreteActions for every action an Abstract
Event can cause (Figure 8). The ConcreteAction determines the appropriate parameters, method
calls, and result processing. The common superclass Action defines the abstract protocol of all Ac-
tion Objects.

User
Interface

Domain
Kernel

$createConcreteAction
(ActionId)

setParameter (Anything)
doIt() : Result

Action

setParameter (Anything)
doIt() : Result

ConcreteActionA

setParameter (Anything)
doIt() : Result

ConcreteActionB

doSomething (Parameter)

ActorA

doAnotherThing (Parameter)

ActorB

analyzeEvent ( theEvent:
AbstractEvent)

currentState

AbstractEvent
Interpreter

theActionId = getActionId (currentState, theEvent);
theAction = Action::createConcreteAction

(theActionId);
theAction->setParameter (theEvent->getParameter);
result = theAction->doIt;

actorB := findActor(parameter)
actorB->doAnotherThing(parameter)

actorA := findActor(parameter)
actorA->doSomething(parameter)

Figure 8 The Structure of the Action Object pattern.

����������������

The reservation form of our example leads to the ConcreteActions described in the following ta-
ble. The table also contains the parameters the actions need. Note that the actions either retrieve the
parameters from the AbstractAction object or from global objects, such as the
DialogAutomaton.



Concrete Action Parameter Description

ActOpenForm AbstractEvent Opens a new form according to the
AbstractEventId. If the
AbstractEvent contains any parameters the
action offers the data to the new form.

ActCloseForm --- Closes the current form discarding changes

ActNewReservation --- Calls the domain kernel, which instantiates a
new reservation object returning the reservation
id. Writes the id into the current form

ActChangeReservation all the data the user has en-
tered

Forwards the data to the reservation object of
the domain kernel for an update. In case of
failure, returns an error code

ActCancelReservation Reservation ID Calls the cancel method of the reservation ob-
ject

... ... ...

������������

• Decoupling: The ConcreteActions decouple the action specific code from the control code
of the user interface. They hide differences of the actions behind a uniform class interface.
Thus it is easy to implement a generic subsystem to control the user interface. The Action Ob-
ject hides the specific domain kernel interfaces from the rest of the user interface. This is espe-
cially useful when the AbstractEventInterpreter follows a data driven approach, because
you have only one single abstract method call for all actions. The
AbstractEventInterpreter needs no knowledge about the semantics or even the parame-
ters of the action.

• Number of Classes: Using a separate class for every action may lead to more than hundred
primitive subclasses of Action that have no further structure. In the variants section, we dis-
cuss ways to deal with this drawback on the expense of decoupling.

• Maintenance: Adding a new domain level action means to add another ConcreteAction but
does not affect any other code. Reusing an existing action in another form means only to extend
the AbstractEventInterpreter for that form. An additional field on a form involves a
change of the respective AbstractEvent. If the domain level interface does not support the
corresponding extra parameter, you also have to change the corresponding ConcreteAction.

• Uniform reaction: There is one ConcreteAction for every domain task instead of one call for
every possibility to invoke this task from the user interface. Hence, the pattern enforces a uni-
form reaction to user inputs.

• Action Object and Command: The pattern resembles the Command pattern [GHJ+94, p. 233].
However, in most domain kernels there are separate Command classes that address undo opera-
tions and coordination of control. In these cases the Command objects take the role of the
Actors in Figure 8. You may consider the ConcreteActions the user interface part of a
Command. This separation allows several interfaces to work with the same domain kernel. A
batch interface or a legacy system interface may use the Command objects of the domain kernel
without taking details of the user interface into account.



��������������

• Action Object without polymorphism: If you are using a 3GL, such as COBOL or C, you may
choose from two implementation strategies for the action objects. One approach is to provide a
large case statement with the ActionId as discriminator. You may nest  levels of case state-
ments to structure the actions. Another approach is to use function pointers as ActionId. This
emulates polymorphism and avoids the large case statement. However, an erroneous function
pointer may cause hard-to-detect errors. Both approaches suffer from a maintainability prob-
lem: Every new action enforces recompilation of the complete case statement or of the
AbstractEventInterpreter, respectively. This may cause considerable turnaround times
during system construction.

• Which parameters to pass? The easiest way is to let an AbstractEvent hold exactly the pa-
rameters the ConcreteAction needs. However, this solution forces changes of both parts
when you have to add further fields to the signature of the action. You achieve better maintain-
ability if the AbstractEvents carry all data they can get. The ConcreteActions use the
data they find and apply reasonable defaults to all other parameters. This strategy results in
good decoupling but buries the risk that a ConcreteAction uses erroneous default values.

• Passing parameters: There are three ways to retrieve the parameters for an action. In the solu-
tion section we have already shown the AbstractEventInterpreter passing anonymous
objects using AbstractEvents. Another possibility is to let the ConcreteActions call other
parts of the system to determine their parameters. For instance, the ConcreteAction may call
the LogicalForm to retrieve information. However, be cautious not to mingle the responsi-
bilities of the ConcreteAction with those of the AbstractEvent. In COBOL environments
you also have to avoid recursive calls. A third alternative is to enable the ConcreteActions
to open new forms and to ask the user for information. This way works only if the forms can
return results to the ConcreteActions.

• Finding Actors: To perform the action a ConcreteAction has to know the Actor. There are
several alternatives where to get a reference. The most simple case is to pass a reference as a
parameter. This approach is appropriate, for instance, if the Action Object is part of  a Model-
View-Controller [BMR+96, p. 125]. Another way is to pass a domain level key. To retrieve the
reference the ConcreteAction calls a domain kernel function and passes the key. Finally, the
ConcreteAction may address a root object, which is a globally known Singleton, and then
navigate to the actor. This approach is reasonable to address other parts of the user interface.

• Iterating over several instances: If the user interface allows multiselection in any way, you
have to decide, which subsystem is responsible for iterating over the selection. There are two
alternatives: The ConcreteAction iterates the set and submits several kernel calls, or the do-
main kernel supplies set operations. The former simplifies the domain kernel interface, because
the domain kernel only has to provide single object operations. However, set operations fre-
quently have different constraints and semantics than single object operations. While changing
the data of a single customer is straightforward, a change of several customers may be sensible
only for certain attributes. Transaction oriented systems often bracket the domain level action
with a transaction. Hence, iterating in the ConcreteAction invokes a separate transaction for
every item. Another advantage of domain level set operations is the possibility to offer this
service to other interfaces, too. A batch interface or a legacy system may also need set opera-
tions.

 ������

A common variant is to merge the ConcreteActions and the AbstractEventInterpreter.
Here, the interpreter initiates the appropriate activities using a State pattern [GHJ+94, p. 305]. This



avoids the large number of separate ConcreteActions but causes a closer coupling between the
domain kernel interface and the analyzer.

Another variant is to integrate the actions as methods into the Logical Form. Every Logical Form
provides a set of methods to perform all the actions available on that form. This variant structures the
available actions and avoids a plethora of primitive classes. However, in this approach starting an
action is not a generic task anymore. The AbstractEventInterpreter needs to know the names
of the action methods and needs recompilation for every new action. Though this does not seem to be
very attractive, it is a good solution in a 3GL environment, where you have to tackle the recompila-
tion problem anyway. To avoid duplicate code, identify frequently occurring actions and put them in
a separate module.

���������������

Individual Instance Method [Fow97, p. 106] discusses similar issues on analysis level. You may use
AbstractInterface [Col96] to encapsulate creation of ConcreteActions.

2.5 Further Pattlets

Logical Form

�������

Most operating systems and frameworks offer an easy-to-use interface for controls and form layout.
This interface leaves many options the user code has to specify. The system needs a representation of
only the contents of a form.

������

How do you implement layout control without cluttering the user interface with layout d etails?

��������

Wrap every form with a LogicalForm class. This class is responsible for all layout aspects and other
layout related tasks, such as focus control. It provides a set of methods to set the fields of the mask.
The protocol of the Logical Forms use domain level data types, such as SocialSecurityNumber or
ZipCode instead of technical types, such as integer and string.

General Action

�������

The user interface provides certain actions that are valid in most conditions. Calling for help or
aborting a dialog are two examples. The operating system processes some of these actions but others
are application specific.

������

How do you provide consistent processing of these general actions without duplicating code?

��������

Provide a central component within the Dialog Control that handles requests common to all di alogs.



Control Dispatcher

�������

You are using an environment, such as CICS, which encourages an architecture with a separate ex-
ecutable for every transaction. Having General Actions this approach forces you to implement the
General Actions in every executable.

������

How do you avoid code duplication for processing ?

��������

Provide a single executable, the ControlDispatcher, that the environment of the application calls.
A parameter, such as a transaction id, specifies the request. The ControlDispatcher forwards re-
quests to an analyzer that dispatches the calls to the appropriate transactions or domain level objects.
This analyzer also handles the General Events.

���������������

Consider using Abstract Events and Dialog Automaton to implement the analyzer. Consider Action
Object to access the domain level part.

Usually the analyzer needs information about the state of the dialog to analyze a request.
TerminalSession provides a way to maintain state information even if the environment supports only
stateless protocols.

Terminal Session

�������

The user interface runs on top of a stateless server, such as a transaction monitor or a web server.
Every user session is in a different state, which you have to maintain.

������

How do you handle the state of individual sessions?

��������

Associate a logical Terminal Session with every physical connection of the server. Identify the ses-
sion with either the physical id of the terminal or with a session token, transferred as a hidden field.
Maintain the state information of every terminal session in an area that is persistent over several
transactions.



Form Comparator

�������

You are using Abstract Events. The input device does not notify the interface control of every single
action that a user performs on her terminal. Instead, the server receives the modified form contents
when the user presses the confirmation button.

������

How do you determine the Abstract Events the user has initiated?

��������

Keep a before-image of every form, i.e. its contents prior to user modifications. When the user sub-
mits changes, compare the new form to the before-image to determine which fields have changed.
Create the corresponding Abstract Events. Use a generator or a reflective approach to minimize im-
plementation effort for large systems.

Dialog Category

�������

The dynamic structure (i.e. the states and the possible transitions) of several dialogs is identical. The
dialogs vary only in the data they process or in the screen layout.

������

How do you avoid code duplication when implementing dynamically equivalent dialogs?

��������

Organize the dialogs of your user interface into dynamically equivalent categories. Specify the ac-
tions the user may invoke abstractly. For a concrete dialog supply the following information: the dia-
log category it belongs to, the concrete actions corresponding to the abstract specifications, and the
concrete screen layouts of the participating forms.

Use Dialog Automaton to get a natural implementation of Dialog Categories: Define one table for
every category. The table you instantiate for a certain dialog determines its cat egory.

3 Acknowledgments
This pattern language would not have been possible without the profound know how and experience,
Andreas Hess and Uli Zeh provided. We mined additional information from documents written by Jan
Bis, Thomas Kunst, Martin Reichert, Jordi Romano, Thomas Salzberger, Johannes Siedersleben, and
Markus Zobel. Ernst Denert also provided helpful input.

Klaus Renzel and Günter Palfinger reviewed earlier versions of these patterns. Wolfgang Keller urged
our last rewrite (while eating all of Jens’ chocolate cake) with many valuable suggestions to improve
readability.

Our EuroPLoP shepherd Joe Yoder gave valuable hints to improve the structure of the paper and the
introduction.



4 References
[BMR+96] Frank Buschmann,  Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal:

Pattern-Oriented Software Architecture - A System of Patterns; John Wiley & Sons Ltd.,
Chichester, England, 1996; ISBN 0-471-95869-7

[Bis96] Jan Bis: TLR-WGLV - Entwicklerhandbuch Teil II, Systemkonstruktion; sd&m GmbH &
Co.KG, 1996

[Col95] Dave Collins: Designing Object-Oriented User Interfaces; The Benjamin/Cummings
Publishing Company, Inc., Redwood City, CA, 1995; ISBN 0-8053-5350-X

[Col96] Jens Coldewey: Decoupling of Object-Oriented Systems - A Collection of Patterns; sd&m
GmbH & Co.KG, Munich, 1996; available via http://www.sdm.de/g/arcus/

[Den91] Ernst Denert: Software-Engineering - Methodische Projektabwicklung; Springer-Verlag,
Berlin Heidelberg New York; 1991, ISBN 3-540-53404-0

[Gam92] Erich Gamma: Objektorientierte Software-Entwicklung am Beispiel von ET++: Design-
Muster, Klassenbibliothek, Werkzeuge; Springer-Verlag Berlin Heidelberg New York, 1992;
ISBN 3-540-56006-8

[GHJ+94] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns - Elements
of Reusable Object-Oriented Software; Addison-Wesley Publishing Company, Reading,
Massachusetts, 1994; ISBN 0-201-63361-2

[Fow97] Martin Fowler: Analysis Patterns- Reusable Object Models; Addison-Wesley Publishing
Company, Reading, Massachusetts , 1997; ISBN 0-201-89542-0

[KuR96] Thomas Kunst, Martin Reichert: Architecture - DD35 Sidepanel Software; sd&m GmbH &
Co.KG, Munich, May, 28th 1996

[MNR97] Robert C. Martin, James W. Newkirk, Bhama Rao: Taskmaster: An Architecture Pattern
for GUI Applications; C++ Report, March 1997; SIGS Publications, Inc, New York,NY; ISSN
1040-6042; available via Internet at http://www.oma.com/PDF/taskmast.pdf

[RCo95] Jordi Romano, Jens Coldewey: SIGMAPLAN Gesamtarchitektur - Bedienoberfläche;
Siemens AG, sd&m GmbH & CoKG, Munich, 1995

[Rnz96] Klaus Renzel: Error Handling for Business Information Systems; sd&m GmbH & Co.KG,
Munich, December, 12th 1996; available via WWW at http://www.sdm.de/g/arcus/

[SaZ96] Thomas Salzberger, Markus Zobel: Dialoge - Vorstellung eines Konzepts; sd&m GmbH &
Co.KG, Munich, June, 16th 1996

[Zeh88] Uli Zeh: Grobspezifikation der Basisfunktionen Thyssen/IAB; sd&m GmbH & Co.KG, Munich,
1988


