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Abstract. We present a theorem proving system for abstract relation
algebra called RALL (= Relation-Algebraic Language and Logic), based
on the generic theorem prover Isabelle. On the one hand, the system is
an advanced case study for Isabelle/HOL, and on the other hand, a quite
mature proof assistant for research on the relational calculus. RALL is
able to deal with the full language of heterogeneous relation algebra
including higher-order operators and domain constructions, and checks
the type-correctness of all formulas involved. It offers both an interac-
tive proof facility, with special support for substitutions and estimations,
and an experimental automatic prover. The automatic proof method ex-
ploits an isomorphism between relation-algebraic and predicate-logical
formulas, relying on the classical universal-algebraic concepts of atom
structures and complex algebras.

Keywords: Relation algebra, Isabelle, interactive and automatic theorem
proving, atom structure

1 Introduction

Relational methods have become important to computer scientists since the early
Seventies. Application fields of relational methods include the semantics and
verification of computer programs and communication systems, graph theory,
and database modeling, where they serve as a general means of formalization.
In particular, the logical treatment of relational methods by relation algebra
has received increased attention [24, 12, 28, 25, 1, 3, 7, 9], which moreover has
become evident from meetings on the topic of “Relational Methods in Computer
Science” (RelMiCS) [5, 10].

Usually, in research and in applications of relation algebra the validity of
formulas is investigated and proved by hand. Regarding this procedure, it is most
desirable to have a mechanical theorem prover helping to establish and check the
proofs. This gives a maximum degree of confidence in the obtained results, which
is necessary particularly for safety-critical applications in the fields mentioned
above.



To obtain a theorem proving system for relation algebra, we employ the
generic theorem prover Isabelle [22, 17, 18] as the basis of our development
for two reasons. As Isabelle offers a universal meta logic and very convenient
equipment for defining new object logics and proof tactics, theorem proving
systems can be constructed for arbitrary logics in a relatively small amount of
time. Isabelle also gives rise to some standardization in the field of theorem
provers, so theorem provers based on Isabelle can be easily made available to
any interested research institution.

The resulting theorem proving system, called RALL (= Relation- Algebraic
Language and Logic), provides facilities for both interactive and automatic
theorem proving. It supports the full language of relation algebra including
higher-order operators such as arbitrary joins and meets and quantifications
over relations in higher-order domain constructions such as powersets. The type-
correctness of all formulas is guaranteed also for heterogeneous relation algebras.
The interactive part of RALL is mainly driven by forward and backward chain-
ing, substitutions in order to exploit relational equations, and estimations as
applications of relational inclusions.

RALL also includes a facility for automatic theorem proving. Because relation
algebra is a higher-order logic, an automatic proof method for relation algebra
is not easy to establish. This paper employs a method that is based on the
classical universal-algebraic concept of atom structures and complex algebra [13,
15, 16], generalized to heterogeneous relation algebras. The method performs a
transformation of relation-algebraic formulas into propositions over the universe
of atoms of a relation algebra, as the predicate logic at the level of atoms can be
handled more adequately. A very important distinguishing mark of the presented
method is that it carries further the abstractness of the finitely axiomatized
relation algebra without reference to the logic of binary relations as predicates
with two individual variables.

This paper is organized as follows: In Section 2, we introduce the notion of
a (heterogeneous) relation algebra and review the logical basis of the present
work. Section 3 explains how relation algebra can be implemented as an object
logic of Isabelle. The interactive part of the obtained theorem proving system is
given in Section 4. Section 5 describes the transformation to predicate logic and
its usage for the construction of the automatic proof facility. In Section 6, we
summarize the results of the paper, compare RALL with other related systems,
and discuss additional topics with respect to possibly interesting future work.

2 Relation-Algebraic Preliminaries

This section briefly introduces the relation-algebraic background of our work.

2.1 Relation Algebras

The present work is based on the notion of a heterogeneous abstract relation
algebra that stems from the algebraisation of the calculus of relations, the domain
and codomain of which are (in general) not of isomorphic type.



On the one hand, relation algebras have a set-theoretic character, i.e. the
set of all relations with same type form a Boolean lattice. Therefore, there are
the Boolean algebra operators join, meet, and complement (allowing formulas
like QU (RM—8) for relations Q, R, and S of identical type) with their well-known
properties. Any Boolean lattice can also be seen from an order-theoretic aspect,
with a partial ordering relation C and universal lower and upper bounds 0 and L.
In this work, we consider complete atomic Boolean lattices. A Boolean lattice is
called complete if, for any (possibly infinite) set A, the least upper bound Sup (A)
and greatest lower bound Inf (A) (corresponding to arbitrary joins and meets)
exist. A complete Boolean lattice is called atomic if any element is equal to the
join of all atoms contained in it, where an atom is a non-zero element of a lattice
that cannot be decomposed as join of other non-zero elements. For more details,
see [4, 13].

On the other hand, relation algebras have a monoidal character and there-
fore include the operators for relational composition and transposition with their
monoidal properties Q-(R-S) = (Q-R)-S, I‘R = R = R-I, and R°~ = R (for re-
lations Q, R, S, and identity relation I, of suitable types). The essential relation-
algebraic laws are the Schréder Equivalences (—S-R~ C —Q) = (R C S) =
(@~-—S C —R). A full definition of heterogeneous relation algebras, extending
the classical notion of homogeneous relation algebras [26, 13, 11, 27], can be
found for example in [25, A.2.1].

A fundamental issue concerning relation algebras is the question of repre-
sentability, viz. whether their axiomatization is complete with respect to their
standard set-theoretic model. Lyndon has answered this question negatively for
homogeneous abstract relation algebras [15], and this statement applies also to
the heterogeneous case. The non-representability of relation algebras has the
consequence that, in order to obtain an automated theorem prover for abstract
relation algebra, we cannot simply use predicate logic restricted to binary pred-
icates and the translation of relation-algebraic formulas into it.

2.2 Relational Atom Structures

The automated prover for abstract relation algebra, described in Section 5,
makes use of a correspondence between relation-algebraic formulas and rela-
tional atom structures. This subsection gives deeper insight into the underlying
concepts; it may be skipped for the first reading.

The concepts of complez algebras and atom structures have been investigated
for general Boolean algebras with operators in [13, Section 3] and [11, 2.7.32f.].
We review these concepts for the case of (non-simple) homogeneous relation
algebras, while the extension to the heterogeneous case is straightforward.

As the correspondence theorem (given below) states, any relation algebra
can be alternatively represented as an atom structure with a ternary predicate
corresponding to the composition operator and two functions corresponding to
the identity relations and transposition operator. In the sequel, we write the
prefix “pre-” to clarify the correspondence.



Definition 1 (Relational Atom Structure). A structure 2 = (A4,4,C,T) is
called a (non-simple) relational atom structure iff the following conditions hold:

1. Ais a set;
2. i is a function A — A called trace (yielding a pre-identity);
3. Cis a ternary relation on A4, ie. C C Ax Ax A,
the so-called incidence relation (pre-composition);
4. T is a function A — A called pre-transposition, where T o T' = id 4;
5. the (right) pre-identity rules:

Va € A: {(a,a,i(a)) € C and

Ya,b,c € A: (¢c,a,i(b)) € C = ¢ = a;
6. the pre-associativity rule:

Ya,b,c,d,e € A: (d,a,b) € C' A(e,d,c) € C =
af € A: (e,a, fy € CA{f,b,c) € C;
7. the pre-Schroder rules:

Ya,b,c € A: (¢,a,b) € C = (a,c,T(b)) € C; and
Ya,b,c € A: (c,a,b) € C = (b,T(a),c) € C.

The following correspondence theorem has turned out to be an important
means for setting up an appropriate machine-readable representation of abstract
relation algebras. In particular, [16, 8] treats the investigation and construction
of several abstract models of relation algebra by computer assistance.

Theorem 2 (Correspondence Theorem).

(i) For every homogeneous relation algebra A = (A,U,M1,—,-,"), the structure
At(A) = (At(A),4,C,T) is a (non-simple) relational atom structure, where

o At() denotes the set of the atoms of A;

o foralla e At(A): i(a) := (a-a)NNI; T(a) :=a"; and

o C:={{c,a,b)|a,b,ce At(A) A cCa-b}.

(i) Conversely, associated to every (non-simple) relational atom structure
A= (A,i,C,T), there is a (non-simple) homogeneous relation algebra Em(2A) =
(P(A),U,M,—,-,"), called the complex algebra of A, where

o forallR,SCA RS:={c€ A|JaeR,bES: (¢c,a,b) € C};

o forallRC A: R™:={T(a)|aeR};

e 0:=0;L:=A; and I:= {i(a) |a€ A}.

The correspondence theorem is also essential for our construction of an au-
tomatic proof procedure presented in Section 5. Exploiting its (¢) direction, we
translate any relation-algebraic formula R into a predicate-logical formula P at
the atomic level. A full list of the logical equivalences that are necessary for the
translation is given in Section 5.1. We just state here that all those equivalences
(as well as the atom-level rules of the definition above) can be deduced from
the axioms of (heterogeneous) abstract relation algebra alone, which implies
that any proof of the atomic-level formula P also validates the corresponding
relation-algebraic formula R.



3 Formalization in Isabelle/HOL

This section gives a short introduction to Isabelle, the formalization of relation
algebra as a set of Isabelle theories, and the language extent supported so far.

3.1 Isabelle

As the basis for our proof system, we use the generic theorem prover Isabelle [22].
Isabelle is generic in respect to both the object logics and the employed proof
techniques. It has an universal meta logic, which is an intuitionistic higher-order
logic, where its syntax is based on the simply-typed lambda calculus augmented
with type classes a la Haskell. This yields a quite general basis for a large variety
of expressive object logics.

Proofs can be conducted interactively or as a batch proof, using Standard ML
[21] as command language. The goal is stated first, and then it is transformed
by forward and backward chaining with given rules into subgoals until these
become trivial. The operations transforming the proof state, called tactics, may
be combined by tacticals to implement very powerful application-specific proof
procedures and heuristics. For most object logics a Simplifier is provided (to
help with equational reasoning) as well as the Classical Reasoner [22, Part 11,
Chapter 11], a kind of tableaux prover that can prove many standard theorems
automatically, which involves some search strategies.

The object logics are defined in theories, specifying their syntax, definitions,
and axioms. In doing so, the elaborated parser of Isabelle gives great freedom
for using infix and mixfix syntax, graphical symbols, and arbitrary syntaz trans-
lations, allowing a very intuitive presentation of formulas.

3.2 HOL

Our object logic of choice for the development of RALL is HOL [22, Part
ITI, Chapter 4], an implementation of Church’s Simple Theory of Types [6]
in Isabelle. Being a higher-order predicate logic including set theory, HOL is
suitable for formalizing even the higher-order constructs of relation algebra like
infinite joins and meets. Furthermore, Isabelle/HOL makes the type system of
the meta logic available at the object level. Therefore, it is easy to check type-
correctness (which is very important for heterogeneous relation algebras) auto-
matically, without bothering the user with the need to prove this property by
hand. HOL provides the usual introduction and elimination rules of the calculus
of natural deduction as meta-level rules. As an example of the Isabelle represen-
tation of such rules, consider the elimination rule for the universal quantification
(the names with a “?” at the front meaning schematic variables)

allE = "[ Vx. 7P x; 7P 7z =—> 7R | => 7R", [P(2)]

traditionally written as V. P(x) R
" (VE)

The Simplifier and the Classical Reasoner are also set up for HOL.



3.3 The RALL Theories

RALL is structured as a hierarchy of Isabelle theories, together with the corre-
sponding proof and tactic definition files.

The base element of the hierarchy is the Lattice theory, built upon the set
theory of HOL. It defines the class of complete atomic Boolean lattices with the
operators mentioned in Section 2.1 by its algebraic properties. The operators
(and predicates) are polymorphically typed as, for example, the binary operator
Meet with its graphical infix syntax _M_

Meet :: (o::lattice) = o = o (_no)

where ¢ is a type variable restricted to the type class lattice, which is the set
of all types having the lattice operators in common. The operator semantics is
given by algebraic and order-theoretic axioms such as " (xMy)Mz = xM(yMNz)"
and "(VxeA. 1 C x) — 1 C Inf(A)".

The Relations theory is built on top of Lattice, introducing the binary
type constructor (a, B)rel for relations with domain « and codomain 3. For
any types a and 3, (a, B)rel is declared to be a member of the type class
lattice, which makes all lattice operators immediately applicable to relations.
The typing of the monoidal operators (composition, identity, and transposition)
in the following Isabelle declaration is essential for the type-correctness of het-
erogeneous relation algebras.

Comp :: (a,f)rel = (B,y)rel= (a,y)rel ()
I D (a,a)rel
Conv :: (a,B)rel = (B,a)rel ™

The axiomatization of the semantics of these operators is straightforward
from the monoidal rules and the Schréder Equivalences mentioned in Section 2.1.
Also the Tarski Rule (R # 0) = (L-R-L = L) is postulated, where its formu-
lation as an equivalence additionally implies that the algebra contains at least
two elements.

All the following theories contain definitions of constructs that are quite com-
mon in applications of relation algebra. Being definitions (using the meta-level
equality “=”), all these further extensions of the RALL language are logically
conservative and therefore safe.

In the theory Special, special properties of relations are defined as predi-
cates, namely function, order, and vector (i.e. subset) properties such as:

total_def "Total R = I LC RR™
transitive def "Transitive R = R-R C R"
vector_def "Vector v = Lv = v"

The theory Functionals defines mappings between relations, e.g. residuals
(useful for reasoning about weakest preconditions) and symmetric quotients:

_ (R"__S) "
(R>=S)M(S=R)"~"

right res_.def "R>S
sym_quot_def "SyQ(R,S)



Finally, the theory Domain contains relational domain constructions such as
products and powersets, which require quantification over relations, like

powerset_def "Powerset e = SyQ(e,e) C I A VR. Total(SyQ(R~,e))"

As these examples indicate, many useful concepts, even higher-level ones, are
formalized in RALL. Further definitions can be easily added if desired.

4 Interactive Proofs

This section gives an overview of the facilities that RALL provides for performing
interactive proofs and their applications. As it discusses several basic concepts of
proofs with Isabelle and relation algebra in general, it also serves as preparation
for the following section about automatic proofs.

4.1 Overview on the Proof Facilities

In RALL, proofs are normally conducted by backward chaining from the goal,
with each step being the application of a resolution tactic. A step may be either

1. a predicate-logical step at the level of formulas (propositions), or

2. an algebraic manipulation of terms: a substitution or an estimation,
i.e. an application of rules like subst = "[ s = t; Ps ] = P t"

and comp_estim2 = "[ S’ £ S; RC S>T] = R C ST".

While the standard Isabelle/HOL tactics excellently cover the former, they
provide only quite primitive support for the latter, especially for estimations.
Namely, direct selection and manipulation of subterms are difficult in Isabelle
(yet normally not so much desired), and explicit order-theoretic reasoning seems
not to be too common by now. So we have developed special support.

For a more convenient form of substitution a tactic called sstac and some
derivations are given. They replace a specific instance of one side of an equation
with the corresponding other side.

Estimations with an inclusion formula are performed using the monotonicity
of most operators (respectively anti-monotonicity of the complement) and tran-
sitivity of the inclusion relation, but this may take some tedious steps. Some
tactics like mtac do these steps automatically, which involves a search strategy.

The substitution and estimation tactics use higher-order unification to con-
veniently find a position in the subgoal where to operate on. The outcome of
such a tactic may be quite non-deterministic and will therefore often demand
backtracking in order to reach the intended application. To avoid this, we pro-
vide alternative forms of these tactics that allow the specification of the intended
subterm as a restriction of the possible outcomes®.

The developed tactics are very general and may therefore be used within
many other applications of Isabelle involving algebraic and order-theoretic rea-
soning as well.

3 In the special case of simplifying substitutions, the Simplifier is of course the most
suitable tool with deterministic outcome, at least for confluent sets of rules.



Here is a simple example of an interactive proof in RALL using a predicate-
logical step, an estimation, and a substitution, just to give an idea of how a proof
is actually performed. The lines beginning with “>” contain the user’s input;
the remaining lines give the (abbreviated) output of the proof system.

> goal Relations.thy "R’=R — (IMS)-R’ C R";
R’=R — (IMS)R’> C R
> by(safe_tac HOL.cs); (* predicate logic *)

(INS)R C R

> by(mtac meet_1bl 1); (x "xMMy C x" *)
IRCR

> by(sstac I.defl 1); (x "I.R = R" %)
RLCR

> by(rtac inclrefl 1); (x "x C x" x)
No subgoals!

This interactive proof on the machine exactly mirrors the steps that would
have been done on paper; just imagine backward implications inserted between
the output lines.

4.2 Application Examples

For all theories mentioned in Section 3.3, a number of basic theorems are proved
and made available to the user, for example the order-theoretic properties of
lattices, their full distributivity, properties of the complement and of the higher-
order operators, and all the standard properties of the relational composition
and transposition, like monotonicity and continuity, as contained e.g. in [25].
Even for the more application-specific entities, i.e. special relations, functionals
and domain constructions, many of their basic properties are shown.

As a practical case study applied to current research, some sophisticated
theorems of Desharnais [7] concerning the sharpness of relational products are
treated, for example

[ Q1~-Q2MR1-R2"Cp~-r; Q1MQ2-R2-R1"CS~-T; Q1-T~-TCQLl; S~-S-Q2CQ2;
T~-T-R1CR1 | = Q1-R1MQ2-R2C(Q1-p~MQ2-r~)-(p-R1Mr-R2)

which are part of an investigation about the suitability of relational products
for modeling asynchronous parallel composition. Once established, the proofs of
Desharnais’ formula and of many other questions of relation-algebraic research
are not difficult by themselves but lengthy and therefore error-prone if done by
hand. Here a machine-checked proof gives maximal confidence.

As this section illustrates, the interactive proof system of RALL is a ma-
ture tool for the full language of heterogeneous relation algebra. Using its spe-
cial features for relation-algebraic inferences, proofs can be conducted almost
as conveniently as on paper, while the system guarantees the soundness and
type-correctness of the obtained results.



5 Automatic Proofs

This section describes our automatic proof procedure for relation algebra. We
give the idea, the necessary lemmas, an outline of the implementation, and some
example proofs.

5.1 Atomization

One main observation on Isabelle proofs is that inferences at the (outer) propo-
sitional level of formulas can be done very well, even with automatic tactics,
whereas more algebraic derivations behave less pleasantly, except for mere sim-
plifications. Also in general, such derivations are quite difficult to perform au-
tomatically because of their undirected (and therefore highly non-deterministic
and loop-prone) search behavior. But the great challenge of this work was to
explore what could nevertheless be done — even with limited effort by now.

Our key idea is to apply an equivalence transformation of the algebraic struc-
tures into propositional ones, turning an inclusion into an implication, a meet
into a conjunction, etc. In a strongly atomic lattice, this can be achieved by
regarding each element as the join of all atoms contained within it. The idea
can be generalized to relation-algebraic structures, yielding an isomorphism to a
relational structure, which is based on the following formalization of the atom,
atomic inclusion, incidence, and trace concepts:

atom def "Atom a = a#0 A Vx. x#0 A xCa — x=a"
atom_in_def "arx = Atom a A alx"

incidence def "c~ab = c—ab A Atom a A Atom b"
trace_def "i(a) = a~-allI"

The incidences and traces are studied in detail in [8]. It may be tempting
to reduce the incidences to equations of atoms like c=a-b, but this is only pos-
sible for representable relation algebras. As it is an important requirement for
RALL that the obtained results should be valid even for non-representable re-
lation algebras, we must keep the incidences as elementary propositions (of the
form c~a-b). With the above definitions, the key atomicity theorem can be for-
mulated as strong_atomic = "Sup({a. a—x}) = x", which is derivable from
the axiom weak_atomic = "x#0 — Ja. a—x" in a distributive lattice.

The atomization is an isomorphism to predicate logic, i.e. for each relation-
algebraic operator, there is a transformation to a proposition or predicate with a
corresponding structure, as listed below. Being equivalences, the transformation
rules fully preserve the provability of formulas. The validity of some of these
equivalences is non-trivial to prove by the standard relation-algebraic axioms
because of the higher-order constructs involved; yet all of this has been done
within RALL.

atom_in_incl "x C y = Va. amx — amy"
atom_in_meet "a—x[ly = a—x A amy"
atom_in_join "arrxlly = a—x V amy"

atom_in_cmpl "ar>-—x = Atom a A —a—x"



atom_in_inf "a>Inf(A) = Atom a A Vz€A. a—z"

atom_in sup "aSup(A) = Jdze€A. a—z"

atom_in_comp "a—R-S = dr s. avrs A r—=R A s—=3"
atom_in_conv "a—R" = a"—R"

atom_in_0 "a—0 = False"

atom_in_I "ar—T = Atom a A a=i(a)"

atom_in_L "a—L = Atom a"

We use the equivalences to atomize relation-algebraic formulas in the first
step of automatic proofs, as outlined in the following subsection. The result
of the atomization is relational atom structure as defined in Section 2.2, i.e.
predicate-logical formulas with predicates of the form Atom X, X—R, X~Y-Z, or
X=Y, where X, Y, and Z are of the form a, a~, i(a), and i(a") for some atom a.

5.2 The Automatic Proof Procedure

Our automatic proof procedure works by first atomizing the goal and then per-
forming mainly predicate-logical steps with depth-first search?® like the Classical
Reasoner. Together with the lemma atom_in is_atom = "a—»x = Atom a",
this is already sufficient for proofs that do not take into account the laws for
relational composition and transposition, i.e. purely lattice-theoretic proofs.

For general relation-algebraic proofs, the atomic analogues of the monoidal
axioms and Schréder Equivalences are necessary, as found in [16, 8]. Though
proved in RALL from their non-atomic counterparts, they can be considered as
axioms on the atomic level. There should also be a pre-Tarski rule, which has not
yet been implemented, and is rarely needed anyway. For the pre-associativity,
pre-identity, and pre-Schrioder rules, there are several variants differing only in
the position and transposition state of the incidence arguments. A typical rep-
resentative of each rule type is given below.

assoc. 1.0 = "[ avfz; fvxy | = Jg. avxg A goyz"

ident_I2 = "[ i(j) = i(k); Atom k; Atom j | = k~ki(j)"
ident D2 = "[ gvki(j); Atom j | = q=k A i(j)=i(k) A Atom k"
schroeder 2 = "gqvrs — r~qs™"

Special tactics are necessary for the application of these rules as most of them
have counterparts with the reverse effect, leading to the risk of loops within the
proof search. Besides this, the treatment of transposition in conjunction with
these rules is non-trivial: In order to match a transposed schematic variable
?x"~ with a constant a (yielding the substitution a~ for ?x), unification mod-
ulo involution of transposition is needed, but not supported by Isabelle itself.
Furthermore, the equalities introduced or exploited by the identity properties
demand extra handling. So we had to extend the Classical Reasoner to integrate
the Simplifier and our special tactics. Meanwhile, general mechanisms for doing
such extensions have found their way into the standard version of the Classical
Reasoner.

* In special cases, a more expensive but less dangerous best-first search or iterative
deepening may be used instead.



This is the overall structure of the automatic proof procedure.

1. Preparation:
(a) unfolding of definitions
(b) simplification (with rules like "——x = x", "0-R = 0")
(c) atomization, as described in Section 5.1

2. Main Part: depth-first search with
(a) simplifications with rules like "a~~ = a" and i(i(a)) = i(a)"
(b) usual predicate-logical steps of Classical Reasoner
(c) application of atom lemmas like "g~r-s => Atom s",
"Atom j = i(j)~—I", and the pre-identity rules (given above)
(d) special tactics for
i. generation of all association variants of incidence pairs
within the premises, applying the pre-associativity rules
ii. if there is a premise a—I : rewriting of all atoms a to i(a),
making the pre-identity rules applicable
iii. solution of subgoals using the pre-Schréder rules

Taking the essence of the above and abstracting over auxiliary features like
the treatment of transposition and of equality of atoms, the automatic proof pro-
cedure handles atomized goals as follows. Goals of the form® Atom X are solved by
assumption from the premises or by applying rules like atom_in_is_atom. Goals
of the form X—R can only be solved by assumption. A goal of the form X~»Y-Z
may be solved by using the first kind of pre-identity rules or by assumption or
application of some pre-Schroder rule (perhaps after generating additional inci-
dence premises with the pre-associativity rules). The rest is done by a search for
pure predicate-logical proofs.

5.3 Automatic Proofs

The automatic proof procedure (called fpg here) can be used quite easily. For
example, the Dedekind rule can be proved by

> val dedekind = fpg "Q-RMNS C (QMS-R™)-(RMQ™-S)";

Within a few seconds (on a Sun SPARCstation 10), successful result is given.
This proof is carried out by the special tactics in a straightforward way (without
backtracking). Compare this with the standard proof of the theorem, which takes
some tricky unfolding steps. Of course, more application-specific proofs can also
be performed automatically, e.g.

> val sym_quot_red_lemma = fpg "SyQ(Q,R)-SyQ(R,S) C SyQ(Q,S)";

This proof takes more than one minute, but by further tuning the implementa-
tion of the proof procedure this time may be significantly reduced.

% These goals are rather redundant and could even be dispensed with by a more elab-
orated kind of atomization, e.g. by consigning the handling of the atom property to
the type system.



5.4 Soundness and Completeness of the Proof Procedure

As for every proof system, soundness and completeness are important criteria
for the judgment of the automatic proof procedure.

Our proof procedure can be considered sound for the following reasons. The
meta logic of Isabelle is a small well-understood system, and the axiomatizations
of both HOL and RALL are straightforward from standard definitions. For the
rest of the system, the LCF-system approach of correctness by construction (i.e.
guarded application of trusted components) gives the necessary confidence.

As it is often the case, the question of completeness must be answered nega-
tively. In the first place, this is due to the general non-decidability of the underly-
ing predicate calculus. For example, universal quantifications in the assumptions
of a subgoal are instantiated only once at most.

The isomorphism for atomization affects all kinds of operators and there are
no further theorems or tactics needed to perform the lattice-theoretic fraction
of proofs. So in this area the procedure should be as powerful as the standard
Classical Reasoner, which is quite satisfactory.

For actual relation-algebraic proofs, the procedure is usable, but far less ex-
haustive. The Tarski rule is missing completely, and the choice of additional rules
and special tactics is more or less heuristic. A further problem is that attempts
to prove large theorems often cause non-termination or produce a memory over-
flow after some time. This could be fixed by preventing possibilities for loops
that may still exist, or by mere optimizations of the proof procedure. At least
for small search spaces a solution is found in most cases.

6 Conclusion

We have presented a theorem proving system for relation algebra based on the
generic theorem prover Isabelle. RALL makes the full language of heterogeneous
relation algebra available including type-correct deduction. There is an almost
one-to-one correspondence between proofs conducted by hand and interactive
proofs with RALL, due to the help of some semi-automatic tactics. Thus no
new style of performing proofs has to be adopted, while gaining the reliability of
sound and type-correct machine-controlled inference steps. The system is very
flexible and open for application-specific extensions.

RALL even offers an automatic proof facility. As developed by the first author
in a fixed-time project [19], the automatic proof procedure has been left in an
experimental stage. At the time of this writing we are unable to give a final
statement about its general power, but we can state that at least for small
theorems it gives respectable results. It seems quite promising to go further in
the direction described in this paper.

Concerning automatic theorem proving in relation algebra, attempts to use
the set of axioms of relation algebra directly at the relational level still fail. A
probably more successful direction would be the component-oriented view, tak-
ing the relations as binary predicates and applying the tactics suited for the



level of first-order predicate logic. However, the component-oriented view is not
the one aimed at when working with relation algebra, since Tarski originally de-
signed relation algebra in order to establish a set theory without point variables.
Furthermore, current researchers adopt the view of applying relation algebra
in the component-free manner for the purpose of an elegant and highly precise
formal system.

Our work answers the demand for automatic proof facilities as follows. For
every relation algebra, automatic theorem proving can be established by the
atomic level view as there is always an embedding in a suitable complete atomic
relation algebra that is subject to the described atomization technique. In the
atomic level view, relations are merely designed as unary predicates on atoms
of a relation algebra and use the relation-algebraic axioms as formulated for the
atomic level. By the given transformation, we have obtained an isomorphism to
predicate logic such that the abstract component-free style is treated with suc-
cess analogously to the (inappropriate) component-oriented view. Nevertheless,
whether algebraic logics that exclude atomization can be dealt with appropri-
ately in order to obtain an automatic theorem proving system, is still a question
of ongoing research.

For heterogeneous relation algebra there is another system called RALF that
provides interactive theorem proving of relation-algebraic formulas [2]. RALF
stresses a highly developed graphical interface and administration of theorems
and proofs in progress. As the RALF system is a stand-alone product and has no
connection to a generic theorem prover, it is very costly for developers (and even
impossible for users) to extend the underlying logic and proof facilities. RALF
does not support automatic theorem proving either.

There is also another relational logic formalized in Isabelle, namely the re-
lational circuit description language Ruby [23]. Some of its circuit combinators
are reminiscent of relation-algebraic operators. This implementation is based on
the ZF set theory, and therefore the type-correctness of terms is not ensured
automatically but left to the user as an additional proof obligation. Ruby has
adopted the component-oriented view with relations as binary predicates, which
makes it non-applicable for abstract relation algebras in general.

Recent research has attempted to combine fuzzy set theory with abstract
relation algebra [14, 20]. Once axiomatized, the obtained fuzzy relation algebra
can be used to represent informedness in data base semantics and is recom-
mended to have a corresponding theorem proving system present. It seems to be
a promising future research to extend the flexible RALL system in order to deal
with fuzzy relation algebra.

Being an advanced application of Isabelle, RALL has brought up insights
into the Isabelle system like the feasibility of substitution and monotonicity
inferences, the limits of its unification procedure and its type system (not men-
tioned further in this paper), and the combination of search procedures with
simplification and special-purpose tactics. Altogether, Isabelle has shown to be
a very powerful and flexible theorem proving tool suitable for our needs.



RALL is available in the same manner as the Isabelle system itself, viz. it
can be obtained on the World Wide Web from the URL address

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/projects.html

which contains several contributions of logics and theorem proving systems im-
plemented in Isabelle.
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