
A Functional Solution

to the

RPC�Memory Speci�cation Problem�

Manfred Broy

Institut f�ur Informatik
Technische Universit�at M�unchen

����� M�unchen� Germany

Abstract� We give a functional speci�cation of the syntactic interface
and the black box behavior of an unreliable and a reliable memory com�
ponent and a remote procedure �RPC	 call component
 The RPC com�
ponent controls the access to the memory
 In addition� we specify a clerk
for driving the RPC component
 The used method is modular and there�
fore it allows us to specify each of these components independently and
separately
 We discuss the speci�cations shortly and then compose them
into a distributed system of interacting components
 We prove that the
speci�cation of the composed system ful�lls again the requirement spec�
i�cation of the unreliable memory component
 Finally we give a timed
version of the RPC component and of a clerk component and compose
them


� Introduction

For describing the behavior of a reactive component we can either use state
transition models or communication�action history based models� Using states�
we specify the behavior of a system by a state machine that models its state
changes� We specify liveness properties� that we cannot express easily by state
transition techniques� separately� for instance by temporal logic�

Besides states we may use history based descriptions of the behavior of com�
ponents� With them we model the behaviors of systems by their traces or by
their input and output histories� In the following� we choose a history based
modeling technique and describe the behavior of components by relations on
their timed input and output streams� We provide modular speci�cations that
model the behavior of the components independently�

We treat the speci�cation problem of an unreliable memory� a RPC compo�
nent and a clerk as posed in �Broy� Lamport�� In a �rst chapter� we brie�y repeat
the basic mathematical concepts of the used approach� Then we give interface

� This work was partially sponsored by the Sonderforschungsbereich ��� Werkzeuge
und Methoden f�ur die Nutzung paralleler Rechnerarchitekturen� and the industrial
research project SysLab




�	


speci�cations of the unreliable memory� the reliable memory� the RPC compo�
nent� and the clerk� We put the latter three components together in parallel� Due
to the modularity of our approach the speci�cation of the composed system is
obtained in a schematic modular way from the speci�cations of the components�
For the composed system we prove that it is a re�nement of the requirement
speci�cation for the unreliable memory again� We carry out this proof in the
appendix�

We then go through the same exercise for a RPC component that reacts
within time bounds� In particular� it determines by a time�out that certain RPC
calls do not return� We specify� compose and verify the components as required
in �Broy� Lamport�� So we solve all the tasks of the RPC�Memory Speci�cation
Problem� We do not give a proof of the correctness of the timed implementation�

� The Basic System Model

As a basic model for describing the behavior of system components we use rela�
tions on timed streams� Timed streams are streams carrying data messages and
time ticks� A timed stream is accordingly a �nite or in�nite sequence of mes�
sages and time ticks� A timed stream is called complete� if it contains an in�nite
number of time ticks� Apart from the time ticks a complete timed stream may
carry a �nite or an in�nite number of messages� The basic idea is that the time
ticks indicate the time bounds �the bounds of the time intervals� in which the
messages are sent on a channel� On the basis of this simple model� we introduce a
quite �exible notation in this section that we will use throughout the paper when
writing speci�cations� For a detailed introduction into the theory of streams see
appendix A�

We model the time �ow by a special time signal called a time tick that
indicates the end of a time interval� By the symbol

p

we denote the time tick signal� LetM be a set of messages that does not contain
the time signal

p
� ByM� we denote the set of streams of messages from the set

M and by

M�

we denote the set of complete timed streams of elements from the set M � fpg
with an in�nite number of ticks�� Every element in the setM� denotes a complete
timed communication history over an unbounded time period�

In the following� we use the notations and operators as given in Tab� � in the
formulas specifying the components�

� Perhaps it is helpful to point out that of course the time ticks are not thought as
signals that are actually transmitted
 They are introduced rather as an auxiliary
concept that allows us to model time




�	

For a stream x � �M � fpg	� we denote by�

S c�x the substream of the elements from the set S �M � fpg in stream x�

if S � fag we write a c�x instead of S c�x� c� is called the �lter operator�

x�i the i�th element in the stream x di�erent from the signal
p
� more precisely

the i�th element in the message stream M c�x�

x � i the least pre�x of the stream M c�x that contains i elements�

x � i the largest pre�x of the stream x containing i time ticks �the history till time

point i	�

�x the number of elements in stream x�

Szx �S c�x�

xTMi the number of time ticks till the i�th message di�erent from
p

in the stream

x� formally�
x
TM
i � minf�p c�z � z v x �Mzz � ig

Here v denotes the pre�x order which is formally introduced in appendix A


If �M c�x � i then xTMi ��


Table �� Table of the Used Notation

Fig� � shows a timed stream with its time ticks representing the beginning
and the end of a time interval� In this example we have xTMi � k� since the i�th
message �which is x�i� occurs after the k�th time tick�

�

time �ow

in stream x


 
 
 x�i� �
p

x�i x�i� � 
 
 

pk k � �

Fig� �� Stream with Time Ticks

We describe the black box behavior of a component by a behavior relation�
A behavior relation is a relation between the input streams and the output
streams of a component that ful�lls certain conditions with respect to their
timing� Let I�� � � � � In� O�� � � � � Om be message sets where m�n � IN � A graphical
representation of a component f with n input channels of the sorts I�� � � � � In
and m output channels of the sorts O�� � � � � Om is shown by Fig� ��



�	�

�
x� � I�

�
xn � In

f
�

y� � O�
�

ym � Om

Fig� �� Graphical representation of component f

A behavior relation for this component is represented by a predicate on the
timed streams of input and output messages�

f � �I
�

�
� � � �� I

�

n �O
�

�
� � � �� O

�

n�� IB

For a behavior relation we always assume the following timing property �prin�
ciple of time �ow and delay��

x � i � z � i� fy � i� � � f�x� y�g � fy � i� � � f�z� y�g
The timing property expresses that the set of possible output histories for

the �rst i � � time intervals only depends on the input histories for the �rst i
time intervals� In other words� the processing of messages in a component takes
at least one tick of time� We could work with more liberal conditions by dropping
the �� in the formula above� However� this timing condition is very convenient
for us� since it leads to guarded recursion which is very useful in proofs�

� Basic Message Sets Involved

In this section we shortly list the basic message sets and some additional auxiliary
functions that we use in our speci�cations� We introduce the data sets given in
Tab� ��

MemLocs memory locations�
MemV als memory values�
PrIds identi�ers for processes�
Procs � fRead�Writeg procedure names�
Args � �MemLocs	MemV als	 �MemLocs arguments�
RetV als � MemV als � fBadArg�MemFail� Ackg return values�
RetMem � Calls	RetV als return messages of memory�
Returns � Calls	 �RetV als

�fRPCFailure� BadCallg	 return messages of RPC comp
�
Calls � �PrIds	 Procs	Args	 calls


Table �� Table of data sets



�	�

By MemLoc�c� we denote for every call c � Calls the memory location
referenced in the arguments of the call c� By MemV al�c� we denote the written
value of a write call c � Calls� We use the following subsets of the sets of calls
and return values as abbreviations in speci�cations�

W �e� � f�p�Write� �e� v�� � Calls � p � PrIds � v �MemV alsg
R�c� � f�c�� b� � Returns � c � c�g

We assume that for every call c � Calls the identi�er for the process that
issued the call is denoted by PrId�c�� We de�ne in addition the following sets
in speci�cations�

C�p� � fc � Calls � PrId�c� � pg
RP �p� � f�c� b� � Returns � PrId�c� � pg

For simplicity we assume that the set RetV als does not contain the element
RPCFailure nor the element BadCall and that the set MemV als does not
contain the element BadArg�

According to the informal speci�cation some calls are bad� We assume a
Boolean function

IsBadCall � Calls� Bool

that allows us to distinguish bad calls from proper calls�
This set of de�nitions constitutes what software engineers call the data model

of our little application�

� The Unreliable and the Reliable Memory Component

The unreliable memory component is a simple device that receives a stream of
memory calls and returns a stream of memory return messages� We model the
memory component by a relation between its input and output streams� the
timed stream of calls and the timed streams of memory return messages�

Note� On the Conceptional Model
In the informal speci�cation as given in �Broy� Lamport� a scenario is used to
explain the behavior of the memory component informally in terms of a con�
ceptual model that refers to a particular implementation� It refers to a simple
memory and to a clerk component that executes every call several times �or no
call at all�� Therefore a speci�cation based on this scenario might be most sug�
gestive when starting from the informal speci�cation� We are rather interested
in a black box speci�cation that speci�es the behavior of the unreliable memory
by the relation between its input and output histories represented by streams�
Therefore we do not give a speci�cation in terms of an abstract implementation
� as suggested by the informal description � but rather isolate its characteristic
properties and formalize them�



�		

The particular example of the RPC component includes a subtle di�culty
for our speci�cation technique� The fact that the memory may assume that for
each processor at most one call is active makes it necessary to refer to the time
order between output �returns to memory calls� and input �further calls�� For
�nontimed� stream processing functions it is easy to express that a certain input
message is causal for a certain output message� This means that the output does
never occur before the input occurred� However� it is di�cult to express without
time information that an input message occurs only after a particular output
message�� We can express such a relationship in our model without problems
due to the fact that we work with timed input and output streams� Therefore
we can formulate the assumption that the next call of a process arrives only
after the return to the previous one has been issued� �

The memory component MC with its syntactic interface is graphically shown in
Fig� �� Its behavior is speci�ed formally along the lines of the informal statements
��� � �� by the relation MC given below�

�
y � RetMem

�
S � Calls

MC

Fig� �� The Memory Component MC as a Data Flow Node

For all component speci�cations we use the same format� We specify the
syntactic interface that indicates the number of channels� their internal names
and which messages are sent along the channels by a data �ow node� Then we
give an informal description of the properties and �nally specify the relation MC
by a logical formula describing a relation between input and output streams�

We formulate the speci�cation in the so�called assumption�commitment for�
mat� In that format we write a speci�cation by an implicative formula

A� C

where A is the assumption and C is the commitment� In the assumption we
express the condition about the input streams that have to be ful�lled to be able
to guarantee that the component works properly� The commitment C formalizes
what it means that the component works properly �for a detailed description
of assumption�commitment speci�cations for stream processing components see
�St�len et al� ��� and �Broy �
b���

For the unreliable memory the assumption� abbreviated by ProcAssumption�
expresses the following property�

� This can easily be expressed by traces
 A trace speci�cation is given in the appendix




�	�

��� A call of a process to the memory only may occur when no other call of this
process is active�

In other words� we require that at every point in time the number of calls of a
process in the input stream is at most by one larger than the number of returns�

The commitment �the behavior guaranteed provided the assumption holds� of
the unreliable memory component is described by the following basic statements�

There exists a history of calls that we may name the internal access stream�

z with the following properties�

��� For every call in the input stream exactly one return message is issued�
��� For every call in the input stream its corresponding return message �ts into

the set of allowed return messages for that call�
��� Whenever there occurs a call in the internal access stream z such a call is

active at that point of time� A call is called active at a time point if it has
been issued �received by the memory� but not answered yet�

�
� If a return message is an acknowledgment for a write call then there is an
entry in the internal access stream at a moment where this call is active�

�� If there is a successful return message for a read call c for location e which
delivers the value v as the result there is an entry in the internal access
stream at a time point where the call c is active such that the last value
written for location e �or the special value InitVal� if such a write call does
not exist� coincides with v�

The formal speci�cation of the component MC follows exactly these informal
statements� It reads as follows�

MC� �s � Calls�� y � RetMem�� �

ProcAssumption�s� y��
�z � Calls� � 	v �MemV als� c � Calls� i � �� � czs� �
��� czs � R�c�zy
��� � Fit�d�i�

��� � 	k � �� � czz� � �j � �� � czs� � active�j� �fc�pg c
z�TMk�

�
� � �d�i � �c� Ack�� �k � active�i� zTMk� � z�k � c�

�� � �d�i � �c� v�� �k � active�i� zTMk� � v � last�z � k�MemLoc�c���

where b � fc�pg c
s� d � �R�c� � fpg� c
y�

active�i� t� � bTMi � t � dTMi

� This internal access stream is introduced as an auxiliary construct
 It re�ects the
informal problem description expressing that every call may perform a sequence of
atomic accesses to the memory while active




���

In this speci�cation we use the following auxiliary functions and predicates�
The term last�y� e� denotes the last value written into the memory location e in
the �nite stream y� it is InitV al if such a call does not exist� Formally� this is
speci�ed by

last�y� c� � if�x � � then InitV al elseMemV al�x��x�

where x �W �MemLoc�c�� c
y

Here W �e� denotes the set of all return messages to write calls to location e�
We de�ne the input assumption as follows�

ProcAssumption � �s � Calls�� y � RetMem�� �

	p � PrIds � 	i � IN � C�p�z�s � i� �� � � �RP �p�z�y � i�
We specify the predicate Fit that indicates whether a return message �ts

with a call as follows�

Fit � ��j� p� a� � �PrIds� Procs�Args�� b � RetV als� �

�p �Write � �b � Ack � a �MemLocs�MemV als�

� �b � BadArg � a �MemLocs�MemV als�

� �b �MemFail�� �
�p � Read � �b �MemV als � a �MemLocs�

� �b � BadArg � a �MemLocs�

� �b �MemFail��

This concludes the speci�cation of the unreliable memory�
The assumption�commitment format inhibits a subtle point� which has to

be clari�ed� Obviously the assumption does not only refer to the input stream
s� but also to the output stream y� This may seem paradoxical� since then the
assumption might be falsi�ed by choosing a respective output stream� As ex�
plained in detail in �Broy �
a� the input assumption is � due to the timing
property � in fact a restriction of the input stream s� Whenever the assumption
ProcAssumption�s� y� yields false� there exists a least time point i � � such that
for all streams s� and y� with

s � i� � v s� and y � i v y�

we have �ProcAssumption�s�� y��� Furthermore� we have�

ProcAssumption�s � i�p�
� y � �i� ���

p�
�

� Here
p
� stands for an in�nite stream of time signals

p





���

so y � �i � ���
p� ful�lls the commitment� This imposes also� by the timing

condition� that y � i ful�lls the safety properties of the commitment�
The speci�cation MC is our solution to task ��a� of �Broy� Lamport��
The reliable memory �task ��a�� is easily speci�ed similarly to the MC com�

ponent as follows�

RMC�s� y� � like MC�s� y�� but in the de�nition of predicate Fit the branch
�� � � � b �MemFail � � ��

is omitted�

With this speci�cation the answer to problem ��b� is trivially �Yes� Since the
reliable memory is speci�ed just like the unreliable memory besides leaving out
one disjunctive branch� we have immediately the theorem

RMC�s� y��MC�s� y�

This is what we expect� since every behavior the reliable memory shows is also
a behavior of the unreliable memory� So the reliable memory component RMC

is a property re�nement of MC�
Also the answer to problem ��c� is trivially �Yes�� The memory component

allows an implementation that always returns MemFail� We have not included
any liveness assumption that expresses that a memory failure cannot be returned
all the time�

� The Remote Procedure Call Component

In this section� we specify the behavior of the remote procedure call component
�Problem � in �Broy� Lamport�� that we call RPC� We specify it again by a rela�
tion between the input�output streams of the component� The remote procedure
call component has two input channels� called x and y and two output channels
called s and r� The RPC component is graphically shown as a data �ow node
in Fig� 
�

�
r � Returns

�
X � Calls

RPC
�

y � RetMem
�

s � Calls

Fig� �� RPC Component as a Data Flow Node

On its input channel x the component RPC receives calls and forwards them
on its output channel s� On its input channel y it receives memory return mes�



���

sages and forwards them on its output channel r as return messages to its envi�
ronment� We specify this relation again in the assumption�commitment format�
The RPC assumption expresses that

��� for each process at most one call is active at a time�
��� on its return memory line y at most as many return messages are received

as resp� calls have been issued on the channel s before and not answered so
far�

��� all calls issued on the channel s eventually receive a memory return message
on the channel y�

The speci�cation of the RPC component is quite straightforward� It expresses
the following four properties� For each call c we require�

��� If the call c received on its input channel x is a bad call then it is not
forwarded on channel s but returned with a BadCall return message on the
return channel r�

��� At most those calls are forwarded on channel s that have been received on
channel x�

��� Only memory return messages are forwarded on channel r that have been
received on channel y�

��� For each call on channel x a return message is issued eventually on channel
r�

Note that this way we model the calls returned with the RPC return message
RPCFailure quite implicitly as a default by the fact that all calls arriving on
channel x eventually return�

The syntactic interface speci�cation of the RPC component and its semantic
interface de�ning its black box behavior are given by the following formula�

RPC � �x � Calls�� y � RetMem�� s � Calls�� r � Returns�� �

RPCAssumption�x� r� s� y�� 	c � Calls� v � RetV als �

��� �IsBadCall�c�� czx � �c� BadCall�zr � czs � ��

��� � czs � czx
��� � �c� v�zr � �c� v�zy
��� � R�c�zr � czx

Here we de�ne the assumption RPCAssumption as follows�

RPCAssumption � �x � Calls�� r � Returns�� s � Calls�� y � RetMem�� �

	c � Calls� i � IN �

��� ProcAssumption�x� r�

��� � czs � i � R�c�zy � i� �



���

��� � R�c�zy � czs

Again we express both safety and liveness properties by the specifying predicate
for the RPC component�

� Implementation with the Help of a Clerk

In this section we specify a clerk which can be used to drive an RPC component�
It has a syntactic interface similar to the RPC component� but in contrast to this
it forwards calls and receives returns from the RPC component and turns them
into memory returns� The speci�cation is quite similar� In �Broy� Lamport� the
clerk is not mentioned and described explicitly but rather implicitly by describing
the way the implementation works�

The clerk component CLK �Problem �� is graphically shown in Fig� � It is
speci�ed again by an assumption�commitment speci�cation�

�
y� � RetMem

�
s� � Calls

CLK
�

r � Returns

�
x � Calls

Fig� �� The Clerk CLK as a Data Flow Node

We use the same assumption for the channels of the clerk as for the respective
channels of the RPC component�

The commitment of the clerk component formalizes the following properties�

��� The calls returned with BadArg messages on the channel y� are those that
are returned with BadCall and BadArg messages on the channel r�

��� All memory failures that are received on the channel r are forwarded on the
channel y��

��� The calls on the channel s�� the RPC Failure return messages and Memory
Failures on r are exactly those calls forwarded on the channel x or returned
on the channel y� with a memory failure message�

�
� All returns received on the channel r which are not memory failure return
messages are forwarded on the channel y��

�� All calls return�

These properties of the clerk are formally speci�ed by a relation between
its input and output streams as follows� By this speci�cation we give both the
syntactic interface and the history relation�



��


CLK � �s� � Calls�� r � Returns�� x � Calls�� y� � RetMem�� �

RPCAssumption�s�� y�� x� r�� 	c � Calls� v � RetV alsfMemFailg �
��� �c� BadArg�zy� � �c� BadCall�zr � �c� BadArg�zr
��� � �c�MemFail�zy� � �c�MemFail�zr
��� � �c�MemFail�zy� � czx � czs� � �c� RPCFailure�zr � �c�MemFail�zr
�
� � �c� v�zy� � �c� v�zr
�� � R�c�zy� � czs�

Again this is a pure property speci�cation just counting and relating the numbers
of calls and return messages for them in the input and output channels�

� The Composed System

The composition of the RPC component with the reliable memory component
RMC and the clark CLK is straightforward along the lines of Fig� ��

�
y� � RetMem

�
s� � Calls

CLK
�

r� � Returns

�
x � Calls

RPC
�
y � RetMem

�
s � Calls

RMC

Fig� �� Data Flow Diagram of the Composed System Called CI

The data �ow diagram can be translated in a straightforward way into a
logical formula specifying the component CI �

CI � �s� � Calls�� y� � RetMem�� �

�x� s� r� y � CLK�s�� r� x� y�� �RPC�x� y� s� r� � RMC�s� y�

We claim that CI is an implementation �or in other words a re�nement� for
the unreliable memory� Formally this corresponds to the following veri�cation
condition�

CI�s�� y���MC�s�� y��

A proof for the veri�cation condition is given in the appendix� This is our solution
to problem ��



��

� Speci�cation of the Lossy RPC Component

The lossy RPC component can be speci�ed along the lines of the RPC com�
ponent� But now we work with a weaker input assumption� We do no longer
assume that all calls that are issued on the output channel s actually return�
Furthermore� we now refer to an explicit timing of the messages� Fig� � shows a
graphical representation of the lossy RPC component� Its speci�cation is given
below�

�
r� � Returns

�
x � Calls

LPRC
�
y� � RetMem

�
s� � Calls

Fig� �� Lossy RPC Component LRPC as a Data Flow Node

The speci�cation of the component LRPC is quite straightforward� It ex�
presses the following three properties� For each call c we require�

��� At most those instances of the calls are forwarded on the channel s that have
been received on the channel x�

��� Only answers are forwarded on the channel r that have been received on the
channel y within � units of time�

��� For each call on channel x a return message is issued on the channel r within
� units of time after the return was received on the channel y or after the call
has been received on the channel x �if the call has not been not forwarded
on s after � units of time��

We specify the component LRPC by the following formula�

LRPC � �x � Calls�� y � RetMem�� s � Calls�� r � Returns�� �

�r� � r � NRPCF c
r��
��ProcAssumption�x� r�� � 	c � Calls� i � IN � czs � i � R�c�zy � i� ���

	i � IN� c � Calls� v � RetV als �

��� �IsBadCall�c�� R�c�zr� � �c� BadCall�zr� � czs � ��

��� � �c� v�zr� � i� � � �c� v�zy � i
��� � R�c�zr� � i� � � �czx � i�� �czs � i� �� �R�c�zy � i

where NRPCF � �c� b� � Returns � b � RPCFailure� � fpg



���

Hint� �czx � i� � �czs � i� �� denotes the calls that are not forwarded� The
RPCFailure signals are allowed inside the speci�cation and then are �ltered out�
Note that this way we model the return message RPCFailure like in the case of
the nonlossy RPC component and �lter them out later� This implies that for
certain calls no return messages are issued�

The speci�cation LRPC is our solution to the problem �� in �Broy� Lamport��

	 A Clerk for the Lossy RPC Component

In this section we specify a clerk component LCLK for the lossy RPC compo�
nent� It is illustrated in Fig� 	 and speci�ed below�

�
y� � RetMem

�
s� � Calls

LCLK
�

r� � Returns

�
x � Calls

Fig� �� Clerk of Lossy RPC Component as a Data Flow Node

We use the same assumption for the channels of the clerk as for the respec�
tive channels of the RPC component� The speci�cation formalizes the following
properties�

��� All calls that are received on the channel s� are forwarded on the channel x�
��� The calls forwarded on the channel x for which return messages are not re�

turned within ���� time units after issued are returned with a RPCFailure�
otherwise forwarded on the channel y� as returned�

These properties are formally speci�ed as follows�

LCLK � �s� � Calls�� r � Returns�� x � Calls�� y� � RetMem�� �

�ProcAssumption�s�� y���
	c � Calls� i � IN � czx � i � R�c�zr � i� ���

��� s� �� � x ���
��� 	c � Calls� i � �� � czx� �

�R�c� c
y���i � if i � R�c�zr � ��c�p c
x�TMi� �� � ��

then �c� RPCFailure�

else r�i �



���

Again this is a pure black box speci�cation just specifying the properties of
the external behavior by counting the numbers of calls and corresponding return
messages within the required time bounds�

�
 Composing the Clerk and the Lossy RPC Component

In this section we compose the clerk with the lossy RPC component� We ob�
tain a composed system called CRPC as shown in Fig� �� Its speci�cation is a
straightforward transliteration of the data �ow graph into logic�

�
y� � RetMem

�
s� � Calls

LCLK
�

r � Returns

�
x � Calls

LRPC
�
y � RetMem

�
s � Calls

RMC

Fig� 	� Data Flow Diagram of the System CRPC Composed of the Lossy RPC Com�
ponent and the Clerk

Again we obtain the component speci�cation in a straightforward way from
the data �ow diagram�

CRPC � �s� � Calls�� y � RetMem�� s � Calls�� y� � RetMem�� �

�r� x � LCLK�s�� r� x� y�� � LRPC�x� y� s� r�

We obtain the following veri�cation condition�
CRPC�s�� y� s� y�� � �	c � Calls� i � IN � R�c�zy � i� � � czs � i�

� RPC�s�� y� s� y��
The veri�cation condition includes the assumption that the calls issued on the
channel s are returned within � time ticks�

�� Conclusion

We have given a complete treatment of the problems posed in �Broy� Lamport��
Although these problems were posed mainly in terms of an abstract design we
have given requirement speci�cations and not design speci�cations� Of course�
in cases where the informal problem description is given in terms of an abstract
design a design speci�cation using some abstract implementation model may be
easier to relate to the informal description�



��	

We demonstrate in appendix B how such a speci�cation of the memory com�
ponent using an abstract design can be given by functional modeling techniques�
Another extreme of a speci�cation is shown in appendix C� There we give a pure
black box speci�cation in terms of traces where no auxiliary construct is used
such as a simple memory component or an internal access stream�

Acknowledgment

It is a pleasure to thank Stephan Merz and Ketil St�len for discussions and
Birgit Schieder for comments� I am grateful to Peter Scholz and Ursula Hinkel
for careful comments on a draft version�

A Mathematical Basis

Throughout this paper interactive systems are supposed to communicate asyn�
chronously through unbounded FIFO channels� Streams are used to denote his�
tories of communications on channels� Given a set M of messages� a stream over
M is a �nite or in�nite sequence of elements from M � By M� we denote the
�nite sequences over M � M� includes the empty stream that is denoted by hi�

By M� we denote the in�nite streams over the set M � M� can be repre�
sented by the total mappings from the natural numbers IN into M � We denote
the set of all streams over the set M by M�� Formally we have

M� �M� �M��

We introduce a number of functions on streams that are useful in system
descriptions�

A classical operation on streams is the concatenation that we denote by�� The
concatenation is a function that takes two streams �say s and t� and produces a
stream s�t as result� starting with the stream s and continuing with the stream
t� Formally the concatenation has the following functionality�

��� �M� �M� �M��

If the stream s is in�nite� then concatenating the stream s with a stream t yields
the stream s again�

s �M� � s�t � s�

Concatenation is associative and has the empty stream hi as its neutral ele�
ment�

r��s�t� � �r�s��t� hi�s � s � s�hi�
For any message m �M we denote by hmi the one element stream consisting of
the element m�



���

On the set M� of streams we de�ne a pre�x ordering v� We write s v t for
streams s and t if s is a pre�x of t� Formally we have

s v t i �r �M� � s�r � t�

The pre�x ordering de�nes a partial ordering on the set M� of streams� If
s v t� then we also say that s is an approximation of t� The set of streams ordered
by v is complete in the sense that every directed set S �M� of streams has a
least upper bound denoted by lub S� A nonempty subset S of a partially ordered
set is called directed� if

	x� y � S � �z � S � x v z � y v z�

By least upper bounds of directed sets of �nite streams we may describe
in�nite streams� In�nite streams are also of interest as �and can also be described
by� �xpoints of pre�x monotonic functions� The streams associated with feedback
loops in interactive systems correspond to such �xpoints�

A stream processing function is a function

f �M� � N�

that is pre�x monotonic and continuous� The function f is called pre�x mono�
tonic� if for all streams s and t we have

s v t� f�s v f�t�

For better readability we often write for the function application f�x instead
of f�x�� A pre�x monotonic function f is called pre�x continuous� if for all
directed sets S �M� of streams we have

f�lub S � lub ff�s � s � Sg�
If a function is pre�x continuous� then its results for in�nite input can be

already determined from its results on all �nite approximations of the input�
By � we denote the pseudo element that represents the result of diverging

computations� We write M� for M � f�g� Here we assume that � is not an
element of M � On M� we de�ne also a simple partial ordering called the �at
ordering as follows�

x v y i x � y � x � �
We use the following functions on streams

ft �M� �M��

rt �M� �M��

The function ft selects the �rst element of a nonempty stream� The function
rt deletes the �rst element of a nonempty stream�



���

For keeping our notation simple we extend the concatenation � also to ele�
ments of the message set M �treating them like one element sequences� and to
tuples of streams �by concatenating the streams elementwise�� For the special
element � we specify ��s � hi� This equation re�ects the fact that there cannot
be any further message on a channel after trying to send a message that is to be
generated by a diverging �and therefore never ending� computation�

The properties of the introduced functions can be expressed by the following
equations �let m �M� s �M���

ft�hi � �� rt�hi � hi� ft�m�s� � m� rt�m�s� � s�

All the introduced concepts and functions such as the pre�x ordering and the
concatenation carry over to tuples of streams by pointwise application� Similarly
the pre�x ordering induces a partial ordering on functions with streams and
tuples of streams as range�

We denote the function space of �n�m��ary pre�x continuous stream process�
ing functions by

��M��n v �M��m�

The operations ft and rt are pre�x monotonic and continuous� whereas con�
catenation � as de�ned above is pre�x monotonic and continuous only in its
second argument�

B State Transition Speci�cation of the Memory

Component

As pointed out in the introduction� an alternative to the functional speci�cation
for the description of the unreliable memory is a state transition speci�cation� For
the state transition speci�cation we work with a state space� We show how to use
state transition techniques to de�ne history relations� A state of the unreliable
memory is characterized by a value for each memory location and at most one
active call for each process id� For each process at most one call may be active
in the unreliable memory� If a call is active we store an optional memory return
message from RetMem for that process� otherwise the default value nonactive is
stored�

We use the set State to represent the state space of the unreliable memory�
It is de�ned as follows�

State � �PrIds� RetMem� fnonactiveg�� �MemLocs�MemV als�

For a state t � State and a process p � PrIds we denote by t�p the status
�the optional return message or nonactive if the process is not active� of the
process in the state t and for a memory location e �MemLocs we denote by t�e
the value stored under that location� By �t�p��� we denote the second component
of the returned message� that is the returned value�



���

Each memory location holds a memory value� Initially the memory locations
contain the value InitVal and all processes are not active�

We de�ne a function that associates with every state of the memory compo�
nent a behavior relation�

MCS � State� ��Calls� �RetMem��� Bool�

We specify the behavior relation MCS for each state t with the help of the
state transition relations that associates input streams and output streams by
the following formula�

MCS�t� � �s � Calls�� y � RetMem�� �

�t� � State �

�ft�y � p� out�ft�y� t� t�� �MCS�t����s� rt�y���
�ft�s � p� ft�y � p � ��in�ft�s� t� t�� �MCS�t����rt�s� y���

t�P rIds�ft�s� � nonactive��
�ft�s �

p� ft�y � p �MCS�t���rt�s� rt�y��

We require that MCS is the weakest relation that ful�lls the equation above�
We specify the state transition relations called in and out as follows�

in��p� u� a�� t� t�� � SR�t�p �� �c�MemFail��� t��

out���p� u� a�� z�� t� t�� � SR�t�p �� nonactive�� t��

� �u � read� z � �t�p����

� �u � write� z � �t�p����

SR denotes a relation between the states of the memory component� It is
speci�ed below� Here we write

t�p �� v�

to express that the state t is updated selectively by changing the entry for process
p to v�

�t�p �� v���p � v

�t�p �� v���q � t�q � q � p

We always give an optional return value for each active process that is
MemFail in the beginning� In transitions this value may be changed�

In every state transition all active calls may change the memory locations�
This is expressed by the relation SR that speci�es the relation between the old
and the new state� The relation SR is speci�ed as follows�



���

SR�t� t�� �
	p � PrIds� e �MemLocs� z � RetV als�

u � Procs� a � Args � �z� � RetV als �

�t�p � nonactive � t��p � nonactive� �
�t�p � ��p� u� a�� z� � t��p � ��p� u� a�� z�� �
�u � read � z� � t��a

� z� �MemFail

� �z� � BadArg � a �MemLocs�� �
�u � write � �z� � Ack � CHD�MemLoc�a�� t� t���

� z� � z

� �z� � BadArg � a �MemLocs�MemV als�� �
�t�e � t��e � CHD�e� t� t���

The proposition CHD�e� t� t�� expresses that the memory location e is accessed
by one write action in the transition from state t to state t��

CHD�e� t� t�� � �p � PrIds� z � fAck�MemFailg� v �MemV als �

t�p � ��p� write� �e� v��� z� � t��e � v

Note that this speci�cation does not include any liveness speci�cations� There�
fore� by this speci�cation� it is not guaranteed that every call eventually returns�
However� it is not di�cult to add this as an additional constraint� The same
holds for the timing condition�

C A Trace Solution to the Memory Speci�cation Problem

A pure trace speci�cation may be the most appropriate approach for a history�
based speci�cation of the unreliable memory� We give such a speci�cation in the
following� We use the following syntactic interface�

MC � Action� � Bool

where the set action includes both the input and output actions of the unreliable
memory�

Action � Calls �RetMem

Again we write an assumption�commitment speci�cation� The assumption that
for each process identi�er at most one call is active can easily be formulated� We
specify the commitment predicate of a trace by three conditions�



���

��� Every call eventually returns�
��� Every returned memory message �ts to its call�
��� A return message for a read call c returns a value written by one of the

writers active while the call c is active or a value written by a write call that
terminates before c is active provided there are no successful read or write
calls that starts after the write call terminates and terminates before the
read call starts�

Conditions ��� and ��� are obvious� Condition ��� is more sophisticated and
requires a more detailed justi�cation� According to the behavior of the memory
a write call may be executed many times while it is active �while it is issued
but has not returned yet�� A read call c may access the memory any time while
it was active� Therefore it may return any value written by a write call to the
respective location that overlaps in its activity interval with that of the read call
c� Besides that� it may read a value that was written before the read call c is
issued if this value is stored in the memory at the time the read call c is issued�

A value written by a write call w �or the initial value� if there are no write
calls� can only be the value stored in the memory at the time the read call c
is issued if there does not exist an output that indicates that the value was
de�nitely overwritten� This is indicated by another read call c� that starts after
the write call w for the respective location has been completed and returns a
di erent value and ends before the read call c starts or by a write call w� that
starts after the write call w was �nished and ends successfully� In both cases
the value written by the write call w has been de�nitely overwritten� If there
exists such a write call w and if read calls c� and write calls w� with the speci�ed
properties do not exist then there is always a possibility that the written value
is still stored and can be read�

This analysis shows that a value returned by a read call either is a value
written by a write call with an overlap in the activity interval or it is the last
written value�

The trace predicate is speci�ed in the assumption�commitment format again
by the following formula�

MC � �t � Action�� �

�	s � s v t� �	p � PrIds � �C�p� c
s � � ��RP �p� c
s���
	c � Calls �

��� �c c
t � �R�c� c
t � 	i � �� � �t� �

��� t�i � RetMem� Fit�t�i��
��� t�i � Calls�MemV als� val�t�i� � active�t� k� i� e� � posval�t� k�

where

e � Loc�t�i�

j � Call to Return�t� i�



��


k � maxfCall to Return�t� a� � a � j �
t�a is a successful write or read for location eg

Call to Return�t� i� � index of the call to the return action t�i in trace t

Loc�a� � Location referenced in action a

active�t� k� i� e� � fval�t�w� � Loc�t�w� � e � Proc�t�w� �Write � k � w � ig
posval�t� k� � fval�t�w� � Loc�t�w� � e � Proc�t�w� �Write � free�w� j�g

�fInitV al � free��� j�g
free�w� j� � 	z � t�z � RetMem�

w � Call to Return�t� z��
z � j�
Loc�t�z� � e�
�t�z � Calls� fAckg � t�z � Calls�MemV alsnfval�t�i�g

According to our assumption we can �nd the unique index j of the call action
for which a return message is issued�

The procedure Fit is speci�ed as in section 
�
By this trace speci�cation we obtain a purely extensional speci�cation� With�

out referring to a simple memory component or to an internal access stream we
specify the properties of a trace of the unreliable memory� The same style of
speci�cation can be used for the relational component model since all the used
concepts can also be expressed� there�

Of course this speci�cation could only be written after a careful analysis
of the informal description� understanding all the data dependencies� However�
such an analysis is useful and necessary� anyhow in a well�organized development
method� The trace speci�cation is very interesting if we only intend to write
speci�cations� It is not so easy to deal with if we want to compose speci�cations�

D Proof of the Veri�cation Conditions�

In this appendix we give the proof for the �rst of our two basic correctness
theorems� It claims that the composed system CI is a re�nement of the memory
component MC�

Theorem�

The system CI is a re�nement of the unreliable memory component MC�

CI�s�� y���MC�s�� y��

Proof� We may use CI�s�� y�� as our logical assumptions to prove MC�s�� y���
Unfolding CI�s�� y�� yields�



��

�x� s� r� y � CLK�s�� r� x� y�� � RPC�x� y� s� r� � RMC�s� y�

Furthermore� we may add the assumption in the speci�cation of MC�s�� y��

ProcAssumption�s�� y��

to our assumptions� Unfolding yields �we drop all outermost universal quanti�
�ers��

�A�� C�p�z�s� � i� �� � � �RP �p�z�y� � i�

We have to prove that there exists an internal access stream z � Calls� such
that the following properties hold�

�U�� czs� � R�c�zy��
�U�� Fit�d�i��
�U�� 	k � �� � czz� � �j � �� � czs�� � active�j� �c�p c
z�TMk��
�U
� �d�i � �c� Ack�� �k � active�i� zTMk� � z�k � c��
�U� �d�i � �c� v�� �k � active�i� zTMk� � v � last�z � k�MemLoc�c���

where b � fc�pg c
s�� d � �R�c� � fpg� c
y��

active�i� t� � bTM i � t � dTM i

We unfold the speci�cation CLK� RPC and RMC that are used in the descrip�
tion of CI � For the clerk speci�cation CLK�s�� r� x� y�� we obtain the following
properties�

RPCAssumption�s�� y�� x� r� � 	c � Calls� v �MemV als �

�C�� �c� BadArg�zy� � �c� BadCall�zr � �c� BadArg�zr�
�C�� �c�MemFail�zy� � �c�MemFail�zr�
�C�� �c�MemFail�zy� � czx � czs� � �c� RPCFailure�zr � �c�MemFail�zr�
�C
� �c� v�zy� � �c� v�zr�
�C� R�c�zy� � czs�

For RPC�x� y� s� r� we obtain the following properties�

RPCAssumption�x� r� s� y�� 	c � Calls� v � RetV als �

�R�� �IsBadCall�c�� czx � �c� BadCall�zr � czs � ���
�R�� czs � czx�



���

�R�� �c� v�zr � �c� v�zy�
�R�� R�c�zr � czx

For RMC�s� y� we get that there exists an internal access stream z� � Calls�

such that the following properties hold�

ProcAssumption�s� y�� 	v �MemV als� c � Calls� i � �� � czs� �
�M�� czs � R�c�zy
�M�� Fit�d�i�

�M�� 	k � �� � czz�� � �j � �� � czs� � active�j� �fc�pg c
z��TMk�

�M
� �d�i � �c� Ack�� �k � active�i� z�TMk� � z��k � c�

�M� �d�i � �c� v�� �k � active�i� z�TMk� � v � last�z� � k�MemLoc�c���

where b � fc�pg c
s� d � �R�c� � fpg� c
y�

active�i� t� � bTM i � t � dTM i

To be able to make use of the input assumptions of the components above we �rst
show that all the component assumptions hold provided the input assumption
for MC�s�� y�� holds� These assumptions are�

ProcAssumption�s� y�
RPCAssumption�s�� y�� x� r�
RPCAssumption�x� r� s� y�

Unfolding yields the assumption for the three components �which is abbreviated
by As�y�� x� s� y� r� s����

�A� C�p�z�s � i� �� � � �RP �p�z�y � i��
�C��� C�p�z�s� � i� �� � � �RP �p�z�y� � i��
�C��� czx � i � R�c�zr � i� ��
�C��� R�c�zr � czx�
�R��� C�p�z�x � i� �� � � �RP �p�z�r � i��
�R��� czs � i � R�c�zy � i� ��
�R��� R�c�zy � czs

We get the following commitment for the three components �which is abbreviated
by Co�y�� x� s� y� r� s����



���

�C�� � �C�� �R�� � �R��� �M�� � �M�

We structure our proof as follows�

��� We prove that every tuple of streams �y�� x� s� y� r� s�� which ful�lls the
formula

As�y�� x� s� y� r� s��� Co�y�� x� s� y� r� s��

ful�lls the predicate As�y�� x� s� y� r� s�� provided it ful�lls the input assump�
tion ProcAssumption�s�� y���

��� We prove from As�y�� x� s� y� r� s���Co�y�� x� s� y� r� s�� the commitment of the
unreliable memory�

The step ��� is structured into two steps�

��a� We prove that if an assumption of a component contains a safety and a
liveness part� by the time delay property we can assume that every family of
streams that ful�lls the safety part of the assumption till time point i ful�lls
the safety part of the commitment till time point i�

��b� We prove that every family of streams that ful�lls the speci�cation and the
safety part of the assumption ful�lls the liveness part of the assumption�

Proof of ���� The assumption contains only two liveness properties �C�� and
�R���
Proof of ��a�� We prove that from

As�y�� x� s� y� r� s��� Co�y�� x� s� y� r� s��

we can deduce the safety assumption AsS�y
�� x� s� y� r� s�� given by the formulas�

�A� C�p�z�s � i� �� � � �RP �p�z�y � i�
�C��� C�p�z�s� � i� �� � � �RP �p�z�y� � i�
�C��� czx � i � R�c�zr � i� �

�R��� C�p�z�x � i� �� � � �RP �p�z�r � i�
�R��� czs � i � R�c�zy � i� �

for i � n� � from

	i � IN � i � n� AsS�y
�� x� s� y� r� s�� � CoS�y�� x� s� y� r� s��

and from the safety part of the commitments�
We may assume the safety assumptions for n � i�



��	

�A�� C�p�z�s� � n� �� � � �RP �p�z�y� � n�
�A� C�p�z�s � n� �� � � �RP �p�z�y � n�
�C��� C�p�z�s� � n� �� � � �RP �p�z�y� � n�
�C��� czx � n � R�c�zr � n� �

�R��� C�p�z�x � n� �� � � �RP �p�z�r � n�
�R��� czs � n � R�c�zy � n� �

and the safety commitments that hold because of the delay property till time
point i � n� ��

�C�� �c� BadArg�zy� � n� � � �c� BadCall�zr � n� � � �c� BadArg�zr � n� �

�C�� �c�MemFail�zy� � n� � � czx � n� � �
czs� � n� � � �c� RPCFailure�zr � n� � � �c�MemFail�zr � n� �

�C
� �c� v�zy� � n� � � �c� v�zr � n� �

�C� R�c�zy� � n� � � czs� � n� �

�R�� �IsBadCall�c�� czx � n� � � �c� BadCall�zr � n� � � czs � ��

�R�� czs � n� � � czx � n� �

�R�� �c� v�zr � n� � � �c� v�zy � n� �

�R�� R�c�zr � n� � � czx � n� �

�M�� czs � n� � � R�c�zy � n� �

�M�� Fit�d�n� ��

�M�� 	k � �� � czz� � �j � �� � czs� � active�j� �c�p c
z��TMk�

�M
� �d�n� � � �c� Ack�� �k � active�n� �� z�
TM

k� � z��k � c�

�M� �d�n� � � �c� v�� �k � active�n� �� z�
TM

k� � �c� v� � last�z� � k� c��

where b� � c�
p
c
s� d� � �R�c� � fpg� c
y�

active�n� �� t� � b�
TM

n� � � t � d�
TM

n� �

We have to prove�

�A� C�p�z�s � n� �� � � �RP �p�z�y � n� ��

�C��� C�p�z�s� � n� �� � � �RP �p�z�y� � n� ��

�C��� czx � n� � � R�c�zr � n� �

�R��� C�p�z�x � n� �� � � �RP �p�z�r � n� ��



���

�R��� czs � n� � � R�c�zy � n� �

We give only an informal proof outline and do not carry out all the formal steps
of the proof� The assumption �C��� for the clerk follows immediately from �R���
The assumption �C��� for the clerk follows immediately from the assumption
�A��� The assumption �R��� follows from the commitments by straightforward
arithmetic manipulation�
Proof of ��b�� We show that from

As�y�� x� s� y� r� s��� Co�y�� x� s� y� r� s��

and the safety assumption AsS�y
�� x� s� y� r� s�� we can deduce the liveness part

of the assumption

�C��� R�c�zr � czx
�R��� R�c�zy � czs

Proof of ���� We assume the properties As�y�� x� s� y� r� s�� � Co�y�� x� s� y� r� s��
and prove the commitment of the unreliable bu er� We can assume therefore the
following properties�

�A� C�p�z�s � i� �� � � �RP �p�z�y � i� �
�C��� C�p�z�s� � i� �� � � �RP �p�z�y� � i� �
�C��� czx � i � R�c�zr � i� � �
�C��� R�c�zr � czx �
�R��� C�p�z�x � i� �� � � �RP �p�z�r � i� �
�R��� czs � i � R�c�zy � i� � �
�R��� R�c�zy � czs �
�C�� �c� BadArg�zy� � �c� BadCall�zr � �c� BadArg�zr �
�C�� �c�MemFail�zy� � �c�MemFail�zr �
�C�� �c�MemFail�zy� � czx � czs� � �c� RPCFailure�zr � �c�MemFail�zr �
�C
� �c� v�zy� � �c� v�zr �
�C� R�c�zy� � czs� �
�R�� �IsBadCall�c�� czx � �c� BadCall�zr � czs � �� �
�R�� czs � czx �
�R�� �c� v�zr � �c� v�zy �
�R�� R�c�zr � czx �



���

�M�� czs � R�c�zy �
�M�� Fit�d��i� �
�M�� 	k � �� � czz� � �j � �� � czs� � active�j� �c�p c
z��TMk� �
�M
� �d�i � �c� Ack�� �k � active�i� z�TMk� � z��k � c� �
�M� �d�i � �c� v�� �k � active�i� z�TMk� � �c� v� � last�z� � k� c��

where b� � c�
p
c
s� d� � �R�c� � fpg� c
y�

active�i� t� � b�
TM

i � t � d�
TM

i

Based on these assumptions we have to prove that there exists z � Calls�

such that�

�U�� czs� � R�c�zy� �
�U�� Fit�d�i� �
�U�� 	k � �� � czz� � �j � �� � czs�� � active�j� �c�p c
z�TMk� �
�U
� �d�i � �c� Ack�� �k � active�i� zTMk� � z�k � c� �
�U� �d�i � �c� v�� �k � active�i� zTMk� � �c� v� � last�z � k� c��

where b � c�
p
c
s�� d � �R�c� � fpg� c
y��

active�i� t� � bTM i � t � dTM i

The statements �U�� and �U�� are logical consequences of our assumptions�
�U�� is exactly �C�� �U�� follows from �M�� by �R�� and �R�� and by �C
� and
�C��� To prove the properties �U����U� we have to construct a stream z that
has the required properties� We do this based on the stream z��

Every entry in z corresponds to an entry in z�� We de�ne this correspondence
by

z�i � maxfj � IN � �k � IN � �z� � k��j � z�i � R�c� � �y� � k� � i

� c � �s� � k� � ig
By this de�nition z�i is the last reply to the iterated sending of the call z��i to the
memory component� With the help of this de�nition we can prove the properties
�U�� � �U� by straightforward arithmetic manipulation�

References

�Broy ��a� M
 Broy� Speci�cation and Re�nement of a Bu�er of Length One
 Markto�
berdorf Summer School ����



���

�Broy ��b� M
 Broy� A Functional Rephrasing of the Assumption�Commitment Speci�
�cation Style
 Technische Universit�at M�unchen� Institut f�ur Informatik� TUM�I�����
June ����

�Broy� Lamport� M
 Broy� L
 Lamport� The RPC�Memory Speci�cation Problem
 This
volume


�Broy� St�len ��� M
 Broy� K
 St�len� Speci�cation and Re�nement of Finite Data�ow
Networks � a Relational Approach
 In� Langmaack� H
 and de Roever� W
�P
 and
Vytopil� J
 �eds	� Proc
 FTRTFT���� Lecture Notes in Computer Science ���� �����
�������

�St�len et al
 ��� K
 St�len� F
 Dederichs� R
 Weber� Assumption�Commitment Rules
for Networks of Agents
 Technische Universit�at M�unchen� Institut f�ur Informatik�
TUM�I����


