
Mathematical System Models as a Basis of

Software Engineering�

Manfred Broy

Institut f�ur Informatik� Technische Universit�at M�unchen�
Arcisstr� ��� D������ M�unchen� Germany

Abstract� We give mathematical system models as a basis for system
speci	cation� system development by re	nement� and system implemen

tation� It provides a simple homogeneous mathematical and logical foun

dation of software and systems engineering� We treat mathematical con

cepts of re	nement through levels of abstraction and complementing sys

tem views as they are used in software engineering� The goal is to give a
coherent and simple mathematical basis�

� Introduction

Software engineering comprises methods� description techniques and develop�
ment processes for the development of large software systems� The full framework
of a software engineering method �such as for instance SSADM� see �Downs et
al� ���� or Cleanroom Software Engineering� see �Mills et al� �	�
 contains a large
amount of complex and highly interconnected information� Traditionally� this
information is provided by so called reference manuals and rationals providing
an often strange mixture of ideology� technical explanation� experience reports
and ad hoc hints� Mostly� the meaning of the proposed description techniques
remains partially unclear and so does their relationships�

We claim that it is possible to give a much more precise presentation of
software engineering techniques� We show that this can be done without too
much overhead by providing a mathematical basis in little more than ten pages�

Our general goal is to give a comprehensive mathematical foundation of the
models and notions used and needed in software engineering �see �Booch ����
�Coad� Yourdan ���� �DeMarco 	��� �Denert ���
 but keeping the mathematics
as simple as possible� We describe a compositional system model that covers the
main modeling issues dealt with in systems and software engineering�

��� Informal Survey of System Modeling Notions

An interactive system interacts with its environment by exchanging messages�
The messages are exchanged through input and output channels� The causal

� This work was carried out within the Project SysLab� supported by Siemens Nixdorf
and by the Deutsche Forschungsgemeinschaft under the Leibniz program� It is based
on results worked out in the Sonderforschungsbereich ��� 
Werkzeuge und Methoden
f�ur die Nutzung paralleler Rechnerarchitektur
�



relationship between the input and output messages determines the black box
behavior of a system also called its interface� Formally� this behavior is described
by a black box speci�cation also called an interface speci�cation� By such a spe�
ci�cation the behavior of a system may be speci�ed uniquely for every pattern
of input behavior given by its environment or the speci�cation may leave some
freedom� In the latter case we speak of underspeci�cation or in the case of an
operational system also of nondeterminism�

The behavior of a system may depend on the timing of its input messages�
Also the timing of the output messages may be an important property of a
system� Therefore we are interested in a speci�cation technique that allows us to
specify systems with timed and time dependent behaviors� For the description
of the black box view of a system we use a logic based speci�cation language�

When constructing an implementation of a system� we are not only interested
in its black box behavior� but also in its internal structure� We speak of a glass
box view of a system� Under its glass box view� a system may either be a state
machine with a central state which we understand� in general� as a centralized
nondistributed unit� or it may be a distributed system consisting of a family of
subsystems called components� In a distributed system the only way the compo�
nents interact is again by exchanging messages� However� also for a distributed
system� a state view is possible by including all states of its components� This
leads to a distributed state�

The messages and states of a system are mathematical elements of appro�
priately chosen carrier sets� They might be described by axiomatic speci�cation
techniques or by classical description techniques for data models as proposed in
software engineering such as the widely used entity�relationship techniques�

A system �especially a distributed system
 carries out a process that may
depend on the behavior of the environment� Such a process consists of all the
actions carried out by the system� Elementary actions of an interactive system
consist in sending and receiving messages� The description of representative in�
stances of such processes may help to understand the interactions of a system�

In the development of a system� we describe it and its parts at several levels
of abstraction� Through the development� seen as a pure top down approach�
we take into account more and more speci�c details and change the models
such that they come closer to the structure required by system implementations
�nally leading to a software architecture� This process of system development is
also called re�nement� The notion of re�nement is formalized by a re�nement
relation which is a mathematical relation between system speci�cations�

We consider� among others� the following types of re�nement relations for
system development


� black box re�nement �also called property re�nement
�

� interface re�nement�

� glass box re�nement�

� In this oversimpli	ed view we include shared state systems with parallelism as nondis

tributed systems�



Glass box re�nement aims at the design and implementation phase of a system�
It may be classi�ed into


� state space re�nement�
� re�nement by distribution�

The corresponding re�nement relations form the mathematical basis for the gen�
eration of logical veri�cation conditions that have to be proved to show the
correctness of the respective re�nement steps�

��� Overall Organization of the Paper

In the following we de�ne mathematical models capturing all the notions in�
troduced informally in the introduction� We start by de�ning a mathematical
system model which allows to model distributed systems in a hierarchical man�
ner� Then we treat the notion of re�nement and of complementing system views�

In our descriptions of system views and concepts� one goal is uniformity�
We describe every system concept by a syntactic and a semantic part� In the
syntactic part we de�ne families of identi�ers with additional sort information
about them� In the semantic part� we associate mathematical elements with the
introduced name spaces�

Our work is based on �Broy ���� �Focus ���� �Broy ���� �Broy ��� and �Rumpe
et al� ���� An application of mathematical models to a speci�c software engineer�
ing method is shown in �Hu�mann ��� �see also �Hu�mann ���
 by treating the
British development method SSADM�

� The Mathematical System Model

In this section we introduce a mathematical model for interactive and distributed
systems and de�ne a number of fundamental aspects and views�

��� Data Models

A data model is used to model the data occurring in an information processing
system� It consists of a syntactic and a semantic part� The syntactic part consists
of a signature � � �S� F 
� S denotes a set of sorts and F denotes a set of function
symbols� For each of these function symbols� a functionality is prede�ned by a
mapping

fct 
 F � S�

that associates with every function symbol its sequence of domain and range
sorts� Thus� the syntactic part provides a name space with sort information�

Given a signature � � �S� F 
� a ��algebra A consists of a carrier set sA for
every sort s � S and of a function

fA 
 sA� � � � �� sAn � sAn��



for every function symbol f � F with fct�f
 � �s� � � � sn���� A sorted set of
identi�ers is a set of identi�ers X with a function

Sort 
 X � S

that associates a sort with every identi�er in X � By XA we denote the set of
all valuations which are mappings v that associate an element v�x
 � Sort�x
A

with every identi�er x � X �
An entity�relationship model consists of a syntactic and a semantic part� Its

syntactic part consists of a pair �E�R
 where E is a sorted set of identi�ers called
entities and R is a set of identi�ers called relationships for which there exists a
function

Sort 
 R� E �E

The pair �E�R
 is also called entity�relationship data model� A semantic model
B of an entity�relationship model assigns a set eB to each entity identi�er e � E

for which we have
eB � sort�e
A

and rB is a relation
rB � eB � eB

A semantic model B is also called an instance of an entity�relationship data
model� It is a straightforward step to include attributes into our concept of
entity�relationship techniques� The set of all instances of an entity relation�
ship model is called the entity�relationship state space �see �Hettler ��� for an
intensive treatment of this subject
� Note that this de�nition already includes
a simple integrity constraint namely that every element occurring in a relation
is also an element of the involved entity� Note� moreover� how easy it is in this
formalization to combine entity�relationship models with axiomatic speci�cation
techniques �see �Wirsing ���
�

active sender connected active receiver

transmission state

transmission queue

Fig� �� Entity�relation diagram for the transmission medium with the entities active

sender and active receiver� the relationship connected and two attributes

In Fig� � we show a simple entity�relationship diagram de�ning a data model
for a transmission medium� It is a part of a message switching system which will
be used as an example throughout the paper�



��� Communication Histories

Systems cooperate and interact by exchanging messages over channels� Given a
sort of messages M � by

StrM

we denote the sort of timed streams� A timed stream is represented by a mapping

s 
 INnf�g � �MA
�

A stream denotes a communication history of a channel� We work with a discrete
model of time and assume that our time is devided into an in�nite sequence of
time intervals� s�i
 represents the sequence of messages communicated in the ith
time interval� Given a stream s� by

sjk

we denote the restriction of the timed stream s to the �rst k time interval
represented by �� 
 k�� For every sequence of messages m � �MA
� and every
timed stream s of sort StrM we denote by

�m�
�s

the stream with the sequence m as its �rst element �the sequence of messages
communicated in the �rst time interval
 followed by the stream s�

Given a sorted set of identi�ers X for channels� a communication history
for these channels is denoted by a function Val that associates a stream Val�c

of sort Str Sort�c
 with every channel c � X � The set of these communication
histories for the sorted set of identi�ers X is denoted by

�
X

B XA� we denote the set of mappings m that associate a sequence m�c
 � �sA
�

with every channel c � X of sort s � Sort�c
� For every m � XA� that assigns a

sequence of messages to every channel and every x �
�
X we denote by �m�

�x

the communication history for the channels in X with

��m�
�x
�c
 � �m�c
��x�c


for every channel c � X �

��� Black Box System Models

A black box system model is given by a syntactic and a corresponding semantic
interface� The syntactic interface consists of two sets of sorted identi�ers I and
O� denoting the sets of input and output channels with �xed sorts of messages
communicated through them�

A black box behavior of a component with the syntactic interface �I� O
 is
modeled by a function

f 

�
I � P �

�
O




�by P �M
 we denote the powerset over the set M
 such that the output at time
point k depends only on the input received till time point k� This is expressed
by the following axiom of well�timedness �for all i� j �

�
I



ijk � jjk � f�i
jk � f�j
jk

A behavior f is called deterministic� if f�i
 contains exactly one element for every
input history i� It is called consistent� if it contains a deterministic behavior�

The set of all black box behaviors with input channels I and output channels
O is denoted by

I �O�

Note that the set I � O provides the syntactic interface of a system and every
element in I �O provides a semantic interface�

�

�

�

�

f

i� � s�

in � sn

o� � r�

om � rm

���
���

Fig� �� Graphical representation of a syntactic interface with input channels i�� � � � � in

and output channels o�� � � � � om and their respective sorts s�� � � � � sn and r�� � � � � rn

��� State Transition Models

A state transition model is given by a nondeterministic state machine M with
input and output� It consists of

� a state sort s � S�
� an input set of sorted identi�ers I �
� an output set of sorted identi�ers O�
� a transition relation � 
 sA � IA� � P �sA �OA�
�
� a set �� � sA of initial states�

With every state transition model we associate for every state � � sA a behavior

fM� � I �O

by the following equation �let i � IA�� x �
�
I



fM� ��i��x
 � f�o��z 
 z � fM�� �x
 � ���� o
 � ���� i
g

This is a recursive de�nition of the function fM � but since the recursion is
guarded its mathematical treatment is straightforward�

Fig� � gives a graphical representation of a system state view as it is often
used in software engineering methods�



�
�
�R

transmission order

send request �
�

�
�Wait for con ack �connect ack

send message

�
�

�
�Wait for mess ack �message ack

close connection

�
�

�
�Wait for clo ack

�
�
�R

close ack

end of transmission

Fig� �� State transition view of the sender� input messages are written above and
output messages below the arrows

��� Distributed Systems

A distributed system N � �C� I�� O�
 consists of a set C of components that
interact by exchanging messages over channels� Its syntax is given by

� the syntactic external interface of sorted input channels I� and output chan�
nels O��

� the set C of identi�ers for components and a mapping that associates with
each component identi�er c � C a set of input channels Ic and a set of output
channels Oc�

We require that all sets of output channels of the components in N are pairwise
disjoint and disjoint to the set I� of input channels of the component and that
I� � H�N
n

S
c�C

Oc� By H�N
 we denote the set of all channels of the system


H�N
 � I� � O� �
�

c�C

�Ic � Oc


The components and channels of a system form a data �ow net� Fig� � gives
an example of a graphical representation of a system by a data �ow diagram�
This provides a structural view of the system� For modeling dynamic systems
where the number of components and channels changes over time� we need a
more sophisticated mathematical model� of course�

The glass box semantics of the distributed system N is given by a mapping
B that associates a behavior B�c
 � Ic � Oc with every component c � C� A

computation of the distributed system is a family of timed streams x �
�

H�N

such that

xjOc � B�c
�xjIc 
 for all c � C

By U�N
 we denote the set of all computations of the distributed system N �
The black box behavior B�N
 � I� � O� of the distributed system N with

syntactic interface �I�� O�
 is speci�ed by �for all input histories i �
�
I�



B�N
�i
 � fxjO�

 x � U�N
 � xjI� � ig

B�N
 allows us to abstract away the distribution structure of the system N and
to extract its black box behavior� its interface behavior�



transmission medium

sap �
�

�
�

sap �
�

�
�

sap �
�

�
�

sap �
�

�
�

sap

�
�

�
�

sap

�
�

�
�

sap

�
�

�
�

sap

�
�

�
�

���
���

� � �

� � �

Fig� �� A data �ow diagram that gives a structural system view of a message
transmission system with several service access points �saps�

��� Processes

For a distributed system N we have introduced its set of computations U�N
� In
a computation we give for each channel a communication history by a stream�
A process is a more detailed description of the run of a system N �

A process for an input i can be represented as a special case of a distributed
system �N � � �C� �I� �O
 with syntactic interface ��I� �O
� For a process we assume
an input i � �IA such that in the computation of �N for input i every channel
�also those in �I
 contains exactly one message and the data �ow graph associated
with �N is acyclic and each component of P is deterministic� Then every channel
denotes exactly one event of sending and receiving a message component �c � �C
of the system �N denoting a process� represents one action� In this model of a
process an action is a component that receives one input message on each of its
input lines and produces one output message on each of its output channels� If
there is a channel �an event
 from an action a� to an action a� then a� is called
causal for a��

This idea of modeling a process by a speci�c distributed system is similar to
the concept of occurrence nets as introduced to represent concurrent processes
that are runs of Petri�nets �see �Reisig ���
�



�end of transmission

Indicate

termination

�
close ack

Close

connection

close connection

�
Indicate

termination

�end of transmission

�
close connection

Terminate

connection

�
message ack

Ack

transmission

�
message ack

Message

ack

�message

�
send message

Message

transmission

�
send message

Content

send

�
connect ack

Connect

transmission

�
connect ack

Connection

ack

�transmission indication

�
send request

Request

transmission

�
send request

Transmission

initiate

�
transmission order

Sender sap Transmission medium Receiver sap

Fig� �� Process description of a transmission scenario



��� Complete System Models

A complete hierarchical system model is given by a black box view consisting of
a syntactic and semantic interface and of a glass box view consisting of either a
corresponding state transition system or of a corresponding distributed system
for it� In the latter case we require that each of its component is a complete
hierarchical system again� This yields hierarchical distributed systems� Since
we can associate a black box behavior to every state transition system and
every distributed system� we can associate a behavior to every component in the
hierarchy if the nesting is �nite� A complete system is called interface consistent�
if for each component its glass box behavior is consistent with �or a re�nement
of� see below
 its given semantic interface�

� Re�nement

Large complex systems cannot be developed by considering all its complex prop�
erties in one step� Following the principle� not to cover more than one di�culty
at a time� re�nement allows us to add complexity to system models stepwise in
a controlled way� All approaches to software engineering work with a formal or
an informal concept of re�nement�

We formalize the idea of re�nement with the help of re�nement relations in
the sequel� A re�nement relation is formally a mathematical relation between
mathematical system models�

��� Re	nement of Data Models

A data model given by a ��algebraA can be re�ned by adding sorts and function
symbols to the signature and respectively carrier sets and functions� A more
general notion of re�nement is obtained by renaming the signature � � �S� F 

into a signature �� � � �S� �F 
 by a signature morphism� It is given by a pair of
functions

�� 
 S � �S� �� 
 F � �F

where �� � � �S� �F 
 is the re�ned signature and for all f � F 


fct �f � ���fct f


where the mapping �� is extended to sequences of sorts elementwise� This de�
termines the syntactic part of re�nement� A ���algebra �A is called a re�nement
of the ��algebra A� if there are functions

�s 
 ���s

�A � sA� �s 
 s

A � P ����s

�A


for every sort s � S such that for every data element a � sA we have


f�s��a
 
 �a � �s�a
g � fag



and for all functions f � F with fct�f
 � �s� � � � sn��� we have for all data
elements a� � sA� � � � � � an � sAn 


�sn������f

�A��a�� � � � � �an

 � fA�a�� � � � � an


for all �a� � �s��a�
� � � � � �an � �sn�an
� This is the classical notion of data re�ne�
ment� where all abstract elements are represented by concrete elements� This way
we obtain a re�nement notion for state machines and also for entity�relationship
models �for a detailed treatment of this aspect see �Hettler ���
�

��� Re	nement of Communication Histories

The re�nement concept for general data models can be carried over to a re�ne�
ment concept for communication histories� This is an advantage of the incor�
poration of communication histories as mathematical elements into our system
model� Given a pair of functions

� 

�
X� �

�
X�� � 


�
X� � P �

�
X�


a sorted set C� of identi�ers is called a communication history re�nement of the
sorted set of identi�ers X� if we have

f���c
 
 �c � ��c
g � fcg

for all c �
�
C�� Since we use an explicit representation of communication histories

in our system models� the re�nement notion is a simple generalization of our
re�nement notion for data models�

��� Re	nement of Black Box Views

A re�nement relation for black box system models is de�ned by a relation be�
tween systems� Given two component behaviors f�� f� � I�O with the syntactic
interface �I� O
 the behavior f� is called a black box re�nement of f� if for all

input histories i �
�
I we have

f��i
 � f��i


We generalize this simple notion of re�nement to interface re�nement as follows�
Assume the functions

�� 

�
I� �

�
I�� �� 


�
I� � P �

�
I�


�� 

�
O� �

�
O�� �� 


�
O� � P �

�
O�


that de�ne a communication history re�nement I� for I� and a communication
history re�nement O� for O�� then the black box behavior

f� � I� �O�



is called an interface re�nement of the black box behavior

f� � I� �O�

if for all input histories x �
�
I�

f���f��x

 
 x � ���x
g � f��x


Again this is just a straightforward generalization of the concept of data model
re�nement to the behavior of systems� It allows us to re�ne systems to systems
with a di�erent number of input and output channels� di�erent names and with
di�erent sorts that may lead to a di�erent granularity of messages� A simple
example is the re�nement of a system working with numbers �for instance an
adder
 into a system working with bits �for more details� see �Broy ���
�

��� Re	nement by Distribution

A distributed systemN with interface �I� O
 is called a re�nement by distribution
of a black box behavior f � I � O if B�N
 is a re�nement of f � B�N
 denotes
the black box behavior of a system that is de�ned as described in section ����

��� Process Re	nement

A process is represented by a special case of a distributed system� So all re�ne�
ment notions introduced for distributed systems carry over to processes� Hence
a process p is a re�nement of an action a� if p is a re�nement by distribution of
the action a� Recall that an action is a special case of a system�

��� Glass Box Re	nement

Given a distributed system N with a speci�ed black box behavior for all its
components� a glass box re�nement associates a state machine or a distributed
system with a behavior that is a re�nement of the speci�ed one� Hierarchical
iterated glass box re�nement leads to a complete system model�

� System Views

For the development of large complex systems it is helpful to work with com�
plementary system views� A system view is a projection of a system onto a
particular aspect� For a given distributed system we �nd it useful to work with
the following views


� process views�
� data model and state views�
� black box views �interface views
�
� structural views�

Views allow us to concentrate on speci�c aspects of a system
 Given a complete
distributed system we de�ne in the following the mentioned views for it�



��� Data Model View

For a complete distributed system N � �C� I�O
 with syntactic interface �I� O

a data model view provides for each of its components c � C a data view�
Then the state space consists of an assignment that associates a state sort with
each component in C� The corresponding state sort can be used to de�ne a
state transition system� or� if the component is again a distributed system� a
distributed data view can be de�ned for it�

��� Black Box View

Both for state transition systems and distributed systems we have speci�ed a
black box view by associating a behavior with them� This provides black box
views for all kinds of glass box views of systems that we have considered so far�

��� Structural Views

A structural view onto a distributed system N is given by its set of components
and the channels connecting them� The structural view allows us to draw a
data �ow diagram showing the structuring of a system into its subsystems �its
components
 and their communication connections �channels
�

��� Process Views

For a distributed system N � �C� I�O
 with syntactic interface �I� O
 a process

view for an input i �
�
I is given by process represented by a distributed sys�

tem �N � � �C� �I� �O
 consisting of a set �C of actions �components
� The relation
between the distributed system N and the process �N is given by two functions

act 
 �C � C� chan 
 H� �N
� H�N


We assume that for each channel c � H�N
 the set of process channels �repre�
senting events


f�c � H� �N
 
 chan��c
 � cg

associated with it is linearly ordered� We assume that for all channels �c � H�N

we have

chan��c
 � I �� �c � �I

chan��c
 � O �� �c � �O

Further more we assume that chan��c
 is in the input or output channels of a
component �c � �C if chan�c
 is in the input or output channels respectively of
the component act��c
�

The process �N is called a process view for systemN with input i if there exists
a computation x of N for the input history i such that for every computation �x
of �N the streams associated with x carry the messages occurring in the linear
order for the channels of �N that are mapped on the respective channels�



� Conclusion

We have provided a family of mathematical models and concepts that can be
used as the core of a mathematical basis for software engineering� Methodological
and descriptional concepts of a method can be precisely de�ned in terms of
these models� It is our goal to demonstrate� how simple and straightforward
such a mathematical model is� It shows� in particular� that software engineering
methods can be provided with a tractable mathematical basis without too much
technical overhead�

There are many speci�c areas where mathematical system modeling can be
useful to give more precision to software engineering areas� Examples are soft�
ware architectures �see �Garlan� Shaw ���
� formal methods for the development
of large software systems �see �Abrial ���
 or systematic program development
methods �such as �Jones ���
� The structures introduced above can be used�
in particular� for the Cleanroom Software Engineering approach propagated in
�Mills et al� �	��

References

�Abrial ��� J�R� Abrial� On Constructing Large Software Systems� In� J� van
Leeuwen �ed��� Algorithms� Software� Architecture� Information
Processing ��� Vol� I� ���
���

�Booch ��� G� Booch� Object Oriented Design with Applications� Benjamin
Cummings� Redwood City� CA� ����

�Broy ��� M� Broy� Towards a Formal Foundation of the Speci	cation and
Description Language SDL� Formal Aspects of Computing ��
��
�� ������

�Broy ��� M� Broy� �Inter
�Action Re	nement� The Easy Way� In� M� Broy
�ed��� Program Design Calculi� Springer NATO ASI Series� Se

ries F� Computer and System Sciences� Vol� ���� pp� ���
����
Berlin� Heidelberg� New York� Springer ����

�Broy ��� M� Broy� Advanced Component Interface Speci	cation� In�
Takayasu Ito� Akinori Yonezawa �eds��� Theory and Practice
of Parallel Programming� International Workshop TPPP����
Sendai� Japan� November �
�� ����� Proceedings� Lecture Notes
in Computer Science ���� Springer ����

�Coad� Yourdan ��� P� Coad� E� Yourdon� Object
oriented Analysis� Prentice Hall
International Editions ����

�DeMarco ��� T� DeMarco� Structured Analysis and System Speci	cation�
Yourdan Press� New York� NY� ����

�Denert ��� E� Denert� Software
Engineering� Springer ����

�Downs et al� ��� E� Downs� P� Clare� I� Coe� Structured analysis and system spe

ci	cations� Prentice Hall ����

�Focus ��� M� Broy� F� Dederichs� C� Dendorfer� M� Fuchs� T�F� Gritzner�
R� Weber� The Design of Distributed Systems 
 an Introduction
to Focus� Technical University Munich� Institute of Computer
Science� TUM
I����� Januar ����� see also� Summary of Case



Studies in Focus 
 a Design Method for Distributed Systems�
Technical University Munich� Institute for Computer Science�
TUM
I����� Januar ����

�Garlan� Shaw ��� D� Garlan� M� Shaw� An Introduction to Software Architecture�
In� Advances in Software Engineering and Knowledge Engineer

ing� ����

�Hettler ��� R� Hettler� Zur �Ubersetzung von E�R
Schemata nach Spec�

trum� Technischer Bericht TUM
I����� TU M�unchen� ����
�Hu�mann ��� H� Hu�mann� Formal foundation of pragmatic software en


gineering methods� In� B� Wol	nger �ed��� Innovationen bei
Rechen
 und Kommunikationssystemen� Informatik aktuell�
Berlin� Springer� ����� ��
��

�Hu�mann ��� H� Hu�mann� Formal Foundations for SSADM� Technische Uni

versit�at M�unchen� Fakult�at f�ur Informatik� Habilitationsschrift
����

�Jones ��� C�B� Jones� Systematic Program Development Using VDM�
Prentice Hall ����

�Mills et al� ��� H� Mills� M� Dyer� R� Linger� Cleanroom Software Engineering�
IEEE Software Engineering� �������� ����

�Reisig ��� W� Reisig� Petrinetze 
 Eine Einf�uhrung� Studienreihe Infor

matik� �� �uberarbeitete Au�age �������

�Rumpe et al� ��� B� Rumpe� C� Klein� M� Broy� Ein strombasiertes mathema

tisches Modell verteilter informationsverarbeitender Systeme 

Syslab
Systemmodell� Technische Universit�at M�unchen� Institut
f�ur Informatik� ����� TUM
I����

�Wirsing ��� M� Wirsing� Algebraic Speci	cation� In� J� van Leewwen �ed���
Handbook of Theorectical Computer Science� Volume B� chapter
��� pages �������� North
Holland� Amsterdam ����



Biographical Paragraph

Prof� Dr� Manfred Broy
Fakult�at f�ur Informatik
Technische Universit�at M�unchen
D������ M�unchen

Prof� Dr� Manfred Broy is full professor of computing science at the Technical
University of Munich� His research interests are software and systems engineering
comprising both theoretical and practical aspects� This includes system models�
the speci�cation and re�nement of system components� speci�cation techniques�
development methods� advanced implementation languages� objectorientation�
and quality assurance by veri�cation� He is leading a research group working in a
number of industrial projects that try to apply mathematically based techniques
and to combine practical approaches to software engineering with mathematical
rigour�

Professor Broy is the organizer of the Marktoberdorf Summer Schools in
foundations of programming� He published a four volume introductory course
to computing science �in German
� He is main editor of Acta Informatica and
editor of Information and Software Technology� Distributed Computing� Formal
Aspects in Computer Sciences� and Journal of Universal Computer Science�

Professor Broy is a member of the European Academy of Science� In ���� he
received the Leibniz Award by the Deutsche Forschungsgemeinschaft�

This article was processed using the LATEX macro package with LLNCS style


