Mathematical System Models as a Basis of
Software Engineering*

Manfred Broy

Institut fiir Informatik, Technische Universitit Miinchen,
Arcisstr. 21, D-80290 Miinchen, Germany

Abstract. We give mathematical system models as a basis for system
specification, system development by refinement, and system implemen-
tation. It provides a simple homogeneous mathematical and logical foun-
dation of software and systems engineering. We treat mathematical con-
cepts of refinement through levels of abstraction and complementing sys-
tem views as they are used in software engineering. The goal is to give a
coherent and simple mathematical basis.

1 Introduction

Software engineering comprises methods, description techniques and develop-
ment processes for the development of large software systems. The full framework
of a software engineering method (such as for instance SSADM, see [Downs et
al. 92], or Cleanroom Software Engineering, see [Mills et al. 87]) contains a large
amount of complex and highly interconnected information. Traditionally, this
information is provided by so called reference manuals and rationals providing
an often strange mixture of ideology, technical explanation, experience reports
and ad hoc hints. Mostly, the meaning of the proposed description techniques
remains partially unclear and so does their relationships.

We claim that it is possible to give a much more precise presentation of
software engineering techniques. We show that this can be done without too
much overhead by providing a mathematical basis in little more than ten pages.

Our general goal is to give a comprehensive mathematical foundation of the
models and notions used and needed in software engineering (see [Booch 91],
[Coad, Yourdan 91], [DeMarco 79], [Denert 91]) but keeping the mathematics
as simple as possible. We describe a compositional system model that covers the
main modeling issues dealt with in systems and software engineering.

1.1 Informal Survey of System Modeling Notions

An interactive system interacts with its environment by exchanging messages.
The messages are exchanged through input and output channels. The causal

* This work was carried out within the Project SysLab, supported by Siemens Nixdorf
and by the Deutsche Forschungsgemeinschaft under the Leibniz program. It is based
on results worked out in the Sonderforschungsbereich 342 ” Werkzeuge und Methoden
fiir die Nutzung paralleler Rechnerarchitektur”.

relationship between the input and output messages determines the black box
behavior of a system also called its interface. Formally, this behavior is described
by a black box specification also called an interface specification. By such a spe-
cification the behavior of a system may be specified uniquely for every pattern
of input behavior given by its environment or the specification may leave some
freedom. In the latter case we speak of underspecification or in the case of an
operational system also of nondeterminism.

The behavior of a system may depend on the timing of its input messages.
Also the timing of the output messages may be an important property of a
system. Therefore we are interested in a specification technique that allows us to
specify systems with timed and time dependent behaviors. For the description
of the black box view of a system we use a logic based specification language.

When constructing an implementation of a system, we are not only interested
in its black box behavior, but also in its internal structure. We speak of a glass
box view of a system. Under its glass box view, a system may either be a state
machine with a central state which we understand, in general, as a centralized
nondistributed unit! or it may be a distributed system consisting of a family of
subsystems called components. In a distributed system the only way the compo-
nents interact is again by exchanging messages. However, also for a distributed
system, a state view is possible by including all states of its components. This
leads to a distributed state.

The messages and states of a system are mathematical elements of appro-
priately chosen carrier sets. They might be described by axiomatic specification
techniques or by classical description techniques for data models as proposed in
software engineering such as the widely used entity/relationship techniques.

A system (especially a distributed system) carries out a process that may
depend on the behavior of the environment. Such a process consists of all the
actions carried out by the system. Elementary actions of an interactive system
consist in sending and receiving messages. The description of representative in-
stances of such processes may help to understand the interactions of a system.

In the development of a system, we describe it and its parts at several levels
of abstraction. Through the development, seen as a pure top down approach,
we take into account more and more specific details and change the models
such that they come closer to the structure required by system implementations
finally leading to a software architecture. This process of system development is
also called refinement. The notion of refinement is formalized by a refinement
relation which is a mathematical relation between system specifications.

We consider, among others, the following types of refinement relations for
system development:

— black box refinement (also called property refinement),
— interface refinement,
— glass box refinement.

! In this oversimplified view we include shared state systems with parallelism as nondis-
tributed systems.

Glass box refinement aims at the design and implementation phase of a system.
It may be classified into:

— state space refinement,
— refinement by distribution.

The corresponding refinement relations form the mathematical basis for the gen-
eration of logical verification conditions that have to be proved to show the
correctness of the respective refinement steps.

1.2 Overall Organization of the Paper

In the following we define mathematical models capturing all the notions in-
troduced informally in the introduction. We start by defining a mathematical
system model which allows to model distributed systems in a hierarchical man-
ner. Then we treat the notion of refinement and of complementing system views.

In our descriptions of system views and concepts, one goal is uniformity.
We describe every system concept by a syntactic and a semantic part. In the
syntactic part we define families of identifiers with additional sort information
about them. In the semantic part, we associate mathematical elements with the
introduced name spaces.

Our work is based on [Broy 91], [Focus 92], [Broy 93], [Broy 95] and [Rumpe
et al. 95]. An application of mathematical models to a specific software engineer-
ing method is shown in [Hufimann 94] (see also [Hufimann 95]) by treating the
British development method SSADM.

2 The Mathematical System Model

In this section we introduce a mathematical model for interactive and distributed
systems and define a number of fundamental aspects and views.

2.1 Data Models

A data model is used to model the data occurring in an information processing
system. It consists of a syntactic and a semantic part. The syntactic part consists
of a signature X = (S, F'). S denotes a set of sorts and F denotes a set of function
symbols. For each of these function symbols, a functionality is predefined by a
mapping

fct: F — ST

that associates with every function symbol its sequence of domain and range
sorts. Thus, the syntactic part provides a name space with sort information.

Given a signature X = (S, F), a X-algebra A consists of a carrier set s for
every sort s € S and of a function

fAostx . xs —>s,‘:‘+1

for every function symbol f € F with fct(f) = <s1...8p+1>. A sorted set of
identifiers is a set of identifiers X with a function

Sort : X — S

that associates a sort with every identifier in X. By X4 we denote the set of
all valuations which are mappings v that associate an element v(z) € Sort(z)4
with every identifier x € X.

An entity/relationship model consists of a syntactic and a semantic part. Its
syntactic part consists of a pair (F, R) where E is a sorted set of identifiers called
entities and R is a set of identifiers called relationships for which there exists a
function

Sort: R > E X E

The pair (E, R) is also called entity/relationship data model. A semantic model
B of an entity /relationship model assigns a set e to each entity identifier e € E
for which we have

eB C sort(e)?
and B is a relation

rB - ef x ef
A semantic model B is also called an instance of an entity/relationship data
model. It is a straightforward step to include attributes into our concept of
entity /relationship techniques. The set of all instances of an entity relation-
ship model is called the entity/relationship state space (see [Hettler 94] for an
intensive treatment of this subject). Note that this definition already includes
a simple integrity constraint namely that every element occurring in a relation
is also an element of the involved entity. Note, moreover, how easy it is in this
formalization to combine entity /relationship models with axiomatic specification
techniques (see [Wirsing 90]).

active sender connected active receiver

Q\ransmission state

gransmission queue

Fig. 1. Entity/relation diagram for the transmission medium with the entities active
sender and active receiver, the relationship connected and two attributes

In Fig. 1 we show a simple entity/relationship diagram defining a data model
for a transmission medium. It is a part of a message switching system which will
be used as an example throughout the paper.

2.2 Communication Histories

Systems cooperate and interact by exchanging messages over channels. Given a

sort of messages M, by
Str M

we denote the sort of timed streams. A timed stream is represented by a mapping
5 :IN\{0} = (M™)*

A stream denotes a communication history of a channel. We work with a discrete
model of time and assume that our time is devided into an infinite sequence of
time intervals. s(7) represents the sequence of messages communicated in the ith
time interval. Given a stream s, by

S|k

we denote the restriction of the timed stream s to the first k& time interval
represented by [1 : k]. For every sequence of messages m € (M#)* and every
timed stream s of sort Str M we denote by

<m>""s
the stream with the sequence m as its first element (the sequence of messages
communicated in the first time interval) followed by the stream s.

Given a sorted set of identifiers X for channels, a communication history
for these channels is denoted by a function Val that associates a stream Val(c)
of sort Str Sort(c) with every channel ¢ € X. The set of these communication
histories for the sorted set of identifiers X is denoted by

X
B X“* we denote the set of mappings m that associate a sequence m(c) € (s4)*
with every channel ¢ € X of sort s = Sort(c). For every m € X“* that assigns a
sequence of messages to every channel and every x € X we denote by <m>"x
the communication history for the channels in X with

(<m>"x)(c) = <m(c)>"z(c)

for every channel ¢ € X.

2.3 Black Box System Models

A black box system model is given by a syntactic and a corresponding semantic
interface. The syntactic interface consists of two sets of sorted identifiers I and
O, denoting the sets of input and output channels with fixed sorts of messages
communicated through them.

A black box behavior of a component with the syntactic interface (I,0) is
modeled by a function

—

F:T- PO)

(by P(M) we denote the powerset over the set M) such that the output at time
point k depends only on the input received till time point k. This is expressed

by the following axiom of well-timedness (for all 7,5 € I):

il = Jle = F@)k =)k

A behavior f is called deterministic, if f(i) contains exactly one element for every
input history ¢. It is called consistent, if it contains a deterministic behavior.
The set of all black box behaviors with input channels I and output channels
O is denoted by
I>0.

Note that the set I > O provides the syntactic interface of a system and every
element in I > O provides a semantic interface.

i1 IS 01 :T1
—_— —_———
: f
n : Sn Om :T'm
Fig. 2. Graphical representation of a syntactic interface with input channels iy, ... i,
and output channels o1,..., 0, and their respective sorts si,...,sp, and ri,...,r,

2.4 State Transition Models

A state transition model is given by a nondeterministic state machine M with
input and output. It consists of

— a state sort s € S,

— an input set of sorted identifiers I,

— an output set of sorted identifiers O,

— a transition relation § : s4 x I4* — P(s4 x O4*),
— aset gp C s of initial states.

With every state transition model we associate for every state o € s4 a behavior
Mecri>o0
by the following equation (let i € I4*, = € T)
M (cisma) ={<o>"z:2€ M (x) A (5,0) € 6(0,4)}

This is a recursive definition of the function f™, but since the recursion is
guarded its mathematical treatment is straightforward.

Fig. 3 gives a graphical representation of a system state view as it is often
used in software engineering methods.

transmission order
send request
Wait for con ack

connect ack

. message ack .
Wait for mess ack — Wait for clo ack
close connection

end of transmission

send message

close ack

Fig. 3. State transition view of the sender, input messages are written above and
output messages below the arrows

2.5 Distributed Systems

A distributed system N = (C, Iy, Op) consists of a set C' of components that
interact by exchanging messages over channels. Its syntax is given by

— the syntactic external interface of sorted input channels I, and output chan-
nels Oy,

— the set C of identifiers for components and a mapping that associates with
each component identifier ¢ € C' a set of input channels I,. and a set of output
channels O,.

We require that all sets of output channels of the components in N are pairwise
disjoint and disjoint to the set Iy of input channels of the component and that
Iy = H(N)\U.cc Oc- By H(N) we denote the set of all channels of the system:

H(N)=ILu0,U | J (L. UO.)
ceC

The components and channels of a system form a data flow net. Fig. 4 gives
an example of a graphical representation of a system by a data flow diagram.
This provides a structural view of the system. For modeling dynamic systems
where the number of components and channels changes over time, we need a
more sophisticated mathematical model, of course.

The glass box semantics of the distributed system IV is given by a mapping
B that associates a behavior B(c) € I. > O, with every component ¢ € C. A
computation of the distributed system is a family of timed streams z € H(N)
such that

zlo, € B(c)(z|r,) for all ce C

By U(N) we denote the set of all computations of the distributed system N.
The black box behavior B(N) € Iy > Op of the distributed system N with
syntactic interface (I, Og) is specified by (for all input histories i € Iy):

B(N)(i) ={z|o, :x € UN) Azx|, =1}

B(N) allows us to abstract away the distribution structure of the system N and
to extract its black box behavior, its interface behavior.

sap sap

sap transmission medium sap

sap sap

sap e sap

Fig. 4. A data flow diagram that gives a structural system view of a message
transmission system with several service access points (saps)

2.6 Processes

For a distributed system N we have introduced its set of computations U(N). In
a computation we give for each channel a communication history by a stream.
A process is a more detailed description of the run of a system N.

A process for an input i can be represented as a special case of a distributed
system N = (C,I,0) with syntactic interface (I,0). For a process we assume
an input ¢ € I such that in the computation of N for input i every channel
(also those in I) contains exactly one message and the data flow graph associated
with N is acyclic and each component of P is deterministic. Then every channel
denotes exactly one event of sending and receiving a message component ¢ € C
of the system N denoting a process, represents one action. In this model of a
process an action is a component that receives one input message on each of its
input lines and produces one output message on each of its output channels. If
there is a channel (an event) from an action a; to an action as then a; is called
causal for as.

This idea of modeling a process by a specific distributed system is similar to
the concept of occurrence nets as introduced to represent concurrent processes
that are runs of Petri-nets (see [Reisig 86]).

Sender sap

transmission order

Transmission medium Receiver sap

Transmission

initiate

send request

connect ack

}

Request

transmission

send request

Connection

ack

connect ack | | transmission indication

{

Connect

transmission

f

Content

send

send message

message ack

!

Message

transmission

send message

}

Message

ack

message ack | | message

Ack

transmission

!

Terminate

connection

close connection

close ack

!

Close

connection

close connection

Indicate

termination

end of transmission

Indicate

termination

end of transmission

Fig. 5. Process description of a transmission scenario

2.7 Complete System Models

A complete hierarchical system model is given by a black box view consisting of
a syntactic and semantic interface and of a glass box view consisting of either a
corresponding state transition system or of a corresponding distributed system
for it. In the latter case we require that each of its component is a complete
hierarchical system again. This yields hierarchical distributed systems. Since
we can associate a black box behavior to every state transition system and
every distributed system, we can associate a behavior to every component in the
hierarchy if the nesting is finite. A complete system is called interface consistent,
if for each component its glass box behavior is consistent with (or a refinement
of, see below) its given semantic interface.

3 Refinement

Large complex systems cannot be developed by considering all its complex prop-
erties in one step. Following the principle, not to cover more than one difficulty
at a time, refinement allows us to add complexity to system models stepwise in
a controlled way. All approaches to software engineering work with a formal or
an informal concept of refinement.

We formalize the idea of refinement with the help of refinement relations in
the sequel. A refinement relation is formally a mathematical relation between
mathematical system models.

3.1 Refinement of Data Models

A data model given by a Y-algebra A can be refined by adding sorts and function
symbols to the signature and respectively carrier sets and functions. A more
general notion of refinement is obtained by renaming the signature X' = (S, F)
into a signature ¥ = (S, F) by a signature morphism. It is given by a pair of
functions

01:S—>§,02:F—>F

where X = (S, F) is the refined signature and for all f € F:
fct f = oy (fet f)

where the mapping o7 is extended to sequences of sorts elementwise. This de-
termines the syntactic part of refinement. A Y-algebra A is called a refinement
of the X-algebra A, if there are functions

Qs 01 (S)A st 0,54 > P(oy (S)A)

for every sort s € S such that for every data element a € s* we have:

{as(a) - a € os(a)} = {a}

and for all functions f € F with fct(f) = <s1...s,4+1> we have for all data
elements a; € s',...,a, € 82:

gy (02(F) @, 80)) = fA(ar, -, ap)

for all a3 € 05, (a1),...,an € 0s,(ayn). This is the classical notion of data refine-
ment, where all abstract elements are represented by concrete elements. This way
we obtain a refinement notion for state machines and also for entity/relationship
models (for a detailed treatment of this aspect see [Hettler 94]).

3.2 Refinement of Communication Histories

The refinement concept for general data models can be carried over to a refine-
ment concept for communication histories. This is an advantage of the incor-
poration of communication histories as mathematical elements into our system
model. Given a pair of functions

a:jfl %YO,QZYO—)P(X’l)

a sorted set C of identifiers is called a communication history refinement of the
sorted set of identifiers X if we have

{a(e) :c e old)} ={c}

—
for all ¢ € C'y. Since we use an explicit representation of communication histories
in our system models, the refinement notion is a simple generalization of our
refinement notion for data models.

3.3 Refinement of Black Box Views

A refinement relation for black box system models is defined by a relation be-
tween systems. Given two component behaviors fo, f1 € I >0 with the syntactic
interface (I,0) the behavior f; is called a black boz refinement of fy if for all

input histories i € T we have
fi1(2) C fo(i)

We generalize this simple notion of refinement to interface refinement as follows.
Assume the functions

>

aq :Tl —)_fo,gl :_fo—)P(Il)

a2:61 —)60,@2350—)P(_0>1)

that define a communication history refinement I; for I, and a communication
history refinement O; for Oy, then the black box behavior

Hel>0

is called an interface refinement of the black box behavior
fo €Iy > 0Op

if for all input histories = € _fg

{aza(f1(2)) s x € 01 ()} = fo(2)

Again this is just a straightforward generalization of the concept of data model
refinement to the behavior of systems. It allows us to refine systems to systems
with a different number of input and output channels, different names and with
different sorts that may lead to a different granularity of messages. A simple
example is the refinement of a system working with numbers (for instance an
adder) into a system working with bits (for more details, see [Broy 93]).

3.4 Refinement by Distribution

A distributed system N with interface (I, O) is called a refinement by distribution
of a black box behavior f € I > O if B(N) is a refinement of f. B(IN) denotes
the black box behavior of a system that is defined as described in section 2.5.

3.5 Process Refinement

A process is represented by a special case of a distributed system. So all refine-
ment notions introduced for distributed systems carry over to processes. Hence
a process p is a refinement of an action a, if p is a refinement by distribution of
the action a. Recall that an action is a special case of a system.

3.6 Glass Box Refinement

Given a distributed system N with a specified black box behavior for all its
components, a glass box refinement associates a state machine or a distributed
system with a behavior that is a refinement of the specified one. Hierarchical
iterated glass box refinement leads to a complete system model.

4 System Views

For the development of large complex systems it is helpful to work with com-
plementary system views. A system view is a projection of a system onto a
particular aspect. For a given distributed system we find it useful to work with
the following views:

— process views,

— data model and state views,
black box views (interface views),
— structural views.

Views allow us to concentrate on specific aspects of a system: Given a complete
distributed system we define in the following the mentioned views for it.

4.1 Data Model View

For a complete distributed system N = (C, I, 0) with syntactic interface (I, 0)
a data model view provides for each of its components ¢ € C a data view.
Then the state space consists of an assignment that associates a state sort with
each component in C. The corresponding state sort can be used to define a
state transition system, or, if the component is again a distributed system, a
distributed data view can be defined for it.

4.2 Black Box View

Both for state transition systems and distributed systems we have specified a
black box view by associating a behavior with them. This provides black box
views for all kinds of glass box views of systems that we have considered so far.

4.3 Structural Views

A structural view onto a distributed system IV is given by its set of components
and the channels connecting them. The structural view allows us to draw a
data flow diagram showing the structuring of a system into its subsystems (its
components) and their communication connections (channels).

4.4 Process Views

For a distributed system N = (C,I,0) with syntactic interface (I, 0) a process
view for an input ¢ € I is given by process represented by a distributed sys-

tem N = (C,I,0) consisting of a set C of actions (components). The relation

between the distributed system N and the process N is given by two functions
act : C — C,chan: H(N) — H(N)

We assume that for each channel ¢ € H(N) the set of process channels (repre-
senting events)

{¢ € H(N) : chan(é) = ¢}
associated with it is linearly ordered. We assume that for all channels ¢ € H(N)
we have ~
chan(é) e I < ¢é€l

chan(é) €0 < ¢€ O

Further more we assume that chan(¢) is in the input or output channels of a
component ¢ € C if chan(c) is in the input or output channels respectively of
the component act(¢).

The process N is called a process view for system N with input i if there exists
a computation x of N for the input history ¢ such that for every computation &
of N the streams associated with # carry the messages occurring in the linear
order for the channels of N that are mapped on the respective channels.

5 Conclusion

We have provided a family of mathematical models and concepts that can be
used as the core of a mathematical basis for software engineering. Methodological
and descriptional concepts of a method can be precisely defined in terms of
these models. It is our goal to demonstrate, how simple and straightforward
such a mathematical model is. It shows, in particular, that software engineering
methods can be provided with a tractable mathematical basis without too much
technical overhead.

There are many specific areas where mathematical system modeling can be
useful to give more precision to software engineering areas. Examples are soft-
ware architectures (see [Garlan, Shaw 93]), formal methods for the development
of large software systems (see [Abrial 92]) or systematic program development
methods (such as [Jones 86]). The structures introduced above can be used,
in particular, for the Cleanroom Software Engineering approach propagated in
[Mills et al. 87].

References

[Abrial 92] J.R. Abrial: On Constructing Large Software Systems. In: J. van
Leeuwen (ed.): Algorithms, Software, Architecture, Information
Processing 92, Vol. I, 103-119

[Booch 91] G. Booch: Object Oriented Design with Applications. Benjamin
Cummings, Redwood City, CA, 1991

[Broy 91] M. Broy: Towards a Formal Foundation of the Specification and

Description Language SDL. Formal Aspects of Computing 3,
21-57 (1991)

[Broy 93] M. Broy: (Inter-)Action Refinement: The Easy Way. In: M. Broy
(ed.): Program Design Calculi. Springer NATO ASI Series, Se-
ries F: Computer and System Sciences, Vol. 118, pp. 121-158,
Berlin, Heidelberg, New York: Springer 1993

[Broy 95] M. Broy: Advanced Component Interface Specification. In:
Takayasu Ito, Akinori Yonezawa (eds.). Theory and Practice
of Parallel Programming, International Workshop TPPP’94,
Sendai, Japan, November 7-9, 1994, Proceedings, Lecture Notes
in Computer Science 907, Springer 1995

[Coad, Yourdan 91] P. Coad, E. Yourdon: Object-oriented Analysis. Prentice Hall
International Editions 1991

[DeMarco 79| T. DeMarco: Structured Analysis and System Specification.
Yourdan Press, New York, NY, 1979

[Denert 91] E. Denert: Software-Engineering. Springer 1991

[Downs et al. 92] E. Downs, P. Clare, I. Coe: Structured analysis and system spe-
cifications. Prentice Hall 1992

[Focus 92] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T.F. Gritzner,

R. Weber: The Design of Distributed Systems - an Introduction
to Focus. Technical University Munich, Institute of Computer
Science, TUM-19203, Januar 1992, see also: Summary of Case

[Garlan, Shaw 93]

[Hettler 94]

[HufSimann 94]

[HuBmann 95]

[Jones 86]
[Mills et al. 87]
[Reisig 86]

[Rumpe et al. 95]

[Wirsing 90]

Studies in Focus - a Design Method for Distributed Systems.
Technical University Munich, Institute for Computer Science,
TUM-19203, Januar 1992

D. Garlan, M. Shaw: An Introduction to Software Architecture.
In: Advances in Software Engineering and Knowledge Engineer-
ing. 1993

R. Hettler: Zur Ubersetzung von E/R-Schemata nach SpEC-
TRUM. Technischer Bericht TUM-19409, TU Miinchen, 1994

H. HuBmann: Formal foundation of pragmatic software en-
gineering methods. In: B. Wolfinger (ed.): Innovationen bei
Rechen- und Kommunikationssystemen, Informatik aktuell,
Berlin: Springer, 1994, 27-34

H. HuBBmann: Formal Foundations for SSADM. Technische Uni-
versitdt Miinchen, Fakultat fiir Informatik, Habilitationsschrift
1995

C.B. Jones: Systematic Program Development Using VDM.
Prentice Hall 1986

H. Mills, M. Dyer, R. Linger: Cleanroom Software Engineering.
IEEE Software Engineering, 4:19-24, 1987

W. Reisig: Petrinetze - Eine Einfiihrung. Studienreihe Infor-
matik; 2. iberarbeitete Auflage (1986).

B. Rumpe, C. Klein, M. Broy: Ein strombasiertes mathema-
tisches Modell verteilter informationsverarbeitender Systeme -
Syslab-Systemmodell. Technische Universitat Miinchen, Institut
fiir Informatik, 1995, TUM-19510

M. Wirsing: Algebraic Specification. In: J. van Leewwen (ed.):
Handbook of Theorectical Computer Science, Volume B, chapter
13, pages 675—788, North-Holland, Amsterdam 1990

Biographical Paragraph

Prof. Dr. Manfred Broy
Fakultét fiir Informatik
Technische Universitat Miinchen
D-80290 Miinchen

Prof. Dr. Manfred Broy is full professor of computing science at the Technical
University of Munich. His research interests are software and systems engineering
comprising both theoretical and practical aspects. This includes system models,
the specification and refinement of system components, specification techniques,
development methods, advanced implementation languages, objectorientation,
and quality assurance by verification. He is leading a research group working in a
number of industrial projects that try to apply mathematically based techniques
and to combine practical approaches to software engineering with mathematical
rigour.

Professor Broy is the organizer of the Marktoberdorf Summer Schools in
foundations of programming. He published a four volume introductory course
to computing science (in German). He is main editor of Acta Informatica and
editor of Information and Software Technology, Distributed Computing, Formal
Aspects in Computer Sciences, and Journal of Universal Computer Science.

Professor Broy is a member of the European Academy of Science. In 1994 he
received the Leibniz Award by the Deutsche Forschungsgemeinschaft.

This article was processed using the ITEX macro package with LLNCS style

