
Interpreter Veri�cation
for a Functional Language

Manfred Broy� Ursula Hinkel� Tobias Nipkow�� Christian Prehofer���
Birgit Schieder

Technische Universit�at M�unchen���

Abstract� Starting from a denotational and a term�rewriting based op�
erational semantics �an interpreter� for a small functional language� we
present a correctness proof of the interpreter w�r�t� the denotational se�
mantics� The complete proof has been formalized in the logic LCF and
checked with the theorem prover Isabelle� Based on this proof� conclu�
sions for mechanical theorem proving in general are drawn�

� Introduction

Compiler and interpreter veri�cation is a key component in the correctness ar�
gument for any software system written in a high�level language� Otherwise the
carefully veri�ed high�level programs might be compiled or interpreted incor�
rectly� Proving the correctness of machine oriented programs ��� instead may be
inevitable for some applications� but is methodologically a step backwards�

Veri�cation of compilers and interpreters is also challenging from a theoretical
point of view because complex semantical questions are involved ��� ��� These
comprise the formalization of semantical de�nitions and proof methods that are
powerful enough to show the equivalence between quite di	erent de�nitions of
the semantics of programming languages�

When proving compilers correct� one of the di
culties is the treatment of re�
cursion� which is handled by the �xpoint operator in the denotational semantics
of the source language and by a stack discipline and gotos at the level of machine
programs� This problem is dealt with in ���� In the veri�cation of interpreters
similar problems have to be solved� here� recursive de�nitions are treated by un�
folding at the level of syntax� Technically� the operational semantics de�ned by
an interpreter is formalized by a recursive function transforming syntactic terms
of the source language� This paper describes the correctness proof of an opera�
tional with respect to a denotational semantics for a small functional language�
The main contributions are�

� The complete proof has been machine checked with the help of Isabelle ����
a generic theorem prover�

� Research supported by ESPRIT BRA ���	� TYPES
�� Research supported by DFG grant Br 

����� Deduktive Programmentwicklung
��� Institut f�ur Informatik� 
��� M�unchen� Germany�

E�mail� fbroy�hinkel�nipkow�prehofer�schiederg�informatik�tu�muenchen�de



� Our notion of correctness of an interpreter is signi�cantly stronger than
most correctness conditions considered in other machine�checked compiler
or interpreter proofs� We prove that whenever the outcome of a program is
de�ned according to the denotational semantics� the operational semantics
leads to a terminating computation with the same outcome� Thus we prove
partial and total correctness by a single veri�cation condition�

The paper is structured as follows� In Section � the syntax of the functional
language� its denotational semantics� the de�nition of the interpreter and the
basic correctness condition are given� In Section � the veri�cation support sys�
tem Isabelle�LCF is explained by describing its syntax� its basic type concept
and its induction proof principle� In Section � the proof task is formalized in
Isabelle�LCF� In Section � the structure and size of the proof is described� In
Section � general aspects of machine support for large proofs are discussed�

� The Interpreter and its Correctness

We de�ne syntax and denotational semantics of FOFL� a �rst�order functional
language� and an interpreter for it� Then we outline a correctness proof of the
interpreter� FOFL is purposely kept small in order to focus on the main non�
trivial aspect� proving the interpretation of recursively de�ned functions correct�
Our interpreter is given as a recursively de�ned function� whereas in the litera�
ture� e�g� ��� ��� operational semantics is often given by means of inference rules�
Therefore our veri�cation task di	ers from those in the literature�

Syntax FOFL contains function application� conditional expressions� and re�
cursive function de�nitions� Let � be a set of prede�ned function symbols with
at least two constants true� false � �� let F a set of user�de�nable function
symbols� and let V a set of variables� Each function symbol has a �xed �nite
arity�

The set T of terms is de�ned inductively�

� x � T for every variable x � V �
� ��t�� � � � � tn� � T is an application of a prede�ned function symbol � � � of
arity n to terms t�� � � � � tn � T �

� f�t�� � � � � tn� � T is an application of a user�de�nable function symbol f � F
of arity n to terms t�� � � � � tn � T �

� if t� then t� else t� � � T for all terms t�� t�� t� � T
� ��x f�x�� � � � � xn� � t���t�� � � � � tn� � T is the application of a recursively
de�ned function f � F �with formal parameters x�� � � � � xn � V and body
t�� to terms t�� � � � � tn � T �

The set P of programs consists of all closed terms �that is� terms without free
variables�� FOFL is �rst�order because functions cannot have functions as argu�
ments or return them as results�

Denotational Semantics We follow the standard theory of denotational se�
mantics� see e�g� ���� Let D be a set of data values equipped with a �at order�



The algebra A assigns a continuous function �A to each prede�ned function sym�
bol � � �� Env is the set of environments that assign data values to variables�
and functions to user�de�ned function symbols� The functions lookupvar and
lookupfct yield the values assigned to variables and functions� respectively� by
an environment �� The operator FIX yields the least �xpoint of a functional� We
write IF � THEN � ELSE � FI for the conditional on the meta�level� The notation
����� is overloaded and denotes substitution as well as update of functions� It is
used as a post�x operator�

The denotational semantics is de�ned by a function T � T � Env � D

speci�ed as follows�

T ��x��� � lookupvar x �

T ����t�� � � � � tn���� � �A�T ��t����� � � � � T ��tn����

T ��f�t�� � � � � tn���� � �lookupfctf ���T ��t����� � � � � T ��tn����

T ��if t� then t� else t� ���� � IF T ��t���� THEN T ��t���� ELSE T ��t���� FI

T ����x f�x�� � � � � xn� � t���t�� � � � � tn���� � �FIX � ��T ��t����� � � � � T ��tn����

where � � �g��d�� � � � � dn�T ��t�����d��x�� � � � � dn�xn� g�f �

The Interpreter LetW be the set of all closed terms over �� Let a continuous
boolean function normal be given� which yields true on a subset ofW � The terms
of this subset are called normal forms� Among them are true and false� The
continuous function eval evaluates each term of W to its unique normal form�
If t is a term in W � we write tA for its interpretation in the algebra A�

The interpreter is based on the function reduce� which performs a single
reduction step on a program t � P �

t �W � reduce��t�� � eval��t��

��t�� � � � � tn� ��W � reduce����t�� � � � � tn��� � ��reduce��t���� � � � � reduce��tn���

�normal��t���� reduce��if t� then t� else t� ��� �

if reduce��t��� then t� else t� �

reduce��if true then t� else t� ��� � t�

reduce��if false then t� else t� ��� � t�

reduce����x f�x�� � � � � xn� � t���t�� � � � � tn��� �

t����x f�x�� � � � � xn� � t���f� t��x�� � � � � tn�xn�

The interpreter is recursively de�ned by the function val� which applies reduce
to a program t until a normal form is reached�

val��t�� � IF normal��t�� THEN t ELSE val��reduce��t���� FI

Interpreter Correctness Proof We call an interpreter correct with respect
to a denotational semantics if the following property holds� whenever the de�
notational semantics assigns a de�ned value to a program� then the interpreter
terminates with the same value� If a program has the unde�ned value under the
denotational semantics� then its interpretation may terminate with any value



or not terminate at all� Since the data domain D carries a �at order� we can
state interpreter correctness formally as follows� where void denotes the empty
environment�

�t � P � T ��t��voidv val��t��A ��

A proof by structural induction over t looks promising� but there is a problem�
In the case of function de�nitions the induction hypothesis is not applicable for
two reasons� the function body need not be a closed term and the environment
in which it is evaluated is not empty� Hence we face a typical problem of proofs
by induction� the induction hypothesis is not strong enough and must therefore
be generalized�

The main di
culty consists in �nding a suitable generalization of the cor�
rectness condition� As we have seen� we need inequations of the form T ��t��� v
val��u��A� where t is not necessarily closed� � not necessarily empty� and u a closed
term� Since this inequation does certainly not hold for all such t� �� and u� we
must �nd a relation � between terms and environments on the one hand� and
interpreted programs on the other hand� such that � has the following proper�
ties�

� The implication �t� �� � u � T ��t��� v val��u��A is provable by structural
induction over t�

�� For all closed terms t we have �t�void� � t�

Proposition �� follows directly from these conditions�
We will not give the exact de�nition of �� but describe it only informally�

We say that �t� �� � u holds if u is obtained from t by a substitution with the
following two properties�

� For each free variable x of term t the following holds� the environment �
assigns a value to x that is less or equal to the result of interpreting the term
that is substituted for x in u� This property will be called WV �weaker in

variable� in Sect� ��
� For all user�de�nable function symbols f the following holds� if the environ�
ment � assigns a function to f � then this function is less or equal to the
result of interpreting the declaration that is substituted for f in u� If � does
not assign a function to f � then f is not substituted in u� This property will
be called WF �weaker in function� in Sect� ��

The generalized correctness condition reads�

�t � T� �� � Env� �u � P � �t� �� � u� T ��t��� v val��u��A ���

We prove this generalized correctness condition by structural induction over t�
The most di
cult case is application of a function de�nition ��x f�x�� � � � � xn� �
t���t�� � � � � tn�� We must �nd and prove an auxiliary property� the least �xpoint
of the functional associated with the declaration is less or equal to the result of
interpreting the function de�nitions� This property is proved by �xpoint induc�
tion inside the structural induction�



The remaining cases of t are not di
cult to prove� but require a lot of tech�
nical lemmata� These lemmata primarily concern invariance of �� and substi�
tutions� The whole hand�written proof consists of about �� pages� More details
can be found in ����

� Isabelle�LCF

The proof described in the previous section does not make use of a speci�c logical
system but relies on general notions from domain theory� e�g� �� v and �xpoints�
The obvious choice for a machine�assisted version of the proof is LCF ���� a Logic
for Computable Functions� which formalizes standard domain theory� Having
�xed the precise logic� we still had a choice between two theorem provers sup�
porting this logic� Cambridge LCF ��� and Isabelle�LCF� Cambridge LCF is
dedicated solely to theorem proving in LCF whereas Isabelle ��� is a generic
theorem prover which supports a host of other logics apart from LCF� e�g� First�
Order Logic �FOL�� Zermelo�Fraenkel set theory �ZF� and Higher�Order Logic
�HOL�� Isabelle can be instantiated with the syntax and proof rules of the object
logic� Isabelle�LCF is the LCF instantiation of Isabelle�

Isabelle o	ers many principles for interactive theorem proving not present
in Cambridge LCF� schematic variables ��logical variables� in Prolog parlance��
higher�order uni�cation and proof search via backtracking� These features give
rise to powerful proof procedures which are a de�nite advance in automation over
what Cambridge LCF has to o	er� Thus we opted for Isabelle�LCF� which is an
extension of Isabelle�FOL and follows the logic LCF as described by Paulson ���
as closely as possible� We will therefore concentrate on the di	erences between
LCF and Isabelle�LCF�

Syntax Due to Isabelle�s �exible front�end� the only syntactic di	erence is
that curried application f x y� where f � �� � �� � ��� is written f�x� y��
Correspondingly� �� � �� � �� may be written ���� ���� ���

Types Isabelle�s type system is fairly close to that of LCF� namely ML�style
polymorphism� However� LCF has both continuous functions� which are iden�
ti�ed with Isabelle�s built�in function type� and predicates� Predicates are for�
malized in Isabelle as functions with result type o� the type of formulae� Thus
Isabelle�LCF needs to support two kinds of functions� because predicates need
not be continuous� Otherwise one could de�ne X � FIX��P��P � and derive
the contradiction X 	 �X�

This problem can be solved using Isabelle�s type classes� an overloading
scheme similar to the one in the functional programming language Haskell ���
��� In Isabelle�LCF we simply declare a new class cpo� which is the class of all do�
mains� We can now restrict certain constants to be available only at types which
are of class cpo� � � ���cpo���v � ���cpo���� ��� o� FIX � ���cpo���� ��� ��
In all three cases the type variable � ranges only over types of class cpo� The
type o is not of class cpo� thus ruling out the term X above� If a type is declared
to be in class cpo� e�g� nat � cpo� this means we can write formulae like � v ��
Of course the behaviour of v on nat has to be axiomatized explicitly and does



not follow automatically from nat � cpo�
Finally we need to say that �� � �� is of class cpo provided both �� and

�� are� However� this is only true if all terms of type �� � ��� where ��� �� �
cpo� are constructed from continuous functions by abstraction and application�
Unfortunately one can construct �x�f�g�x��� where g � �� � 	� f � 	 � �� and 	
is not a domain� and hence the composition of f and g need not be continuous�
Fortunately� this situation can be ruled out quite easily�

� All types except o are required to be domains� i�e� of class cpo�
�� There are no functions of type o� � where � � cpo�

These restrictions correspond exactly to the ones in LCF where all types must
be domains �there is no type of formulae�� and there are no functions taking
formulae as arguments�

The restriction that all types must be domains is a fairly severe one and
causes many complications� Regensburger ��� solves this dilemma by a semantic
embedding of LCF in Isabelle�HOL which allows to construct a separate space
of continuous functions�

Induction The only induction principle for LCF is �xpoint induction�

P ��� �x�P �x�� P �f�x��

�x�P �x�

where P �x� must be admissible ���� In Cambridge LCF� the test for admissibility
is an ML function which checks certain su
cient syntactic conditions� Most of
these can be expressed as inference rules and have thus found their way into
Isabelle�LCF� In this respect Isabelle�LCF is a little weaker than Cambridge
LCF� which turns out not to be a problem in practice�

Paulson ��� shows how to derive structural induction from �xpoint induction
and Cambridge LCF automates this derivation� Since Isabelle�LCF does not
provide this automation� structural induction schemata were added explicitly�

� The Speci�cation

The abstract syntax of FOFL� its denotational and operational semantics� and
the relation necessary for the correctness proof are all formalized as extensions
of Isabelle�LCF�

The syntax of FOFL is represented by the type T � Its constructors correspond
to the di	erent syntactic forms of the language� Isabelle�s mix�x notation enabled
us to use the following readable syntax�

T ��� var�x� j cst�g� j cstf g �T� j fun f �T� j cons�T�T�
j if T then T else T fi j fix f�x� � T �T�

This syntax is based upon the types V of variables� F of user�de�nable function
symbols and � of prede�ned function symbols� These auxiliary types are not
speci�ed any further� Let us examine the di	erent cases in detail�

var�x� is the variable x � V �



cst�g� is the prede�ned constant g � ��
cstf g �t� is the application of the unary prede�ned function g � � to an

argument t�
fun f �t� is the application of the user�de�ned function f �F to an argument t�
cons�t��t�� is the pair �t�� t���
fix f�x� � t� �t�� is the application of the recursive function f �F with formal

parameter x � V and body t� to an argument t��

Since we have constants� unary functions and pairs� we can express arbitrary
n�ary functions� Isabelle�LCF provides no automation for the de�nition of data
types like T � Hence the necessary induction and freeness axioms were asserted
explicitly�

As an example of a FOFL program we present the recursively de�ned func�
tion length computing the length of a list and apply it to some argument list
cons�cst�a�� cst�b��� The function symbols �� succ� is�empty and tail have
their usual �xed interpretation�

fix length�xs� � if cstf is�empty �var�xs�	 then cst�
�

else cstf succ �fun length �cstf tail �var�xs�			

�cons�cst�a�� cst�b�		

For the speci�cation of the denotational semantics it was essential that Isa�
belle o	ers higher order constructs and ��abstraction� We introduce the function
den �T in Sect� �� which evaluates a term relative to two environments�

den � �T� �V�D�map� �F�D� D�map�� D

The type constructor ��� 
�map realizes �nite functions from � to 
� Its def�
inition is not shown� The two environments provide semantic values for free
variables� �V�D�map maps �rst�order variables V to data values D and �F�D�
D�map maps user�de�ned function symbols F to functions from D to D�

The translation of the di	erent clauses for T in Sect� � is fairly straightfor�
ward� As an example we look at the case of fix� First we de�ne a functional

tau � �F� V� T� �V�D�map� �F�D�map�� �D � D�� �D � D�

which corresponds to the term � in Sect� � and is parameterized by the name of
the recursive function� the name of its formal parameter� its body� and the two
environments�

tau�f� x� t
� envV� envF� � ��g d� den�t
� envV�d�x	� envF�g�f	��

The functional tau realizes one step in the approximation of the recursive func�
tion� LCF�s �xpoint operator FIX is used to de�ne the denotational semantics
of recursive functions in FOFL�

t� �� � �� den�fix f�x� � t
 �t�	� envV� envF� �

FIX �tau�f� x� t
� envV� envF�� �den�t�� envV� envF��



The premise t� �� � is necessary because we have chosen to de�ne all constructors
of T to be strict� i�e� �fix f�x� � t� ���� � ��

The remaining clauses for den and the de�nition of the operational semantics
in Isabelle closely follow the original speci�cation in Sect� ��

The overall speci�cation de�nes �� functions with �� axioms� Most of the
complexity comes from the full formalization of substitution� Fortunately� Isa�
belle�s type system o	ers parametric polymorphism� which enabled us to de�ne
�nite sets and maps once �following Paulson ���� and use them repeatedly� Both
the denotational �den above� and the operational semantics rely heavily on en�
vironments� i�e� maps� of all kinds�

� The Correctness Proof in Isabelle

Next we discuss the mechanical veri�cation of the interpreter� Starting from
the proof in Sect� �� it took a student with no previous experience with proof
assistants approximately four months ��� to redo the whole proof in Isabelle�
including the time to formalize the speci�cation�

The guiding principle was a top down development of the proof� We �rst
studied the top level of the proof of the generalized correctness condition ����

��t� envV� envF� REL u� �� den�t� envV� envF� v ipret�val�u��

The de�nition of REL �see below� corresponds to the de�nition of � in Sect� ��
the function ipret denotes the interpretation of terms�

The proof of the main theorem is based on a large body of lemmata about
substitution and the interpreter function val� Rather than developing theories
for substitutions and val �rst� we isolated the required lemmata during the proof
of the main theorem� asserted them as additional axioms� postponing their proof
until later� Except for one� all theorems concerning the function val were proved
by �xpoint induction� The lemmata can be divided into independent classes�

Purpose of Lemmata Number of Lemmata

general purpose ���
substitution ��
free variables� closed terms �

properties of the interpreter� i�e� val 		
main theorem �

As very large formulae are employed in the proofs we introduced abbrevia�
tions in order to hide details� Such abbreviations are of the form t �� u and can
be expanded and folded during a proof� Two important abbreviations used are

denot�less�oper�t� ��

ALL envV envF u�

��t� envV� envF� REL u� �� den�t� envV� envF� v ipret�val�u��

and



��t� envV� envF� REL u� ��

�t �� � � u �� � � is�ct �u� �

�EX substV �� �V�T�map� EX substF �� �F�decl�map�

�substV �� � � substF �� � � u � subst�t� substV� substF� �

�ALL x��x� FV�x�t� � TT� �� WV�substV� envV� x�� �

�ALL f��f� FV�f�t� � TT� �� substF def f � TT � is�cdecl�substF � f��

�ALL f� �envF def f � FF �� substF def f � FF� �

�envF def f � TT �� WF�substF� envF� f� �����

where WF and WV are further abbreviations not shown here� Not only can the
main theorem can now be stated concisely as ALL t� denot�less�oper�t� its
inductive proof is also greatly simpli�ed because the induction hypothesis is still
readable�

Tactics Theorem proving in Isabelle is an interactive process� The user states
the desired theorem to Isabelle and guides the proof by choosing the proof
techniques and envoking appropriate tactics� Tactics are user�de�nable proof
strategies and can be anything from the application of a single inference rule
�single�step� to full�blown decision procedures� Altogether our proof consists of
approximately ���� user interactions� These can be analyzed as shown below�

Tactic Number of Applications

Simpli�cation �
�
Single�step ��

Classical prover ��	
Other ���
Total approx� ���

The Isabelle tactics ��� in the above table� e�g� the classical prover� are ex�
plained and discussed in the following� The order in the above table roughly
re�ects the user e	ort involved� For instance� the simpli�er is fast and easy to
use� whereas the �automatic� classical prover is slow and its success is hard to
predict�

Isabelle�s simpli�er goes beyond classical �rst�order term rewriting� Its many
enhancements� such as local assumptions and conditional equations� together
with its �exiblity explain its extensive use to some degree� Isabelle provides sev�
eral commands for single�step forward or backward reasoning� all of them vari�
ations on resolution� For instance structural and �xpoint induction are envoked
by a backward resolution step� In many cases Isabelle�s higher�order uni�cation
�nds the correct assumption automatically� In only �� of all applications of res�
olution we had to provide explicit instantiations to guide the search� Isabelle�s
classical prover is an automatic tactic for predicate calculus�

The tactics for term rewriting and resolution are very fast � they normally
return within seconds compared to the automatic tactics which sometimes take
up to minutes� Executing the whole proof takes �� minutes �on a Sun Sparc ���

Isabelle encourages users to construct new tactics by composing existing tac�
tics via tacticals� thus customizing the prover for their particular application�



Once found� they allow for shorter and more abstract proofs� This was particu�
larly important for us� because our proofs were undergoing frequent change� and
small proofs are easier to maintain than large ones�

� Proving in the Large

In this section we discuss some general aspects of large veri�cation tasks� Let us
�rst recall some often stated properties of interactive proof�

� Proofs can grow to a huge size� and it is a serious problem to extract the
important information from a proof �state��

� Interactive proofs are produced incrementally� which has implications for the
kinds of proof procedures that are useful�

� Proofs have to meet a range of sometimes con�icting criteria� among them�
e
ciency� elegance� readability� robustness under change� reusability� etc�

With these observations in mind� we discuss the theorem prover support�

Structuring Proofs Ideally� one would like to structure a proof in many ab�
stract de�nitions and small lemmata until the proofs are easy� This is typically
done in math books� We believe� however� that this is very hard in software
veri�cation where the details are overwhelming� First of all� this divide and con�
quer approach usually takes many attempts� often by skilled people� to �nd the
right structuring� Although structuring is essential� mechanical veri�cation re�
quires a much more detailed and careful decomposition than typical proofs on
paper� For instance� mathematicians often achieve elegant proofs by simply leav�
ing most things implicit and by changing the perspective� which is hard to model
formally� We identi�ed the following concepts to alleviate this problem�

� De�nitions and abbreviations are essential for structuring and decomposing
larger proofs� With large systems� properties �e�g� invariants� of systems
easily grow to pages� As in mathematics �nding the right de�nitions and
notation is often essential�
Usually� abbreviations are global� but they may be also local to a proof� For
instance� theorems in math books often have local abbreviations� De�nitions
not only need expanding but also contracting� This is often ignored because
it requires higher�order rewriting� the left�hand side of a de�nition is a �rst�
order term� whereas the right�hand side can be considerably more complex�
For instance the abbreviation denot�less�oper above contains quanti�ers
on the right�hand side� which means that matching modulo ��conversion is
required�

� Structuring large proofs vertically� divide and conquer� Apart from abbrevia�
tions� the only e	ective tool for structuring large veri�cations is the division
into subtheories and lemmata� Generally� a clear and systematic design is is
essential for successful veri�cation� Case studies with functional programs ��
suggest writing a program in small units� in the hope that properties of these
are easier and more compact to state�



� Structuring large proofs horizontally� intermediate lemmata� It is frequently
necessary to introduce intermediate lemmata which are super�uous from a
human point of view but are necessary to convince the theorem prover of the
correctness of a proof step� In contrast to vertical structuring� these lemmata
are tailored only towards a particular theorem and�or theorem prover� Most
of them are tedious to �nd and obscure� Theorem provers with a high degree
of automation and a low degree of user control� e�g� Boyer�Moore ��� and
Ontic ��� often require such intermediate lemmata to guide the search�

Of course vertical structuring is to be preferred over horizontal structuring� which
turned out to be essential for this case study� Yet for several proofs horizontal
structuring by intermediate lemmata was used� although a detailed and well
structured proof on paper was available� One reason was that many seemingly
simple lemmata required a large number of interactive steps� which made inter�
mediate lemmata necessary�

Automated Proof Support For interactive veri�cation� strong and incre�
mental automated proof support is necessary� Ideally� the user only has to give
very abstract input to the prover� such as �do rewriting�� or �use decision proce�
dures�� For instance� the Boyer�Moore system ��� is designed for automatic proof
without any input from the user� except for providing some �hints�� However�
in our case studies we found that �ner control is frequently necessary� Now the
problem is that in many proof systems there is a wide gap between the automatic
facilities and the low�level stepwise facilities� for lack of a middle ground� the user
is often forced to work at an unnaturally low level� The following di	erent levels
of user control seem very natural� but are rarely fully supported�

� In the �rst re�nement� the user gives the prover hints on what to use� e�g��
suggesting certain rewrite rules� lemmata or proof strategies�

�� The user sometimes wants to have more control over where to use a tactic�
For instance� one might want to apply simpli�cation only to a particular
premise of the goal�

�� Even more control can be exercised by specifying how a step should be done�
e�g�� by providing explicit substitutions for instantiating a lemma�

For instance� in our case study higher�order uni�cation combined with back�
tracking was used as a schematic method to compute desired instantiations of
logic variables� This often relieves the user of the burden to provide concrete
substitutions� Thus tactics can be expressed more abstractly� e�g� a tactic may
roughly express �apply rule x in such a way that rule y applies afterwards�� This
is useful to avoid low�level proofs in situations where fully automatic support
fails�

Abstract high�level proof methods facilitate reuse� as shown in our work� we
�rst completed the veri�cation for one language� Changing the syntax of the
language invalidated most proofs� but redoing the proofs was a matter of days�
Similarly� we added new constructs to the language� while being able to reuse
most of the proof successfully�

Acknowledgments�We thank Konrad Slind for his contributions to Section ��



References

�� M� Aagaard and M� Leeser� Verifying a logic synthesis tool in Nuprl� A case study
in software veri�cation� In K� G� Larsen� editor� Proc� �th Workshop Computer

Aided Veri�cation� volume ��	 of Lect� Notes in Comp� Sci� Springer�Verlag� ����

� R� S� Boyer and J� S� Moore� A Computational Logic Handbook� Academic Press�
��

�

	� R� S� Boyer and Y� Yu� Automated correctness proofs of machine code programs
for a commercial microprocessor� In D� Kapur� editor� Proc� ��th Int� Conf� Au�

tomated Deduction� volume ��� of Lect� Notes in Comp� Sci�� pages �����	��
Springer�Verlag� ����

�� M� Broy� Experiences with software speci�cation and veri�cation using LP� the
Larch proof assistant� Technical Report SRC �	� DIGITAL Systems Research
Center� ����

�� B� Buth� K��H� Buth� A� Fr�anzle� B� v� Karger� Y� Lakhmeche� H� Langmaack� and
M� M�uller�Olm� Provably correct compiler developement and implementation� In
U� Kastens and P� Pfahler� editors� Compiler Construction� volume ��� of Lect�
Notes in Comp� Sci� Springer�Verlag� ����

�� P� Curzon� A veri�ed compiler for a structured assembly language� In M� Archer�
J� J� Joyce� K� N� Levitt� and P� J� Windley� editors� Proc� ���� Int� Workshop on

the HOL Theorem Proving System and its Applications� IEEE Computer Society
Press� ����

�� M� Gordon� R� Milner� and C� Wadsworth� Edinburgh LCF� a Mechanised Logic

of Computation� volume �
 of Lect� Notes in Comp� Sci� Springer�Verlag� �����


� C� A� Gunter� Semantics of Programming Languages� MIT Press� ����

�� U� Hinkel� Maschineller Beweis der Korrektheit eines Interpreters� Master�s thesis�
Institut f�ur Informatik� TU M�unchen� ���	� In German�

��� P� Hudak� S� P� Jones� and P� Wadler� Report on the programming language
Haskell� A non�strict� purely functional language� ACM SIGPLAN Notices� �����
May ���� Version ���

��� D� A� McAllester� Ontic� A Knowledge Representation System for Mathematics�
MIT Press� ��
��

�� P� D� Mosses� Denotational semantics� In J� v� Leeuwen� editor� Formal Models

and Semantics� Handbook of Theoretical Computer Science� volume B� Elsevier�
�����

�	� T� Nipkow and C� Prehofer� Type checking type classes� In Proc� �	th ACM Symp�

Principles of Programming Languages� pages ������
� ACM Press� ���	� Revised
version to appear in J� Functional Programming�

��� L� C� Paulson� Deriving structural induction in LCF� In G� Kahn� D� B� Mac�
Queen� and G� Plotkin� editors� Semantics of Data Types� volume ��	 of Lect�
Notes in Comp� Sci�� pages ������� Springer�Verlag� ��
��

��� L� C� Paulson� Logic and Computation� Cambridge University Press� ��
��

��� L� C� Paulson� Isabelle� A Generic Theorem Prover� volume 

 of Lect� Notes in
Comp� Sci� Springer�Verlag� �����

��� F� Regensburger� HOLCF� Eine konservative Erweiterung von HOL um LCF�
PhD thesis� Technische Universit�at M�unchen� ����� To appear�

�
� B� Schieder� Logic and Proof Method of Recursion� PhD thesis� Institut f�ur Infor�
matik� TU M�unchen� ����� To appear�

��� G� Winskel� The Formal Semantics of Programming Languages� MIT Press� ���	�


