
1

Seamless Model-based Development: from Isolated
Tools to Integrated Model Engineering

Environments
Manfred Broy, Member, IEEE, Martin Feilkas, Markus Herrmannsdoerfer, Stefano Merenda and Daniel Ratiu.

Abstract—More than twenty years of research have created
a large body of ideas, concepts and theories for model-based
development of embedded software-intensive systems. These ap-
proaches have been implemented by several tools and successfully
applied to various development projects.

However, the everyday use of model-based approaches in
the automotive and avionic industries is still limited. Most of
the time, the engineers work with a pre-defined set of isolated
tools, and therefore adapt their engineering and process to the
available tools. Today, the industry achieves tool integration by
demand-driven, pragmatic and ad-hoc composed chains of a
priori existent commercial tools. Nevertheless, these tool chains
are not (and cannot be) seamless, since the integration that can
be achieved is not deep enough. This hampers the reuse and
refinement of models, which subsequently leads to problems like
redundancy, inconsistency and lack of automation. In the end,
these deficiencies decrease both the productivity and quality that
could be provided by model-based approaches.

To overcome these problems, a deep, coherent and compre-
hensive integration of models and tools is required. Such an
integration can be achieved by the following three ingredients:
1) a comprehensive modeling theory that serves as a semantic
domain for the models, 2) an integrated architectural model
that holistically describes the product and process, and 3) a
manner to build tools that conform to the modeling theory and
allow the authoring of the product model. We show that from
a scientific point of view all ingredients are at our hands to
do a substantial step into an integrated process and tool world.
Further, we illustrate why such a solution has not been achieved
so far, and discuss what is to be done to get a step closer to
seamless model-based engineering.

Index Terms—seamless model-based development, integrated
engineering environments, comprehensive modeling theory, com-
mon model repository, workflow support, generic tooling plat-
form, iterative language engineering

I. INTRODUCTION

MODEL-BASED development is adopted more or less
consequently in practical development of automotive

and avionic systems today. The pervasive use of models allows
the engineers to abstract from implementation details, raising
the level of abstraction at which the systems are developed.
As a consequence, model-based development promises to
increase the productivity and quality of software development
for embedded systems.

M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda and D. Ratiu are
with Institut für Informatik, Technische Universität München, Boltzmannstr.
3, 85748 Garching, Germany, email: {broy, feilkas, herrmama,
merenda, ratiu}@in.tum.de

This work was partially funded by the German Federal Ministry of
Education and Research (BMBF), grant “SPES2020, 01IS08045A”.

However, model-based development approaches often fall
short due to the lack of integration at both the conceptual
and tooling level. Even if artifacts are modeled explicitly,
they are based on separate and unrelated modeling theories
(if foundations are given at all), which makes the transition
from one artifact to another in the development process unclear
and error-prone. Current tools usually focus on particular
development steps and support single modeling paradigms
(see Figure 1). Although many of these tools do a good job
in their limited domain, during the development of a system
from initial requirements down to a running implementation
in hard- and software many models have to be constructed. In
practice, several isolated tools are necessary to construct these
models, and the transition between them is often far from clear.
Consequently, the engineers adopt ad-hoc integration solutions
that are far from a disciplined engineering. Both theories
(whenever they are applied) and tools do not fit to each other
which hampers the reuse of models among different phases.
Instead of refining and transforming the existent models, they
are often rebuilt from scratch which involves a lot of effort
and loss of information. The overall information about the
developed product is available only implicitly in the engineers’
minds.

Garching, 11.11.2008 Stefano Merenda, Chair IV: Software and Systems Engineering 2

Technische Universität München

Ad-hoc composed tool chain

Theory A

Today’s ad-hoc composed tool chains

Theory B

Theory C

Theory DRequirements Tool

Design Tool

Implementation Tool

Verification Tool

no
 c

om
m

on
 th

eo
ry

implicit product model se
pa

ra
te

d 
re

po
si

to
rie

s

no
 p

ro
ce

ss
 in

te
gr

at
io

n

Fig. 1. Today’s engineering environments: ad-hoc composed tool chains.

The real benefits of the models take effect if they are
used throughout the whole development process in a seamless
way. For instance, requirements are the inputs for an initial
system design and for test case generation. This workflow
requires a deep integration of the requirements, the system
design, and the tests in an integrated product model. Such
integration can only be implemented in a model engineering
environment supporting the reuse of the information that is
captured within the models. To achieve the vision of seamless
model-based development (illustrated in Figure 2), we need
the following three fundamental ingredients: 1) a compre-



2

hensive modeling theory that serves as a semantic domain
for the formal definition of the models, 2) an integrated
architectural model that describes the detailed structure of the
product (product model) as well as the process to develop
it (process model), and 3) an integrated model engineering
environment which guarantees a seamless tool support for
authoring and analyzing the product model according to the
process defined in the process model. Instead of working
with isolated models, engineers access via dedicated views a
common model repository which explicitly stores the overall
product model. All required views are formally defined and
based on one comprehensive modeling theory which enables
the construction and unambiguous semantic interpretation of
the product architecture. The compliance to the process model
is assured by a common workflow engine.

Common
Modeling
Theory

Common Model Repository

Common Workflow Engine

Requirements View

Design View

Implementation View

Verification View

integration of artifacts

in
te

gr
at

io
n 

of
 th

eo
ry

integration of methodology

se
am

le
ss

 e
ng

in
ee

rin
g

Fig. 2. Vision of integrated model-based engineering environment.

Today one of the major impediments for the advent of
seamless model-based development in the industry is the lack
of tools. Ideally, based on modeling theories and a common
product model, we should be able to define the requirements
for tooling (see Figure 3(a)). In reality, however, a small set
of tools (most of the time off-the-shelf) has to be used in a
particular project. Thereby, these tools impose the modeling
aspects that are treated and consequently the product model
that is to be built (see Figure 3(b)). Due to the high costs of
developing and maintaining tools, the development of in-house
tools that are specific enough and tailored to a certain project is
not an option. As a consequence, engineers need to adapt their
process to the commercially available tools and many times
to twist their wanted product design in a way enforced by the
tools at hand. The top-down dependency between the modeling
theory and their implementation in tools (as promoted by the
model-based development itself) is inverted in reality by the
already available tools that dictate the modeling technique that
is to be followed in a project.

Overview. In Section II, we describe the current situation
of model-based development in practice – with focus on the
success that model-based development can currently claim and
the pressing issues that prevent its pervasive usage in industry.
To overcome these pressing issues, we outline in Section III
our vision of a solution by an integrated engineering envi-
ronment. Section IV explains from a technical point of view

Garching, <DD.MM.JJJJ> <FIRSTNAME> <LASTNAME>, Chair IV: Software and Systems Engineering 4

Technische Universität München

Situation todayIdeal situation

Dependencies between modeling techniques and tools

well-defined modeling theory
common product model

appropriate process model

no modeling theory
unclear product model

ad-hoc imposed process

Tool support Currently available tools

define impose

(a) wanted
Garching, <DD.MM.JJJJ> <FIRSTNAME> <LASTNAME>, Chair IV: Software and Systems Engineering 4

Technische Universität München

Situation todayIdeal situation

Dependencies between modeling techniques and tools

well-thought modeling theory
common product model

appropriate process model

no modeling theory
unclear product model

ad-hoc imposed process

Tool support Currently available tools

define impose

(b) unwanted

Fig. 3. The tyranny of current tools.

how such an integrated engineering environment could become
reality and analyzes which technical ingredients are already
available. Section V discusses the barriers toward developing
such an integrated engineering environment due to the different
interests of the involved stakeholders, and Section VI outlines
a possible migration strategy. Finally, Section VII summarizes
related work on integrated engineering environments before
we conclude in Section VIII.

II. SITUATION IN PRACTICE TODAY:
ISLANDS OF SUCCESS AND PRESSING ISSUES

In the following, we outline islands of success as well as
pressing issues with respect to different aspects of model-
based development. We ground this section both on a literature
survey, and on our experience gathered from working with
industrial partners.

A. Islands of Success

Several advantages have been achieved in the development
and application model-based development techniques. Many
academic as well as commercial tools and approaches are
available that ease certain tasks in software engineering.

1) Formalized Modeling Languages: A well-defined se-
mantic domain of the modeling techniques enables high au-
tomation, advanced tool support and the use of verification
techniques. For example, the formal method B has been
successfully applied to develop the safety critical parts of
several transportation systems. Verification was done using
an interactive theorem prover. However, the authors state that
“the practicality of their approach is entirely dependent on the
quality and power of the tool support” [1], [2]. Another success
story of modeling languages is Lustre [3]. It progressed from
research to industrial use – in a commercial product – as
the core language of the industrial development environment
SCADE [4], developed by Esterel Technologies. It is now used
for critical control software in aircrafts, helicopters, and nu-
clear power plants (including the primary flight control system
of the Airbus A380). Moreover the language Esterel has been
successfully applied to the development of avionic systems
of medium size with a few hundred input and output signals.
MATLAB Simulink and Stateflow [5] play an essential role in
the automotive industry – e. g. some of the engine control units
in current cars are completely modeled in MATLAB Simulink
and Stateflow.



3

2) Verification: A considerable advantage of semantically
well-founded modeling techniques is that once the models
are built, powerful analysis and verification methods can be
applied:

Testing. The most widely used method for verification in
practice is testing. Model-based testing enables high automa-
tion and quality of the testing process, leading to savings of
up to 50% for the testing tasks, which in the case of critical
systems can take up to 50% of the development effort. The
high quality is reached due to the generation of interesting test
cases and the achievement of a very good coverage of the test
space. Model based testing proved good enough to discover a
series of critical bugs as the one from the Mars Lander [6].

Model checking. Based on the advent of symbolic model
checking in the early ’90s [7], the verification of industrial size
systems became feasible. Model checking is on its way to a
technique that is applied in the everyday systems development
practice. Model checking was already used to verify a wide
spectrum of safety critical avionic systems such as flight
guidance [8], elimination of synchronization faults in air traffic
control software [9] or verification of the control rules that
support proper aviation traffic [10].

Theorem proving. In comparison to model checking, the-
orem proving allows to deal with specifications of more
complex systems and proofs of more expressive properties.
However, the verification of complex systems with theorem
proving is most of the time semi-automatic. An example of
success in using theorem proving is the Verisoft project [11].
In Verisoft, formal verification (using the Isabelle theorem
prover [12]) has been applied to automotive systems in an
industrial context by giving a pervasive correctness proof of
the lower system layers: the hardware, the system software,
the communication mechanism, and the programming model
for the applications [13].

3) Defining Comprehensive Domain Architectures:
Whenever domain architectures are defined, they represent a
backbone to which other artifacts are related. For example,
domain architectures can be used to define a product model
for the domain. Furthermore, by using a domain architecture
as a common language for stakeholders, it facilitates the
communication between client and supplier, and the distributed
development. For example, AUTOSAR [14] is one of the
major approaches to create an integrated product model for the
automotive domain. The AUTOSAR development partnership
has defined a product model for the basic decomposition and
interfaces in an automotive board net to ease the recombination
and integration of software components. Due to its standard-
ization and adoption by the car industry, we envision that
AUTOSAR models will have a central role in the development
of automotive software in the near future.

4) Automatic Synthesis of Models and Generation of
Code: In most applications the effort to develop a formalized
model of an artifact is pretty high. However, once a model is
built it can be used as input for the refinement or generation of
other models. The real benefit of formalized models occurs if
they are used during the whole development process whenever
necessary and in an automatic manner. In order to achieve
automation, there are defined techniques for transformation

between different kinds of models. For example, considerable
work has been performed to generate state machines from
scenarios of intended system behaviors [15]. Moreover, most
of the widely used modeling tools allow the engineers to
generate code from high-level models.

5) Achieving Certification: Safety-critical systems have to
go through a rigorous certification process. Many certification
conditions require high test coverage and integration. For
example, the certification needs of the de-facto standard for
certifying aerospace software (DO-178b) impose an explicit
and well-defined assessment of the quality of software sys-
tems. The quality is certified according to the measure in
which the implementation reflects the requirements and to the
coverage degree between tests and requirements and between
the tests and source code. A model-based approach concerning
certification is the customization of general purpose modeling
languages toward allowing the explicit implementation of the
certification concerns. For example, [16] presents an UML
profile for enabling the precise modeling of the safety concepts
from DO-178b. By using this profile, engineers can explicitly
model their decisions related to safety and based on this,
reports containing certification-related information about the
software can be generated.

B. Pressing Issues

Although many benefits have been achieved by adopting
model-based development, there are several pressing issues
that hamper an effective and seamless systems engineering.

1) Lack of semantic Foundation: Many critical issues
arise due to a missing, conflicting or inappropriate semantic
foundation of the modeling languages used today.

a) Weakly-defined semantic domain: The semantics of
modeling languages is often only specified as prose (if at all)
and thus insufficiently defined. This leads to inconsistencies
between different implementations of the language in different
tools and to ambiguities in the interpretation of the models. For
example, a consequent usage of the UML [17] is difficult since
a formal semantical interpretation of its models is missing. To
countervail this weakness, a lot of effort is currently spent to
define precise semantics [18].

b) Multitude of dialects of modeling languages: The ex-
istence of several dialects of the same modeling technique pre-
vents an uniform treatment of the built models. For example,
state machines exist in different dialects in StateMate, UML
and Rhapsody [19]. The models written in one dialect are
ill-formed in another dialect or require a different semantical
interpretation. These facts make the translation of models
written in one formalism to another formalism difficult or
even practically impossible. Furthermore, engineers that are
experienced in one dialect might misinterpret models written
in another dialect.

c) High generality and inappropriateness of modeling
languages: One of the key challenges of modeling languages
is the abstraction challenge – namely, how one can provide
support for creating and manipulating problem-level abstrac-
tions as first-class modeling elements [20]. Engineers need
several years to develop a specific product family (e. g. the



4

A350 family of Airbus aircrafts or the Z4 family of cars
at BMW) and ideally, in order to be efficient, the modeling
languages they use should directly support the development of
that product and nothing more. Unfortunately, the modeling
languages are highly general and most of the time domain
independent and ontologically neutral [21]. This leads to a
critical conceptual gap between the professional languages of
engineers and the modeling languages. The same modeling
techniques are used for describing a wide variety of situa-
tions and a small number of pre-defined tools and modeling
mechanisms are adapted to a wide variety of needs (e. g. these
tools make no difference whether they build a model of a
vehicle or an airplane). The domain inappropriateness and the
generality of languages lead to abstraction loss: clearly defined
concepts in the domain are not captured by the languages. This
subsequently leads to weakly defined modeling languages that
are too general and “not aware” of the specifics of a domain.
For example, requirements structuring is an accepted best
practice in requirements engineering. However, the structuring
criteria vary among industries, companies, and even projects.
In the avionics industry, the requirements of an airplane are
ordered in a tree and classified according to a standard defined
by the “Air Transport Association of America” (ATA). The
ATA tree is only two levels deep and different companies
have the freedom to define additional levels. Unfortunately,
the current commercial requirements engineering tools ignore
the ATA chapters way of structuring the requirements and
provide only general structuring mechanisms such as generic
requirements modules and objects (e.g. in Telelogic DOORS).

2) No integrated architectural Model: There is usually
no integrated architectural model that defines how modeling
starting from initial requirements down to a running system
should be performed. Complementing modeling techniques
provide better support for expressing different aspects of the
system. In order to obtain a complete view of the system, the
model views need to be integrated into a complete product
model. Most of the time, however, the semantic integration
of modeling techniques is not clear. For example, UML 2.0
[22] defines 13 types of diagrams for different development
stages (e. g. use-case diagrams, activity diagram, component
diagrams, deployment diagrams). Even if these many views
allow a better development of different aspects of the system,
once different system views are constructed, it is not clear how
they can be combined and integrated. The missing architectural
model leads to the (logical) isolation of the developed models
and subsequently to the inability to perform advanced model
analyses such as feature interaction, impact analysis between
different models, checking quality aspects that cross-cut mod-
els, etc.

a) Managing the intent: Due to the isolation of models,
the intent and rationale behind component designs is lost in the
process [23]. The loss of intent and the impossibility to trace
artifacts at different abstraction levels are effects of abstraction
loss and of the lack of comprehensive architectural model. In
order to document the intent more explicitly, trace links be-
tween different model elements in different tools are required.
However, the trace links are only weak associations among
model elements, and many times we need more advanced in-

formation about these links and their special meaning (e. g. that
they should express consistency conditions). A typical example
for missing trace links is requirements tracing information that
is lost during the transition from a requirements engineering
to a design modeling tool.

b) Managing consistency: Consistency problems are
twofold: vertical consistency and horizontal consistency. In
the vertical case, we need to make sure that the models at
two different phases of the development process are consistent
to each other (e. g. specification with tests). The horizontal
consistency is between the models created in the same phase
– e. g. two views showing a perspective of the design. A well
known problem with the consistency of models (in this case
belonging to two versions of CATIA) caused the cable crisis
of A380 [24]. Different parts of the airplane were developed
with incompatible versions of the program and thereby the
models (painfully) proved to be inconsistent at the end.

3) Insufficiently integrated Engineering Environments:
Many problems arise due to tooling issues such as missing tool
integration and cumbersome handling of models. For example,
in Figure 4 we illustrate the flow of information between dif-
ferent tools employed in a typical development process in the
automotive domain. The information is passed from one tool to
another mainly by manual transformation. On the requirements
level tools like Telelogic Doors, Caliber or even simple word
processing tools are used to describe the system functionality
in semi-structured natural language. After that this information
is used to build more structured models by design modeling
tools. Beside AUTOSAR, also very special languages that are
used to configure special hardware controllers are employed.
For example ordinary von-Neumann processors are often not
suitable to fulfill the very special requirements (e.g. timing)
of engine control units, so special peripheral devices are used.
These devices (e.g. Infineon’s PCP/GPTA or Freescale’s TPU)
must be programmed in special (configuration) languages.
These languages are then used to generate assembly code
or C code to be deployed onto the ECU. Altogether the
information about the software-based functionality that runs
within the electrical system of a vehicle is distributed in many
different artifacts. For every artifact there is a special tool that
offers special features to edit and analyze it. However, the
information stored in these single artifacts corresponds to each
other and is to be kept consistent manually.

Consistency
Manual transformation
Generation

Fig. 4. An example of today’s tooling situation in automotive software
development.



5

a) Lack of suitable tools: Only very few model-based
technologies are backed-up by tools that are robust and
powerful enough for industrial use. For example, despite its
shortcomings, the success of UML is (arguably) based also on
the fact that it is well-supported by commercial tools. Due to
the high costs of tool development, only a few companies can
afford to build their own solutions. Therefore, there is a general
tendency to work with commercial-off-the-shelf (COTS) tools
in industrial practice. On the one hand, COTS tools are too
powerful and provide functionality that their users do not need
in their daily work in a specific project. On the other hand,
these tools are most of the time not aware of the specifics
of the system being developed and thus do not support their
users effectively. Beside “trivial” customization of layout, the
advanced customization of the current tools is practically never
done.

b) Isolation of tools: Today many different kinds of
tools are used to develop automotive and avionic systems.
As soon as the system is modeled in different isolated tools,
many problems arise since many tools are rather opaque and
do not allow direct access to the models that they develop.
Furthermore, if the access is possible, it is based on different
heterogeneous technologies. Often the tools are standalone
solutions: Tools are designed to be used as simple standalone
programs that are executed by one developer on one machine.
In practice modeling is usually done in a collaborative way
with a number of people involved. The fact that parts of
the product model are implemented in different tools leads
to redundancy. Then, in most cases this redundancy is not
modeled in exactly the same way which makes it even more
complicated to check the consistency. The integration of tools
is done today in a peer-to-peer manner using tool couplers.
This approach does not scale, since the number of couplers
increases exponentially in the number of tools. Moreover, the
coupler based integration of tools is done in an ad-hoc manner
in order to solve specific pragmatic problems.

c) Weak support of collaborative work: The relation
between supplier and customer brings specific challenges
such as: specification of interfaces or integration of pro-
cesses of customer and supplier. Furthermore, distributing and
synchronizing global development requires a high degree of
composability in the modeling techniques. In the automotive
industry, the supplier usually has the so called integration
responsibility. This means that he is responsible to deploy
several applications onto an Electronic Control Unit (ECU),
which is the deliverable to the OEM. The OEM is responsible
for the integration of the ECUs into the bordnet. The hardware-
based composition of the total system out of several ECUs is
subject to interface errors due the lack of type checking. So
in future automotive development, ECUs will no longer be
the right concept to decompose the system and to break it
into parts to be developed independently. A more software
rather than hardware oriented decomposition and integration
will be needed. So the OEMs will gradually gain more and
more integration responsibility like it is already practiced in
the avionic industry.

The collaborative development is very complicated since
even application functions that are independent from each

other from a functional point of view, interact implicitly if
they are deployed on the same hardware infrastructure in
the car (e.g. they share the bus systems or run on the same
ECUs). Because of this, not only the functional interfaces
between the applications have to be precisely specified, but
also many other interactions that must be taken into account
– e.g. interactions that are mediated indirectly through shared
resources such as memory, peripheral devices, processor time
as well as bus load. Furthermore, the collaborating parties, e.g.
an OEM and its component suppliers have to agree on two
levels before seamless collaboration is possible: The interface
of the supplied component must be defined (model-level) as
well as the modeling technique used by the supplier should
fit into the tool chain of the OEM (metamodel-level). A deep
integration of tools is of importance because of the high degree
of implicit and explicit interaction between the applications.
Static analysis ranging from simple type checking (e.g. the
consistent encoding of signals into CAN messages) to highly
sophisticated scheduling analysis techniques [25] becomes an
important method for verification and quality assurance.

d) Securing intellectual property rights: Distributed de-
velopment especially requires a sophisticated rights manage-
ment. In [26] the difficulty of the supplier-OEM relationship
is mentioned as an important issue in the automotive domain.
OEMs need to be able to investigate and check the quality
of the delivered artifacts, to make sure that the subsystems
are compatible with their environment. OEMs also want to
make sure that the delivered systems are well-crafted. The
sole activity of OEMs today is testing (dynamic analysis) and
process assessments. The adoption of static analysis techniques
is often not applicable. Suppliers on the other side are in-
terested in keeping their special know-how and intellectual
properties undisclosed. In many cases, it seems to be a good
idea to agree on object files as a deliverable. This has the
big advantage that the intellectual properties of the supplier
remain undisclosed. However, the disadvantages are that static
analysis that could ensure the correctness of the behavior of the
software component in its environment (e.g. model checking)
or the assessment of quality attributes is not possible.

e) Lacking evolvability of modeling languages: Although
often neglected, a modeling language is subject to change like
any other software artifact [27]. This holds even for general-
purpose modeling languages: e. g. UML, although relatively
young, already has a rich evolution history. Domain-specific
modeling languages are even more prone to change, as they
have to be adapted whenever their domain changes due to
technological progress or evolving requirements. Experiences
from collaborations with our partners from the automotive
industry show that languages are often not adapted to new
requirements due to missing tool support for the resulting mi-
gration of models. However, modelers often find workarounds
and encode additional information in a way not intended by
the original language design. As the language editors cannot
enforce the well-formedness of the introduced constructs, dif-
ferent modelers may choose different workarounds to encode
the same additional information. Furthermore, it is difficult for
language tools to process this information in a homogeneous
way. Consequently, lack of evolvability can decrease the value



6

of a modeling language in the long run.

III. VISION OF SEAMLESS SYSTEM DEVELOPMENT:
CONTENT IN THE MIDDLE

Seamless model-based development promises to lift soft-
ware development onto higher levels of abstraction by pro-
viding integrated chains of models covering all phases from
requirements to system design and verification. In seamless
model-based development, modeling is not just an implemen-
tation method, but it is a paradigm that provides support
throughout the entire development and maintenance life cycle.
Modeling starts early in the development process with require-
ments engineering where informal requirements are turned
into models step by step. At the end of the requirements
engineering phase, we have a functional model capturing the
requirements. In turn, the system architecture and in sequence
the software architecture is described by various models that
capture different aspects of the system. Provided these models
are chosen carefully enough and based on a proper theory,
the architecture model can be verified to guarantee that the
functional requirements are fulfilled. Furthermore, a rigorous
tracing is enabled between the functional requirements and
the architecture model. To be able to do that, a carefully
structured architecture model has to be worked out – not just
describing a system at the technical implementation level, but
also describing carefully chosen useful abstractions such as
function hierarchies and logical architectures [28].

Seamless and comprehensive model-based development is
a key to a more systematic development process with higher
potential for automation. To be able to work out such an
approach, a number of ingredients are required as illustrated
in Figure 5. These ingredients can be divided into three levels:
the semantic domain forms the basis of an integrated architec-
ture model which is operationalized by a model engineering
environment. In the following, we detail on these levels and
their corresponding ingredients.

Garching, <DD.MM.JJJJ> <FIRSTNAME> <LASTNAME>, Chair IV: Software and Systems Engineering 5

Technische Universität München

Main ingredients for seamless model-based development

M
od

el
E

ng
in

ee
rin

g
E

nv
iro

nm
en

t

In
te

gr
at

ed
A

rc
hi

te
ct

ur
al

M
od

el

S
em

an
tic

D
om

ai
n Comprehensive

Modeling Theory

Authoring
Analysis / Synthesis Model Repository Workflow Engine

Architectural
Layers

Product
Model

Process
Model

formalized by

assigned
to

structures
and
integrates

configures configuresbasis for

Fig. 5. Main ingredients for seamless model-based development.

A. Semantic Domain

Seamless model-based development requires a comprehen-
sive modeling theory as theoretical basis to ensure a thorough

formalization of all artifacts produced during the development
of a system. An appropriate modeling theory provides firstly
the appropriate modeling concepts such as the concept of a
system and that of a user function, with

1) a concept for structuring the functionality by function
hierarchies,

2) concepts to establish dependency relationships between
these functions, and

3) techniques to model the functions with their behavior in
isolation including time behavior and to connect them
– according to their dependability relations – into a
comprehensive functional model for the system.

and secondly a concept of composition and architecture to
capture

1) the decomposition of the system into components that
cooperate and interact to achieve the system functional-
ities,

2) the interfaces of the components including not only the
syntactic interfaces but also the behavior interfaces, and

3) a notion of modular composition which allows us to
define the interface behavior of a composed system from
the interface behaviors of its components.

The modeling theory must be strong and expressive enough
to model all relevant aspects of hardware and software ar-
chitectures of a system such as structuring software deploy-
ment, description of tasks and threads, as well as modeling
behavior aspects of hardware. These aspects and properties of
architecture should be represented in a very direct and explicit
way. Our approach to such a modeling theory is given by the
FOCUS theory [29] and its various extensions.

B. Integrated architectural Model
A comprehensive architecture model of an embedded sys-

tem and its functionality is a basis for a product model
that comprises all the content needed to specify a distributed
embedded system in terms of its comprehensive architecture.
A first version of an integrated architectural model for the
automotive domain is described in [30].

1) Architectural Layers: An architectural model describes
all model views that define a system at different abstraction
levels and the relations among them. It enables a systematic
and domain-appropriate development process and represents
the starting point for tool support. All views on a system are
part of the product model.

2) Product Model: In order to describe all the interesting
aspects of a system, we need a domain-appropriate system
architecture that contains all modeling artifacts in a product
model. Its structure is described by a metamodel that is the
basis for a data model that allows to capture all the contents.
This product model describes an embedded system inside a
computer, and can be subsequently used as a data backbone
for development. In the product model, the dependencies and
relationships between the modeling artifacts should be made
explicit, since they are a key to extensive tool support. In the
end, all artifacts produced throughout the development process
should be part of the product model and related in a semantic
way such that important issues such as tracing, impact analysis
and consistency checks are supported.



7

3) Process Model: A comprehensive process model is
mandatory that relates the modeling artifacts to the activities
that are needed to construct the architecture model step by
step. According to the consistency and quality notions of the
product model, the process model defines the sequence of steps
that need to be performed at a certain development phase.

C. Integrated Model Engineering Environment

A central characteristic of model-based development is a
high degree of automation by extensive tool support. The
level of automation that can be achieved strongly depends
on the used models and the associated theory. In fact, the
support for automation has to address the capturing and elab-
oration of models, the analysis of models with respect to their
consistency and important properties as well as techniques
for generating further development artifacts from models.
Tooling should be based exclusively on the product model.
Then all tools that carry out the steps of capturing models
and creating models, analyzing models and generating new
artifacts from existing ones basically only manipulate and
enhance the product model. The whole development should be
regarded as an incremental and iterative process with the goal
to work out the contents of a comprehensive product model.

In order to turn the vision of high automation into reality,
we need an integrated engineering environment that offers
support for creating and managing models within well-defined
process steps. The integrated development environment should
comprise the following four blocks: 1) a model repository that
maintains the different artifacts including their dependencies,
2) advanced tools for editing models that directly support their
users to build-up models, 3) tools for analyzing the product
model and synthesizing new artifacts out of the product model,
and 4) a workflow engine to guide the engineers through the
steps defined by the development process.

IV. REALIZATION OF AN INTEGRATED ENGINEERING
ENVIRONMENT: TOOLING ISSUES

To all intents and purposes, the integrated modeling lan-
guage should be operationalized by a tooling environment that
supports the creation, transformation, analysis and subsequent
processing of all the artifacts that are needed. Due to the fact
that tool development is extremely expensive, the industry sees
no alternative to existing commercial tools. These tools are
many times of general nature and not tailored to the specific
needs of the engineers from a specific industry. Many efforts
trying to develop their own tailored integrated engineering
environment fail because of huge development efforts but even
more substantial maintenance costs. This is due to the fact
that beside the core business functionality, tools need a lot of
infrastructure for the management of models. Figure 6 shows
that a development tool can be decomposed into the four parts
Repository, Editors, Workflow, and Analysis and Synthesis.
Each of the four parts can again be divided into a generic
and language specific part. The generic part can be provided
by a Generic Tool Framework. The language specific parts are
named Language Modules.

9gnireenignE smetsyS dna erawtfoS :VI riahC ,>EMANTSAL< >EMANTSRIF<>JJJJ.MM.DD< ,gnihcraG

Technische Universität München

Development Tool

Decomposing development tools

Language ModulesGeneric Tool Framework

Abstract Syntax
- Structure (concepts and properties)
- Context sensitive constraints
- Configurable units

Repository
Common Model Repository
- Complex constraint checking
- Configuration management
- Language evolution

Concrete Syntax
- Types: diagram / text / table
- Based on canonical syntaxes
- Combination of syntax types

Editors
Generic Editor Framework
- Searching and browsing
- Editing and refactoring
- Comparing and merging

Process Definition
- Roles and access rights
- Artifact as constrained concept
- Activity as in-place transformation

Workflow
Workflow Engine
- Task distribution and to-do lists
- Automated change management
- Quality gates and access control

Semantics
- Refactoring transformations
- Translational semantics
- Operational semantics

Analysis / Synthesis
Model Interpretation Engine
- In-place M2M transformation
- Out-of-place M2M and M2T transf.
- Generic Simulation Framework

Fig. 6. Decomposing development tools.

To assess the ratio of the business functionality and the
management infrastructure, we performed an empirical study
on the functionality provided by engineering tools. Our as-
sumption is that by investigating the menus or toolbars of a
tool and by classifying the functionality that can be accessed
from there, we can estimate the ratio between the functionality
of tools that is related to their business domain and the func-
tionality that is horizontal. We performed our empirical study
based on the description of menus and toolbars command
buttons as given in the user documentation of the following
tools: Esterel Scade v6.0, Telelogic Rhapsody v7.4 and Tele-
logic Doors v9.1. In Table I we present an overview of the
functionality of COTS as resulted from our classification. We
notice in this figure that most of the functionality accessible
to tool users is related to the editing of the models (e. g.
creation, modification or deletion of model parts), navigation
(e. g. searching) and layout (e. g. colors, fonts, zooming). In
fact, the functionality that is strongly related to a specific
language (e. g. different analyses of models, synthesis of other
information from models) is rather small. Thus, a big part of
the front-end functionality of tools is unspecific, can be seen
as commodity and most of it could be provided by a generic
tools platform. We also can see that none of the tools provides
an integrated workflow support.

Scade Rhapsody Doors
Repository
- Persistency 7 3 2
- Configuration Management - - 6
Editors
- Editing 107 95 40
- Navigation 24 5 14
- Layout 15 43 12
Analysis/Synthesis
- Analysis 29 12 1
- Synthesis 14 7 -
Total 196 165 75

TABLE I
QUANTITATIVE OVERVIEW OVER THE FUNCTIONALITY OF COTS.

However, it is in particular the heterogeneous implementa-
tion of this infrastructure in different tools which hinders their
seamless integration. To countervail this situation, we propose
a generic tooling platform which offers all the technical details



8

which are independent of the concrete modeling language. In
today’s development tools, these so-called horizontal tooling
aspects are interwoven with the implementation of the proper
modeling languages, which we call vertical tooling aspects.
However, an integrated modeling language is rather complex
and thus difficult to develop in one step. In order to ease lan-
guage development, an integrated modeling language should
result from the composition of reusable, modular modeling
languages which can be customized to the specific needs of the
engineers. Furthermore, appropriate tool support is required
for model migration in order to be able to improve a modeling
language that is already under use.

A. Separation of horizontal and vertical Tooling Aspects

In order to reduce development costs, the tooling platform
has to factor out the functionality that is independent of the
specific product model. The tooling platform can then be
parametrized by a modeling language which operationalizes
a certain product model. By means of our tooling platform,
we thus want to achieve a strict separation of horizontal
and vertical tooling aspects. Tooling aspects like the central
model repository which are independent of a specific modeling
language are termed horizontal. Tooling aspects like the syntax
of a certain modeling language which are specific to a certain
modeling language are called vertical. In today’s development
tools, these horizontal tooling aspects are interwoven with the
implementation of the vertical tooling aspects. The missing
separation of horizontal and vertical tooling aspects ham-
pers the implementation of a central model repository which
is crucial for the introduction of an integrated engineering
environment. Figure 7 depicts the different tooling aspects
together with their classification. In the following, we discuss
the ingredients that are necessary to implement both vertical
and horizontal tooling aspects.

Garching, <DD.MM.JJJJ> <FIRSTNAME> <LASTNAME>, Chair IV: Software and Systems Engineering 10

Technische Universität München

Horizontal and vertical tooling aspects

Integrated Model Engineering
Environment

Horizontal tooling aspects:
Generic Tool Framework

Common Model Repository

Generic Editor Framework

Workflow Engine

Model Interpretation Engine

V
er

tic
al

 to
ol

in
g 

as
pe

ct
s:

La
ng

ua
ge

 M
od

ul
es

A
bs

tr
ac

t S
yn

ta
x

C
on

cr
et

e 
Sy

nt
ax

Pr
oc

es
s 

D
ef

in
iti

on

Se
m

an
tic

s

Fig. 7. Horizontal and vertical tooling aspects of an integrated model
engineering environment.

1) Vertical Aspects: Tooling aspects are called vertical if
they are specific to a certain modeling language. The tool-
ing platform must support tool builders to easily implement
vertical aspects. It should be easily possible for a company
to adapt or develop a modeling language appropriate to its

needs. In order to enable the cost-effective development of
such modeling languages, we need so-called meta languages
to describe the different elements of a modeling language. The
tooling aspects related to supporting modeling languages are
partitioned into the following elements:

• Abstract Syntax
• Concrete Syntax
• Process Definition
• Semantics
In the following, we inspect the different elements of

modeling languages and their requirements in more detail.
a) Abstract Syntax: The abstract syntax defines the con-

cepts of a modeling language and their relationships. When a
modeling language is appropriate to a domain, it enables the
engineers to directly reflect the domain concepts and relations
in their models. By using domain appropriate languages, the
engineers can work at a higher abstraction level and in direct
analogy to the domain knowledge.

The abstract syntax determines the validity of models and
can therefore be used to enforce the construction of valid
models. The domain semantics of languages can be encoded
in an abstract syntax by restricting syntactic correct models
to those that are meaningful in the domain [31]. The abstract
syntax usually consists of constructive and descriptive parts:
constructive parts describe how to build valid models and
descriptive parts further restrict the number of valid models
by constraints. Since an integrated modeling theory needs to
describe the relationship between different models, a model is
required to have a graph-like structure.

We advocate to put the abstract syntax in the center of
modeling language definition. Other elements of a modeling
language definition are then specified in relation to the ab-
stract syntax. This enables the rapid development of modeling
languages. Furthermore, different modeling languages are best
integrated in terms of their abstract syntax.

The literature provides a large number of examples for
languages to define the abstract syntax of a modeling language.
The Object Management Group (OMG) even standardized
languages to define the abstract syntax of object-oriented
modeling languages: the Meta Object Facility (MOF) [32]
for the constructive part and the Object Constraint Language
(OCL) [33] for the descriptive part. However, MOF pro-
vides too many constructs to be completely understood and
implemented. Consequently, one of the most widely used
implementations of MOF, the Eclipse Modeling Framework
(EMF) [34], implements only a rather small subset of MOF.

b) Concrete Syntax: The concrete syntax defines the
representation of a model in a human-readable manner. There
are different forms of concrete syntax: diagrammatic, textual
and tabular. The diagrammatic syntax shows the model in
diagrams with layout information, the textual syntax visualizes
the model as linear texts, and the tabular syntax visualizes the
model in two-dimensional tables.

As real-world models can become quite large, the concrete
representation of a whole model becomes incomprehensible.
As a consequence, we have to be able to define a concrete
syntax only for a view onto the model. For example, only
the direct sub components of a component are visualized in



9

a diagram. Furthermore, the representations of the different
views have to be related with each other. The black-box of a
component is depicted in the diagram for its parent component,
whereas the white-box is shown in a different diagram.

Some modelers may prefer the diagrammatic concrete syn-
tax, while others prefer the textual one. As a consequence,
there might be several representations of the same view
in different variations of concrete syntax. The consistency
between the different representations has to be guaranteed by
means of abstract syntax. Furthermore, it should be possible
to combine several variations of concrete syntax for a view. A
diagrammatic representation of a state machine for example
may contain textual representations of the transition guards.

As we put the abstract syntax in the center of language
definition, the concrete syntax has to be defined as a function
that maps an abstract representation of a model into a concrete
representation. If this function is bidirectional, it can be
employed to provide authoring for the model. Otherwise, it
provides only a read-only representation of the model. In order
to enable rapid prototyping of modeling languages, there can
be a mapping into a concrete canonical representation. One
then starts from that mapping and subsequently refines it to
get the desired concrete syntax.

There are already some approaches to define the concrete
syntax on top of an abstract syntax. Textual Concrete Syntax
(TCS) provides a template language to define a bidirectional
function that maps EMF models into textual representations
[35]. The Graphical Modeling Framework (GMF) provides a
language to specify a diagrammatic syntax for EMF models
and allows to generate an authoring tool from that specifica-
tion [36]. Diagram Interchange Mapping Language (DIML)
provides a language to define a mapping from the abstract
syntax to a diagrammatic syntax, and a tool architecture to
reconcile the diagrams based on model transformations [37].
Most of the approaches towards concrete syntax definition do
not provide a clear separation between abstract and concrete
syntax. This makes it difficult to define alternative concrete
syntaxes for the same abstract syntax.

c) Process Definition: Part of the language definition
is also the methodical way of modeling, defining at what
time which parts of the model have to be developed. For
each development phase it defines both, which operations are
available and what properties have to be fulfilled at the end of
the phase. The process definition is interpreted by (and thus
parametrizes) a workflow engine.

A process definition consists of the activities that have
to be performed, the roles that are responsible for certain
activities, and the artifacts that are produced in the course
of certain activities. The abstract syntax defines the possible
structure of the artifacts, and the concrete syntax the different
views onto the model. The roles come with access rights
which regulate the access to certain views onto the model.
Activities may be performed sequentially, in parallel as well as
iteratively. For a better overview, activities should be structured
hierarchically. A basic activity may be fully automated such
as code generation and can then be specified by an interpreter
of the modeling language. On the other hand a basic activity
may have to be performed manually like e.g. requirements

elicitation and can then be supported by the operations defined
by the modeling language. Furthermore, the transition from
one activity to the next may be protected by quality gates
which guarantee the quality of the activity’s result. This can
be achieved by integrity constraints or by the execution of
complex analysis by interpreters. Integrity constraints actually
not only depend on the modeling language, but also on the
progress of the process. For example, every requirement has
to be implemented at the end of the process, but is of course
not implemented after requirements elicitation.

d) Semantics: Generally, there are three ways of spec-
ifying semantics: The first one is to describe the semantics
of the modeling language by a calculus, the second one is
to define the relationship to another formalism (denotational
and translational semantics), and the third one is to specify a
model interpreter (operational semantics).

The first one results in syntactical transformation rules
preserving the semantics. It is possible to provide these rules
with regard to tool support in the form of refactoring func-
tionality which is being realized via an in-place transformation
engine (the original model is thus altered directly). In general,
it must be differentiated between postulated rules (axioms)
and deducible rules (theorems). In the scope of a language
definition however, axioms would in principle be sufficient.
As theorems are, however, generally not deducible in an
automated way but are particularly relevant in practice for the
refactoring, they should nonetheless be formulated explicitly
in the language definition. From a formal point of view the
syntactic transformation rules complete the syntax definition
to form a calculus.

The second way maps each model according to the syntax
definition to a model of another formalism (referred to as
semantic domain). This may be a mathematical formalism
like logic or set theory (denotational semantics) but also a
programming language like C or Java (translational semantics).
Note that this kind of semantical definition always depends on
another formalism which needs to be formalized itself. In total,
this results in a system of modeling languages which are cor-
related to each other by the semantical mapping. According to
our integrated tooling framework, the specified transformation
rules are performed by an out-place transformation engine, i. e.
the original model is not altered.

The third way describes how a valid model is interpreted
as sequences of computational steps. These sequences then
make up the meaning of the model. In the context of generic
tooling environments it is therefore possible to use operational
semantics to parameterize a generic simulation framework.
Kermeta [38] is aiming at such a solution.

2) Horizontal Aspects: Tooling aspects are called horizon-
tal if they are independent of a certain modeling language.
Horizontal tooling aspects like a model repository are often
reimplemented by each isolated tool. However, the use of
different technologies for a model repository complicates
seamless tool integration, as models have to be transformed to
enable data exchange between the tools. Therefore, we propose
a tooling platform that factors out horizontal tooling aspects.
We identified the following horizontal tooling aspects that are



10

required for seamless system development in the large:

• Common Model Repository
• Generic Editor Framework
• Workflow Engine
• Model Interpretation Engine

In the following, we deal with the different horizontal
tooling aspects and their requirements in more detail.

a) Common Model Repository: A central model reposi-
tory is crucial for maintaining the dependencies between the
different models produced during the development process.
As the models of industrial systems become quite large, a
database system is required to store all the models and their
dependencies. The central model repository is also responsible
to ensure the overall consistency of the models. A model is
consistent if it fulfills the constraints defined by the modeling
language.

In order to efficiently handle distributed development of
systems, the database system has to be distributed. The mod-
els may be partitioned according to the different companies
which participate in the development of a system, since each
company needs to have sovereignty over its own models.
Furthermore, as some companies may not be permitted to
access or modify the models of other companies, the model
repository has to provide individual rights by access control.

When distributed parties simultaneously work on the same
models, conflicts arise that lead to inconsistencies. In order
to prevent or repair conflicts, configuration management is to
keep track of the different versions of the model. Furthermore,
configuration management is to define which version of dif-
ferent models fit together.

Object-oriented database systems are best suited for imple-
menting common model repositories, as they can efficiently
handle graph-like model structures. Traditional file-based con-
figuration management systems like CVS and SVN do not fit
the needs of model-based development. Current configuration
management systems for models like Odyssey-VCS mainly
support a certain modeling language like UML [39]. However,
there is also research on configuration management systems
which can be parametrized by a modeling language (e.g.
ModelCVS [40]).

b) Generic Editor Framework: A front-end provides a
user interface for authoring models in the repository. The
front-end should constitute a generic framework that can
be parametrized by the applied modeling languages. The
front-end provides editors to author a model in its concrete
representation by using the concrete syntax of the modeling
language. Furthermore, the front-end offers the operations to
the modeler, which are defined by the modeling language
(vertical) and operations that are common to all languages
(horizontal).

These operations have to be intuitive to support the engi-
neers in working with the models in an efficient manner. For
example, the operations that support configuration manage-
ment should allow the engineers to commit the changes on
models and to update parts of the models. In case of a conflict,
we need a merge operation that allows the visualization of
the differences between models in their concrete syntax. The

Eclipse platform is a perfect candidate for a front-end, as its
service-oriented architecture makes it highly extensible [41].

c) Workflow Engine: Our experiences show that a defined
process is often not followed by its participants, as long as it
is not supported by the modeling tool. To prevent deviation
from the process, the developers should be guided through
the defined process by the tooling platform. In order to
operationalize the process, the workflow engine interprets the
process definition of the modeling language. When interpreting
a process model, the progress and current activities that need
to be performed are always available through the workflow
engine. To force a modeler to perform the current activities, all
operations and interpreters not required for the activity have to
be suppressed. The rights management of the tooling platform
has to ensure that certain activities are only performed by
certain roles. When modelers log on to the tooling platform,
they can only perform activities which are currently available
based on the process definition and which correspond to one
of the roles they own.

d) Model Interpretation Engine: It provides the facilities
to perform complex tasks such as analysis and synthesis based
on the semantical definition of the language. To perform
complex editing and refactoring facilities an in-place model-
to-model transformation engine is necessarily integrated in
the front-end. For an automated generation of code and other
process artifacts an out-of-place model-to-model as well as
model-to-text transformation engine is needed. Since such
generation tasks might need a lot of time and computing power
they should be located at a different machine in the back-
end. In order to be able to execute an operational semantics
a generic simulation framework is necessary which should be
also located in the back-end because of resource consumption
issues.

B. Building-Block Principle
To operationalize an integrated model theory for practice, a

company may aim at defining an integrated modeling language
that covers the whole development process. As a consequence,
such an integrated modeling language is quite extensive and
thus difficult to develop. The development costs are reduced
by developing an integrated modeling language that is reused
for several companies. However, this approach is usually not
feasible, as a company may request a modeling language
tailored to its specific needs.

Nevertheless, integrated modeling languages of different
companies will be identical in some parts or similar in
others. For example, a lot of automotive companies prefer
to use dataflow networks to model embedded systems. Reuse
of these parts can be achieved by modularizing modeling
languages. An integrated modeling language is then built
by a number of predefined modeling language modules. As
shown in Figure 8, an organization composes existing modules
(which may be provided by an open platform as planned for
open-MODELS.org) for modeling requirements, software de-
sign and deployment on hardware to form their own integrated
modeling language.

A modeling language module consists of the elements that
we have already described: abstract syntax, concrete syntax,



11

Garching, 11.11.2008 Stefano Merenda, Chair IV: Software and Systems Engineering 11

Technische Universität München

Upper level languages 

Tailored languages

Basic languages

Dependencies between language modules

Automaton TopologyUse Case Dataflow Allocation

Logical ArchitectureFeature Architecture Technical Architecture

EADS Avionic System BMW Automotive System

Domain-independent Product Model

co
m

pa
ny

sp
ec

ifi
c

Fig. 8. Modularity in tooling: Dependencies between language modules.

process definition and semantics. Additionally, a modeling
language module needs to provide an interface so that it can be
connected to other modules. A module for modeling software
design e.g. provides a connector for deployable units which
can be connected to an appropriate connector in a module for
modeling deployment on hardware. As we put the abstract
syntax in the center of language development, the interface of
a module is defined in terms of the abstract syntax.

Furthermore, companies might want to adapt a modeling
language module to fit their specific requirements. Because of
associated costs, companies do not want to rebuild the adapted
modeling language from scratch. For this reason, a means has
to be provided that allows for the customization of modeling
language modules. There are several possibilities to do so: a
language can be customized by constraints (lightweight exten-
sions), sub concepts (heavyweight extensions) or parameters
of the module. Customizing a modeling language results in a
new module that depends on the module of the customized
modeling language.

MOF provides basic coarse-grained operators for the com-
position of modeling languages like importing, merging or
combining packages [32]. Blanc et al. motivate the need for
a new operator that allows to reuse and generalize concepts
when combining packages [42]. Clark et al. provide a new
composition operator that allows to equate concepts before
merging the packages [43]. Karsai et al. propose more fine-
grained operators that allow for the composition of modeling
languages like the union of two concepts or finer control
over inheritance relationships between two concepts [44].
Balasubramanian et al. show how to apply these operators
to the integration of existing model-based development tools
[45]. Estublier et al. provide similar constructs, but allow
not only for the composition of the generated editors, but
also consider composition of corresponding model interpreters
[46]. Emerson and Sztipanovits envision metamodel templates
that enable a more flexible generalization and customization
of modeling languages [47].

C. Managing Change for Modeling Languages

In order to be prepared for the inevitable evolution of
modeling languages, appropriate tool support is required to
safely change or extend a modeling language when already

deployed [48]. In our tool architecture, the abstract syntax is
first modified to fulfill the new requirements. As the other
elements of a modeling language all depend on the abstract
syntax, they have to be adapted to the modified abstract syntax
and maybe extended with respect to the new requirements.
Most importantly however, existing models have to be mi-
grated so that they can be used with the evolved modeling
language.

Appropriate tool support is required for the migration of
models in response to an evolving modeling language. As
there may be a large number of models, model migration
has to be automated. Further automation can be provided
by reusing recurring migration scenarios. However, model
migration becomes quite complex, when motived by changes
in the semantics of the modeling language. For this reason,
appropriate tool support also needs to account for manual,
expressive migrations.

With appropriate tool support for language maintenance,
modeling languages can be even developed in an evolutionary
way. A version of a modeling language is created and deployed
to be assessed by the modelers. The feedback of the modelers
is then easily incorporated into a new version of the modeling
language which is again deployed for further assessment.
Elements of a modeling language other than the abstract syntax
do not have to be defined in a first version of the modeling
language, but are completed in later versions. By evolutionary
development of modeling languages, domain appropriateness
can thus be reached iteratively.

When a specification changes, potentially all existing in-
stances have to be reconciled in order to conform to the
updated version of the specification. Since this problem of
coupled evolution affects all specification formalisms (e. g.
database or document schemata, types or grammars) alike,
numerous approaches for coupled transformation [49] of a
specification and its instances have been proposed. The prob-
lem of schema evolution which has been a field of study for
several decades has probably received the closest investigation
[50]. Recently, the literature provides some work that transfers
ideas from other areas to the problem of metamodel evolution.
In order to reduce the effort for model migration, Sprinkle
proposes a visual, graph-transformation based language for
the specification of model migration [51]. Gruschko et al.
envision to automatically derive a model migration from
the difference between two metamodel versions [52], [53].
Wachsmuth adopts ideas from grammar engineering and pro-
poses a classification of metamodel changes based on instance
preservation properties [54].

V. POLITICAL BARRIERS

As described before, to achieve a seamless and integrated
development environment, various integration activities have
to be mastered. Up to now this vision is not implemented
in the industrial practice, although its realization is feasible
from a scientific point of view. The reason for this lack of
realization seems to be political: The ones who require an
integrated development environment – mainly the tool users –
do not feel responsible for driving the integration. The ones



12

who seem to be responsible about tooling – mainly the tool
vendors – do not profit.

A. The different Stakeholders

For a better understanding we distinguish the following
stakeholders with their own interests:

1) Tool Vendors: In general, tool vendors want to sell their
software tool products as often as possible with a minimum
amount of (unpaid) customization activities. This results from
the fact that software product companies have to deal with
huge fixed costs which makes is difficult to gain the return on
investment. Every customization and every product redesign
increases the development costs. Since a deep integration
of tools affects most parts of their implementation and in
particular established companies have to handle a lot of legacy
code, tool vendors in general are unreceptive for integration
activities. In addition, tool integration activities come along
with standardization which makes the different tool vendors
replaceable and thus decreases their customers’ dependence.
On closer examination we can distinguish two types of tool
vendors: vertical and horizontal vendors.

Vertical tool vendors provide a concrete development tool
for a dedicated purpose. There are many examples like Doors
or Matlab-Simulink/Stateflow. At first, the benefit they provide
depends on an integrated and seamless development environ-
ment. Even though integration will increase the benefit because
of reuse aspects, vertical tool vendors fear the increased
compatibility to their competitors. Since the lack of integration
ability exists for all of the tool alternatives, vertical tool
vendors are not forced to act. The Eclipse Platform may be
one example for such an enforcement – once a critical mass of
engineering tools is created using Eclipse, the other vendors
will be forced to migrate to more open platforms. Another
example is AUTOSAR which is about to become the de-
facto standard for automotive software engineering platforms.
In both cases the communities of potential tool users might
be large enough. One of the few reasons, a vertical tool
vendor uses standardized platforms without pressure, is the
ability to replace proprietary in-house implementations by
general purpose software: Often the tool vendor is forced to
implement a special solution for horizontal tooling aspects like
configuration management although it is out of the vendor’s
scope, because no appropriate solution is available on the
market. After time, a proper solution will come up and the tool
vendor is willing to integrate the solution in order to minimize
maintenance costs.

Horizontal tool vendors focus exactly on the general pur-
pose solutions which are independent of a dedicated modeling
language. The above mentioned configuration management is
an example for this. Another example out of practice are
database management systems: Most development tools which
provide a central database are using off-the-shelf databases. On
the other hand there are companies like MetaCase [55] which
are still working with their own (object-oriented) database
implementation, because an appropriate solution is still not
available. The difficulty horizontal tool vendors have to fight
with is the fact that a horizontal tool itself does not provide

a value to its users until the vertical solutions utilize them.
To convince a vertical tool vendor to use new horizontal
solution in turn takes much effort. Often the issues are not
technologically motivated but politically again: The vertical
tool vendor becomes dependent on the horizontal tool vendor.
Especially new and technically thrilling solutions are mainly
introduced by young and small companies. The risk that such
a company disappears from the market is critical for the
utilizing vertical tool vendor. These issues make it necessary
that a horizontal tool vendor is replaceable. Then, the risk
for companies which integrate a horizontal solution is much
lower. Because of that horizontal tool vendors are much more
interested in supporting a standardized tooling architecture
than vertical tool vendors.

2) Tool Users: Generally speaking, the core business of tool
users is not creating tools, but using them in order to improve
their system engineering process (decrease development costs
and/or time, increase quality, etc.). Since developing their
own development tools always leads to huge development and
maintenance costs, most of the tool users try to strictly avoid
proprietary tool solutions. The reason why tool users think
about their own tool solutions, anyway, is given by the mis-
match of required tools and provided tools. Also the integrative
aspect of tooling is one of the most desired tool requirements
which are not satisfied yet. Anyway, tool users do not feel to
be in charge for establishing an integrated and generic tooling
platform, although they are the first and only beneficiaries.
The justification is that they are not a tool vendor which is
obviously correct, but does not bring them closer to a solution.
A solution might be that tool users only specify (and do not
implement) a common tooling platform in order to be able to
communicate their detailed requirements to the tool vendors.
In the context of the automotive and avionic domain we have
to distinguish two kinds of tool users: OEM (integrators) and
suppliers. From a technical point of view, OEMs focus on
defining and integrating all supplied components for the final
product (e.g. an airplane or a vehicle). Thus, they mainly
concentrate on the early (requirements management) as well
as late development phases (integration and system testing).
Suppliers focus on developing a dedicated sub-system based
on a given set of requirements. Consequently, according to the
OEM, they work on the middle development phases (system
design, implementation, and unit testing). Generally speaking,
both OEMs and suppliers are interested in homogeneous tool
environments. Nevertheless the following facts have to be
taken into account:

Firstly, since systems engineering asks for an iterative
development process including both OEM and suppliers, the
interface between OEM and suppliers should be taken into
account explicitly when talking about seamless development
environments. Hereby, an important issue is the trade-off be-
tween a seamless reuse of process artifacts and the protection
of respective intellectual properties. For instance, one central
database for both OEM and supplier would be unacceptable.
Instead, a distributed solution with a mature access control
system may be a solution.

Secondly, every OEM collaborates with multiple suppliers,
and every supplier collaborates with multiple OEMs. Thus,



13

already as a matter of principle, neither the supplier can
adopt the (potentially differing) tooling environments from
their OEMs nor the OEM can adopt the (potentially differing)
tooling environments from their suppliers. Hence, the benefit
of establishing a new tooling environment should not be a
seamless tool integration between OEM and supplier in the
first step. Instead, the primary goal should be an internal
tool homogenization. Later on, other suppliers and OEMs
respectively can be involved.

Finally, seamless tool environments are often seen as a
major competitive advantage. Consequently, establishing co-
operation between competitive OEMs and suppliers respec-
tively is often difficult or even impossible. In this situation,
tool users overlook the fact that integrations always have a
standardization aspect which inevitably requires cooperations
even between the competitors in the end.

B. Levels of Integration

After our discussion about the involved stakeholders for a
seamless tool environment, we outline the three possible and
also necessary levels of integration, on which the different
stakeholders have to agree:

1) Common Tooling Platform: On this level, the stakehold-
ers have to agree on all the horizontal tooling aspects inde-
pendently of a concrete modeling language like persistency,
access control or configuration management. In particular on
this level the meta languages for language construction must be
defined. This is one of the most essential issues: Without this
special language, modeling languages are specified in different
language specification formalisms: Imagine that one language
is specified by an EBNF, another by a MOF Diagram and a
third by an XML Schema. A deep integration of such lan-
guages fails already because of the different formalisms. Tool
users should be aware of the fact that informal or even semi-
formal language definitions are not sufficient: Tool vendors use
their own interpretations of the language based on their needs.
As a consequence, tools cannot interchange informations with
each other, even though the language is standardized. That is
why standards must provide formalizations of languages, e.g.
reference implementations of languages. A prominent example
for that problem is the Unified Modeling Language (UML).
Even though the metamodel and the exchange format was
standardized in an informal document, UML tools cannot
exchange data correctly, because each tool producer interprets
the standard in a slightly different way. That is caused also by
the complexity of the UML language itself. That is why the
Eclipse community started to provide a reference implementa-
tion of the UML metamodel that enables the tools to exchange
data correctly.

2) Common Modeling Languages: Once it is clear, how to
define modeling languages, the next level is to define modeling
languages the various stakeholders have in common. In the
automotive domain, AUTOSAR is a good example for such a
standardization process. But due to the missing common tool-
ing platform, the resulting AUTOSAR tools from different tool
vendors are again not fully compatible. When discussing about
common modeling languages, the question arises who of the

stakeholders should be involved. Even though the tool users
know best what is needed within a modeling language, the
languages are defined mainly by the tool vendors. Tool vendors
and tool users are almost decoupled and – with few exceptions
generated by ad-hoc needs – there is no feedback between ven-
dors and users. On this level, language customization should
also be taken into account: Most of the tools today are general-
purpose and off-the-shelf that can be used in a wide spectrum
of domains (e.g. both to develop vehicles, airplanes or even
medical instruments). On the other hand such today’s tools
usually cannot be customized. In addition, companies often
try to protect their own languages from competitors which
makes it impossible to create seamless modeling environments.
Instead of being isolated, languages should be extensible. The
competitive advantage is the methodological knowledge of the
staff about the language: It is much more important that a
company knows how to use a modeling technique correctly
than just having one. The final consequence might be an open
online platform for collaborative development of common
modeling languages.

3) Common Artifacts: At last, concrete artifacts (modeled
with the already defined and common modeling language) are
used in common. In this context, data mining over divisions
and company barriers becomes crucial: even though artifacts
are used in common, the intellectual property must be pro-
tected further on. On this level, model reuse and product lines
play also an important role. Although at this most concrete
integration level the benefit is maximal, the above mentioned
more abstract integration layers must be handled before a
mature solution is obtained.

VI. MIGRATION TO A BRAVE NEW TOOLING WORLD

A comprehensive approach for seamless model-based devel-
opment cannot be introduced into practice in only one step.
Instead of aiming at big bang changes that would need to
overcome enormous political and technical barriers, we need
well-planed and incremental migration scenarios.

A. Incremental rather than Big Bang

“Big Bang” approaches are not feasible: We are aware that
a “Big Bang”-like approach for changing the current practice
with a pure seamless model-based approach as we described
earlier is not feasible. Below we enumerate the most important
factors that hinder the one-step transition:

1) Weak semantic domain: Many of the current commercial
modeling tools are only partially formalized (if at all). Without
a well-defined theory for the underlying languages, any model
based approach can be only partially successful and only
implemented in an ad-hoc manner. The lack of formalization
hampers automation of the workflow and the integration of
models.

2) Conceptual mismatch: The existing modeling techniques
do not allow for a lean integration with each other due to their
impedance mismatch at the conceptual level. Even if a specific
modeling theory fits well for a particular process phase, it is
not clear how it can be integrated into the engineering process.



14

The lack of integration between modeling theories behind the
tools turns the tools into isolated islands of automation.

3) Lack of technical agreement: The current architectures of
the widely used system engineering tools are opaque towards
the integration. Most of the time the models are saved in
proprietary formats, the tools are closed towards extensions
or have undocumented APIs. Even the implementation of the
most simple tool extensions requires digging into undocu-
mented code and the usage of different scripting languages.

4) Huge tool development costs: Building the tools that
are mature enough to sustain the system engineering process
is an expensive business. Many of the implementation costs
are related to the infrastructure of the tools and that is not
directly reflected in the user functionality. Consequently, with
few exceptions, the tool builders are interested to address a
wide category of users (possibly from different domains) and
thusbuild rather general tools.

B. Migration Scenario

We advocate that the most important mind setting is to
plan and introduce model-based development incrementally.
The incremental concepts should occur on distinct dimensions:
from bridging the gap between the generality and domain
appropriateness of tools, from peer-to-peer data integration to
a central repository, from isolation of tools to an integrated
environment and from tool users to tool providers.

a) From general purpose to domain specific tools:
Ideally, engineers should work with tools that are tailored
to their specific needs. Until we achieve this level of tailor-
ing, the general purpose tools should allow more enhanced
customizations. The users of tools (or the IT departments
from their companies) should be enabled to customize the
COTS tools and thereby to bridge the gap between the general
facilities offered by the tools and the very specific needs
of the engineers. By allowing advanced customization, the
gap between tool users and builders can be bridged – tool
users become active contributors to the tools themselves. By
taking customization to extreme, domain specific tools can
be obtained by parameterizing the general purpose tools with
different workflows and language definitions (or language
profiles à la UML).

b) From peer-to-peer data integration to an integrated
repository: Part of the current difficulties in integrating tools
are due to the lack of standard interfaces that the tools define
to access their data. The data integration approaches range
between loose, peer-to-peer integration with the help of tool
couplers to an integrated repository that contain all the product
data. As an intermediate step we envision the agreement to
use public formats for exporting models and the publishing of
open APIs by tool builders.

c) From federations of tools to integrated environments:
In an ideal case, all system engineering tools would be inte-
grated in an system engineering environment that would offer
different views onto the product model. In the current state of
practice, engineers make use of tool chains that only partially
satisfy their needs. These tools do not know of each other and
the borders of tools are very sharp (e.g. when they are working

with more tools, engineers need to change completely their
working context by switching between different programs). As
an intermediate step, we envision that the presentation layers
of tools to be coupled through plugins and in this way the
boundaries between tools will disappear – a tool A can be a
prolongation of a tool B and vice-versa. However, in order to
support this, the tool builders should change the design and
architecture of tools towards more open systems. Each tool
will be a contributor to a repository-based system engineering
environment rather than standalone.

d) From building tools from scratch to a common tooling
infrastructure: The vertical aspects of tools are the most
interesting ones for their clients and can make the difference
when judging the capabilities of a certain tool. The horizontal
aspects represent a great deal of effort and do not differ
dramatically from domain to domain. Having a standard infras-
tructure enables the basic management of models and thereby
the efforts for implementing new tools can concentrate on the
user functionality. This will subsequently cause a reduction
of development costs for tools. As a side effect, this leads
to a standard manner to build and manage the models. All
the horizontal operations are done in the same manner (e.g.
similar to the current de-facto standard content of the ’File’,
’Edit’ or ’Help’ menus of every tool). Beside the front-end, the
back-end of tools are standardized and thereby all the system
engineering tools are built on a common tooling infrastructure.

e) From individual companies to an industry consortium:
Defining clear minimal requirements about the tools that are
industry-specific could represent a big step forward and could
establish a common vocabulary between the tool vendors
and customers on the one hand and between the integrators
and suppliers on the other hand. Such standards can be in
the form of profiles (e.g. an ATA profile that leverages the
general requirements management capabilities of Telelogic
DOORS to be aware of the avionics way of organizing the
requirements). Such a consortium would have enough political
force to capture the interest of tool vendors.

VII. RELATED WORK

A. Tool Integration Approaches

In the literature, we can already find some approaches
for tool integration. In [56], the authors propose a model-
based approach to integrate tools working on interdependent
documents. Wrappers for each tool allow us to abstract
from technical details and provide homogenized access to
documents through graph models. The different documents
are kept consistent by graph transformations rules which
allow us to propagate changes in an incremental develop-
ment process. In [57], the authors give a more detailed
description of their algorithm for incremental and interactive
consistency management. The authors of [58] explain and
compare two architectural design patterns which allow for tool
integration. The first architecture is based on an integrated
model and adapters for each tool which translate the data
to the integrated model. The second architecture is based
on a messaging system, which routes data according to a
workflow specification, and implements a pairwise integration



15

among tools. [59] presents the extension of the ETI (Electronic
Tool Integration) platform with web service technology. The
integrated tools interact with each other by use of web services,
which allow to decouple the different tools from each other and
which therefore ease integration and maintenance activities.
In [60], the authors present their rule-based approach MDI
(Multi Document Integration) for data integration of multiple
data repositories. Metamodels are used to provide an abstract
specification of the different models, a separate model is used
to specify correspondence links between the models, and rules
are used to specify consistency between the models. The
declarative rules which are specified in the form of triple graph
grammars are used to derive code for creating and consistency
checking of correspondence links as well as for forward and
backward propagation of changes. TOPCASED [61] is an
open-source CASE environment for model-based development
of critical applications and systems. Their ambition is to build
an extensible and evolutive CASE tool that allows its users to
access various models and associated tools.

Beside these academic approaches there are already some
tool developers offering integrated tool support. For the au-
tomotive domain Vector has developed the tool eASEE [62]
which is intended to be a data backbone that stores the product
data in a central repository. This tool is not designed as a
generic tool integration platform, but focuses on supporting
predefined modeling functionalities. The tool PREEVision
from Aquintos [63] follows a similar direction.

B. Language Workbenches

There are many standards from the Object Management
Group (OMG) like the Meta Object Facility (MOF) for
the definition of metamodels, Object Constraint Language
(OCL) [33] for defining constraints on MOF-based meta-
models and the Query/Views/Transformations (QVT) speci-
fication [64]. Only partially based on these standards many
so-called Language Workbenches have been developed to
enable the development of mainly diagrammatic domain-
specific languages (DSLs). The most prominent ones are the
Generic Modeling Environment (GME) [65], MetaEdit+ [55],
Microsoft’s Domain-Specific Language Tools and the Eclipse
Modeling Framework (EMF). All of these tools offer support
for building modeling languages. However, these languages
are often trapped inside of these tool environments because
they all implement different metamodeling techniques. The
composition of languages to an integrated modeling chain is
still only supported in a very limited way. These tools also
lack support for the development workflow. But nevertheless
they represent tool architectures that separate the modeling
language from the tool infrastructure.

C. Research Road Maps

Many authors that wrote software engineering research road
maps have already stated the problem of getting to a seamless
tool environment. In [20], the authors describe the use of do-
main abstractions as a key to future model-based development.
These can be made usable by the implementation of DSLs. To
prevent a DSL-Babel the authors name the ability of relating

elements in different languages with each other to allow the
flexible composition of languages. The authors also describe
evolution as one of the big future problems in model-based
development. In [66], the problem of distributed development
in the automotive industry is explained. A deeper integration of
models and tools is claimed as a key issue in future automotive
software engineering research. [67] outlines a research road
map that should lead to easier software verification in the
future. They also claim for semantically richer specification
and modeling techniques. The need for model engineering is
also claimed in [68], [69]. The AMMA platform is presented
as an eclipse-based integration environment that allows basic
(meta-)model management support. This approach has the
potential to fulfill some of the requirements for an integrated
tool support presented in this paper. In [70], Zeller describes
tool integration as one of the challenging tasks for software
engineering. He argues that the extensibility of tools will
become a crucial issue.

VIII. CONCLUSION

The full promises of model-based development will only be
achieved by using models throughout the development process.
Requirements models have to be refined to design models
from which implementation models are generated. To reuse
the model information from one process step within other
process steps, a seamless integration of the different models
is required. Seamless model based development can only be
achieved with three main ingredients: 1) a comprehensive
modeling theory, 2) an integrated architectural model and 3)
a seamless model engineering environment.

The large body of research in the last twenty years led
to a wide body of knowledge about modeling theories and
architectures. In current practice, however, model-based devel-
opment finds its way into the industry with difficulties mostly
because of the lack of adequate tool support. Working with
models requires the tools to be aware of the semantics of
models and that the tools can exchange the models, and these
requirements increase substantially the difficulty of developing
tools. In order to tackle these problems and to enable a
seamless integration of methods, models, processes and tools,
we proposed a new tooling platform. We advocate that a tool-
ing platform should separate between common functionality
related to the infrastructure (horizontal aspects) from the func-
tionality that is specific to a modeling aspect (vertical aspects).
The horizontal aspects enable an common model repository
with explicit dependencies between the different models. The
generic tooling platform can be parametrized by a modeling
language which defines the product model of a company.
The clear separation of vertical and horizontal tooling aspects
forms the foundation to reduce costs for both development
and maintenance of an integrated engineering environment.
Currently we contribute to the open-source project OOMEGA
[71] in order to demonstrate such a generic tooling platform.
In a project, we use OOMEGA to implement seamless model-
based development for the automotive domain. Based on
OOMEGA we currently set up the openMODELS [72] project,
which enables a collaborative development of commonly used
language modules.



16

REFERENCES

[1] J.-R. Abrial, “Formal methods: Theory becoming practice,” Journal of
Universal Computer Science, vol. 13, no. 5, pp. 619–628, May 2007.

[2] ——, “Formal methods in industry: achievements, problems, future,” in
ICSE ’06: Proceedings of the 28th international conference on Software
engineering. New York, NY, USA: ACM, 2006, pp. 761–768.

[3] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, “Lustre: a declara-
tive language for real-time programming,” in POPL ’87: Proceedings of
the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages. New York, NY, USA: ACM, 1987, pp. 178–188.

[4] “Esterel technologies webpage.” [Online]. Available: http://www.esterel-
technologies.com/index.html

[5] “Mathworks webpage.” [Online]. Available:
http://www.mathworks.com/

[6] M. Blackburn, R. Busser, A. Nauman, R. Knickerbocker, and R. Kasuda,
“Mars polar lander fault identification using model-based testing,” in
ICECCS ’02: Proceedings of the Eighth International Conference on
Engineering of Complex Computer Systems. Washington, DC, USA:
IEEE Computer Society, 2002, p. 163.

[7] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang, “Symbolic
model checking: 10 states and beyond,” in Proceedings of the Fifth An-
nual IEEE Symp. on Logic in Computer Science, LICS 1990, J. Mitchell,
Ed. IEEE Computer Society Press, June 1990, pp. 428–439.

[8] Y. Choi, “From NuSMV to SPIN: Experiences with model checking
flight guidance systems,” Formal Methods in System Design, vol. 30,
no. 3, pp. 199–216, Apr. 2007.

[9] A. Betin Can, T. Bultan, M. Lindvall, B. Lux, and S. Topp, “Eliminating
synchronization faults in air traffic control software via design for verifi-
cation with concurrency controllers,” Automated Software Engineering,
vol. 14, no. 2, pp. 129–178, Jul. 2007.

[10] C. A. Muñoz, G. Dowek, and V. Carreño, “Modeling and verification of
an air traffic concept of operations,” in ISSTA ’04: Proceedings of the
2004 ACM SIGSOFT International Symposium on Software Testing and
Analysis. New York, NY, USA: ACM, 2004, pp. 175–182.

[11] “Verisoft webpage.” [Online]. Available:
http://www.verisoft.de/StartPage.html

[12] “Isabelle webpage.” [Online]. Available: http://isabelle.in.tum.de/
[13] S. Beyer, P. Bohm, M. Gerke, M. Hillebrand, T. I. d. Rieden, S. Knapp,

D. Leinenbach, and W. J. Paul, “Towards the formal verification of lower
system layers in automotive systems,” in ICCD ’05: Proceedings of the
2005 International Conference on Computer Design. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 317–326.

[14] “Autosar webpage.” [Online]. Available: http://www.autosar.org
[15] J. Whittle, R. Kwan, and J. Saboo, “From scenarios to code: An air

traffic control case study,” Software and System Modeling, vol. 4, no. 1,
pp. 71–93, Feb. 2005.

[16] G. Zoughbi, L. Briand, and Y. Labiche, “A UML profile for developing
airworthiness-compliant (RTCA DO-178B), safety-critical software,” in
Model Driven Engineering Languages and Systems, ser. Lecture Notes
in Computer Science, vol. 4735. Springer Berlin / Heidelberg, 2007,
pp. 574–588.

[17] OMG, “Unified modeling language: Superstructure,” OMG
Document formal/07-02-05.pdf, 2 2007. [Online]. Available:
http://www.omg.org/docs/formal/07-02-05.pdf

[18] M. Broy, M. L. Crane, J. Dingel, A. Hartman, B. Rumpe, and B. Selic,
“2nd UML 2 semantics symposium: Formal semantics for UML,”
in Models in Software Engineering, ser. Lecture Notes in Computer
Science, vol. 4364. Springer Berlin / Heidelberg, 2007, pp. 318–323.

[19] M. L. Crane and J. Dingel, “UML vs. Classical vs. Rhapsody Statecharts:
not all models are created equal,” Software and System Modeling, vol. 6,
no. 4, pp. 415–435, Nov. 2007.

[20] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in FOSE ’07: 2007 Future of Software
Engineering. Washington, DC, USA: IEEE Computer Society, May
2007, pp. 37–54.

[21] A. v. Lamsweerde, “Formal specification: a roadmap,” in ICSE ’00:
Proceedings of the Conference on The Future of Software Engineering.
New York, NY, USA: ACM, 2000, pp. 147–159.

[22] OMG, “Unified Modeling Language (UML) Specification 2.1.2,” 2006.
[23] N. G. Leveson, “Intent specifications: An approach to building human-

centered specifications,” IEEE Trans. Softw. Eng., vol. 26, no. 1, pp.
15–35, 2000.

[24] “A380 cable problems threaten Airbus,” Flu-
gRevue. [Online]. Available: http://www.flug-
revue.rotor.com/FRHeft/FRHeft06/FRH0612/FR0612b.htm

[25] T. Pop, P. Eles, and Z. Peng, “Holistic scheduling and analysis of mixed
time/event-triggered distributed embedded systems,” in CODES ’02:
Proceedings of the 10th International Symposium on Hardware/Software
Codesign. New York, NY, USA: ACM, 2002, pp. 187–192.

[26] P. Wallin and J. Axelsson, “A case study of issues related to automotive
E/E system architecture development,” in ECBS ’08: Proceedings of
the 15th Annual IEEE International Conference on the Engineering of
Computer Based Systems. Washington, DC, USA: IEEE Computer
Society, Mar. 2008, pp. 87–95.

[27] J.-M. Favre, “Languages evolve too! Changing the Software Time
Scale,” in IWPSE ’05: Proceedings of the Eighth International Workshop
on Principles of Software Evolution. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 33–44.

[28] M. Broy, “Model-driven architecture-centric engineering of (embedded)
software intensive systems: modeling theories and architectural mile-
stones,” Innovations in Systems and Software Engineering, vol. 3, no. 1,
pp. 75–102, Feb. 2007.

[29] M. Broy and K. Stølen, Specification and development of interactive
systems: focus on streams, interfaces, and refinement. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2001.

[30] M. Broy, M. Feilkas, J. Grünbauer, A. Gruler, A. Harhurin, J. Hartmann,
B. Penzenstadler, B. Schätz, and D. Wild, “Umfassendes architektur-
modell für das engineering eingebetteter software-intensiver systeme,”
Technische Universität München, Tech. Rep. TUM-I0816, 06 2008.

[31] J. Evermann and Y. Wand, “Toward formalizing domain modeling
semantics in language syntax,” IEEE Trans. Softw. Eng., vol. 31, no. 1,
pp. 21–37, Jan. 2005.

[32] OMG, “Meta Object Facility (MOF) Specification 2.0,” 2006.
[33] ——, “Object Constraint Language (OCL) Specification 2.0,” 2006.
[34] F. Budinsky, S. A. Brodsky, and E. Merks, Eclipse Modeling Framework.

Pearson Education, 2003.
[35] F. Jouault, J. Bézivin, and I. Kurtev, “TCS: a DSL for the specification of

textual concrete syntaxes in model engineering,” in GPCE ’06: Proceed-
ings of the 5th International Conference on Generative Programming
and Component Engineering. New York, NY, USA: ACM, 2006, pp.
249–254.

[36] “Eclipse GMF website.” [Online]. Available:
http://www.eclipse.org/modeling/gmf/

[37] M. Alanen, T. Lundkvist, and I. Porres, “Creating and reconciling
diagrams after executing model transformations,” Science of Computer
Programming, vol. 68, no. 3, pp. 128–151, Oct. 2007.

[38] Z. Drey, C. Faucher, F. Fleurey, V. Mah, and D. Vojtisek, Kermeta
language - Reference manual, IRISA Triskell Project, 1 2008. [Online].
Available: http://www.kermeta.org/docs/KerMeta-Manual.pdf

[39] H. Oliveira, L. Murta, and C. Werner, “Odyssey-VCS: a flexible version
control system for UML model elements,” in SCM ’05: Proceedings
of the 12th International Workshop on Software Configuration Manage-
ment. New York, NY, USA: ACM, 2005, pp. 1–16.

[40] “Model CVS webpage.” [Online]. Available: http://www.modelcvs.org/
[41] “Eclipse website.” [Online]. Available: http://www.eclipse.org/
[42] X. Blanc, F. Ramalho, and J. Robin, “Metamodel reuse with MOF,” in

Model Driven Engineering Languages and Systems, ser. Lecture Notes
in Computer Science, vol. 3713. Springer Berlin / Heidelberg, 2005,
pp. 661–675.

[43] T. Clark, A. Evans, and S. Kent, “A metamodel for package extension
with renaming,” in UML 2002 – The Unified Modeling Language, ser.
Lecture Notes in Computer Science, vol. 2460. Springer Berlin /
Heidelberg, 2002, pp. 305–320.

[44] G. Karsai, M. Maroti, A. Ledeczi, J. Gray, and J. Sztipanovits, “Compo-
sition and cloning in modeling and meta-modeling,” IEEE Transactions
on Control System Technology (special issue on Computer Automated
Multi-Paradigm Modeling, vol. 12, pp. 263–278, 2004.

[45] K. Balasubramanian, D. C. Schmidt, Z. Molnar, and A. Ledeczi,
“Component-based system integration via (meta)model composition,”
in ECBS ’07: Proceedings of the 14th Annual IEEE International
Conference and Workshops on the Engineering of Computer-Based
Systems. Washington, DC, USA: IEEE Computer Society, Mar. 2007,
pp. 93–102.

[46] J. Estublier, G. Vega, and A. D. Ionita, “Composing domain-specific
languages for wide-scope software engineering applications,” in Model
Driven Engineering Languages and Systems, ser. Lecture Notes in
Computer Science, vol. 3713. Springer Berlin / Heidelberg, 2005,
pp. 69–83.

[47] M. Emerson and J. Sztipanovits, “Techniques for metamodel
composition,” in DSM’06: 6th Workshop on Domain Specific
Modeling, October 2006, pp. 123–139. [Online]. Available:
http://chess.eecs.berkeley.edu/pubs/289.html



17

[48] M. Herrmannsdoerfer, S. Benz, and E. Juergens, “Automatability of
coupled evolution of metamodels and models in practice,” in Model
Driven Engineering Languages and Systems, ser. Lecture Notes in
Computer Science, vol. 5301. Springer Berlin / Heidelberg, 2008,
pp. 645–659.

[49] R. Lämmel, “Coupled Software Transformations (Extended Abstract),”
in First International Workshop on Software Evolution Transformations,
Nov. 2004.

[50] E. Rahm and P. A. Bernstein, “An online bibliography on schema
evolution,” SIGMOD Record, vol. 35, no. 4, pp. 30–31, 2006.

[51] J. Sprinkle and G. Karsai, “A domain-specific visual language for
domain model evolution,” Journal of Visual Languages & Computing,
vol. 15, no. 3-4, pp. 291–307, Jun. 2004.

[52] S. Becker, T. Goldschmidt, B. Gruschko, and H. Koziolek, “A process
model and classification scheme for semi-automatic meta-model evolu-
tion,” in Workshop ’MDD, SOA and IT-Management 2007’, 2007.

[53] B. Gruschko, D. Kolovos, and R. Paige, “Towards synchronizing models
with evolving metamodels,” in Proceedings of the International Work-
shop on Model-Driven Software Evolution, 2007.

[54] G. Wachsmuth, “Metamodel adaptation and model co-adaptation,” in
ECOOP’07: Proceedings of the 21st European Conference on Object-
Oriented Programming, ser. Lecture Notes in Computer Science, vol.
4609. Springer Berlin / Heidelberg, 2007, pp. 600–624.

[55] J.-P. Tolvanen, “MetaEdit+: domain-specific modeling for full code gen-
eration demonstrated [GPCE],” in OOPSLA ’04: Companion to the 19th
annual ACM SIGPLAN Conference on Object-oriented Programming
Systems, Languages, and Applications. New York, NY, USA: ACM,
2004, pp. 39–40.

[56] S. M. Becker, T. Haase, and B. Westfechtel, “Model-based a-posteriori
integration of engineering tools for incremental development processes,”
Software and System Modeling, vol. 4, no. 2, pp. 123–140, May 2005.

[57] S. M. Becker, S. Herold, S. Lohmann, and B. Westfechtel, “A graph-
based algorithm for consistency maintenance in incremental and inter-
active integration tools,” Software and System Modeling, vol. 6, no. 3,
pp. 287–315, Aug. 2007.

[58] G. Karsai, A. Lang, and S. Neema, “Design patterns for open tool
integration,” Software and System Modeling, vol. 4, no. 2, pp. 157–170,
May 2005.

[59] T. Margaria, “Web services-based tool-integration in the ETI platform,”
Software and System Modeling, vol. 4, no. 2, pp. 141–156, May 2005.

[60] A. Königs and A. Schürr, “Mdi: A rule-based multi-document and tool
integration approach,” Software and System Modeling, vol. 5, no. 4, pp.
349–368, Nov. 2006.

[61] P. Farail, P. Gaufillet, A. Canals, C. Le Camus, D. Sciamma, P. Michel,
X. Crégut, and M. Pantel, “The TOPCASED project: a Toolkit in Open
source for Critical Aeronautic SystEms Design,” in Embedded Real Time
Software (ERTS), 2006.

[62] “Vector eASEE webpage.” [Online]. Available:
http://www.vector.com/vi easee en,,223.html

[63] “Aquintos webpage.” [Online]. Available: http://www.aquintos.info
[64] OMG, “Query/View/Transformation (QVT) Specification 1.0,” 2008.
[65] J. Davis, “GME, the generic modeling environment,” in OOPSLA ’03:

Companion of the 18th annual ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications. New
York, NY, USA: ACM, 2003, pp. 82–83.

[66] A. Pretschner, M. Broy, I. H. Kruger, and T. Stauner, “Software engineer-
ing for automotive systems: A roadmap,” in FOSE ’07: 2007 Future of
Software Engineering. Washington, DC, USA: IEEE Computer Society,
May 2007, pp. 55–71.

[67] G. T. Leavens, J.-R. Abrial, D. Batory, M. Butler, A. Coglio, K. Fisler,
E. Hehner, C. Jones, D. Miller, S. Peyton-Jones, M. Sitaraman, D. R.
Smith, and A. Stump, “Roadmap for enhanced languages and methods
to aid verification,” in GPCE ’06: Proceedings of the 5th International
Conference on Generative Programming and Component Engineering.
New York, NY, USA: ACM, 2006, pp. 221–236.

[68] J. Bezivin, F. Jouault, and D. Touzet, “Principles, standards and tools
for model engineering,” in ICECCS ’05: Proceedings of the 10th IEEE
International Conference on Engineering of Complex Computer Systems.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 28–29.

[69] I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez, “Model-based DSL
frameworks,” in OOPSLA ’06: Companion to the 21st ACM SIGPLAN
Conference on Object-oriented Programming Systems, Languages, and
Applications. New York, NY, USA: ACM, 2006, pp. 602–616.

[70] A. Zeller, “The future of programming environments: Integration, syn-
ergy, and assistance,” in FOSE ’07: Future of Software Engineering.
Washington, DC, USA: IEEE Computer Society, May 2007, pp. 316–
325.

[71] “OOMEGA - Framework for Model-based Software Engineering.”
[Online]. Available: http://www.oomega.net/

[72] “openMODELS - Collaborative Language Engineering.” [Online].
Available: http://www.open-models.org/

Manfred Broy studied Mathematics and Computer
Science at the Technische Universität München. He
graduated in 1976, 1980 he received his Ph. D. and
1982 he completed his Habilitation Thesis at the
Faculty of Mathematics at the Technische Univer-
sität München. 1983 till 1989 he worked as a full
professor for computer science and founding dean at
the Faculty of Mathematics and Computer Science
at the University of Passau. In October he became a
full professor for computer science at the Faculty
of Computer Science the Technische Universität

München (former chair of Professor F.L. Bauer). His research interests are
software and systems engineering comprising both theoretical and applied
aspects including system models, specification and refinement of system
components, specification techniques, development methods and verification.
Professor Broy is a member of the European Academy of Sciences and a
Member of the Deutsche Akademie der Naturforscher “Leopoldina”. In 1994
he received the Leibniz Award by the Deutsche Forschungsgemeinschaft and
in 2007 the Konrad Zuse Medal by the Gesellschaft für Informatik.

Martin Feilkas studied computer science at Tech-
nische Universität München. Now he works as a
research assistant and is a Ph.D. student at the Soft-
ware & Systems Engineering group of Prof. M. Broy
at Technische Universität München and was involved
in several research projects. His research interests
include model-driven engineering of embedded sys-
tems and language engineering.

Markus Herrmannsdoerfer works as a research as-
sistant and is a Ph.D. student at the Software & Sys-
tems Engineering group of Prof. M. Broy at Technis-
che Universität München. His academic interests in-
clude model-driven engineering, language engineer-
ing and language evolution. He studied computer
science at the Technische Universität München and
Ecole Polytechnique in Paris, France.

Stefano Merenda studied computer sciences at the
Technische Universiät München focussing on formal
languages and data modeling. Since 1993 he has
been working for several software and hardware en-
gineering projects. Since 2003 he has been concen-
trating on OOMEGA which provides a framework
for model-based software engineering tools. Since
2005 he has been working as a research assistant
and Ph.D. student for the group of Prof. Man-
fred Broy. He focusses on formalized metamod-
eling approaches, generic engineering frameworks

and the design of product models. Since 2008 he is head of the compen-
tence center Product Data Modeling and currently establishes the platform
open-MODELS.org.

Daniel Ratiu works as a researcher at the Software
& Systems Engineering group of Prof. M. Broy
at Technische Universität München, where he also
completed his PhD. His research interests include
domain modeling, domain specific languages and
language engineering. He studied computer science
at the “Politehnica” University from Timisoara in
Romania.


