
Modeling Faults of

distributed� reactive Systems �

Max Breitling

Institut f�ur Informatik
Technische Universit�at M�unchen
D������ M�unchen� Germany

http���www�in�tum�de��breitlin

FOCUS

Abstract� Formal methods can improve the development of systems
with high quality requirements� since they usually o�er a precise� non�
ambiguous speci�cation language and allow rigorous veri�cation of sys�
tem properties	 Usually� these mainly abstract speci�cations are idealistic
and do not re
ect faults� so that faulty behavior � if treated at all � must
be speci�ed as part of the normal behavior� increasing the complexity of
the system	 It is more desirable to distinguish normal and faulty behav�
ior� making it possible to reason about faults and their e�ects	
In this paper the notions of faults� errors� failures� error detection� error
messages� error correcting components and fault tolerance are discussed�
based on a formal model that represents systems as composition of inter�
acting components that communicate asynchronously	 The behavior of
the components is described by black�box properties and state transition
systems� with faults being modeled by modi�cations of the properties or
transitions	

� Introduction

One of the goals of software engineering is the development of correct software�
Correctness needs to be de�ned� usually by a speci�cation that describes the
system to be constructed in a precise and unambiguous way� The most rigor�
ous approach to establishing the correctness of the system under consideration
are formal methods� which allow us to prove that the system indeed meets its
speci�cation�

Nevertheless� systems developed using formal methods can still fail� subcom�
ponents can be unreliable� some �possibly undocumented� assumptions turn out
to be invalid� or the underlying hardware simply fails� It can be argued that
this was caused by mistakes introduced during the formal development� e�g� by
making too idealistic assumptions about the environment� In this paper� we ex�
plore another approach� We embed the notion of a fault in the context of formal
methods� targeting two major goals�

� Support for the development of fault�tolerant systems� requiring a precise
de�nition of faults and errors�

� This work is supported by the DFG within the Sonderforschungsbereich ���A�	



� Reduction of the complexity of formal development by allowing a method�
ological separation of normal and faulty behavior� After the fault�free version
of the system is developed� the possible faults and appropriate countermea�
sures can be integrated seamlessly in the system�

To model faults already at the level of speci�cations could sound contradictory�
because the speci�cation is intended to describe the desired behavior� and no�
body wants faults� But in an early development phase it is normally unknown
which faults can occur in a system� simply because it is even still unknown
what components will be used and how they can fail� Nevertheless� certain kinds
of faults can be anticipated already during system development in general� as
e�g� by experience or for physical reasons� a transmission of a message can� for
instance� always fail� If these faults can be treated already at an abstract level by
a general fault handling mechanism� it is sensible to describe the faults already
within the speci�cation� and not postpone it to a later phase in the development
process�

In this paper� we enrich the model of Focus with the notions of faults� errors�
failures and fault�tolerance and discuss their connections and use� Since Focus
o�ers methodological support for specifying and verifying reactive systems in�
cluding a formal foundation� description techniques� a compositional re�nement
calculus and tool support� we expect bene�ts when Focus is combined with re�
sults from the area of fault�tolerance� While most other approaches are concerned
mainly with foundations of fault tolerance� we try to keep an eye on the applica�
bility for users that are not experts in formal methods� Therefore� our long�term
target � not yet reached � are syntactic criteria for certain properties instead of
logical characterizations� diagrams instead of formulas� and easy�to�use recipes
how to modify systems to their fault�tolerant versions�

In the next section� we describe very brie	y our system model of distributed�
interacting� reactive components� In Section 
 we introduce faults as modi�ca�
tions of systems� Section � contains a discussion how the formal de�nitions can
be used to describe fault assumptions� and detect� report and correct faults� In
the last section we conclude and discuss future work��

� System Model

Our system model is a variant of the system model of Focus �� ��� A system
is modeled by de�ning its interface and its behavior� The system�s interface is
described by the �names of the� communication channels with the types of the
messages that are sent on them� The �asynchronous� communication along all
channels is modeled by ��nite or in�nite� message streams� The behavior of a
system is characterized by a relation that contains all possible pairs of input and
output streams� This relation can be described in �at least� two ways on di�erent
abstraction levels�

� Due to lack of space� all examples are omitted but can be found in an extended
version of this paper on the author�s homepage	

�



A Black Box Speci�cation de�nes the behavior relation by a formula � with
variables ranging over the input and output streams� The streams ful�lling these
predicates describe the allowed black�box�behavior of a system� We can use sev�
eral operators to formulate the predicates� as the pre�x relation �� the concate�
nation of streams � and the expression s �k for the k �th element of a stream s �
to mention just a few ���

A more operational State�Based View is o�ered by State Transition Systems

�STS� that describe the behavior in a step�by�step manner� Depending on the
current state� the system reads some messages from the input channels� and
reacts by sending some output and establishing a successive state� A STS is
de�ned by its internal variables with their types� an initial condition� a set T
of transitions and T � of environment transitions� precisely formalized in �
��
The possible behaviors of a system are described by the set hhSii containing all
executions � of the system� Executions are de�ned in the usual way as sequences
of states �� A STS can be de�ned in a graphical or tabular notation�

Both views on systems can be formally connected� An in�nite execution of
a STS de�nes least upper bounds for the message streams that are assigned to
the input�output channels� and therefore establishes a black�box relation� In �
�
�� the language� semantics and proof techniques are investigated in detail�

Focus o�ers notions for composition and re�nement supporting a top�down
development of systems� The behavior of a composed system S� � S� can be

derived from the behavior of its components� The interface re�nement S�
RIBRO

�

S� states that the executions of S� are also executions of S� with modi�cations
at the interface described by the relations RI �RO � Compositionality ensures that
re�ning a systems component means re�ning the overall system�

� Modi�cations and Faults

Intuitively� faults in a system are connected with some discrepancy between an
intended system and an actual system� To be able to talk about faults� their
e�ects and possible countermeasures� we need a clear de�nition of the term
fault� We suggest to identify faults with the modi�cations needed to transform
the correct system to its faulty version�

In this section� we de�ne modi�cations of systems� both for the black�box
and the operational view� and base the notions of fault� error and failure on
these modi�cations�

��� Modifying a System

In the process of adapting a speci�ed system to a more realistic setting containing
faults� we have to be able to change both the interface and the behavior�

Interface modi�cations We allow the extension of a type of a channel and the
introduction of new channels� The behavior stays unchanged if the speci�cation
is adjusted so that it ignores new messages on new input channels� while it may
behave arbitrarily on new output channels� For development steps towards a






fault�tolerant system it is normally expected that the behavior does not change
in the case faults do not occur� Therefore we are interested in criteria for be�
havior maintenance that are easy to be checked� For interface modi�cations�
these criteria can be de�ned syntactically according to the description technique
used� as e�g� black�box formulas� tables or state machines� We do neither allow
the removal of channels nor a type restriction for a channel� because this could
easily lead to changes of the behavior� A change of the types for the channels
follows the idea of interface re�nement� Under certain conditions� these changes
maintain �the properties of� the behavior� In this paper� we will not investigate
this topic�

Behavior modi�cations A fault�a�ected system normally shows a di�erent be�
havior than the idealistic system� Instead of describing the fault�a�ected system�
we focus on the di�erence of both versions of the system and suggest a way to
describe this di�erence for black�box views and state machines�

Having � as the black�box speci�cation of the fault�free system� we need to
be able to strengthen this predicate to express further restrictions� but also to
weaken it to allow additional I�O�behaviors� We use a pair of formulas M �
��E � �F � and denote a modi�ed system by

�MM �read� � modi�ed by M�

whose black�box speci�cation is de�ned by

�� � �E � � �F

The neutral modi�cation is denoted by �true� false�� and the modi�cation towards
an arbitrary � is expressed by �false� ���

For a state�based system description� we express modi�cations of the behavior
by modi�cations of the transition set �as e�g in ��� �� ����� Obviously� we can add
or remove transitions and de�ne a behavior�modi�cation M by a pair �E �F � of
two sets of transitions� The set E contains transitions that are no longer allowed
in an execution of the modi�ed system� The set F contains additional transitions�
The transitions in F can increase the nondeterminism in the system� since in
states with both old and new transitions being enabled� the system has more
choices how to behave� We can use F to model erroneous transitions the system
can spontaneously take� The executions of a modi�ed system are de�ned by

hhSMMii
df

� f� j ���k � ���k � ��� � �T n E � � F � T �g

i�e� a non�environment transition has to be in F or in T but not in E � In this
formalism� ����� is the neutral modi�cation� and choosing E to contain all
transitions and F as arbitrary set of transitions shows that this formalism is
again expressive enough�

It is an interesting but open question if and how both notions for modi�ca�
tions can be connected� If � is a property of a STS S� and both are modi�ed in
a similar way� then �M��E � �F � should be the modi�ed property of the modi�ed
system SM�E �F �� Similar approaches and partial results are discussed in ��� ��
�
��

�



��� Combining Modi�cations

To explore the e�ect of multiple modi�cations� we de�ne the composition of
modi�cations� For black�box speci�cations� the operator � combines two modi�
�cations ��i

E
� �i

F
� of a system �i � �� ��� assuming ��

F
� ��

E
and ��

F
� ��

E
� to

one modi�cation by

���

E
� ��

F
� � ���

E
� ��

F
�

df

� ���

E
� ��

E
� ��

F
� ��

F
�

We reuse the operator � for transition systems� and de�ne for �Ei �Fi�� assuming
E� � F� � � and E� � F� � �� the combination

�E��F�� � �E��F��
df

� �E� � E��F� � F��

The assumptions avoid confusion about executions resp� transitions that are
added by one modi�cation but removed by the other� and asserts the following
equalities� with S representing � resp� S�

SM�M� �M�� � �SMM��MM� � �SMM��MM�

We can use this operator to express combinations of faults for de�ning the notion
of fault�tolerant systems�

For a composite system S � S � � S � we can derive the modi�cation of this
system from the modi�cations of its constituents� and can calculate the impact
of a fault of a component upon the overall system� For black�box speci�cations�
we de�ne the derived modi�cation of the system by

�E � ��

E
� ��

E
�F � ��� � ��

F
� � ��� � ��

F
� � ���

F
� ��

F
�

For modi�cations of the transition sets of the components� we can de�ne M �
�E �F � with �Z denotes the pairwise conjunction of elements of both sets�

E
df

� E� Z T
�

�
� T �

�
Z E� and F

df

� F� Z T
�

�
� T �

�
Z F�

With the same assumptions for the component�s modi�cations as above� this
results for both formalisms in

SMM � �S�MM��� �S�MM��

��� Faults� Errors and Failures

In the literature the meaning of the terms fault� error and failure is often de�
scribed just informally �e�g� ���� ����� In our setting� we can de�ne these notions
more precisely�

The faults of a system are the causes for the discrepancy between an intended
and actual system� Therefore� it makes sense to call the transitions of a mod�
i�cation M the faults of a system� What is called a fault of a system cannot
be decided by looking at an existing system alone� this normally depends on





the intended purpose of the system� on an accepted speci�cation and even on
the judgment of the user or developer� What one person judges as fault� the
other calls a feature� The de�nition of modi�cations given in the previous sec�
tions is intended to o�er a possibility to document that decision� and explicitly
represent the faults in a modi�ed system� Of course� the modi�ed system could
be described by one monolithic speci�cation without re	ecting the modi�cations
explicitly� but it is exactly this distinction between �good� and �bad� transitions
that allows our formal de�nitions�

A fault can lead to an erroneous state� if an existing faulty transition is taken
during an execution of the system� We de�ne a state � to be an error �state� if
this state can only be reached by at least one faulty transition� The set of errors
of a system S under the modi�cations M � �E �F � is de�ned as

ERROR�S�M�
df

� f� j � k � N� � � hhSMMii 	
��k � �� 
 l � k 	 ���l � ���l � ��� � Fg

Note that all unreachable states are error states� and the set E enlarges the
set of unreachable states� The set of correct states can be de�ned as the set of
valuations that can be reached by normal transitions �in T � only� As long as
we do not require F � T � �� it is possible that states are both correct states
and error states� We cannot sensibly de�ne errors for the black�box view� since
neither states nor internals do exist in that context�

A failure is often de�ned as a visible deviation of the system relative to some
speci�cation� Since we can distinguish the inside and outside of systems� we can
also re	ect di�erent visibilities of errors� Our de�nition of a failure depends on the
kind of speci�cation� If we regard a black�box speci�cation � as the speci�cation
of a system� a failure occurs in a state � if the property gets violated in that
state� But we can also de�ne a failure if the unmodi�ed STS S is understood as
speci�cation� and SMM as faulty system� An error state � is additionally called
a failure if all states with the same visible input�output behavior are error states�

FAILURE �S�M�
df

� f� j �� 	 �
I�O

� �� � � ERROR�S�M�g

Two valuation � and � coincide on a set of variables V � if they assign the same

value to all variables in V � i�e� �
V

� � � � v � V 	 ��v � ��v �

��� Internal vs� External Faults

Up to this point� we focused on internal faults� The behavior deviation resp�
the faulty transitions occurred inside the system� But a system can also su�er
from faults taking place outside a system� i�e� in its environment� A discussion
of failures of the environment requires explicit or implicit assumptions about its
behavior� An explicit assumption can be formulated in the context of black�box
views by a formula that describes the assumed properties of the input streams�
If this assumption is not ful�lled� the system�s behavior is usually understood
to be not speci�ed so that an arbitrary� chaotic behavior may occur� We think

�



this situation relates to an external fault� and should be treated by a reasonable
reaction of the system instead of unde�ned behavior� We need further method�
ological support o�ering notions of re�nement for these cases� Given an assump�
tion�guarantee speci�cation A�G � we need to be able to weaken A and adapt G
so that the original behavior stays untouched if no external faults occur� but a
sensible reaction is de�ned if they do�

The type correctness of the input messages can be regarded as another ex�
plicit assumption about the environment� If the interface is changed so that new
messages can be received� we have to re�ne the behavior of the system in an
appropriate way�

If the system is speci�ed by a STS� but no explicit environment assumptions
are de�ned� we can nevertheless try to �nd implicit assumptions� If the system
is in a certain state� it is normally expected that at least one of the transitions
should be eventually enabled� It some cases� it can indeed be meant that a system
gets stuck in certain situations� but normally a weak form of liveness is wanted�
The inputs should �nally be consumed� and a state where a system gets stuck
is a kind of error state with invalidated liveness� We regard these questions and
the distinction of internal and external faults as an interesting area for future
research�

� Dealing with Faults

Introducing a formal framework for formalizing faults needs to be accompanied
with some methodological advice how the formalism can be used� In this section�
we discuss how fault occurrences and dependencies between fault models can be
expressed by virtual components� mention requirements for error detection and
the introduction of error messages and de�ne fault�tolerance�

��� Re�ned Fault Models

To describe a system with certain faults� we can modify a system accordingly by
adding fault transitions� In speci�c cases� these modi�cations could change the
behavior too much� since these transitions can be taken whenever they are en�
abled� Sometimes� we want to express certain fault assumptions that restrict the
occurrence of faults� For example� we would like to express that two components
of a system can fail� but never both of them at the same time� or we want to
express probabilities about the occurrence of faults� e�g� state that a transition
can fail only once in n times� for some n�

To be able to formalize these fault assumptions� we suggest to introduce ad�
ditional input channels used similar to prophecies� The enabledness of the fault
transitions can be made dependent on the values received on these prophecy
channels� We can then add an additional component that produces the prophe�
cies that represent the fault assumption� During the veri�cation� these virtual
components and prophecy channels can be used as if they were normal compo�
nents� even though they will never be implemented�

�



��� Detecting Errors

Error detection in our setting consists� in its simplest case� of �nding an expres�
sion that is true i� the system is in an error state� The system itself must be able
to evaluate this expression� so that this expression can be used as a precondition
for error�correcting or �reporting transitions�

An easy way to detect errors is a modi�cation of the fault transitions so
that every fault transition assigns a certain value to an error�indicating variable�
For example� a fault transition can set the variable fault to true� while normal
transitions leave this variable unchanged� as suggested in ����� But this approach
assumes the fault transitions to be controllable� which is in general not the case�
The faults are described according to experiences in the real world� e�g� messages
are simply lost from a channel without any component reporting this event� We
could change this lossy transition to one that reports its occurrence� but this
new variable fault may only be used in proofs for investigating the correctness
of the detection mechanism� but this is not a variable that is accessible by the
system itself� We have to deal with given faults described by modi�cations that
we must accept untouched� but nevertheless we want to detect them�

We suggest a way to handle errors that can be detected by �nding inconsis�
tencies in the state of the system� The consistency can be denoted as a formula
� that is an invariant of the unmodi�ed system� It can be proved to be an in�
variant by the means of �
�� We can then remove all transitions with � � as
precondition �via E � and add a new error reacting transition with an intended
reaction �via F �� Normally� a system occasionally contains transitions that are
enabled if � � � simply because a set of transitions can be indi�erent to unspec�
i�ed properties� Such a modi�cation does not change the original system� but
allows the speci�cation of reactions� e�g� by sending an error message�

This approach is conceptually the easiest way� since error detection is imme�
diate� but it is not always realistic� In ��� a more general approach is presented�
that also allows delayed error detection� We have to integrate this idea also
in our stream�based setting� being specially interested in a notion of a delayed
detection that still occurs before an error becomes a failure�

��� Error Messages

Once we enabled a system to detect an error� we want it to react in an appropriate
way� If errors cannot be corrected� they should at least be reported� Sending and
receiving of error messages has to be integrated in the system without changing
its fault�free behavior�

In Section 
�� we already saw that by adding an additional output channel�
with arbitrary messages sent� the behavior will only be re�ned� So� extending a
system to send error reporting messages is easy� We can add a transition that
sends an error message in the case an error is detected while it leaves all other
variables in V unchanged� and we re�ne the other transitions to send no output
on this channel�

�



We also want to react to error messages from other components� Therefore�
we must be able to extend a component by a new input error message channel�
and adapt the component to read error messages and react to them� A further
transition in the system that reads from the new channel and reacts to it can
easily be added while other transitions simply ignore the new channel�

��� Correcting Faults

We described ways how a system can be modi�ed to contain anticipated faults
already at the abstract level of speci�cations� The deviations of such a modi�ed
system can show di�erent degrees of e�ect� The e�ects of the faults are harmless
and preserve the properties of a speci�cation� or the faults show e�ects that vio�
late the speci�cation� but they are correctable� or the faults lead to failures that
are not correctable� The �rst case is of course the easiest since no countermea�
sures have to be taken for the system to ful�ll its speci�cation� In the last case�
faults can only be detected and reported� as described in the previous sections�

For correctable faults the system usually must be extended by mechanisms
that enable the system to tolerate the faults� Several mechanisms are known�
implementing e�g� fail�stop behavior� restarts� forward or backward recovery�
replication of components� voters and more� All of these are correctors in the
sense of ����

A methodology supporting the development of dependable systems should
o�er patterns that describe when and how these mechanisms can be integrated
in a speci�ed system� together with the impact on the black�box properties� For
example� a fail�stop behavior can be modeled by introducing a new trap state
that was not yet reachable before� and that does not consume or generate any
messages� while safety properties are not compromised�

There is a special case of �local�correction of faults that can be done by new
components in a system that catch the e�ect of faults of a component before
they spread throughout the system� These new components� that we call drivers�
are placed between the fault�a�ected component and the rest of the system�
Depending on the characteristics and severity of the faults� the driver controls
just the output of the component� or controls the output with the knowledge of
the input� or even controls input and output� as showed in the following �gure�
The last variant is the most general one� and could tolerate arbitrary failures by
totally ignoring the faulty component and simulating its correct functionality�

S SS

Since we already know how to specify components and how to compose compo�
nents to systems� fault correction can be integrated as an ordinary development
step� so that results concerning methodology ��� tool support ��� and proof sup�
port �
� �� can be used�

�



��� Fault	tolerance

Usually� fault�tolerance is interpreted as the property of a system to ful�ll its
purpose despite the presence of faults in the system� but also in their absence �as
pointed out e�g� in ����� In our formalism� this could be expressed by the following
monotonicity property� stating that all partial modi�cations of a system should
maintain a certain property�

��E ��F �� 	 E � � E � F � � F � SM�E ��F �� j� �

We think this condition is too strong� since too many partial modi�cations
have to be considered� Assume a fault � being tolerable � that can be modeled
by a change of a transition� expressed by removing the old and adding the new
transition� If we just add the new one� but do not remove the old transition� we
have a partial modi�cation that could never happen in practice but results in a
system with intolerable faults� Partial modi�cations are too �ne�grained if they
are based on single transitions�

We suggest that a statement about fault�tolerance must be made explicit by
specifying the faults and combinations of faults for which the system should have
certain properties� As opposed to other approaches ��� ���� a modi�cation �with
a nonempty E � can change a system so that it cannot show any execution of the
original system� So� if a property is valid for the modi�ed system� it is possibly
not valid for the unmodi�ed system�

In our setting� explicit fault�tolerance can be expressed by generalizing our
expressions to allow sets of modi�cations� The following expression is de�ned to
be valid if � i 	 SMMi j� ��

SMfM��M��M�� � � �g j� �

For a statement about fault�tolerance� the empty modi�cation ����� has to be
contained in the modi�cation set� and the desired combinations of modi�cations
must be explicitly included� The induced number of proof obligations needs
further methodological support�

� Proving Properties

The additional e�ort imposed by the use of formal methods for formalizing a
system is rewarded by the possibility to prove that the systems have certain
properties� While many formalisms o�er this possibility theoretically� it is also
important to o�er methodology to �nd the proofs� In �
� �� we presented a way
of proving properties for our system model� using proof rules� quite intuitive
diagrams and tool support�

It is crucial for a successful methodology that proofs can be found with
reasonable e�ort� For fault�tolerance� it is desirable that proof obligations can be
shown in a modular way� Results for an unmodi�ed system should be transferred
to modi�ed results for the modi�ed system� If properties of the correct system

��



are already shown� this result should not be invalidated totally by modifying the
system so that the veri�cation has to start again from scratch� The existing proof
should only be adapted accordingly� re	ecting the modi�cations� using already
gained results�

So it seems to be an interesting research topic to �nd notions for modifying a
proof� Since a proof can be represented by a proof diagram� it can be promising
to investigate modi�cations of proof diagrams� If a transition is removed �by E ��
a safety diagram stays valid also without this transition� In a liveness diagram�
new proof obligations emerge in this case� since the connectivity of the graph
must be checked again� Adding a transition via F will � in most cases � destroy
the validity of a safety diagram� and will even introduce new nodes� These new
nodes have to be checked relative to all other transitions of the system� and they
will also appear in the liveness diagram� leading to a bunch of additional proof
obligations there� Nevertheless� parts of the diagram stay unchanged and valid�
representing a reuse of the existing proof�

� Conclusions

This paper discusses how faults can be modeled in the context of distributed
systems� composed of components that interact by asynchronous message pass�
ing� We have shown how the behavior of such systems can be speci�ed� using an
abstract black�box view or an operational state�based view� Faults of a system
are represented by the modi�cations that must be applied to the correct system
to obtain the faulty system� Modi�cations can change both the interface and
the behavior� For a modi�ed system we can characterize its error states and
failures� Once the faults resp� modi�cations of a system are identi�ed� the ways
how errors can be detected� reported� corrected and tolerated are also discussed�
mostly informally� in this paper�

Future Work The topic of the formal development � including the speci�ca�
tion� veri�cation� and stepwise re�nement � of fault tolerant systems is not yet
explored to a satisfying degree with concrete help for developing systems with
faults� It is a challenging task to combine various results found in literature
with this paper�s approach based on message streams and black�box views� An
ideal formal framework combines the bene�ts of di�erent approaches� and o�ers
solutions to several aspects as formal foundation� methodology and veri�cation
support�

For a framework to be formal� precise de�nitions for all notions must be de�
�ned� We need a formal system model that is enriched by notions for faults and
their e�ects� errors� failures� changes of interfaces and internals� fault assump�
tions� adaption of properties to modi�cations of the system� composition and
re�nement of faults� But a language to express statements about fault�a�ected
or �tolerant systems is not enough� some methodological advice for its use is also
needed� o�ering ideas how to use this language� When and why should faults
be described� how can we re�ne a system to stay unchanged in the fault�free

��



case� but improve its fault tolerance in the presence of faults� Formal methods
allow for formal veri�cation� This has to be supported by suitable proof rules�
but even this is not enough� We also need description techniques for proofs and
tool support for generating proof obligations and �nding and checking proofs�
Finally� only convincing case studies are able to show a recognizable bene�t of
the idea to formally develop fault�tolerant systems�

References

�	 Anish Arora and Sandeep Kulkarni	 Detectors and correctors� A theory of fault�
tolerance components	 IEEE Transactions on Software Engineering� ����	

�	 Max Breitling	 Modellierung und Beschreibung von Soll�Ist�Abweichungen	 In
Katharina Spies and Bernhard Sch�atz� editors� Formale Beschreibungstechniken

f�ur verteilte Systeme� FBT���� pages �����	 Herbert Utz Verlag� ����	
�	 Max Breitling and Jan Philipps	 Step by step to histories	 In T	 Rus� editor�

AMAST���� � Algebraic Methodology And Software Technology� LNCS ����� pages
�����	 Springer� ����	

�	 Max Breitling and Jan Philipps	 Veri�cation Diagrams for Data
ow Properties	
Technical Report TUM�I����� Technische Universit�at M�unchen� ����	

�	 Manfred Broy and Ketil St�len	 Speci�cation and Development of Interactive Sys�

tems � FOCUS on Streams� Interfaces and Re�nement	 Springer� ����	 To appear	
�	 Homepage of FOCUS	 http�www�	in	tum	deprojfocus	
�	 Felix C	 G�artner	 A survey of transformational approaches to the speci�cation and

veri�cation of fault�tolerant systems	 Technical Report TUD�BS��������� Darm�
stadt University of Technology� Darmstadt� Germany� April ����	

�	 Franz Huber� Bernhard Sch�atz� Alexander Schmidt� and Katharina Spies	 Auto�
Focus � A Tool for Distributed Systems Speci�cation	 In FTRTFT��	� LNCS �����
pages �������	 Springer� ����	

�	 Tomasz Janowski	 On bisimulation� fault�monotonicity and provable fault�
tolerance	 In 	th International Conference on Algebraic Methodology and Software

Technology	 LNCS� Springer� ����	
��	 J	C	 Laprie	 Dependability
 Basic Concepts and Terminology� volume � of Depend�

able Computing and Fault�Tolerant Systems	 Springer� ����	
��	 P	A	 Lee and T	 Anderson	 Fault Tolerance � Principles and Practice	 Springer�

second� revised edition� ����	
��	 Zhiming Liu and Mathai Joseph	 Speci�cation and veri�cation of recovery in asyn�

chronous communicating systems	 In Jan Vytopil� editor� Formal Techniques in

Real�Time and Fault�Tolerant Systems� pages ��� � ���	 Kluwer Academic Pub�
lishers� ����	

��	 Doron Peled and Mathai Joseph	 A compositional framework for fault�tolerance
by speci�cation transformation	 Theoretical Computer Science� ����	

Acknowledgments I am grateful to Ingolf Kr�uger and Katharina Spies for inspiring
discussions and their comments on this paper� and thank the anonymous referees for
their very detailed and helpful remarks	

��


