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Abstract

We present a new predicative and decidable type system� called ML�� suitable for object�oriented
languages with implicit polymorphism in the tradition of ML �cf� Hindley ��
� and Milner ������
Instead of using extensible records as a foundation for object�oriented extensions of functional
languages� we propose to reinterpret classical datatype declarations as abstract and concrete class
declarations� and to replace pattern�matching on run�time values by dynamic dispatch on run�time
types� ML� is based on universally quanti�ed polymorphic constrained types� where constraints
are conjunctions of structural inequalities between monotypes built from extensible and partially
ordered classes of type constructors� We show how this type system can be used to design program�
ming languages retaining much of the ML spirit while integrating in a seamless fashion higher�order
and class�based object�oriented programming� dynamic dispatch on several arguments� and para�
metric polymorphism� We give type�checking rules for a small� explicitly typed functional language
with methods� and show that the resulting system has decidable minimal typing� We discuss type
inference for this language� We then de�ne a strict operational semantics� prove subject reduction�
and show how abstraction and encapsulation can be achieved by proper use of a module system�
We present a prototype implementation of this type system and discuss algorithmic and implemen�
tation issues� In particular� we give a type�checking algorithm which is exponential in the worst
case but is expected to be polynomial in practice� We conclude by a comparison with other similar
type systems in the literature� including ad�hoc polymorphism� dynamics� systems for performing
type inference in the presence of primitive subtyping� as well as impredicative systems like F��
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Chapter �

Introduction

Two of the most important programming paradigms today are functional programming�
putting the emphasis on higher�order functions� and object�oriented programming� empha�
sizing data encapsulation and dynamic dispatch� Whereas the �rst paradigm is extremely
well understood theoretically� and has led to the development of programming languages
with very clean semantics� the second paradigm seems to have gained much more accep�
tance among practitioners� Indeed� properly written object�oriented programs are usually
much easier to extend and maintain than their functional counterparts� However� the
expressive power of higher�order functions can lead to very concise and clear programs�
and object�oriented languages would clearly bene�t from such a concept�

So far� most e
orts to �ll the gap between the two paradigms have been put into the
so�called �objects�as�records� model or into speci�c object calculi ���� leading to power�
ful systems exhibiting most of what are considered valuable object�oriented features� in
particular extensibility and data encapsulation� However� these systems often require a
second�order formalism ���� or recursive types� usually fail to consider methods as �rst�class
objects� thus preventing them to be passed as arguments to other methods or functions�
and cannot deal easily with binary methods ��� without resorting to the notion of matching
��� in addition to the notion of subtyping� which can be somewhat confusing� On the other
hand� recent work on the alternative �methods�as�overloaded�functions� model ��	� ��� has
exempli�ed the possibility of having powerful type systems for object�oriented languages
where methods are de�ned outside the scope of objects and are just sets of functions dis�
patching on the type of all their input arguments simultaneously� However� these systems
are either �rst�order and monomorphic ��	�� second�order impredicative systems dealing
with explicit polymorphism ���� or extend the classical higher�order predicative model of
implicit polymorphism ��� �� ��� �
� ��� ��� ��� �
� 	��� but resort to ad�hoc polymorphism
or dynamics to emulate methods�

This report is an attempt to show that it is possible to design a strongly typed� higher�
order object�oriented language with a polymorphic� predicative and decidable type system
by only slight modi�cations to languages in the tradition of ML� and without resorting to
�dirty� ad�hoc polymorphism �that is� overloading mechanisms allowing the same function
to work non�uniformly on totally unrelated types�� Our key ideas are �� to clearly separate
speci�cation and implementation to allow extensibility and scalability� �� to use a module
system to provide data encapsulation� �� to add primitive subtyping to allow the de�nition

	



of class hierarchies� and 	� to replace pattern�matching on run�time values by dynamic
dispatch on run�time types� Basically� we argue that an ML declaration of the form

datatype list��� � nil j cons of � � list���

should be split into a speci�cation part and an implementation part� as illustrated by �gure
���� The speci�cation part� which takes the form of an interface� declares the existence
of a type constructor list �i�e�� an abstract parameterized class� in OO parlance�� of a
data type constructor nil �i�e�� a concrete parameterized class�� which is a subconstructor
of list with an empty record implementation� as well as the existence of explicitly typed
methods attached to objects of this type� These type declarations specify both the run�
time behavior of methods and the existence of actual implementations �	��

The implementation part� which takes the form of a module� declares a data type
constructor cons as a subconstructor of list� Since we are in the presence of subtyping�
we must talk about the variance of type constructors explicitly� To this end� we de�ne
the type constructor class List� in a way similar to that of Gofer and Haskell ��	� ����
as a set of covariant type constructors with arity one� and we explicitly declare that nil�
cons� and list are members of List� Of course� the �elds of data types must comply with
the explicitly declared variance of their type parameters� which is the case for cons here�
since � is covariant both in �� � and in �� list���� Moreover� in order to avoid dealing with
implementation inheritance �which� we believe� is a syntactic notion�� we impose that data
type constructors have no subconstructors� Therefore� data types represent sets of records
with the same �tag�� This approach di
ers from that of ML where �tags� are run�time
values which are not re�ected in the type system� For instance� a ML type like list�int�
denotes the set of empty and non�empty lists of integers� whereas a ML� type like cons�int�
denotes the set of non�empty lists of integers� We shall see that whereas ML�style pattern
matching is performed on run�time values� ML� performs dynamic dispatch on run�time
types� which express global properties of run�time values� As a consequence� dispatching
on the fact that a value has type list�int� v�s� the fact that the value has type list�real�
is something which can be imagined� even if the current axiomatization of the system
does not allow it� Moreover� having types like cons�int� allows data extractors to be total
functions over their domain� For instance� the extractor associated to the �rst �eld of a
cons has type

��� cons���� list���

in ML�� as opposed to
��� list���� list���

in ML� Of course� it is always possible to hide type constructors nil and cons in the
implementation module and only export type constructor list and boolean�valued functions
like isNil and isCons�

Note that the implementation of method cons in module List is correct w�r�t� its
speci�cation since it has type ��� h�� list���i � cons���� which is a subtype of the type �or
speci�cation� of cons� Also� note that since cons is not exported in the interface� inferring
the type of the method from the type of one if its implementations does not really make
sense� Finally� note that the list of methods declared in the interface is not exhaustive�
as opposed to the original presentation of type classes �		� �later relaxed in System O
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interface List is

class List����

type list � List�

data nil � List�

order nil � list�

data nil��� is end�

meth cons � ��� h�� list���i � list����

meth head � ��� list���� ��

meth tail � ��� list���� list����

meth size � ��� list���� int

end List �

module List is

data cons � List�

order cons � list�

data cons��� is �� �� � � list��� end�

meth cons�x � � l � � � cons x l�

meth head�l � cons� � cons�� l�

meth tail�l � cons� � cons�� l�

meth size�l � nil� � ��

meth size�l � cons� � � � �size �cons�� l��

end List �

module SList is

open List�

type slist � List�

data scons � List�

order slist � list�

order nil � slist�

order scons � slist�

data scons��� is �� �� � � slist���� � � int end�

meth cons�x � � l � slist� � scons x l �� � �size l���

meth head�l � scons� � scons�� l�

meth tail�l � scons� � scons�� l�

meth size�l � scons� � scons�� l

end SList�

Figure ���� Lists and sized lists

��
��� New methods� for instance �private� methods� can thus be de�ned as needed in
any interface or implementation module� and� as in ML� passed as arguments to other
functions�

Now� suppose that the problem at hand requires computing the size of lists very
frequently� so that we would rather use explicitly sized lists� and that in order to reuse
some library code� we want to consider a sized list as just another sort of list� Then
one possibility� implemented in module SList of �gure ���� is to de�ne a constructor slist
between nil and list� a data type constructor scons of List as a subconstructor of slist� and
to re�ne method cons so that it builds sized lists whenever its second argument is a sized
list �which can either be the empty list or a sized cons�� This way� all lists built using
the cons method� and in particular� lists built by library functions� will be sized lists�
Of course� it is still possible to build regular conses� but this is now only possible in the
List module� or via a function exported by List � Note that had data type constructor
nil been abstracted in the interface� a new implementation for empty sized lists with no
relationship whatsoever with nil should have been de�ned in module SList�

Primitive subtyping provides great expressive power� Indeed� we only require that the
ordering between type constructors of a given class be a partial order� and we could imagine
having a numeric class Num with the following �mathematical� ordering neg� zero� pos �
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int � real� dyadic� where neg� zero and pos denote the sets of negative� null and positive
integers� int denotes the set of all integers� real denotes the set of reals� and dyadic denotes
the set of ��adic numbers� which have recently been advocated as a foundation for the
design of synchronous digital circuits �	��� However� this power ordinarily comes at a
price� the loss of principal typing� Indeed� suppose function twice has type ��� �� �
�� � �� � �� and function f has type real � int� Then the expression �twice f� has
types real� real and int � int� none of which is better than the other�

To solve this problem� we propose to enrich the Hindley�Milner predicative type sys�
tem for implicit polymorphism with the notion of polymorphic constrained type of the form
�� � �� �� where � is a set of variables� � is a constraint� and � is a monotype� Constrained
polymorphic types have been proposed by some authors� in particular to accommodate
overloading in various ways ��
� ��� �
� �
� or to perform type inference for object�oriented
languages or languages with primitive subtyping ��� ��� ��� ��� ��� �
� ��� �	� ��� 	�� 	���
Our system is original in that it merges the two approaches� methods are� in a sense�
�cleanly overloaded functions�� and their polymorphic constrained types have constraints
which are conjunctions of inequalities between monotypes� As we shall see� this modi�ca�
tion leads to a clean notion of functional type application and ensures decidable minimal
typing� For instance� the type of the above expression would be

�� � int � � � real� �� �

that is� the expression has type �� � for any � between int and real� As a matter of fact�
function twice can� as in ��
�� be given a better type

��� � � � � �� ��� ��� ��� ��

which gives �twice f� the same minimal type as f �
Another advantage of polymorphic constrained types is that they naturally allow a

precise typing of methods like the move method of �gure ���� Intuitively� the move
method takes an object with dynamic type � below point as input and returns an object
of the same type � as output� The type of this method is thus �� � � � point� � � ��
Note that we have de�ned four type constructors� two type constructors point and cpoint�
which play the role of abstract classes �that is� classes which only provide interfaces��
and two data type constructors pt and cpt which play the role of concrete classes �that
is� classes which provide implementations and can be instanciated at run�time�� It is
important to remark that data type constructors like cpt and pt have to be minimal �that
is� cannot have subconstructors� to ensure that the two implementations of the method
are well�typed� Indeed� if pt had a subconstructor c� then the �rst implementation of
the method may accept an argument with dynamic type � � c and return an object
with dynamic pt which is not below �� Also� remark that the absence of implementation
inheritance implies that the �rst two �elds of the two data types are unrelated� so that
the code for methods operating on these two �elds must be duplicated� as opposed to
some systems based on extensible records ����� This is not too much of a problem in a
purely functional language� but can be problematic if data types have state� In chapter ��
we show how duplication of code can be greatly reduced by adding appropriate syntactic
sugar� Note that the type of method move looks like a F� type� but this is only a
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�� Constructor class

class Point� ��

�� Type constructors

type point � Point�

type cpoint � Point�

�� Data type constructors

data pt � Point�

data cpt � Point�

�� Subtyping

order cpoint � point�

order pt � point�

order cpt � cpoint�

�� Implementation of data types

data pt� � is

�� real� � � real

end�

data cpt� � is

�� real� � � real� � � int

end�

�� Method to move points functionally

meth move � �� � � � point� �� ��

meth move�x � pt� �

pt �inc �pt�� x�� �inc �pt�� x���

meth move�x � cpt� �

cpt �inc �cpt�� x�� �inc �cpt�� x�� �cpt�� x���

Figure ���� Points and colored points

formal similarity� since ML� is a decidable predicative type system dealing with class
hierarchies and implicit polymorphism� whereas F� is an undecidable unpredicative type
system dealing with explicit polymorphism� Also� note that the type of move could be
compared to the speci�cation that could be given in object�oriented languages allowing
the like self or self type type speci�ers� namely

abstract class point is

virtual method move�� � like self�

end

However� as opposed to single�dispatch languages� polymorphic constrained types also
allow for a very precise and natural typing of methods dispatching on multiple arguments�
For instance� the subtraction operator� sub can be given the following type

�� � int � �� h�� �i � �

denoting any operation such that if there exists a numeric type � above int which is also
above the dynamic types of the �rst two arguments of the operator� then the type of the
result is below �� Consequently� reals and ��adic numbers cannot be subtracted from one
another �since there is no � above int� real� and dyadic�� the subtraction of two integers is
an integer� and the subtraction of two positive integers is an integer� Indeed� the minimal
type of sub h�����i is precisely

�� � int � � � hpos� posi � h�� �i� �

�See �gure ��� for details�
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which� as we shall see� is equivalent to

�� � int � � � pos � � � pos � �� �

which� since the constraint pos � � is obviously redundant� is also equivalent to

�� � int � �� �

which� in turn� is equivalent to int� since int is the minimal solution of the constraint� In a
way� sub is �constant� below hint� inti and �polymorphic� above hint� inti� We can see that
the type given to sub is much more precise than the type that can be given in systems
without primitive subtyping where methods are just overloaded functions� Moreover� tricks
as the like self type speci�er do not work for methods dispatching on multiple arguments�
precisely because there is no notion of self in such cases�

This report is organized as follows� In chapter �� we �x some notations and de�nitions�
In chapter �� we introduce the notion of type structure and the notion of type constraint�
and we prove decidability� soundness and completeness results about the universally quan�
ti�ed implication of existentially quanti�ed constraints� In particular� we show that our
axiomatization of constraint implication is invariant w�r�t� extensions of the type struc�
ture� In chapter 	� we introduce the syntactic notions of polymorphic constrained type
and polymorphic constrained domain� and give a semantic interpretation� We introduce
a decidable subtyping relation between universally quanti�ed polymorphic constrained
types� and show that functional types denote monotonic type transformers� In chapter ��
we introduce an explicitly typed applicative language with functions and methods� give
typing rules for this language� and show that the resulting system has decidable minimal
typing� In chapter �� we give an operational semantics of the language and prove subject
reduction� In chapter �� we give an algorithm for constraint implication which has an
exponential worst�case complexity� but is polynomial in practice� We also give indications
on how to implement type�checking� and study how type inference may be performed for
an untyped version of the language� In chapter �� we show how standard object�oriented
concepts may be emulated in ML�� we show how to design a module system for ML� with
modular type�checking� and we study extensions like multi�methods and type classes� Fi�
nally� we conclude in chapter 
 by comparing ML� with other object�oriented type systems
in the literature� including ad�hoc polymorphism� dynamics� systems for performing type
inference in the presence of primitive subtyping� as well as impredicative systems like F��






Chapter �

De�nitions and notations

Let us �x some notation and de�nitions� We assume the existence of a possibly in�nite
set of �names� such as Unit� Arrow� List� Bool� etc� A type constructor class C is a tuple
�NC � TC� DC �vC � �C� where NC is a name� called the name of the class� TC is a �nite
and non�empty set of elements tC � called type constructors� DC � TC is a set of elements
dC � called data type constructors� vC is a partial order� on TC such that every data type
constructor dC is minimal with respect to vC � The variance �C of a class C is a tuple
of elements of f�����g denoting the variance of its type constructors in the context of
subtyping� A class with variance �C is said to be �C �variant� The element � corresponds
to covariant arguments� whereas � and � correspond to contravariant and non�variant
arguments respectively� The length of �C is called the arity of C� and by extension� the
arity of type constructors tC 	 TC � Type constructors with arity � are called base type
constructors�

A type structure is a �nite set T of type constructor classes such that any two distinct
elements C�� C� of T are such that NC�

and NC�
are distinct and TC�

and TC�
are disjoint�

Each type constructor is thus associated to a unique class in T and each class has a unique
name� so that we generally identify classes with their name� We assume that every type
structure contains a ���variant class Unit with at least one data type constructor unit� and
a ������variant class Arrow with at least one data type constructor �� In examples�
we also assume a ����variant class List with data type constructors nil and cons below
type constructor list� and a ���variant class Bool with data type constructors true and false

below type constructor bool�
For every type structure T � the set GT of T �ground monotypes � over T �or just

ground monotypes � in G� when T is implicit� is the least set such that when tC is a type
constructor of a class C in T with arity n and ��� � � � � �n are ground monotypes over T �
then tC ���� � � � � �n� is a ground monotype�

A type structure can be seen as a collection of constructor classes and type constructors
accessible in a given scope �e�g�� an interface or a module�� Since our goal is to model
object�orientation� we must provide for the extension of type structures in new modules
and interfaces� A type structure can be extended in two ways� by adding new classes or

�A partial order v is a re�exive �x v x�� transitive �x v y and y v z implies x v z� and antisymmetric
�x v y and y v x implies x � y� binary relation�
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C�constructors �C ��� tC j vC

Monotypes � ��� �C ��C � j v

Constraints � ��� �C v �C j � � � j � � �

Variable sets � ��� 
 j v j vC j �� �

Types 	 ��� �� � �� �

Domains 
 ��� �� � �� �

Figure ���� Monotypes� constraints� types� and domains

by adding new type constructors to existing classes and extending the partial orderings of
the extended classes� However� not all extensions are admissible� For instance� if two type
constructors tC and t�C of a class C are not related by vC in some interface� it is incorrect
to add a type constructor t��C to C such that tC vC t��C and t��C vC t�C � since this would
relate tC and t�C and enforce a property which is not present in the interface� We thus say
that a type structure T � is an admissible extension of a type structure T if for every class
C � �NC � TC� DC �vC � �C� in T � there exists a class C� � �NC� � TC�� DC� �vC� � �C�� in T �

such that NC� � NC � TC� � TC and DC� � DC � �C� � �C � and for all type constructors
t�� t� 	 TC � we have t� vC� t� if and only if t� vC t�� The overall requirement that data
type constructors are minimal in any constructor class implies that T � cannot de�ne a
subconstructor of any data type constructor de�ned in T �

Assuming an implicit type structure T � we de�ne monotypes� constraints� types and
domains by the grammar of �gure ���� As usual� we write �� � �� to denote� ���� ��� and
assume that the arrow is right�associative� We assume the existence of a collection of at
least countable and pairwise disjoint sets of variables� a set of type variables v �representing
ground monotypes� and� for each class C� a set of C�constructor variables vC �representing
type constructors of class C�� However� in informal exposition� we use a universal set of
variables �� �� �� etc�� and use the notation � 	 C to denote that � is a C�constructor
variable� Variables are bound by the universal and the existential quanti�ers� We treat
variable sets � as sets of variables� and use the constant 
 to denote the empty set� A
C�variable set �C is a variable set of the form v�� � � � � vn where v�� � � � � vn are distinct type
variables and n is the arity of C� A C�monotype list �C is a list ��� � � � � �n where n is the
arity of C� We denote by true the trivial constraint �unit v unit�� and by ��� � the fully
polymorphic type �� � true � �� We treat constraints as sets of conjuncts� Given a variable
set � and n syntactic terms X� and Xn� n 
 �� we write X� ���� � � � ���� Xn ��� to denote
that for any distinct i and j in ��� n�� every variable which is free both in Xi and in Xj

belongs to �� We simply write X� ���� � � � ���� Xn when � is the empty set� We say that a
syntactic term X is ��closed for some variable set � if the free variables of X are all in
�� For any syntactic terms X and Y � the meta�notation XfY g denotes the term X and
indicates that Y is a subterm of X � We use the notation �� � ��� to denote the constraint
�� � �� � �� � ��� By abuse of notation� we frequently omit the brackets for base types of
the form tC � ��

We de�ne the standard ordering � as the smallest relation over G such that tC vC
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t�C and �C �C ��C implies tC ��C � � t�C ��
�
C �� where the relation �C on C�monotype

lists is de�ned as the componentwise ordering induced by the variance of C� In other
words� assuming �C � ���C � � � � � �

n
C�� we de�ne ��� � � � � �n �C ���� � � � � �

�
n as the constraintV

i����n� �i ��i
C
��i� where � �� �� is de�ned as � � ��� � �� �� is de�ned as �� � �� and

� �� �� is de�ned as � � ��� Note that � � t�C ��
�
C � or t

�
C ��

�
C � � � implies that � is of

the form tC ��C �� for some tC and �C � Moreover� � � �� implies that the outermost type
constructors of � and �� are of the same type constructor class�

A ground substitution �or T �ground substitution� when T is explicit� is a total func�
tion mapping type variables to ground monotypes and C�constructor variables to type
constructors in TC � For any variable set �� a ��substitution � 	 S��� is a total function
mapping type variables to monotypes and C�constructor variables to C�constructors� such
that the domain fx j ��x� �� xg of � is �nite and disjoint from �� In other words� �
maps variables to terms of the proper kind and is the identity for all variables in �� For
any variable sets �� �� and ��� a renaming � 	 R��������� is an injective ��substitution
mapping type variables to type variables and C�constructor variables to C�constructor
variables� such that f��x� j x 	 ��g is disjoint from ��� In other words� � preserves
variables in � and renames variables in �� with names which are not in ��� Note that
R��������� is non�empty if and only if �� �� and �� have an empty intersection� and that
every renaming � 	 R��������� is a bijection whose inverse is a ��substitution� For any
substitution � and syntactic term X � we denote by X ��� the syntactic term obtained by
applying the substitution � to X �
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Chapter �

Constraints

��� Informal introduction

As indicated in the introduction� universally quanti�ed polymorphic constrained types
�that we just call types� as opposed to monotypes� have a great expressive power� But
this power comes at a price� many syntactically di
erent types can have the same intended
meaning� For instance� types like �� � int � � � � � int� � and � 
� int are syntactically
di
erent but semantically identical� It is thus important that types which are intended
to be the same be formally identi�ed by the type system� We propose to perform this
identi�cation by de�ning a subtyping relation between types and saying that two types
are semantically equivalent if they are subtypes of one another�

This approach of de�ning a subtyping relation between types is more in the tradition
of impredicative systems like F� than in the tradition of ML� Indeed� in predicative type
systems� subtyping is generally implicitly de�ned in terms of instantiations� that is� a
polytype is �below� all its ground instances� For instance� ��� � � � is a subtype of
int � int and bool � bool� In other words� the intuitive denotation� of a polytype is its
set of ground instances� and a polytype 	� is a subtype of another polytype 	� if and only
if every ground instance of 	� is a ground instance of 	�� As a consequence� ML types are
equivalent if and only if they can be ��substituted�

We may be tempted to generalize this idea here by saying that the denotation of a
type �� � �� � is its set of ground instances� that is� monotypes of the form ���� for ground
substitutions � such that the constraint ���� holds w�r�t the standard ordering� This is
indeed a good intuition� but it yields a de�nition of subtyping which is not compatible
with the standard ordering on ground monotypes� As a simple example� consider the type
	 � �� � int � � � � � int� �� The only ground instance that satis�es its constraint is int�
and we would therefore expect 	 to be equivalent to � 
� int or simply int� In particular�
we want 	 to be a subtype of real� although real does not satisfy 	 �s constraint�

We argue that the intuitive denotation of a type should be de�ned as the upper�closure
of its set of ground instances� The rationale is that if a type is a subtype all its ground
instances� then by transitivity� it should also be a subtype all the supertypes of its ground

�Not to be confused with the classical ideal model of parametric polymorphism 	�
�� where types are
lower ideals� even in the absence of primitive subtyping�
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instances�
Without primitive subtyping� this de�nition is equivalent to the standard ML notion�

but in the presence of primitive subtyping� our de�nition ensures that types like �� � int �
�� � and � 
� int are semantically equivalent� since they have the same denotation� namely
all the supertypes of int� Moreover� de�ning a subtyping relation between types this way
makes perfect sense in the context of object�orientation� For instance� if a function has
a formal parameter with type int � int� then actual parameters with type real � int or
��� � � � are legal since both types are subtypes of int � int� Indeed� if the formal
is a function with type real � int� then� in particular� it can be used as a function from
integers to integers� Similarly� if the formal is a polymorphic function with type ��� �� ��
meaning that for any �� in particular � � int� this function returns an �� then it can also
be used as a function from integers to integers� Therefore� our subtyping relation matches
the notion of �substitutivity� in object�oriented frameworks�

On the other hand� we require all quanti�ers to occur at the outermost level� this makes
polymorphic constrained types somewhat weaker than the types of an impredicative system
like F�� In particular� ML� does not provide a way to enforce that a formal parameter
be a polymorphic function�

Intuitively� the universal quanti�er can be interpreted as the greatest lower bound� so
that� for instance� �� � int � �� � can be read as �the �set of� smallest � above int�� which
is precisely int in this simple case�� With such an interpretation� it is natural to say that
a type 	� of the form ��� � ��� �� is a subtype of another type 	� of the form ��� � ��� �� if
and only if every ground instance of 	� is above at least one of the ground instances of 	��
Formally� assuming an implicit type structure T � and assuming that �� and �� are disjoint�
we may say that 	� is a subtype of 	� if and only if for every ground substitution �� such
that ������ is a true ground constraint� there exists a ground substitution �� that agrees
with �� on the variables of �� such that ��� � �� � ������� is a true ground constraint� In
other words� we want the following �rst�order implication to hold

���� �� �� ����� �� � �� � ���

However� this requirement is imprecise without stating the intended universe for the
bound variables� In the context of object�orientation� the �universe� of type constructors
is open by essence� in order to allow the addition of new type and data type constructors in
di
erent modules� Nevertheless� a type�correct program should remain type�correct when
the type structure is extended� Consequently� the notions of subtyping and constraint
implication which are of interest to us must be invariant w�r�t� admissible extensions of
the implicit type structure T in which type�checking is performed� For example� let us
assume that T contains a ���variant constructor class C with type constructors c�� c�� and
c� partially ordered by c� vC c� and c� vC c�� The problem is then whether a type 	 like

�� � c� � � � c� � �� �

�In general� types denote sets of ground monotypes� because we do not require type constructor classes
or the set of ground monotypes to be lattices� In e�ect� we use sets to obtain a sup
semi lattice structure
for types� This will be made more precise in chapter �� As a matter of fact� we conjecture that the semantic
denotation of a type can still be de�ned as the intersection of the ideal denotation of the elements of its
intuitive� upper
closed denotation�
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�Approx � ��� �f��g j� ��

�CRef � ��� � j� � � �C v �C

�CTrans� ��� �f�C v ��C v ���Cg j� � � �C v ���C

�CTriv� ��� � j� � � tC v t�C �tC vC t�C�

�CMin� ��� �f�C v dCg j� � � dC v �C

�VIntro� ��� ���� j� � �� 	 S����

�VElim� ��� �fv � �C ��C �g j� � � v � v�C ��
�
C � �v�C ���� ��C ���� ��� ���

�MRef � ��� � j� � � � � �

�MTrans� ��� �f� � �� � ���g j� � � � � ���

�MIntro� ��� �f�C �C ��C � �C v ��Cg j� � � �C ��C � � ��C ��
�
C �

�MElim� ��� �f�C ��C � � ��C ��
�
C �g j� � � �C v ��C ��C �C ��C

Figure ���� Constraint implication

is equivalent to � 
� c� or is just a strict subtype �since the smallest � above c� and c� in
any admissible extension of T is necessarily below c�� which is an upper bound of c� and
c��� So suppose that a new constructor c� is now added to C with the ordering c� vC c��
c� vC c� and c� vC c�� The addition of c� is admissible since it does not change the
ordering between existing constructors� In this new context� the greatest lower bound of
c� and c� is c�� not c�� hence 	 is not equivalent to � 
� c�� Formally� for 	 and � 
� c� to
be equivalent� both constraint implications

� 
� true �� ��� �c� � � � c� � � � � � c��

and
��� �c� � � � c� � �� �� �c� � ��

would have to hold in every admissible extension T � of T � This is indeed the case for the
former implication� but not for the latter� which does not hold for � � c�� Consequently�
�� � c� � � � c� � �� � is a strict subtype of � 
� c��

��� Constraint implication

We must therefore try to axiomatize this notion of constraint implication in a decidable
way� To this end� we introduce the judgement ��� � j� �� which reads �constraint �
implies �� for all �� axiomatized by the rules of �gure ��� plus the transitivity rule

��� �� j� �� ��� �� j� �� �Trans�
��� �� j� ��
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In these rules� we write �� � �� to denote either �� � �� or �� � ��� If � is the empty
set� we simply say that � implies ��� A constraint � is said to be well�formed if true
implies �� Two constraints are said to be ��equivalent if they imply each other for all ��
The following lemmas are used to modify the set � of universally quanti�ed variables of
an implication� it is always legal to reduce �� but only variables that do not occur on the
right�hand side can be added to ��

Lemma � �Quanti�cation�


��� ��� � j� ��

��� � j� ��

Lemma � �Quanti�cation�


��� � j� �� �� ���� ��

��� ��� � j� ��

The following lemma and corollaries are used to derive conjunctions �� � �� on the
right�hand side of implications� Basically� such derivations are legal only when every
variable which is free both in �� and �� belongs to the set � of universally quanti�ed
variables�

Lemma � �Conjunction�


��� �� j� ��� ��� �� j� ��� ��� ���� ��� ���

��� �� � �� j� ��� � �
�
�

Corollary � �Conjunction�


��� � j� �� ��� � j� �� �� ���� �� ���

��� � j� �� � ��

Corollary � �Conjunction�


��� �f��g j� ��� �� is ��closed

��� � j� �� � ���

��� Constraint normalization

In this section� we show that well�formed constraints can always be reduced� for any given
variable set �� to a simple ��equivalent form� called a ��prenormal form� which is essentially
the conjunction of a �substitution� �s for some type variable in �� a constraint �t on the
type variables not substituted by �s� and a constraint �C on C�constructor variables for
every class C� The �t and �C constraints do not contain complex monotypes of the form
�C ��C �� This prenormal form is used to decide implication separately on type variables
and on C�constructor variables�

��



De�nition � �Base form
 A constraint �b is said to be in base form if it is of the form
�t �

V
C �T �C� where �t and �C are of the following form

�t ��� v � v j �t � �t

�C ��� �C v �C j �C � �C

De�nition 	 �Prenormal form
 Let � be any variable set� A constraint is said to be
in ��prenormal form if it is of the form �s � �b� where ��� �b is a constraint in base form�
��� �s is of the following form

�s ��� true j v � � j �s � �s

and ��� for every type variable v such that v � � is a conjunct of �s� v belongs to � and
v does not occur in � or in any other conjunct of �s�

����� Well�kinded constraints

In order to prove that every well�formed constraint has a ��prenormal form� we �rst show
that every well�formed constrained is well�kinded� that is� it is uni�able once C�constructors
are identi�ed with their class C� As always� we assume an implicit type structure T � which�
in particular� de�nes a language �constants and variables� to write constraints� We de�ne
an auxiliary algebra dT e that contains a function symbol C of arity n for every n�ary type
constructor class C of T � We inductively de�ne a function d e that takes monotypes to
terms over dT e as follows�

dve � v if v is a type variable

d�C ���� � � � � �n�e � C�d��e� � � � � d�ne�

We say that a constraint � is well�kinded if d�e is uni�able� where the set of equations
d�e over dT e is inductively de�ned as follows

d� � ��e � d�e � d��e

d�C v ��C�e � fC � C�g

d�� � ��e � fd��e � d��eg

For example� if � is the constraint

list��� � nil�hint� reali�

then � is well�kinded� since

f List��� � List�Pair�Num� ��Num� ��� g

is uni�able in dT e� Note� however� that � is not well�formed� because list v nil does not
hold�

Lemma 
 Assume that �� is a constraint such that d��e is uni	able� and that �� implies
�� for all �� Then d��e is uni	able�

Corollary � Every well�formed constraint � is well�kinded�
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�N�� S� �� � �C ��� � ��C ��
��� ��� S� �� � �C v ��C �� �C ���

�N�� S� �fv � �C ���g ��� �S � v � vC ��C ��� ��vC ��C �
v�

if v 	 �� where vC ���� �C ���� �v� �� S� ��

�N�� S� �fv � �C ���g �� � S�vC ��C �
v�� ��vC ��C �
v�

if v 
	 �� where vC ���� �C ���� ��� S� ��

Figure ���� A rewrite system for prenormal form

����� Normalization by rewriting

Consider the rewriting system N that consists of the rewrite rules �N��� �N��� and �N��
shown in �gure ���� where � is some variable set� Rewriting occurs on pairs of constraints
�S� �� where S consists of equations of the form v � �� We denote by �� the rewriting
relation induced by these rules� and by ��

� the re�exive and transitive closure of ��� In
this section� we prove the following facts� assuming that � is well�kinded�

� if �S� ���� �S
�� ���� then S � � and S� � �� are ��equivalent constraints�

� if �true� �� ��
� �S�� ���� and �S�� ��� cannot be rewritten via ��� then S� � �� is a

constraint in ��prenormal form�

� if � is well�kinded� then �true� �� does not allow an in�nite sequence of rewrite steps�

At �rst� we state an auxiliary lemma� which intuitively says that the constraints ���v �
�� and ���
v�� �v � �� are equivalent� where ���
v� denotes the constraint obtained from
� by substituting � for all occurrences of v�

Lemma �� If S � � is well�kinded� then both ��� S � � � v � � j� S � ���
v� � v � � and
��� S � ���
v� � v � � j� S � � � v � � hold for any variable set ��

Lemma �� If S � � is well�kinded� and �S� �� �� �S�� ���� then S � � and S� � �� are
��equivalent� and �� is well�kinded�

The next lemma says that pairs �S� �� that are irreducible w�r�t� �� represent con�
straints in ��prenormal form�

Lemma �� If � is a well�kinded constraint� and �true� ����
� �S

�� ��� is such that �S�� ���
cannot be rewritten via ��� then S� � �� is a constraint in ��prenormal form�

It remains to prove that no well�kinded constraint admits an in�nite rewrite via ���

Lemma �� If � is well�kinded� then there is no in	nite sequence �Si� �i� i� � such that
�S�� ��� � �true� �� and for all i 
 �� �Si� �i��� �Si��� �i����

Theorem �� �Prenormal form
 Let � be any variable set� Then every well�formed
constraint is ��equivalent to a constraint in ��prenormal form�
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��� Interpretation of constraint implication

In this section� we show that for any two well�formed constraints �� and ��� �� implies ��
for all � if and only if

��� ����� ��� �� ����� ���

holds for every admissible extension of T �the formal interpretation of the above �rst�order
formula is stated in theorem �� below�� where �� �resp� ��� is the set of free variables of ��
�resp� ��� which are not in �� For the completeness proof� we make use of the prenormal
form for constraints of theorem �	� We state a preliminary lemma for future reference�

Lemma �� For any base type constructors tC and t�C � and any ground monotypes � and
�� of T � if �
� true j� tC v t�C or �
� true j� � � ��� then tC vC t�C or � � �� holds in T �

The soundness of the axiom system of �gure ��� can be shown by an obvious inductive
proof along derivations� and is formalized by the following lemma�

Lemma �� �Soundness of implication
 Let �� and �� be constraints and � be a vari�
able set such that ��� �� j� �� is derivable� Then for every admissible extension T � of
T and every T ��ground substitution �� such that ����� is satis	ed in T �� there exists a
T ��ground substitution �� that agrees with �� for the variables in � such that ������ is a
ground constraint satis	ed in T ��

The remainder of this section is devoted to proving the completeness of our axiom�
atization of the implication� that is� the �if� part of the above statement �formalized in
theorem ���� By theorem �	� we may assume that �� is a constraint in ��prenormal form�
Moreover� we may assume that the only variables that appear both in �� and �� are in ��
With this assumption� lemma � and lemma � imply that ��� �� j� �� holds if and only if
��� ��� �� j� �� holds where �� is the variable set that contains all variables that appear in
��� but not in � or ��� For notational simplicity� we therefore assume that �� is ��closed�

We �rst consider constraints �� in base form� We show that we can de�ne an admissible
extension of T from �� in a �syntactic� fashion� To this end� we de�ne the set C� as the
set that consists of all ground type constructors tC of class C in T and all constructor
variables vC of class C in �� We denote by T� the set of type variables in �� We de�ne
binary relations

�
�C on C� �for every type constructor class C in T � and

�
�T on T� as

follows

�C
�
�C ��C i
 ��� �� j� �C � ��C

v
�
�T v� i
 ��� �� j� v � v�

Rules CRef � CTrans� MRef � and MTrans ensure that all relations
�
�C and

�
�T are equiv�

alence relations on their respective domains� We denote the equivalence class of �C with
respect to

�
�C by ��C � �and similarly for type variables�� and de�ne relations v�

C and ��

on these equivalence classes by

��C � v
�
C ���C � i
 ��� �� j� �C v ��C

�v� �� �v�� i
 ��� �� j� v � v�

�




The following lemma shows that these relations are well�de�ned partial orderings and that�
moreover� the collection T � that contains the type constructor classes C�


�
�C � as well as

an additional type constructor class T�

�
�T whose orderings are given by v�

C and �� is
�an isomorphic copy of� an admissible extension of T if �� is well�formed�

Lemma �	 Let � be a variable set� and �� be a well�formed ��closed constraint in base
form� Then T � is �up to isomorphism� an admissible extension of T � where T consists of
the type constructor classes �NC � C

�

�
�C � DC


�
�C �v

�
C � �C� for every class C of T � and

the additional type constructor class T � �NT � T
�


�
�T � 
���� ���� where NT is di
erent

from any NC� if � contains some type variable�

The following lemma shows that any ground constraint � �over the alphabet of T ��
holds in T � i
 � is implied by �� for all ��

Lemma �
 Let � be a variable set� �� be a well�formed ��closed constraint in base form�
and � be a ��closed constraint� Then � holds in T � if and only if �� implies � for all ��

We can now assert theorem �� for the case where �� is a constraint in base form�

Lemma �� Let � be a variable set� �� be a well�formed ��closed constraint in base form�
and �� be any constraint� If for every admissible extension T � of T � and every T ��ground
substitution �� such that ������ is satis	ed in T �� there exists a T ��ground substitution ��
that agrees with �� on the variables of � such that ������ is a ground constraint satis	ed
in T �� then �� implies �� for all ��

It now remains to generalize lemma �
 to constraints in ��prenormal form�

Lemma �� Let � be a variable set� � be a ��closed monotype� �� be a ��closed constraint�
�� be an arbitrary constraint� and v be a variable in � which does not occur in ��� ��� or
�� Then ��� v � � � �� j� �� if and only if ��� �� j� ���

Lemma �� Lemma �� remains valid if �� is a constraint in ��prenormal form�

Theorem �� �Interpretation
 Let � be a variable set� and �� and �� be two well�formed
constraints� Then ��� �� j� �� holds if and only if for every admissible extension T � of
T and every T ��ground substitution �� such that ������ is satis	ed in T �� there exists a
T ��ground substitution �� that agrees with �� on the variables of � such that ������ is a
ground constraint satis	ed in T ��

Corollary �� �Satis�ability
 A constraint � is well�formed if and only if it is has a
ground solution in T �

��



��� Decidability of constraint implication

In this section� we sketch an extremely ine�cient algorithm to decide whether ��� �� j� ��
holds� We make use of the prenormal form for constraints established in theorem �	 and
of several lemmas proved for theorem ���

Let us call a derivation for ��� �� j� �� normal if it ends with an application of rule
VIntro followed by an application of rule Approx � but does not apply VIntro before�

Lemma �� If ��� �� j� ��� then there is a normal derivation of ��� �� j� ���

We say that a constraint � is simple if it does not contain any subconstraint of the
form v � �C ��C �� and if for every subconstraint �C ��� � ��C ��

�
C �� �C �C ��C is a simple

constraint� In particular� a constraint in base form is simple� For simple well�kinded
constraints� we de�ne a syntactical operation atomize inductively as follows�

atomize��C v ��C� � �C v ��C

atomize�v � v�� � v � v�

atomize��C ��� � ��C ��
��� � �C v ��C � atomize�� �C ���

atomize��� � ��� � atomize���� � atomize����

Clearly� if � is simple and well�kinded� then so is atomize����

Lemma �� Assume that �� is a well�kinded and ��closed constraint in base form� If �� is
a ��closed constraint in base form� then ��� �� j� �� holds i
 ��� �� j� �� can be derived
using only the rules Approx� CRef� CTrans� CTriv� CMin� MRef� and MTrans�

Lemma �� Assume that �� and �� are ��closed and in base form and that �� is well�
kinded� Then it is decidable whether ��� �� j� �� holds�

Reusing lemmas from ��	� we can lift lemma �� to arbitrary constraints �� in base
form�

Lemma �	 Assume that �� and �� are in base form� and that �� is ��closed and well�
kinded� Then it is decidable whether ��� �� j� �� holds�

Finally� we establish the decidability of constraint implication�

Theorem �
 �Decidability
 If �� is a well�formed constraint� and �� is an arbitrary
constraint� then it is decidable whether ��� �� j� �� holds� In particular� well�formedness
of constraints is decidable�

��� Constraint contexts

In order to deal with nested polymorphic functions� we de�ne the notion of constraint
context �or context� for short� as a pair �� written �� � ��� where � is a variable set and
� is a constraint� We say that � is well�formed if � is both ��closed� and well�formed�

��



Intuitively� a constraint context is one of the components of typing contexts �cf� chapter
�� and denotes the assumption �there exists variables � such that � holds�� Let � and ��

denote the two contexts �� � �� and ��� � ���� We de�ne the conjunction � ��� of � and
�� as ��� �� � � � ���� If � is well�formed� we say that �� is well�formed w�r�t� � if � and
�� are disjoint� �� is ��� ����closed� and � implies �� for all �� in which case we de�ne the
update ����� of � by �� as the conjunction of � and ��� and corollary � shows that �����
is well�formed� We de�ne the trivial context True as �
 � true�� An alternative de�nition
would have had �� well�formed w�r�t� � i
 � � �� is well�formed� For instance� if � is
of the form �� � true� and �� is of the form �� � � � � � � � int�� then �� is well�formed
w�r�t� � for the latter de�nition� but is not well�formed for the former de�nition� since it
is not true that there exists a � such that � � � and � � int for every � satisfying true �
Unfortunately� this weaker de�nition is not very useful for the intended use of constraint
contexts� if � is an existentially quanti�ed constraint� and �� is a �nested� constraint�
e�g�� the constraint de�ning the domain of a nested function� then �� should not enforce
properties on the variables in � that are not already present in �� or else� there is a risk
of inconsistency between nested constraints�

��



Chapter �

Type system

This chapter formally introduces the notion of universally quanti�ed polymorphic con�
strained type �� � �� �� We de�ne a syntactic preorder on the set of types and show that
this set is a sup�semi�lattice modulo equivalence� We show that functional types of the
form �� � �� � � ��� denote monotonic type transformers over their domain �� � �� �� We
de�ne a syntactic preorder on the set of domains and show that this set is an inf�semi�
lattice modulo equivalence� We show that types and domains are related by a membership
relation such that if a type belongs to a domain� then so does all its subtypes� which shows
that a type 	� is a subtype of another type 	� if and only if every object with type 	� can
be safely used everywhere an object of type 	� can be safely used� Di
erently stated�
domains denote downward�closed sets of types� This property corresponds to the sub�
stitutivity property associated to the subclasses of a class in class�based object�oriented
languages�

In this chapter� we assume given an implicit type structure T and and implicit well�
formed context � of the form �b� � b���
��� Types

In this section� we assume given two variable sets �� and �� and two monotypes �� and
��� For i 	 ��� ��� we de�ne the type 	i as ��i � �i� �i� We say that 	i is closed if �i and
�i are �i�closed� We de�ne the closure 	i��� of 	i w�r�t� � as �b�� �i � b� � �i� �i� We say
that 	i is well�formed w�r�t� �� written � � 	i� if ��i � �i� is well�formed w�r�t� � and �i is
�b�� �i��closed� If 	� and 	� are both well�formed� we say that 	� is a subtype of 	� w�r�t�
� if � � 	� � 	� can be derived from rule Type of �gure 	��� We say that 	� and 	� are
equivalent w�r�t� �� written � � 	�

�
� 	�� if 	� is a subtype of 	� and 	� is a subtype of 	��

When � is trivial or implicit� we simply write 	� � 	� and 	�
�
� 	�� For instance� type

��� � � �nil��� � � � cons��� � ��� �

is a subtype of ��� list��� since

��� true j� �nil��� � � � cons��� � � � � � list����

��



� 	 R��������� ��� ��� � � �� j� ������ ����� � ��
�Type�

� � � � ���� � ��� ��� � ���� � ��� ���

� 	 R��������� ��� ��� � � �� j� ������ �� � ����� �Domain�
� � � � ���� � ��� ��� � ���� � ��� ���

� 	 R��������� ��� � j� ������ �� � ����� � �� �Member �
� � � � ���� � ��� ��� 	 ���� � ��� ���

Figure 	��� Type and domain orderings

holds �choose � � � and � � list����� but they are not equivalent since

��� �� �nil��� � � � cons��� � ��� j� �list��� � ��

does not hold� This is easy to understand in an �open world�� since it may be the case
that in some other module of the program� constructors nil and cons have an upper bound
which is a strict subconstructor of list �cf� �gure ����� The following lemma gives an
equivalent de�nition of subtyping which is less intuitive but can be handy in some proofs�
since this de�nition does not impose the renaming of the universally quanti�ed variables
of one of the types�

Lemma �� �Type ordering
 Let 	i� i 	 ��� ��� be two well�formed types ��i � �i� �i w�r�t�
�� and v be a fresh type variable not in �b�� ��� ���� Then 	� is a subtype of 	� w�r�t� � if
and only if

�b�� v� b� � �� � �� � v j� �� � �� � v

The next lemma shows that the universally quanti�ed variables of a well�formed type
can be freely renamed as needed without altering its semantics�

Lemma �� �Type renaming
 Let 	 � �� � �� � be a well�formed type w�r�t� �� and ��

be a variable set disjoint from b�� Then 	 is equivalent to ����� � ����� ���� for any renaming
� 	 R�b��������

The following lemmas shows that the ordering on types is a consistent and decidable
extension of the standard ordering on ground monotypes�

Lemma �� The type ordering relation is decidable�

Lemma �� �Type extension
 Let �� and �� be two ground monotypes such that �� � ���
Then � 
� �� is a subtype of � 
� �� w�r�t� ��

We say that a well�formed type 	 � of the form ��� � ��� �� is an instance of a well�formed
type 	 of the form �� � �� � if there exists a b��substitution � such that �� � ���� and

�	



�� � ����� For instance� type �
 � int � real� real � int� which is equivalent to real � int�
is an instance of type ��� � � � � �� � � � but �
 � real � int� int � real is not� since the
constraint real � int is ill�formed� As in ML� we can show that every polymorphic type is
a subtype of all its instances�

Theorem �� �Type instances
 A well�formed type is a subtype of all its instances�

In particular� a type is a subtype of all its ground instances� Consequently� the universal
quanti�er can be intuitively interpreted as the greatest lower bound� so that� for instance�
�� � int � �� � can be read as �the �set of� smallest � above int�� which is precisely int

in this simple case� However� note that this interpretation is rather informal in that�
assuming a ���variant class C with type constructors c�� c�� and c� partially ordered by
c� vC c� and c� vC c�� it is not the case that �� � c� � � � c� � �� � and � 
� c� are
equivalent �cf� beginning of chapter ��� This greatest lower bound interpretation is thus
only valid only if the greatest lower bound is a solution of the constraint�

Formally� de�ning the denotation of a well�formed type w�r�t� the trivial context and
type structure T as the following upper�ideal �i�e�� upward�closed set of ground monotypes
w�r�t� the standard ordering� sometimes called 	lter�

���� � �� ��� T � f�� 	 GT j �T �� � � � � ��g

we have the following theorem�

Theorem �� �Type denotation
 Let 	 and 	 � be two well�formed types w�r�t� the trivial
context and type structure T � Then 	 is a subtype of 	 � if and only if ��	 ��� T � is a subset of
��	 �� T � for every admissible extension T � of T �

The following theorem shows that the set of types is a sup�semi�lattice� that is� two
types with an upper bound have a least upper bound� This result� which holds without
any hypothesis on the partial orderings between type constructors� is particularly impor�
tant since the existence of a least upper bound is essential to ensure minimal typing of
expressions like conditional expressions�

Theorem �� �Sup�semi�lattice of types
 Well�formed types modulo equivalence form
a sup�semi�lattice with least element ��� �� Two well�formed types 	� and 	� are said to
be compatible if they have a common supertype� If 	� of the form ��� � ��� �� and 	� of the
form ��� � ��� �� are compatible� ��� ���� ���� and v is a fresh type variable� then the least
upper bound �	� � 	�� of 	� and 	� is equivalent to

�v� ��� �� � ��� � �� � �� � v � �� � v�� v

��� Functional types and domains

A well�formed type is said to be functional if its monotype is of the form � � ��� We
intend functional types to be the types of functions and methods� and to denote monotonic
type transformers� abstracting the input�output relation of the function� However� as in

��



ML� typing rules must be able to deal with cases where the function has the empty type
��� �� as in

letrec loop�� � loop�� in �loop��� � end

for instance� where �loop ��� has the empty type� so that ��loop��� �� also has the empty
type� In order to turn empty types into functional types� we de�ne the functional cast
operator fun� as follows

fun���� � �� � � ��� � �v� v�� � � � � � � �v � v��� �v � v��

where v and v� are distinct type variables not in �b�� ��� and we say that 	 is prefunctional
if fun��	� is well�formed w�r�t� �� For instance� the minimum type ��� � is prefunctional
and is mapped to ��� �� � � � by the functional cast operator� The following lemma
shows that fun� is covariant �that is� monotonic w�r�t� the subtyping relation� which is a
preorder�� In particular� fun� preserves equivalence� Also� note that functional types are
mapped to themselves �up to equivalence� by the functional cast operator and that every
prefunctional type is a subtype of its functional cast� so that fun� is an upper�closure over
the set of prefunctional types modulo equivalence�

Theorem �� �Fun covariance
 The functional cast operator is an upper�closure over
the set of prefunctional types� and if 	� is a subtype of 	� w�r�t� �� and 	� is prefunctional�
then fun��	�� is a subtype of fun��	�� w�r�t� ��

As every functional type denotes a type transformer� we may like to de�ne the domain
of a functional type as the set of types over which it is de�ned� To this end� we de�ne the
domain operator as follows

dom��� � �� � � ��� � �� � �� �

and for any prefunctional type 	 � we de�ne dom��	� as dom�fun��	��� Intuitively� the
domain of a functional type is its set of valid input types� and if types denote the upper �
closure of their set of ground instances� domains denote the lower �closure of their set of
ground instances� The idea is that function domains must be downward closed for the
�substitutivity property� associated to subtyping in object�oriented programming to hold�
For instance� a functional type 	� like �� � � � real� h�� �i � �� which may be the type
of the addition operator over reals� has domain �� � � � real� h�� �i� which� intuitively�
contains all the subtypes of hreal� reali� e�g� hint� reali� Note that the domain operator is
not injective� For instance� a functional type 	� like � 
� hreal� reali � real� which is a strict
supertype of 	�� has the same domain as 	 � namely � 
� hreal� reali� In other words� 	� and
	� denote two distinct type transformers over the domain of all pairs of reals�

The theory of domains is very similar to that of types� For i 	 ��� ��� we de�ne the
domain 
i as ��i � �i� �i� We say that 
i is closed of �i and �i are �i�closed� We de�ne the
closure 
i��� of 
i w�r�t� � as �b�� �i � b� � �i� �i� We say that 
i is well�formed w�r�t� ��
written � � 
i� if ��i � �i� is well�formed w�r�t� � and �i is �b�� �i��closed� If 
� and 
� are
both well�formed� we say that 
� is a subdomain of 
� w�r�t� � if � � 
� � 
� can be derived
from rule Domain of �gure 	��� We say that 
� and 
� are equivalent w�r�t� �� written
� � 
�

�
� 
�� if 
� is a subdomain of 
� and 
� is a subdomain of 
�� When � is trivial

��



or implicit� we simply write 
 � 
� and 

�
� 
�� As for types� the universally quanti�ed

variables of a domain can be freely renamed� the ordering on domains is a consistent and
decidable extension of the standard ordering on ground monotypes� and can be given an
equivalent de�nition� namely� 
� is a subdomain of 
� w�r�t� � if and only if

�b�� v� b� � �� � v � �� j� �� � v � ��

holds for some fresh variable v�
Now� de�ning domain instances like type instances� it can be shown that every well�

formed domain is a superdomain of all its instances� In particular� a well�formed domain
is a superdomain of all its ground instances� Consequently� the existential quanti�er can
be intuitively interpreted as the least upper bound� so that� for instance� �� � � � int� �
can be read as �the �set of� largest � below int�� which is precisely int in this simple case�
As for types� though� note that this is just an intuitive interpretation� Finally� it can
be shown that the set of domains modulo equivalence is an inf�semi�lattice with greatest
element ��� �� and that the greatest lower bound �
� � 
�� of two compatible domains 
�
and 
� is equivalent to

�v� ��� �� � ��� � �� � v � �� � v � ���� v

where v is a fresh variable�
We said earlier that domains denote sets of valid input types of functional types seen

as type transformers� but so far� we�ve only interpreted domains as downward�closed sets
of monotypes� In order to interpret domains as sets of types� we de�ne a membership
relation between types and domains and interpret every domain as the set of types which
belong to it� Formally� we say that a well�formed type 	 belongs to a well�formed domain

 if � � 	 	 
 can be derived from rule Member of �gure 	��� In other words� 	 belong
to 
 if and only if there exists an instance of 	 which is below some instance of 
� For
example� the minimum type ��� � belong to every domain� e�g�� � 
� unit� since

�b�� b� j� � � unit

trivially holds �e�g�� choose � � unit�� Note that 	 belongs to 
 if and only if any renaming
of 	 belongs to any renaming of 
� The following lemma show that type membership is a
consistent and decidable extension of the standard ordering on ground monotypes�

Lemma �	 Type membership is decidable�

Lemma �
 �Membership extension
 Let �� and �� be two ground monotypes such that
�� � ��� Then � 
� �� belongs to � 
� �� w�r�t� ��

The following theorem shows that domains are downward closed w�r�t� type member�
ship� that is� if a type belongs to a domain� then so does all its subtypes� In particular�
if a type 	 belongs to a domain 
� than any type in the equivalence class of 	 belongs to

 and 	 belongs to any domain in the equivalence class of 
� This �transitivity� property
shows that� as expected� domains denote downward�closed sets of types� which is of course
essential from the perspective of object�oriented programming�

��



Theorem �� �Membership transitivity
 The type membership relation is transitive
in the following sense

� � 	� � 	� � � 	� 	 
�

� � 	� 	 
�

� � 	� 	 
� � � 
� � 
�

� � 	� 	 
�

Note that this theorem also suggests that domains may be considered as existential
types by considering type membership as the partial ordering between types and domains�
Also� note that it is not the case that the least upper bound of two types in the same
domain 
 belong to 
� For instance� let 
 be the domain

�� � int � � � � � real� �� �

	� be the type � 
� int� int� and 	� be the type � 
� real� real� Then 	� and 	� obviously
belong to 
� but 	� � 	�� which is a well�formed typed de�ned as

�� � int � int � � � real� real � �� �

does not belong to 
� since the constraint

int � � � � � real � int� int � � � real� real � � � � � �� �

is not satis�able� This unfortunate property of type membership comes from the fact that
the denotations of well�formed types and domains are not necessarily principal ideals� Note
that� symmetrically� a type which belongs to two domains does not necessarily belong to
the greatest lower bound of these domains�

The following lemma shows that dom� is contravariant �that is� anti�monotonic� and
thus maps equivalent types to equivalent domains� This property corresponds to our
intuition that it is necessary that dom��	�� be a subdomain of dom��	�� for a function
with type 	� to be used safely where a function with type 	� is expected�

Theorem �� �Dom contravariance
 The domain operator dom� is contravariant� that
is� if 	� is a subtype of 	� w�r�t� �� and 	� is prefunctional� then dom��	�� is a subdomain
of dom��	�� w�r�t� ��

Now that we�ve studied the domains of functional types� we are going to see how a
functional type 	� of the form ��� � ��� �� � ��� can be identi�ed with a monotonic type
transformer� To this end� we de�ne the application app�	�� 	�� of 	� to a well�formed type
	� of the form ��� � ��� �� as

app�	�� 	�� � ���� ������ � �� � ������ � ������ � ��� �
�
�

where �� is any renaming in R�b��������� Note that app�	�� 	�� is well�formed whenever 	�
belongs to the domain of 	�� For any prefunctional type 	� and any type 	� in the domain
of 	�� we de�ne app��	�� 	�� as app�fun��	��� 	��� In order to deal with curried functions
with several arguments� we inductively de�ne app��	�� 	�� � � � � 	n� as

app��app��	�� 	�� � � � � 	n	��� 	n�

��



for n 
 �� The following theorem shows that app� is covariant in both arguments� As a
consequence� app� is a function on equivalence classes of types modulo equivalence� and
the function �	�� app��	�� 	�� is a monotonic type transformer which is total over the
domain of 	�� Together with theorem 	�� this property shows that prefunctional types can
be identi�ed with monotonic type transformers which are total over their domain� even
though the arrow type constructor on monotypes is contravariant in its �rst argument�
which is yet another evidence that the never�ending covariance�contravariance controversy
is unfounded �����

Theorem �� �App covariance
 The type application operator app� is covariant in both
arguments� that is

� � 	� � 	� � � 	 �� � 	 �� � � 	 �� 	 dom��	��

� � app��	�� 	
�
�� � app��	�� 	

�
��

��� Data types

As stated in the introduction� the only run�time entities in ML� are functions� methods
and tagged records� The dynamic type of each of these run�time entities is of the form
�� � �� dC ��C �� Such types are called run�time types� In particular� there is no run�time
entity with the empty type ��� �� The declaration of a tagged record� which can only
occur at toplevel� is of the form

data dC ��C � is �� d
�
Ch�Ci� � � � � n � d

n
Ch�Ci end

where the tag dC is a data type constructor of C� and for each �eld i� diCh�Ci is a �C �
closed monotype� The only e
ect of this declaration is to de�ne n� � operators� the data
constructor� dC � used to build records tagged by dC � and the data extractors dC ��� � � � �
dC �n� used to access the �elds of such records� These toplevel operators have the following
types �������������

�dC � ��C � d
�
Ch�Ci � � � � � dnCh�Ci � dC ��C �

�d�C � ��C � dC ��C �� d�Ch�Ci
���

�dnC � ��C � dC ��C �� dnCh�Ci

except for n � �� where the data constructor has type

�dC � ��C � unit � dC ��C �

For instance� in �gure ���� cons�cells are declared as follows

data cons��� is �� �� � � list��� end�

so that the data constructor for cons�cells has type

��� �� list���� cons���

�We assume that type constructor names and function names belong to di�erent name spaces�

�




and the extractors associated to the head and the tail of cons�cells have the following types�
��� cons���� �

��� cons���� list���

We assume that data type constructors have no subconstructors� so that we can think
of data types as sets of records with the same tag� There are several advantages in
considering that nil� cons� and scons are type constructors� instead of tags ignored by the
type system� In particular� data extractors are total functions over their domain �whereas
they are partial functions in ML�� and pattern matching can be replaced by dynamic
dispatch� since dispatching on cons is equivalent to doing pattern�matching in ML� For
instance� the extractor associated to the tail of a cons�cell has type

��� cons���� list���

in ML�� as opposed to
��� list���� list���

in ML� but a method with the latter type can of course be de�ned in ML�� However�
note that replacing pattern matching by dynamic dispatch cannot be done without the
notion of subconstructors� which are not present in ML and complicate the type system
somewhat� since polymorphic constrained types are needed in this context to maintain
minimal typing �cf� theorem 	��� We shall see in section ��� that the restriction that data
type constructors have no subconstructors is also essential to ensure that a subtraction
operation with type

�� � � � int� �� �� �

can actually be implemented as a method�
Note that records are not �rst�class citizens in ML�� that is� it is not possible to use

�untagged� or �anonymous� records with arbitrary �elds� and the type system does not
depend on data types being implemented as records� For instance� data types like �oat

need not be implemented as records� However� arbitrary records can always be de�ned by
using dummy constructor classes with a unique data type constructor used as a dummy
tag�

In order to ensure that the variance �C of a class C� which is part of the speci�cation
of C� is an invariant of its implementations� we require that the following implication hold
for every data type constructor dC of C de�ned as above and for any disjoint �C and ��C

��C � �
�
C � �C �C ��C j�

�
i����n�

diCh�Ci � diCh�
�
Ci

This condition ensures that the variance of each of the �elds of dC is compatible with
the variance of C� but is also rather liberal in that it allows� for instance� a ����variant
class C to have an implementation like

data dC ��� is �� � end

with a covariant �eld� As shown by the following theorem� this condition also ensures
that� hopefully� the type of the �eld of a tagged record is a supertype of the type of the
data stored into this �el�

��



Theorem �� �Data types
 Let � be an implicit well�formed context� and 	�� � � � � 	n be
n 
 � well�formed types such that app��

�dC � 	�� � � � � 	n� is well�formed w�r�t� �� Then for
every i 	 ��� n�

� � 	i � app��
�diC � app��

�dC � 	�� � � � � 	n��

Note that the resulting type can be a strict subtype� For instance� if we implement
the data constructor dC of a ����variant class C as follows

data dC ��� is �� �� �� � � � end

and suppose that e� has type 	� � � 
� real� int and e� has type 	� � � 
� real� then� by
the typing rules of �gure ���� dC �� �dC e� e�� has type

app��
�d�C � app��

�dC� 	�� 	���

that is
��� � � real� int � � � � � real � � � dC ��� � dC ���� �� �

or else
��� � � � � real � � � �� �� �

which is equivalent to � 
� real� real� which� in turn� is a strict supertype of � 
� real� int�
In a way� we could say that this type system gives every record a type which is a predicative
approximation of its impredicative type

hhdC � � � � 
� real� int� �� � 
� realii

as a record�
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Chapter �

Type�checking

We now de�ne an explicitly typed higher�order functional language using the type system
of chapter 	� and de�ne type�checking rules for this language� We start by considering the
problem of type�checking a simple expression w�r�t� a �xed type structure T � We show
how methods can be de�ned and how to type�check them� and we show that this language
has decidable minimal typing�

Extensions of this simple language supporting modules as well as the implementation
of methods in several modules are studied in section ���� Type inference for an untyped
version of this language� which can be seen as an extension of ML� is studied in section
����

��� Programs

A program consists in two parts� The �rst part is a possibly empty� semicolon�separated
list of mutually recursive declarations ��gure ���� de�ning a type structure T together
with the implementation of each data type of T as a tagged record� The class declaration
declares a new �C�variant constructor class C� We assume that class Arrow and class Unit
are prede�ned� Type constructors tC of a class C �resp� data type constructors dC� are
added to TC �resp� DC� using the type declaration �resp� data declaration��

The partial ordering of TC is de�ned by declarations of the form order tC � t�C which
assert that tC and t�C are two distinct type constructors of C such that tC vC t�C � We
assume that these declarations de�ne a partial order �that is� we assume that there is no
sequence t�C � � � � � t

n
C � n 
 �� such that t�C � tnC and t�C � � � � � tnC�� and that data type

constructors are minimal� As in section 	��� data types are implemented as tagged records
using declarations of the form

data dC ��C � is �� d�Ch�Ci� � � � � n � d
n
Ch�Ci end

where we impose that the type diCh�Ci of each �eld i be a �C �closed monotype compatible
with the variance �C of C�

The second part of a program is an expression e which must type�check w�r�t� T � The
syntax of expressions is given �gure ���� An expression variable x is a non�empty sequence

��



Declarations ��� class C��C � �C 	 T �

j type tC � C �tC 	 TC�

j data dC � C �dC 	 DC�

j order tC � t�C �tC vC t�C�

j data dC ��C � is �� �� � � � �n � � end

Patterns � ��� �v� v j ��C � tC ��C �

Abstractions f ��� fun f� j �g �x � ��� e �function�

j meth f� j �g �x � �� � � � �� � e� � � � � �� e� �method�

Expressions e ��� x j f j e e

j dC �i �i�th extractor�

j ��dC ��C� x� � � �� x� �record�

j let x � e in e end �simple let�

j letrec x � 	 � f � � � � � x � 	 � f in e end �recursive let�

Figure ���� Programs� type declarations� and expressions

of alphanumeric characters starting by a letter� and is bound in lambda�expressions� let�
expressions and recursive let�expressions� The de�nition of mutually recursive abstractions
�that is� functions and methods� is achieved by recursive let�expressions� and explicit
typing is required� In order to increase the readability of programs� we often split letrec�
bindings of the form x � 	 � f into a type declaration x � 	 and a simple de�nition x � f �
Explicit typing is not required in let�expressions�

An expression of the form fun f� j �g �x � �� � e denotes a function taking a formal
argument x with dynamic type in the domain �� � �� � of the function and returning e�
Note that only the domain of functions is de�ned� not the type of their result� which is
derived from e� The type variables � are bound exactly as x� and are accessible in the
body e of the function�

In what follows� we use the notation fun f�g �x � ��� e to denote the fully polymorphic
function fun f� j trueg �x � ��� e �parametric polymorphism� and fun �x � ��� e to denote
the monomorphic function fun f 
 j trueg �x � ��� e�

As in section 	��� we assume that the declaration of the implementation of dC as
a tagged record de�nes n built�in data extractors dC ���� � � � dC �n� However� we do not
assume that the data constructor is a primitive operator� Rather� we assume that the
data constructor is implemented in a global implicit recursive let�expression as follows

dC � ��C � d�Ch�Ci � � � � � dnCh�Ci � dC ��C ��

dC � fun f�Cg �x� � d�Ch�Ci�� � � �� fun �xn � dnCh�Ci�� ��dC ��C � x�� � � � � xn��

when n � � and as
dC � ��C � unit � dC ��C ��

dC � fun f�Cg �x � unit�� ��dC ��C��

��



when n � �� In these expressions� ��dC��C � x�� � � � � xn� is a record expression� Record
expressions can only appear� as above� in the implementation of data constructors� The
only exception is ��unit� 
�� also written ��� which implements the unit constant and can
appear anywhere� This de�nition of the data constructor in terms of an atomic record
constructor will simplify the operational semantics later on�

A method m is an expression of the form

meth f� j �g �x � �� � �� � ��� � e�� � � � � �n � en�

where each �i is a special kind of domain� called a pattern� de�ned �gure ���� A pattern
is well�formed if it is well�formed as a domain w�r�t� the trivial context� The existentially
quanti�ed variables of the i�th pattern are bound by the existential quanti�er and are
accessible in the scope ei of the alternative�

Note that ML� patterns do not coincide with ML patterns in that ML patterns are
used both for pattern�matching and to bind variables to record components� Moreover�
ML patterns can be nested� that is� the �elds of tagged records can be recursively matched�
In contrast� ML� patterns are only used to perform dynamic dispatch on the outermost
type constructor of types� and access to the �elds of tagged records is performed by means
of extractors� It is essential to understand that ML� dispatches on the run�time type of
values� whereas ML �dispatches� on values themselves� As a consequence� a ML pattern
can look like this

cons f� � pair f� � x�� � � x�g� � � nil fgg

whereas a generalization of ML� patterns allowing dynamic dispatch on nested type con�
structors will at best have the form ���� ��� cons�pair���� ���� so that the fact that the tail
of the list is empty cannot be directly expressed as a pattern�

Method m takes a parameter x with dynamic type 	 in the domain 
 of the method�
de�ned as �� � �� �� and returns ei for the most speci	c pattern �i such that 	 belongs
to �i� We call this mechanism dynamic dispatch� Note that ML� methods take a single
argument� Section ��� addresses the problem of multi�methods�

The type of method m is �� � �� � � ��� and this speci�cation must be matched by
each alternative �i � ei of m� For instance� assuming the type structure of �gure ���� we
could de�ne a recursive method dup to duplicate lists as follows

dup � ��� list���� list����

dup � meth f�g �x � list���� � list���� �

� �� � � x�

� �� cons���� cons �cons�� x��dup �cons�� x���

� �� scons���� scons �scons�� x��dup �scons�� x���scons�� x�

�

Note that we often use � � to denote the pattern �v� v for some fresh type variable
v� and �tC� to denote the pattern ��C � tC ��C � for some fresh C�variable set �C � These
abbreviations are very handy when the existentially quanti�ed variables of the pattern �i
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of the i�th alternative of m do not occur in the body ei of the alternative� For instance�
we generally write the declaration of method dup as follows

dup � meth f�g �x � list���� � list���� �

� x�

cons� cons �cons�� x��dup �cons�� x���

scons � scons �scons�� x��dup �scons�� x���scons�� x�

�

It is important to emphasize the fact that the order in which the alternatives of a
method are listed is not important� This is in contrast with ML� where patterns are
matched in sequence� starting from the �rst pattern� For instance� assuming a datatype
declaration of the form

datatype list��� � nil j cons of � � list��� j scons of � � list��� � int

�where slist is not de�ned for obvious reasons� the above example could be written as
follows in ML

fun dup �cons �h� t�� � cons �h� dup t�

j dup �scons �h� t� s�� � scons �h� dup t� s�

j dup x � x

but swapping the �rst and the last alternatives would de�ne dup as the identity function
on lists� It is easy to see that sequential matching is not appropriate for an object�oriented
language where methods can be implemented in several modules� and are thus naturally
unordered� For the sake of simplicity� we choose� in this chapter� to present type�checking
w�r�t� to a �xed type structure and to have �closed� methods� as in ML� but section
��� addresses the problem of de�ning a module system allowing �open� methods to be
implemented in di
erent modules while retaining a modular type�checking�

A methodm with type 	 is �correct� if it satis�es two conditions� First� each alternative
of m must be type�correct� that is� the domain �i of each alternative must be compatible
with the domain 
 of the method w�r�t �� and each alternative must have a type 	i which�
as a type transformer� must be below the restriction of 	 to �i� Second� the set ��� � � � � �n
must be such that for every run�time type� 	 in 
� there exists a minimum pattern �i�
i 	 ��� n�� such that 	 belongs to 
 � �i� This condition ensures the absence of �method
not understood� or �match not exhaustive� run�time errors �completeness�� as well as a
�best match� algorithm for dynamic dispatch �non�ambiguity�� Note that in the presence
of modules� the second condition can only be checked at link�time� when all the modules
are known� whereas the �rst condition can be checked separately for each module once
and for all�

In order to formally state the �rst condition� we de�ne the restriction res�	� ��� of a
functional type 	 of the form �� � �� � � ��� to a pattern �� of the form ���� �� compatible
with the domain of 	 as follows

res�	� ��� � �v� �� �� � � � v � � � v � ��� v � ���

�C�f� section ����
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where v is a fresh variable� and � and �� are assumed to be disjoint� It is obvious that the
domain of the restriction of 	 to �� is the greatest lower bound of �� and of the domain
of 	 � Moreover� as shown by the following theorem� the restriction of a functional type 	 �
viewed as a type transformer� has the same behavior as 	 on run�time types �but not on
arbitrary types�� As a consequence� a method m satisfying the �rst condition can be seen
as a collection of functions fi de�ned as follows

fun f�� �i� v j �� �i � v � � � v � �ig �x � v�� ei �v fresh�

such that the minimum type of each fi is below the restriction of the type of m to �i�

Theorem �� �Restriction
 Let � be an implicit well�formed context� 	 be a functional
type� 
 be the domain of 	 � �� be a pattern compatible with 
� and 	 �� be a run�time type
both in 
 and ��� Then 	 �� belongs to 
 � �� and

app�res�	� ���� 	 ���
�
� app�	� 	 ���

Note that this theorem would not hold if 	 �� was not a run�time type� or if arbitrary
domains were used as patterns� For instance� let 	 be the functional type ��� list���� ��

 be the domain of 	 � 
� be the domain � 
� list�unit�� which is compatible with 
� and 	 ��

be the run�time type ��� nil���� Then 	 �� belongs both to 
 and 
�� app�	� 	 ��� is equivalent
to ��� �� but

app�res�	� ���� 	 ���
�
� ��� � � nil��� � list��� � nil��� � list�unit�� �
�
� ��� � � � � � � � � unit� �
�
� ��� � � � � � � unit � �� �
�
� � 
� unit

so that allowing dynamic dispatch inside type constructors� as for the following method

meth f�g �x � list���� � �� �� 
� list�unit�� ���

would be unsafe in ML� without further hypotheses on the partial ordering of constructor
classes �e�g�� lattice structure� and�or a stronger axiomatization of the implication� In
particular� we believe that it is necessary to introduce an empty type � or an empty
constructor �C for each class C� In doing so� the empty list would have type nil���� and
the above counter�example would fail�

In order to enforce the second condition of correctness� we de�ne the notion of partition
as follows� and we impose that the set of patterns ��� � � � � �n of a method be a partition
of the domain 
� The next theorem shows that this restriction on methods is su�cient to
de�ne a complete and non�ambiguous dynamic dispatch algorithm� Note that the notion
of partition is decidable for a given type structure T � but is not invariant w�r�t� admissible
extensions of T � so that this notion only really makes sense w�r�t� the �closed� link�time
type structure�

De�nition �� �Partition
 Let � be a well�formed context� 
 be a well�formed domain
w�r�t� �� and ��� � � � � �n� n 
 �� be n well�formed patterns w�r�t� �� We say that ��� � � � � �n
is a partition of 
 w�r�t� �� written � � 
 �� ��� � � � � �n� if �assuming we identify equivalent
patterns�
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��� for every i 	 ��� n�� �i is compatible with 
 w�r�t� ��

��� for every distinct i� j 	 ��� n�� �i is distinct from �j�

��� for every data type constructor dC in T such that 
��� and the pattern � de	ned
as ��C � dC ��C � are compatible� the set f�i j �i 	 ��� n�� � � �ig has a minimum
element�

This de�nition shows that ��� � is a partition of every well�formed domain� Note
that the requirement that 
��� and ���C � dC ��C �� be compatible in condition ��� is more
restrictive that the more intuitive requirement that 
 and ���C � dC ��C �� be compatible
w�r�t� �� For instance� assuming a constraint context � of the form �� � true� and a
domain of the form � 
� �� there is no data type dC satisfying the latter condition� since

��� true j� true � true � dC ��C � � �

is not derivable� whereas every dC satis�es the former condition� since

�
� true j� true � true � dC ��C � � �

is trivially derivable� However� it is easy to understand that the latter condition is desir�
able� since if 
 is the domain of a �nested method�� and � is the type of the formal of the
enclosing function� then the method can potentially be called with any ��

Theorem �� �Dynamic dispatch
 Let � be a well�formed context� 
 be a well�formed
domain w�r�t� �� 	 be a closed run�time type in 
���� and ��� � � � � �n� n 
 �� be a partition
of 
 w�r�t� �� Then there exists a unique index i 	 ��� n�� written disp��	 � 
� ��� � � � � �n��
such that ��� 	 belongs to 
��� � �i� and ��� �i is a subdomain of �j for every j 	 ��� n�
such that 	 belongs to 
���� �j �

��� Minimal typing

A typing context is a pair ���  �� where  is a possibly empty� comma�separated list of
bindings of the form x � 	 � Typing contexts are the environments in which expressions are
type�checked� Intuitively� a typing context with a constraint context � of the form �� � ��
assumes the existence of type and constructor variables � such that � holds� A typing
context ���  � is said to be well�formed if � is well�formed� every binding x � 	 of x to 	
in  is such that 	 is well�formed w�r�t� �� and no expression variable x is bound more
than once in  � The set of expression variables bound in  is called the domain of  �

For any well�formed typing context ���  �� distinct expression variables x��� � � � xn
and types 	��� � � � 	n such that x��� � � � xn are not bound in  and 	�� � � � � 	n are well�
formed w�r�t� �� we denote by ��  �x� � 	� � � � � xn � 	n� the well�formed typing context
���  � x� � 	�� � � � � xn � 	n�� Finally� a subcontext of a well�formed typing context ���  �
is a well�formed typing context ���  �� such that x has type 	 in  if and only if x has
type 	 � in  � and 	 � is a subtype of 	 w�r�t� ��

An expression e is said to be well�formed w�r�t� a well�formed typing context �� � ��  �
if ��� its free type and constructor variables belong to �� ��� its free expression variables
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�� fx � 	g � x � 	 �Var �

��  � ��dC ��C� x�� � � � � xn� � �� 
� dC ��C �� �Rec�

��  � dC �i � ���C � dC ��C �� diCh�Ci� �Prj �

��  � e � 	 � � 	 � 	 �
�Sub�

��  � e � 	 �

�� � e� � 	� �� �x� � 	�� � e� � 	� �Let�
��  � �let x� � e� in e� end� � 	�

�� �x� � 	�� � � � � xn � 	n� � ei � 	i �� � i � n�
�LetRec�

��  � �letrec x� � 	� � e�� � � � � xn � 	n � en in e� end� � 	�

�� � e � 	 �� � e� � 	 � � � 	 � 	 dom��	� �App�
��  � �e e�� � app��	� 	

��

��� � ���  �x � � 
� �� � e � ���� � ��� ���
�Fun�

��  � �fun f� j �g �x � ��� e� � ���� �� � � � ��� � � ���


 � �� � �� � �i � ��i� �i � � 
 �� ��� � � � � �n

��v� �� �i � � � v � �� �i��  �x � � 
� v� � ei � �� 
� �
�� �� � i � n� v fresh�

�Meth�
��  � �meth f� j �g �x � �� � �� � ��� � e�� � � � � �n � en�� � ��� � �� � � ���

Figure ���� Typing rules

belong to the domain of  � and ��� none of its variables is bound more than once� A
well�formed expression e is said to be well�typed and to have type 	 w�r�t� typing context
���  � if ��  � e � 	 can be derived from the rules of �gure ���� Note that we assume that
each dC is associated to a fresh C�variable set �C so that the type associated to dC �i by
rule Prj is always well�formed w�r�t� �� A well�formed expression e is said to be well�typed
and to have minimal type 	 in typing context ���  � if e is well�typed� e has type 	 � and
	 is a subtype of all the types of e�

Rule Sub is the subsumption rule� similar to the one found in F�� This rule is usually
not present in ML�like type systems� where typing judgements have the form  � e � �� and
subtyping is hidden is a non�deterministic instanciation rule of the form  fx � 	g � x � �
whenever � is an instance of 	 � Similarly� the application rule App is closer in spirit from
F� than from ML�like type systems� since it makes use of the application of a polytype
to another� instead of making use of the application of a monotype to a monotype and
resorting to the non�deterministic instanciation of polytypes� Intuitively� this rule trivially
implies minimal typing for function application since dom� is contravariant �theorem
	��� and app� is covariant in both arguments �theorem 	��� However� note that type
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application is approximated in ML� �cf� theorem 	�� whereas it is supposedly exact in
F�� The Let and LetRec rules are standard� Rule Fun is more interesting� Let f be the
abstraction fun f� j �g �x � ��� e� The body e of f is type�checked in a context where x is
known to have type � 
� � for at least one instanciation of � such that � holds� Expression e
is thus well�typed if it type�checks using the property enforced by �� but no more� Now� if
e has type ��� � ��� �� in context ��� � ���  �x � � 
� ��� then f has type ��� �� � ����� � � ��

in context ���  �� Note that since ��� � ��� �� is necessarily well�formed w�r�t� ��� � ��� the
domain of this type is �hopefully� equivalent to the explicitly declared domain �� � �� � of
f � As an example� let f be the following function� assumed to be type�checked w�r�t� the
trivial context

fun f� j� � realg �x � ��� fun �x� � ��� hx� x�i

Then e has type � 
� �� h�� �i w�r�t� to typing context �� � � � real� x � � 
� ��� meaning
that given any � below real such that x is bound to an object with type �� e can be
regarded as a monomorphic function from � to h�� �i� Now� assuming f is called with
integer � as actual argument� the dynamic type of e� that is� the polymorphic type by
which its closure is tagged when created at run�time� is �� � �int � � � real�� � � h�� �i
w�r�t� the trivial context� so that this particular instance of e can be regarded as the
following toplevel �de�ned function

fun f� j int � � � realg �x� � ��� h�� x�i

which is obviously well�typed since if the body of e type�checks w�r�t� the static typing
context� it also type�checks w�r�t� the dynamic typing context �� � int � � � real� x � � 
� ��
which enforces stronger properties on � �cf� lemma 	��� This fact will be at the heart of
the subject reduction theorem�

Note that� abstractly speaking� we could have done without functions� since a function
fun f� j �g �x � �� � e whose type is known to be ��� �� � � � ��� � � �� can always be
replaced by the following method

meth f�� �� j �� ��g �x � �� � �� � ��v� v � e�

which has both the same type and the same run�time behavior� However� the advantage
of functions is that their type does not need to be completely speci�ed�

As mentioned in section ���� rule Meth imposes two conditions on well�typed methods�
First� the set of patterns must be a partition of the domain of the method� to ensure that
dynamic dispatch is both complete and non�ambiguous� Second� in order to ensure subject
reduction� the body ei of each alternative must have type � 
� �

� in the context where the
formal x is known to have both type � and type �i� which is achieved by saying that x
has type � 
� v and adding the conjuncts v � � and v � �i to the constraint of the typing
context�

The following lemmas and theorem show that ML� has decidable minimal typing�

Lemma �� �Typing context
 Let ���  � be a well�formed typing context and �� be a
context such that �� is well�formed w�r�t� �� Then������  is a well�formed typing context�
and for every subcontext ���  �� of ���  �� ������  � is a subcontext of ������  �
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Lemma �	 �Strengthening
 Let ���  � be a well�formed typing context� e be a well�
typed expression with type 	 w�r�t� ���  �� and �� be a context of the form �� � �� �not
necessarily well�formed� such that �� is fresh and � ��� is well�formed� Then e is well�
typed and has type 	 w�r�t� �� ����  ��

Theorem �
 �Minimal typing
 Let ���  � be an implicit well�formed typing context
and e be a well�formed expression w�r�t� ���  �� The existence of a type 	 such that e is
well�typed and has type 	 is decidable� Let e be well�typed and have type 	 � Then 	 is
well�formed� e has a minimal type and the determination of this minimal type is decidable�
Moreover� e is well�typed w�r�t� any subcontext of ���  � and its minimal type w�r�t� such
a context is a subtype of 	 w�r�t� ��

��� Examples

We now illustrate some of the subtleties involved in the type�checking of methods� First� we
remark that since the type structure of �gure ��� only de�nes three data type constructors
nil� cons� and scons compatible with the domain ��� list��� of method dup de�ned in the
previous section� we may have chosen to implement the �rst alternative of dup as follows

nil� nil ��

which is well�typed since

��� �� � � � � list���� nil���� � ���� nil���� � �� 
� list����

obviously holds� Similarly� since the type of dup only requires that its output be a list of
the same sort as its input� which is always the case of the empty list� we may have chosen
to implement the same alternative as follows

� nil ��

Also� the �natural� type of dup � namely ��� list���� list���� is rather imprecise� since
it does not re�ect the fact that the duplication of the empty list is the empty list� that the
duplication of a cons is a cons� and that the duplication of a sized cons is a sized cons� In
other words� it would be nice to be able to impose that �dup e� has type � whenever e has
type � and � � list��� for some �� This is possible in ML�� and dup can also be de�ned
as follows

dup � ��� � � � � list���� � � �

dup � meth f�� � j � � list���g �x � �� � � � �

nil� nil ���

cons � cons �cons�� x� �dup �cons�� x���

scons � scons �scons�� x� �dup �scons�� x�� �scons�� x�

�

with a very precise type which is in fact a strict subtype of the natural type of dup� This
new speci�cation is also an example of why the minimality of data type constructors is
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essential� Indeed� let us show that the �rst alternative of the new implementation of dup
is well�typed� This amounts to showing that

��� �� �� � � � � � � � � nil���� � � list���� � ���� nil���� � �� 
� ��

that is to say
��� �� �� �� � � � � � � nil���� � � list��� j� nil��� � �

which is derivable� since by rules VElim and CMin� the left�hand side of the implication
implies the existence of � such that � � nil���� and consequently� the existence of � such
that nil��� � �� which implies the right�hand side thanks to rule VIntro� In other words�
the �rst alternative of dup is well�typed only because we know that every input run�time
object in the domain ��� nil��� is necessarily the empty list� so that the new empty list
which is built in the body of the alternative is known to have the very same type as the
input object� On a similar track� note that this stronger speci�cation does not allow the
�rst alternative to be written as follows

� nil ��

since it may be the case that the input is not the empty list �in some extension of the type
structure� whereas the output is the empty list� Formally� the following does not hold

��� �� �� � � � � � � � � � � � � list���� � ���� nil���� � �� 
� ��

Another interesting example is the method conc to concatenate two lists de�ned as follows
�assuming that the only data type constructors are nil and cons�

conc � ��� � � � � list���� �� �� ��

conc � meth f�� � j� � list���g �x � �� � �� �� �

nil� fun �x� � ��� x��

cons � fun �x� � ��� cons �cons�� x� �conc �cons�� x� x��

�

with a type showing� in particular� that the concatenation of two empty lists is an empty
list� Of course� conc could also be given its standard ML type ��� list���� list���� list����
giving more freedom for its implementation� but also restricting the contexts in which it
can be used�

A more real�life example is given �gure ���� The type structure of this example is a
numerical hierarchy with two uncomparable maximum types real and dyadic corresponding
to real and ��adic numbers� The data types are �oating points �e�g�� IEEE �oating point
numbers�� binary numbers �e�g�� periodic ��adic numbers�� zero� positive and negative
numbers� The signature of the subtraction operator is

�� � int � �� �� �� �

that is� reals and ��adics cannot be added together� and the type of a subtraction is always
at least an integer�
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class Num� ��

type int � Num�

type real � Num�

type dyadic � Num�

data neg � Num�

data pos � Num�

data zero � Num�

data �oat � Num�

data bin � Num�

order neg � int�

order zero � int�

order zero � dyadic�

order pos � int�

order int � real�

order int � dyadic�

order �oat � real�

order bin � dyadic�

data neg� � is � � � end�

data pos� � is � � � end�

data zero� � is � � � end�

data �oat� � is � � � end�

data bin� � is � � � end�

letrec

�� Extern functions

subInt � int� int � int�

subFloat � �oat� �oat� �oat�

subBin � bin� bin � bin�

neg � �� � int � �� �� ��

neg � meth f� j int � �g �x � �� � �� �

bin� bin �� � ���

�oat� �oat �� � ���

neg� pos �� � ���

pos� neg �� � ���

zero� zero �� � ��

��

toFloat � �� � �oat � �� �� �oat�

toFloat � meth f� j �oat � �g �x � �� � �oat� �

�oat� x�

int� �oat �� � ��

��

toBin � �� � bin � �� �� bin�

toBin � meth f� j bin � �g �x � �� � bin� �

bin� x�

int� bin �� � ��

��

sub � �� � int � �� �� �� ��

sub � meth f� j int � �g �x � �� � �� �� �

�oat� fun �x� � ��� subFloat x �toFloat x���

bin� fun �x� � ��� subBin x �toBin x���

int� meth �x� � �� � �� �

� sub �neg x�� �neg x��

int� subInt x x�

�

��

in

sub �neg�� � ��� ��oat�� � ���

Figure ���� Numerical operators
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�� Constructor class

class C� ��

�� Type constructor

type c � C�

�� Data type constructors

data c� � C�

data c� � C�

�� Implementations

data c� is end�

data c� is end�

�� Subtyping

order c� � c�

order c� � c�

letrec

m � �� � � � c� �� �� ��

m � meth f� j� � cg �x � �� � �� �� �

c� � meth �x� � �� � �� �

c� � c� ��� �� Ok

c� � c� �� �� Wrong

��

c� � meth f�� j�� � c � � � ��g �x� � ��� � �� � �

c� � c� ��� �� Ok

c� � c� �� �� Ok

�

�

in

m �c� ��� �c� ���

Figure ��	� Curried methods

��� Curried methods

It is important to point out that a type like �� � � � point� �� �� bool� which is in fact
equivalent to point � point� bool� is de�nitely not the type of functions which �rst take
a point as argument� and then take a second argument whose dynamic type is below the
dynamic type of the �rst argument! As a matter of fact� this remark is strongly related
to the form of curried methods� We argue that the �most general� implementation of a
curried method m with a type 	 of the form

�� � �� �� � �� � ��

is of the following form

meth f� j �g �x� � ��� � �� � �� � � � � � � meth f�� j �� � �� � ���g �x� � �
�
�� � �

�
� � �� � �� �

where 	 � � ��� � ��� ��� � ��� � ��� is a fresh renaming of 	 � To understand why� note that
the context in which the inner method is type�checked assumes the existence of variables
� such that � holds and x� has type � 
� ��� In other words� the inner method is in some
sense equivalent to the closure of the application of m to an argument with type � 
� ��
�cf� section ����� so that its type should intuitively be the application of 	 � to � 
� ��� that
is to say

��� � �� � �� � ���� �
�
� � ���

which is obviously a subtype of � 
� �� � �� w�r�t� context � � �� � ��� Note that the
domain of the inner method w�r�t� � is thus ��� � �� � �� � ���� �

�
�� which is a superdomain
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conc � ��� � � � � list���� �� �� ��

conc � meth f��� �� j�� � list����g �x� � ��� � �� � �� � �

nil� fun �x� � ���� x��

cons � meth f��� �� j�� � list����� �� � ��g �x� � ��� � �� � �

nil� x��

� cons �cons�� x�� �conc �cons�� x�� x��

��

scons � meth f��� �� j�� � list���� � �� � ��g �x� � ��� � �� � �

nil� x��

cons� cons �scons�� x�� �conc �scons�� x�� x���

scons � let x� � conc �scons�� x�� x� in scons �scons�� x�� x� �inc �size x���

�

�

Figure ���� Concatenation of sized lists

of � 
� ��� so that the most general form of m makes as few assumptions as possible on the
arguments of the inner method� Of course� in some cases� it is possible to write m using
the following form� which is less general� but is also simpler and more intuitive

meth f� j �g �x� � ��� � �� � �� � � � � � � meth �x� � ��� � �� � �� � �� �

This is the case� in particular� for method sub of �gure ��� which is of the form

meth f� j int � �g �x � �� � �� �� � int� meth �x� � �� � �� � int� subInt x x���

instead of the more systematic form

meth f� j int � �g �x � �� � �� �� �

int � meth f�� j int � �� � � � ��g �x� � ��� � �� � � int� subInt x x��

�

However� this simple form could not have been used had the inner method dispatched on
two di
erent patterns� instead of dispatching on int twice� As a counter�example� consider
the �rst alternative of method m of �gure ��	� The body e of this alternative� which is
itself a method� type�checks w�r�t� the following typing environment ���  �

��� � � � � c� � � � � � � c��� �x � � 
� ��

such that � is well�formed w�r�t� the trivial context True� However� the second alternative
of e is ill�typed� since the context ��� � �� � ���� � c�� in which it would be type�checked
is not well�formed w�r�t� �� as shown by the following implication� which is not derivable

��� �� � � c� � � � � � � c� j� �� � � � �� � c�

		



�remember that � � c� implies � � c�� since c� is a data type constructor� and is thus
minimal�� Intuitively� the outer method assumes the existence of some � between c� and
c� whereas the inner method assumes that � is above c�� a property which is not true for
every � between c� and c �e�g�� for � � c��� In contrast� the second alternative of the
body of the second alternative of m is well�typed since the context in which the body of
this alternative is type�checked� namely

��� �� � �� � c � � � �� � �� � � � �� � c�

is well�formed w�r�t� �� Intuitively� the inner method now assumes the existence of some
�� such that �� is above both � and c�� and is also below c� which trivially holds for every
� between c� and c �e�g�� for �� � c��

As a last example� �gure ��� shows how the conc method of section ��� can be imple�
mented in the presence of sized lists while maintaining a very precise speci�cation �i�e��
type� enforcing that the concatenation of two empty lists be an empty list� that the con�
catenation of two sized lists be a sized list� and that the concatenation of two regular lists
be a regular list�

Finally� note that in the absence of constraints and primitive subtyping �as in ML�� the
most general implementation of a curried method m with a type 	 of the form �� � �� �� �
�� � �� has the following form

meth f�g �x� � ��� � �� � �� � � � � � � meth f�� j �� � ���g �x� � �
�
�� � �

�
� � �� � �� �

where 	 � � ���� ��� � ��� � ��� is a fresh renaming of 	 � That is to say� m can be
implemented as follows

meth f�g �x� � ��� � �� � �� � � � � � � meth �x� � ��� � �� � �� � �� �

in pretty much the same way curried methods are implemented in explicitly typed versions
of ML� Unfortunately� this simple and intuitive form does not carry over to languages with
primitive subtyping�
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Chapter �

Operational semantics

We now de�ne the operational semantics of the language� For the sake of simplicity�
we choose a strict semantics instead of a lazy semantics� This is because strictness is
more natural in a language with dynamic dispatch where arguments have to be evaluated
before dynamic dispatch can be performed on their dynamic type� Of course� a mixture of
strictness and laziness could also be used� In particular� we assume the existence of a lazy
conditional with type ��� bool� �� �� �� The operational semantics of ML� departs
from the standard approach in that it uses the static type system to tag run�time values by
their minimal type� Some rules thus �call� the type�checker to determine this minimal type
w�r�t� to the run�time environment� The decidability of minimal typing is thus essential
for the operational semantics to make sense� However� the semantics does not actually
use minimal types� since dynamic dispatch is performed via the tag dC of records� which
can be seen as an abstraction of their minimal type �� � �� dC ��C �� Consequently� actual
implementations can do without run�time types� Note that this would not be the case
if dispatching was allowed inside type constructors� which is a natural extension of the
system�

The key point of the operational semantics is that every expression e is evaluated both
in a run�time environment "� giving both the value and the minimal type of variables� and
in a constraint context �� so that when e evaluates to a run�time value� this value is tagged
by the closure 	 ��� of the minimal type 	 of e w�r�t� ��� "�� The crucial observation to
establish subject reduction is that � is always a �strengthening� of the constraint context
in which e has been type�checked statically� The following lemma relates well�formed types
to their closure�

Lemma �� �Closure
 Let � � b� � b� be a well�formed context� 	 � �� � �� � be a well�
formed type w�r�t� the trivial context such that � and b� are disjoint� and 	 � be a well�formed
type w�r�t� �� Then ��� 	 ��� is closed� well�formed� and is equivalent to 	 � ��� 	 ���� is
closed and well�formed� and ��� 	 is a subtype of 	 � w�r�t� � if and only if 	 is a subtype
of 	 ���� w�r�t� the trivial context�

A run�time environment " is a possibly empty� comma�separated list of bindings of
the form x � � � 	 denoting that the expression variable x has run�time value � and
closed run�time type 	 � We assume that expression variables are bound at most once
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��" � dC �i � 	
�PrjType�

" � prj�dC � i� � 	

��" � f � 	 True � 	 ��� � 	 �
�ClsType�

" � cls��� f� � 	 �

� � True � � app��dC� 	�� � � � � 	n� " � �i � 	i �� � i � n�
�RecType�

" � rec�dC ��� � 	�� � � � � �n � 	n� � app��dC � 	�� � � � � 	n�

Figure ���� Well�typedness of run�time values

in run�time environments� Possible run�time values are closures cls��� f�� tagged records
rec�dC ��� � 	�� � � � � �n � 	n�� and the projection prj�dC � i� on the i�th component of tagged
records� The free expression variables in closures are interpreted w�r�t� a run�time envi�
ronment� Consequently� the evaluation process not only returns a run�time value and its
type� but also the run�time environment in which to interpreted it�� More formally� �gure
��� de�nes the judgement ��" � e � � � 	� "�� which reads� in constraint context � and
run�time environment "� expression e evaluates to run�time value � with run�time type 	
in environment "�� Note that we sometimes omit 	 when we have no use for it� In order
to avoid the capture of variable names� we assume that retrieving a typed run�time value
� � 	 from a run�time environment " always creates fresh copies of � and 	 � that is� copies
of � and 	 where all the type� constructor and expression variables which are not in the
domain of " are renamed to fresh variables� For any run�time environment "� distinct
expression variables x��� � � � xn� run�time values ���� � � � �n and types 	��� � � � 	n such that
x��� � � � xn are not bound in "� we denote by "�x� � �� � 	�� � � � � xn � �n � 	n� the run�time
environment �"� x� � �� � 	�� � � � � xn � �n � 	n��

We say that an expression e is well�typed and has type 	 w�r�t� ��� "�� written ��" �
e � 	 � if e has minimal type 	 w�r�t� ���  �� where  is obtained by replacing every binding
x � � � 	 in " by the binding x � 	 � We say that a run�time value � has type 	 w�r�t� " if
" � � � 	 can be derived from the rules of �gure ���� We say that a run�time environment
" is well�formed� written � "� if every binding x � � � 	 in " is such that � has type 	
w�r�t� "�

It is easy to see that the rules of �gure ��� de�ne an abstract machine with a global run�
time environment " and a stack of pending evaluations ��i� ei� �� i�n� Most of the rules
are straightforward� The only remark is that rule MethApp performs dynamic dispatch
by selecting the most speci�c alternative i such that the run�time type 	 � of the actual
parameter belongs both to the closure 
��� of the domain 
 of the method w�r�t� the
context � in its closure� and to the domain �i of the alternative�

An abstract machine is said to be well�formed if its global run�time environment "
is well�formed and every pending evaluation ��i� ei� is such that ei is well�typed w�r�t�

�Doing so is admittedly not very elegant� and leads to the use of ever growing run
time environments�
Nonetheless� we do not put � in closures to avoid the use of in�nite� recursively de�ned syntactic run
time
environments in the treatment of recursive let
expressions�
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��"fx � � � 	g � x� � � 	� " �VarVal�

�� "fx� � �� � 	�� � � � � xn � �n � 	ng � ��dC��C � x�� � � � � xn� � 	
�RecVal�

�� " � ��dC��C � x�� � � � � xn�� rec�dC ��� � 	�� � � � � �n � 	n� � 	 ���� "

��" � dC �i � 	 �PrjVal �
�� " � dC �i� prj�dC� i� � 	� "

��" � f � 	
�ClsVal�

�� " � f � cls��� f� � 	 ���� "

��" � e� � �� � 	�� "�

��"��x� � �� � 	�� � e� � �� � 	�� "� �LetVal�
�� " � �let x� � e� in e� end�� �� � 	�� "�

��"�x� � cls��� f�� � 	����� � � � � xn � cls��� fn� � 	n���� � e� � �� � 	�� "�
�LetRecVal�

�� " � �letrec x� � 	� � f�� � � � � xn � 	n � fn in e� end�� �� � 	�� "�

b�� b" � be� prj�dC � i�� "b��" � be � � rec�dC ��� � 	�� � � � � �n � 	n�� "
�

�PrjApp�b�� b" � �be be ��� �i � 	i� "
�

b�� b" � be� cls��� fun f� j �g �x � ��� e�� "b��" � be � � �� � ���� � ��� ���� "�

� � ��� �� � � � �� � �� � ��� "��x � �� � ���� � ��� ���� � e� ��� � 	 ��� "��
�FunApp�b�� b" � �be be ��� ��� � 	 ��� "��

b�� b" � be� cls���meth f� j �g �x � �� � ��� � ��� � e�� � � � � �n � en��� "


 � �� � �� � �i � ��i� �i b��" � be � � �� � 	 �� "�

	 � � ��� � ��� �� j � disp��	
�� 
���� ��� � � � � �n�

� � ��� ��� �j � � � �
� � �� � �� �j�� "

��x � �� � 	 �� � ej � ��� � 	 ��� "��
�MethApp�b�� b" � �be be ��� ��� � 	 ��� "��

Figure ���� Operational semantics
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��i� "�� An evaluation is said to fail when the machine becomes ill�formed as the result of
applying a rule� or when no rule can be applied� The result of an evaluation is a run�time
value � together with its closed run�time type 	 � The following theorem shows that the
evaluation of well�typed expressions never fails�

Theorem �� �Subject reduction
 Let " be a well�formed run�time environment� � be
a well�formed constraint context� and e be a well�typed expression with minimal type 	

w�r�t� ���"�� Then the evaluation of e w�r�t� � either loops forever without failure or
returns a run�time value �� with closed and well�formed run�time type 	 � such that 	 � is a
subtype of the closure of 	 w�r�t� ��

	




Chapter �

Algorithms

��� Constraint implication

We have seen in chapter � that constraint implication can be reduced to a series of in�
dependent implications� an implication over type variables v� and an implication over
C�constructors �C for each constructor class C in the type structure T �cf� theorem �	��
This reduction phase uses standard uni�cation techniques to extract the �shape� of vari�
ables� so there is no need to discuss it here�� Instead� we focus on a simpler problem
which is common to each implication� namely� implications of the form ���� �� j� ��
where �� and �� are conjunctions of inequalities between variables� �� is a non�empty set
of variables� and �� is ���closed� The axiomatization of interest for this restricted form of
implication uses the rules of �gure ��� plus the transitivity rule� We assume that the sub�
stitution � of rule VIntro � maps variables to variables� Obviously� a constraint is always
well�formed w�r�t� this new axiomatization� Moreover� implications over C�constructors
can be reduced to this problem as follows�� First� each type constructor tC 	 TC can
be considered as a �variable� in the variable set �C � TC � Second� the partial ordering
over �C can be represented by a constraint �C containing all the conjuncts of the form
tC � t�C such that tC vC t�C holds in C� Third� C�constructor variables can be identi�ed
to regular variables� The well�formedness of a constraint � over C�constructors is thus
equivalent to ��C � �C j�� �� whereas the implication of �� by �� for all �� is equivalent
to ��C � ��� �C � �� j�� ���

For the sake of simplicity� we assume that the left�hand side �� of the implication de�nes
a partial order �� on ��� In other words� for v� and v�� in ��� we say that v� �� v

�
� when

v� �� v
�
� is implied by �� for all ��� and we assume that one cannot have both v� �� v

�
�

and v�� �� v� for distinct variables v� and v�� in ��� Let �� be the set of variables of ��
which do not occur in ��� The implication problem can be understood as the satisfaction
of constraint �� w�r�t� the partially ordered universe �������� This is because the only

�As a matter of fact� this �rst phase is very similar to the match algorithm of 	����
�For the sake of simplicity� we ignore the minimality of data type constructors� Taking minimality into

account can be done easily by adding min�v� conjuncts axiomatized by the following axiom� which is the
analogous of rule CMin

��� �fmin�v� � v
� � vg j� � � v � v

�

��



�Approx �� ��� �f��g j�� �
�

�VIntro �� ��� ���� j�� � �� 	 S����

�MRef �� ��� � j�� � � v � v

�MTrans �� ��� �fv � v� � v��g j�� � � v � v��

Figure ���� Restricted implication

way to introduce variables is by abstracting a �solution� deduced from the left�hand side
�� using rule VIntro �� Moreover� by corollary � �or its equivalent for j���� we know that
this implication is equivalent to ���� �� j�� ������ Now� if v� and v�� are two variables in
�� such that v� �� v

�
� does not hold� but v� � v�� is implied by �� � �� for all ��� it is easy

to see that �� does not imply �� for all ��� We thus assume that no absurdities between
variables of the universe ������� can be derived from �� � ���

Consequently� the key problem to solve in order to decide implication can be abstracted
as follows� given a �nite partial order ����� and a partition f��� ��g of � such that �� is
non�empty� is it possible to �nd a total map � from � to ��� called a solution� such that�

� v� 	 ��� ��v�� � v�

� v 	 �� � v� 	 �� v � v� �� ��v� � ��v��

For instance� the problem of deciding the following implication

��� �� � � � � � � � j�� � � � � � � �

amounts to trying to �nd a valuation ���� 	 f�� �g for � such that � � ���� and � � ����
where � is the partial order de�ned by � � �� � � �� � � �� � � �� and � � �� which is
clearly impossible�

The most obvious solution to this problem� which is called po�sat and is �implicitly�
shown to be NP�complete in �	��� is of course to try all possible maps � from � to ���
but this algorithm is far from e�cient� and we would rather �nd an algorithm which is
polynomial �most of the time�� To this end� we de�ne the functional # from the �nite
complete lattice� �� P���� into itself as follows

�v� 	 ��� #�F ��v�� � fv�g

�v� 	 ��� #�F ��v�� � �
T

v
 v�

S
v� �F 	v
 � v�� � �

T
v�
 v

S
v� �F 	v
 � v��

where we de�ne � v� �resp� � v�� as the set of all v
�
� 	 �� such that v� � v�� �resp� v

�
� � v���

We say that F is a pre�solution if F is a pre��xpoint of # �that is� F � #�F �� and
F �v� is non�empty for every v 	 �� Since� # is monotonic� # always has a greatest
�xpoint which is above all its pre��xpoints� and this greatest �xpoint can be computed
in polynomial type� since #�F � can be computed in polynomial type for every F � and the

�The ordering � on maps is de�ned by F � F � if and only if F �v� � F ��v� for every v � ��

��
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Figure ���� Counter�example for the greatest �xpoint algorithm

height of the lattice �� P���� is quadratic in the number of variables� The existence of
a pre�solution is thus a polynomial problem� and the set of pre�solutions is either empty
or has a maximum solution� called the maximum pre�solution�

Theorem �� For every solution �� the function F de	ned by F �v� � f��v�g for every
variable v 	 � is a pre�solution�

Consequently� the existence of a pre�solution is a prerequisite to the existence of a
solution� and if G is the maximum pre�solution� then every solution � of the problem is
such that ��v� 	 G�v� for every v 	 �� Unfortunately� as implied by the complexity result
of �	��� the existence of a pre�solution is not su�cient to prove the existence of a solution�
The simplest counter�example that we have found is given �gure ���� with �� � fa� b� c� dg
and �� � fac� ad� bc� bd� cd� abg� This problem �which is built by simplifying the set of
convex subsets of fa� b� c� dg partially ordered by the Plotkin ordering on powerdomains�
does not have a solution� but it can be shown that

G�ac� � fa� cg G�bc� � fb� cg G�ad� � fa� dg

G�bd� � fb� dg G�ab� � fa� bg G�cd� � fc� dg

However� even if the existence of a pre�solution is not enough to decide the existence
of a solution� the fact that G�v� contains ��v� for every solution � is a step in the right
direction� As a matter of fact� if jG�v��j � � for every v� 	 ��� then the following theorem
shows that G de�nes a solution�

Theorem �� If the maximum pre�solution G is such that jG�v��j � � for every v� 	 ���
then the problem has a unique solution ��

Now� if jG�v��j � � for some v� 	 ��� then a possible algorithm is to try to arbitrarily
�x G�v�� � fv�g for some v� 	 G�v��� to reapply the greatest �xpoint algorithm starting
from G instead of the maximum element of the lattice� backtracking if necessary� This
intuition is formalized by the algorithm of �gure ���� where function Solve is initially
called with the maximum element of the lattice� that is to say� the function F such that
F �v� � � for every v 	 �� We expect this algorithm� which is potentially exponential� to

��



procedure Solve�F � is

G �
T

i� � #i�F ��

if �v� 	 ��� jG�v��j � � then fail �

if �v� 	 ��� jG�v��j � � then succeed�

for v� 	 �� such that jG�v��j � � do

for v� 	 G�v�� do

Solve�G�v� �� fv�g��

end Solve

Figure ���� Algorithm to decide restricted implication

be polynomial in practice� Note that e�cient chaotic iteration strategies �
� can be used
to compute greatest �xpoints e�ciently� Our current implementation uses this algorithm�
and we have never encountered an exponential blow�up on the examples we have tried�
but remark that the same problem is true for ML type inference algorithm �it can be
exponential� but is polynomial in practice��

��� Type inference

We believe that all the techniques developed for type inference with subtypes ��� ��� ���
��� ��� �
� ��� �	� ��� 	�� 	�� can be used to perform the type inference of untyped ML�
programs which do not contain methods� In particular� the unify and match algorithms
of ���� ��� ��� can be used� as well as various constraint simpli�cation algorithms�

Consequently� we do not give a formal speci�cation of the type inference algorithm�
Rather� we give a few examples showing that type inference for methods is somewhat more
subtle� For example� assume a ���variant class C with data type constructors a and b� and
type constructor c such that a vC c and b vC c� and assume that method m is de�ned as
follows

m�x � a� � let � � � in a���

m�x � b� � let � � � in b���

as a private method of some module of the program �inferring the type of a method
implemented in several modules does not make sense�� The problem is to �nd a minimum
type 	 for m such that ��� �� 
� a� � 
� b� is a partition of the domain 
 of 	 � and ��� the
bodies of the two alternatives of m type�check� At �rst glance� one may think of giving m
one of the two following types

	� � �� � � 	 C� �� �

	� � �� � � � c� �� �

Note that the domain 
� of 	� is a strict subdomain of the domain 
� of 	�� even
though these two domains are intuitively equivalent in a �closed world�� Also� remark

��



that 	i denotes the identity over 
i� since the two alternatives of m return the same data
type that the data type they take as argument� Now� an important subproblem of our
original problem is to �nd a maximum domain 
 such that �� 
� a� � 
� b� is a partition
of 
 and the body of the alternatives type�check w�r�t� 
� This is the hard part� since
each alternative is type�checked w�r�t� a di
erent constraint context �cf� rule Meth�� so
that the �constraints� on 
 inferred during the type�checking of each alternative are hard
to �merge� automatically in a systematic and optimal way� and one has to �guess� this
domain� Intuitively� if 
i is the domain inferred for the i�th alternative� then 
 should be
the greatest lower bound of all the 
�i� where 


�
i is just 
i with the additional constraints

imposed by rule Meth �removed�� which is hard to de�ne formally� The two domains

� and 
� are both reasonable candidates for 
� and it is not clear which one to choose�
Remark that this ambiguity does not occur in ML� since the uni�cation algorithm would
identify 
� and 
� to � 
� c� assuming c is declared as follows

datatype c � a of unit j b of unit

Worse� if m has a third �catch�all� alternative de�ned as follows

m�x � � � x�

then the minimum type of m is ��� �� �� which is much more general than the ML type
c � c inferred by the uni�cation algorithm� Note that this type would also have been
inferred by an ML compiler without the third �catch�all� alternative� in which case ML
compilers normally print a �match not exhaustive� warning�

Now� the rationale of choosing 
� is that it is the largest domain which contains a and
b� and nothing else �w�r�t� to the current type structure�� However� this domain may be
too large to type�check the bodies of the alternatives of m� so we may want to choose

� which is the smallest� domain containing a and b� Doing so guarantees that if one of
the alternatives of m fails to type�check� and m is not recursive� then the method cannot
type�check� However� doing so also restricts the possible uses of m elsewhere� e�g�� if m is
let�bound� In a sense� 
� and 
� are the upper and lower bounds for the choice of 
� In
terms of abstract interpretation� the only solution to this problem is probably to design a
widening operator ��� ��� on domains �or the dual of a widening operator� to be precise��
and use e�cient chaotic iteration strategies �
� to compute �xpoints� As a matter of fact�
the uni�cation algorithm of ML can be seen as a widening operator ���� ���� We leave
open the design of this widening operator for ML�� One possible track may be to use 
�
and allow non�exhaustive matches� as in ML� but more sophisticated widening operators
can certainly be designed�

�Informally speaking� of course� since domains do not form a sup
semi
lattice without disjunctive con

straints� That is to say� the smallest domain containing a and b is ��� � � � a � � � b� ��� which cannot
be expressed in ML�� The domain �� is thus the most natural approximation of the least upper bound of
a and b in a closed world�

�	



Chapter �

Extensions

��� Modules

In this section� we show how to de�ne a module system for ML� preserving some modu�
larity in type�checking� Our goal is not to give a formal de�nition of the module system�
Rather� we de�ne the system informally and give hints on some key points of the design�

We propose to partition the program into modules and interfaces� Modules and in�
terfaces are named� and we assume that each module�interface has a unique name in the
same namespace� so that we confuse modules and interfaces with their name� We assume
the existence of a module� called Main� de�ning a function main with type unit � unit�
As opposed to chapter �� where the name of functions� methods� and variables consisted
in strings of alphanumeric characters� we assume that the name of every global object in
the program is explicitly quali�ed by the name of a module or the name of an interface�
except for the declarations of classes� types� data types� and the speci�cation of functions
and methods� which use unquali�ed names for the object they de�ne� this name being im�
plicitly quali�ed by the module or the interface in which the declaration occurs� Note that
the examples of chapter � used a more liberal convention with an implicit quali�cation of
the names in scope�

Interfaces are sequences of import statements� class� type� and data declarations and
implementations in the style of �gure ���� as well as speci�cations for methods and func�
tions�� Import statement have the form import I � where I is the name of an interface� and
specify the list of interfaces that the interface can use� The speci�cation of a function f
in interface I is of the form fun f � 	 � The speci�cation of a method m in interface I is
of the form meth m � 	 � where 	 is of the form �� � �� �� � ��� The class� type� and data
declarations of an interface I are valid if� as a whole� they form an admissible extension
of the type structure imported by I � Every data type constructor dC � declared in some
interface I � must have exactly one implementation of the following form �in I or in some
other interface importing I�

data I�dC��C � is � � � end

�Note that values that are not abstractions cannot be de�ned at toplevel in modules or exported in
interfaces� This restriction could be lifted with a lazy language allowing the recursive de�nition of arbitrary
values�

��



Modules are sequences of import statements and letrec�bindings for methods and func�
tions�� Import statements specify the list of interfaces that the module can use� A function
f de�ned in interface I must have exactly one de�nition of the form

fun I�f f� j �g �x � �� � e

in some module M importing I � A method m de�ned in interface I can be implemented
in several modules Mi� i 	 ��� n�� importing I � The i�th implementation of method m in
module Mi is of the form

meth I�m�x � �i� � ei

where the type variables � of the speci�cation of the method are accessible in the scope
of the body ei�

The meaning of a collection of modules and interfaces is a program �in the sense of
section ���� with a type structure built by gathering all the declarations in the interfaces
of the program� together with a recursive let�expression� whose body is the expression
Main�main��� and whose bindings are the speci�cations of all the interfaces and the letrec�
bindings of all the modules of the program� The de�nition of function f is transformed
into the following letrec�binding

I�f � 	 � fun f� j �g �x � ��� e

whereas the n implementations of method m are gathered as follows

I�m � 	 � meth f� j �g �x � ��� � �� � ��� � e�� � � � � �n � en�

In order to have a modular type�checking� we must �rst de�ne the meaning of a module
M independently of the rest of the program� We propose to consider that a module denotes
the �partial� program formed by the interfaces it imports� together with its own body��
Note that the body of each alternative of a method can be type�checked independently
from its other alternatives� so that it makes sense to type�check a partial method� provided
of course that we relax the condition imposed by rule Meth that the patterns of a method
form a partition of its domain� and report this check to link�time when all the modules
are known� The key point of the system is that the global link�time type structure is an
admissible extension of the imported type structure in which the type�checking of M is
performed� Moreover� the minimal type of each expression in M is also the minimum type
w�r�t� the link�time type structure� since the minimal derivation w�r�t� the type type struc�
ture ofM is also the minimal derivation w�r�t� the link�time type structure� Consequently�
modules can be type�checked in a modular fashion with the provision that methods must
be checked for completeness and non�ambiguity at link�time�

�It would be easy to add class� type and data type de�nitions too� as in chapter ��
�A hierarchy could also be de�ned on modules and interfaces to avoid the recursive de�nition of every

toplevel object and allow values to be exported in interfaces�
�Note that in order to do so� we need to allow functions and methods to be declared� but not im


plemented� since a function declared in an interface I imported by M is not necessarily implemented in
M �

��



Note that� as always� the use of multi�methods �see below� or the use of complex
hierarchies of type constructors can lead to link�time failures� There as several ways to
minimize the problem� For instance� we could restrict ourselves to tree hierarchies �that
is� forbid multiple�inheritance�� Or� as advocated in ��	�� we could impose that interfaces
which extend the classes de�ned in some interface I explicitly say that they extend I �
and use the notion of resolving module to resolve ambiguities raised by the use of multi�
methods� In any case� these language design issues must be solved in a satisfactory way
before multi�methods and multiple�inheritance can be accepted as a viable alternative to
single�dispatch languages� and we shall discuss this problem at length in another report�

��� Multi	methods

Section ��	 showed that de�ning curried methods with constrained types can be somewhat
subtle and counter�intuitive� We thus need a direct way to de�ne methods with several
arguments� We are immediately confronted with a choice� We can either extend the theory
to account for multi�methods� or take the view that multi�methods are just syntactic sugar
for curried methods� We study the two views in sequence� and see that built�in multi�
methods are more expressive than curried methods� For the sake of simplicity� we restrict
ourselves to methods with two arguments� and we assume the existence of a ������variant
class Pair with a single data type constructor pair implemented as follows

data pair��� �� is �� �� � � � end

where� as usual� the monotype pair���� ��� is written h��� ��i� So let m be the following
multi�method

m � meth f� j �g �x � h��� ��i� � � � ��� � e�� � � ��n � en�

where for each i 	 ��� n�� �i is a multi�pattern of the form ��i��� �i��� h�i��� �i��i such that
�i�� is disjoint from �i�� and �i�j � ��i�j � �i�j is a well�formed pattern for j 	 ��� ��� The
restriction that �i�� and �i�� be disjoint corresponds to the fact that the two components of
a multi�pattern must be independent� so that we can confuse �i with h�i��� �i��i� In other
words� multi�patterns must be linear� For instance� ��� h�� �i is not a multi�pattern�
Extending the theory to allow multi�methods like m simply consists in adding multi�
patterns and replacing condition ��� of de�nition 		 by the following condition

��� for every data type constructors dC�
and dC�

in T such that 
��� and the multi�
pattern � de	ned as ��C�

� �C�
� hdC�

��C�
�� dC�

��C�
�i are compatible� the set f�i j �i 	

��� n�� � � �ig has a minimum element

which generalizes easily to multi�patterns with more than two components� The key point
of this generalization is that theorems 	� and 	� remain valid�� provided we de�ne run�
time types as closed types of the form �� � �� dC ��C � when dC is not the pair constructor�
and closed types of the form �� � �� hdC�

��C�
�� dC�

��C�
�i� It is then easy to check that

�Note that the fact that these theorems remain valid relies heavily on the hypothesis that every multi

pattern ���� ��� h��� ��i is such that �� is ��
closed� �� is ��
closed� and �� is disjoint from ���

��



the rest of the theory is unchanged� and that� in particular� minimal typing and subject
reduction remain valid�

Another approach to the introduction of multi�methods like m is to �nd a way to write
a curried version ofm while preserving the �most speci�c� semantics for dynamic dispatch�
Let b��� � � � � b�m denote the elements of the set f�i�� j i 	 ��� n�g �where� as usual� we identify
equivalent patterns�� To the light of section ��	� we propose to write the curried form m�

of m as follows

m� � meth f� j �g �x� � ��� � �� � � � � � � �b�i � meth f�� j �� � �� � ���g �x� � �
�
�� � �

� � � � � �

�j�� � let x � hx�� x�i in ej end�

� � � ��

� � � �

where ��� � ��� h���� �
�
�i � �� is a fresh renaming of the type of m� and for every i 	 ��� m��

every j is the index of a pattern �j whose �rst projection is equivalent to b�i� We say thatm
is well�typed w�r�t� � if this rewriting is well�typed w�r�t� � �giving a direct reformulation
is too complex and not very intuitive�� The problem with this implementation of multi�
methods as curried methods is that some well�typed multi�methods do not have well�typed
translations� To see why� just assume the existence of a ���variant class A with type
constructors a�� a�� and a�� and data type constructor a� such that a� vA a� vA a� and
a� vA a� vA a�� as well as the existence of a ���variant class B with type constructor b�
and data type constructors b� and b� such that b� vB b� and b� vB b�� Then the following
multi�method �left� is well�typed� whereas its translation �right� is ill�typed

m� � meth �x � ha�� b�i� � a� � �

ha�� b�i � pair�� x�

ha�� b�i � pair�� x�

�

m�
� � meth �x� � a�� � b� � a� � �

a� � meth �x� � b�� � a� � �b�� x���

a� � meth �x� � b�� � a� � �b�� x��

�

since data type a� matches both a� and a�� which are not comparable� so that a�� a� is
not a partition of a�� Another interesting counter�example is the following polymorphic
multi�method �left� and its translation �right�

m� � meth f�g �x � h�� �i� � �� �

h � i � pair�� x�

h � inti � pair�� x�

h � booli � pair�� x

�

m�
� � meth f��g �x� � ��� � �� � �� � �

� meth f�� j�� � ��g �x� � ��� � �� � �

� x�� int � x�� bool� x�

�

�

It is easy to see that m� is well�typed and that m�
� is ill�typed� since the two inner

alternatives have patterns which are incompatible with the domain ��� � �� � ��� �� w�r�t
the context ��� � true�� This is because the inner method has no information whatsoever
about the type �� of the �rst argument� so that they cannot dispatch on the second
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argument which supposedly has the same type� In contrast� m� dispatches on both ar�
guments simultaneously� These examples thus show that built�in multi�methods are more
expressive than curried multi�methods� However� we believe that both schemes should be
equivalent in practice� since counter�examples are rather ad�hoc�

��� Abstract
 concrete
 and template classes

As we have already noted in the introduction� base types� that is� types built from type
constructors with arity �� are the equivalent of abstract classes in that no instance of such
types can be instanciated at run�time� On the other hand� base data types correspond to
concrete classes since they have implementations which can be instanciated at run�time�
For classes with arity greater than �� type constructors correspond to abstract template
classes and data type constructors correspond to concrete template classes�

Note that template classes� as in C�� for instance� are usually non�variant� that is�
a C�� class C hT i is a subclass of C� hT � i if T � T � and C is a subclass of C�� This is
because C�� is an imperative language with side�e
ects� so that T can be used as the
type of a mutable �eld� which makes in non�variant� Indeed� assume that a function f

expects an argument r which is a reference to a real �that is� a pointer to a real�� This
means that this function assumes that the contents of r is at most a real� but also that
any real can be stored into r� Now� if the type �reference to integer� was a subtype of
�reference to real�� then a reference r� to an integer could be safely passed as argument
to f � so that f could store a real into r�� which is unsound�

��� Side	e�ects and references

As in ML� state can be added to ML� by adding a ����variant type constructor ref�
together with two functions set and get to set the value and retrieve the value of references�
However� it is very well�known that when used in conjunction with predicative type systems
like ML or ML�� references cannot be polymorphic� Consequently� if we were to add
monomorphic references to ML�� we should add a new variance speci�er � denoting both
non�variance and monomorphism� and declare the ref constructor as a member of the
����variant class Ref � For example� the class IList of imperative lists� that is� lists with
mutable elements� could be declared as a ����variant class and the imperative cons would
be implemented as follows� in pretty much the same way as it would be implemented in
C��

data icons��� is �� ref���� � � ilist��� end

��� Nonvirtual
 virtual
 and purely virtual methods

ML� functions are similar to the nonvirtual member functions of C��� or to the frozen
routines of Ei
el� that is� operations with a default behavior that cannot be overridden�
ML� methods are similar to the virtual member functions of C��� or to the e
ective
routines of Ei
el� that is� operations with a default behavior that can be overridden�
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Finally� ML� methods with no default behavior �that is� methods with no �catch�all�
alternative with pattern ��� �� are similar to the purely virtual member functions of
C��� to the deferred routines of Ei
el� and to the abstract methods of Smalltalk�

We could imagine requiring the explicit declaration of purely virtual methods in in�
terfaces to impose the implementation of these methods over every type in their domain�
Other annotations could also be created to give better hints to the programmer about how
exported methods should be re�ned when new types are created�

��� The dot notation

The dot notation used in single�dispatch languages to invoke methods can also be adapted
to ML�� Indeed� a natural use of the module system of section ��� is to associate every
constructor class C to an interface I exporting the public interface of C and a module M
implementing the public interface of C� as well as the private functions and methods of
C� In general� C and I will have the same name� as for the example of �gure ����

To recover the kind of encapsulation enjoyed by class�based languages such as C���
one possibility is to de�ne the notation a�b as syntactic sugar for �I�b a�� where I is the
interface in which the class of a is de�ned� where the class of a is the unique class C such
that the minimal type of a is of the following form �� � �� tC ��C � �if the type of a is not
of this form� e�g�� if a has type ��� �� then it is a compile�time error��

This scheme will work very well if all the methods of the class are de�ned in the
same interface� If not� this scheme can be re�ned to match the convention of standard
single�dispatch languages� Note that our scheme is very �exible and avoids the need for a
separate mechanism to manage name spaces� as in C�� for instance�

��� Type classes

Our notion of type constructor class is quite unusual in object�oriented languages� How�
ever� this notion is important in ML�� since ML� supports multiple�inheritance and does
not have a notion of maximum type or root class� However� if hierarchies of type con�
structors were restricted to trees� the root of every tree could be identi�ed with the class
associated to it� and constructor classes could be eliminated� Nonetheless� note that con�
structor classes can be useful to allow multiple�inheritance in a much broader sense than
what was used in this report� Indeed� we have always de�ned classes like Unit� Num�
Bool with the same variance and di
erent �meanings�� but we could just as well have
de�ned one single ���variant class Base with type and data type constructors unit� real�
true� etc� Doing so would allow the de�nition of �overloaded� functions with types like
�� � � 	 Base� � � �� A straightforward generalization of ML� would thus be to de�ne
a partial order between constructor classes� and to add constructor class variables� How�
ever� a more interesting generalization might be to add type classes ���� �
� 		�� that is�
user�de�ned predicates P on monotypes� Since ML� is based on constraint implication�
adding type classes simply amounts to de�ning new conjuncts of the form P ��� and giving
a stronger� but still decidable� axiomatization of the implication while maintaining the
good properties of the system� namely� minimal typing and subject reduction�
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�� Predicates

pred String�

pred Print�

�� Axiomatization

rule String�Num��

rule Print�Bool��

rule String��� �� Print����

rule String����� String�List�����

meth string � �� � String���� �� string�

meth string�x � � � ����

meth string�x � nil� � ���

meth string�x � cons� �

concat �string �cons�� x�� �string �cons�� x���

meth print � �� � Print���� �� unit�

meth print�x � String� � write �string x��

meth print�x � true� � write �true��

meth print�x � false� � write �false��

Figure ���� Type classes

For instance� assume that Print is a predicate denoting the set of monotypes corre�
sponding to printable objects� and String is the set of monotypes denoting objects which
can be converted to strings �and thus be printed�� We may want to de�ne this predicate
inductively as in �gure ���� The �rst two rules assert that every number can be converted
to a string and that booleans can be printed� This user�de�ned rules are taken into account
by the type system through the addition of the following axioms to �gure ���

��� � j� � � String�tNum� ��� � j� � � Print�tBool�

The third rule� which states that every monotype convertible to a string can also be
printed� translates to the following axiom

��� �fString���g j� � � Print���

The last rule states that a list can be converted to a string if and only if its elements
are convertible to strings� which is re�ected by the following axioms

��� �fString���g j� � � String�tList����

��� �fString���g j� � � � � vList�v
��� String�v�� �vList and v� fresh�

used both the �construct� monotypes and to �destruct� them� in pretty much the same
way as rules MIntro and VElim do� Obviously� these rules forbid any other rule of the
form

rule String�List�Bool���

asserting that lists of booleans can be converted to strings without asserting that booleans
can be converted to strings� This example shows that proper restrictions must be put on
user�de�ned rules for the system to be sound and tractable� Finally� assuming that every
type class is non�variant�� the following rule holds for every type class P

��� �fP ��� � � � ��g j� � � P ����

�This is simpler� but not necessary� Type classes could have explicitely declared variance as for con

structor classes�
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With these de�nitions� one may for instance de�ne the following program �provided�
of course� that a meaning can be assigned to it and that subject reduction holds� which
we do not claim here��

��� Implementation inheritance

Finally� we want to mention how implementation inheritance could be added to ML� by
sugaring the syntax of the language� As noted by many authors� the best way to de�ne
implementation inheritance is to de�ne an inheritance hierarchy which is distinct from the
subtyping hierarchy� However� for the sake of simplicity� we assume a one�to�one mapping
between the subtype relation and the inheritance relation� which is what is done in a lot of
object�oriented languages� e�g� C��� The idea is then to take the convention that every
data type declaration of the form

data dC ��C � is � � � f � � � � � end

declares both a type constructor $dC and a data type constructor dC with the �elds listed
in its declaration plus the �elds of all its superconstructors �assuming� of course� that the
�elds are named instead of being numbered�� For every �eld f � this declaration would
automatically declare a virtual extractor f implemented as a method dispatching on all
the data type constructors d�C � d

��
C � etc�� below $dC � that is to say

meth f � ��C � $dC ��C �� ��

meth f �x � dC� � dC �f x�

meth f �x � d�C� � d�C �f x�

meth f �x � d��C� � d��C �f x�
���

Note that our model of implementation inheritance is not based on extensible records�
since the �eld f of two distinct data type constructors below dC are semantically unrelated�
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Chapter �

Related work and conclusion

��� Related work

The object�oriented model developed in this report is very similar to that of the pro�
gramming languages CLOS ���� and Cecil ��	�� in particular by its distinction between
concrete and abstract classes� the distinction between subtyping and implementation in�
heritance� the use of method speci�cations� and the use of modules to provide encapsu�
lation� However� the type system proposed by Chambers and Leavens is only �rst�order
and monomorphic� and the speci�cation of methods by means of sets of monomorphic
signatures is less expressive and more �ad�hoc� than ours� Nonetheless� many of the tech�
niques developed in ��	� could be adapted to our system� in particular techniques for true
separate compilation of multi�methods and compilation of dynamic dispatch�

Another system which has interesting links with ML� is of course F� ����� Both sys�
tems have a subsumption rule� a notion of type application� and above all� minimal typing�
However� F� deals with explicit polymorphism �that is� types are passed as arguments to
functions but do not otherwise interfere with the execution of the program�� whereas ML�
deals with implicit polymorphism �that is� types are not passed as arguments to functions��
and the dynamic type of objects is used to perform dynamic dispatch� Moreover� F� al�
lows polymorphic formal arguments� whereas ML�� as every predicative type system� does
not� These di
erences make the two systems rather hard to compare� However� one major
di
erence between the two systems is that F� is undecidable� whereas ML� is decidable�
and we have seen in section ��� that subtyping can probably be decided in polynomial
time in practice� Castagna and Pierce have tried in ���� to design a decidable variant of
F�� but they have acknowledged in ���� that this variant does not have minimal typing�
Nonetheless� the comparison of our subtyping rule to the three variants ��orig� ��top and
��Fun of the subtyping rule for universally quanti�ed types given in ���� is interesting� Let
U� and U� be two F �bounded types of the form ��X � Ti�Si such that Ti and Si are
monomorphic �i�e�� do not contain quanti�ers�� We naturally identify Ui with the poly�
morphic constrained type 	i � �X � X � Ti� Si� The original subtyping rule of ���� states
that U� is a subtype of U� w�r�t� some environment  if and only if

 � T� � T�  � X � T� � S� � S�
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that it to say� identifying  with a context � of the form �� � ���

��� � j� T� � T� ���X� � �X � T� j� S� � S�

or� by the fact that X does not occur free in T� and T� and corollary 	

���X� � �X � T� j� T� � T� � S� � S�

and by corollary �

���X� � �X � T� j� X � T� � T� � T� � S� � S�

so that by transitivity

���X� � �X � T� j� X � T� � S� � S�

which� by rule VIntro� implies that 	� is a subtype of 	� w�r�t� �� The original subtyping
rule of F� is thus sound w�r�t� ours� and so are the two others� Moreover� our type
application operator app� is monotonic� whereas this is not so at the term level for F��
where type application is just syntactic substitution�

Another di
erence between F� and ML� is that F� lacks both least upper bounds and
greatest lower bounds� whereas any two types with an upper bound have a least upper
bound in ML�� Finally� another important di
erence between F� and ML� is that F�
is not based on a user�de�ned type hierarchy� This makes the system simpler and more
self�contained� but we think that it looses the fact that class hierarchies are at the heart of
object�orientation� since they somehow specify the objects manipulated by the program�
Moreover� the openness of these hierarchies is at the heart of ML� thanks to theorem
�� which shows that our axiomatization of the implication� in a sense� captures all true
properties w�r�t� an open world�

Castagna ���� has de�ned an extension of F� allowing function overloading in a higher�
order setting with explicit polymorphism and primitive subtyping� His model is quite pow�
erful but technically rather tricky� as all impredicative models� Moreover� type�checking is
undecidable and methods lack speci�cations� which can be a problem for modularity and
scalability� Nonetheless� an extension of ML� where types are collections of compatible
polytypes may be worth considering to have a better typing of methods� and� maybe� to
allow a precise type inference for methods� It is not clear that such an extension would
remain decidable� though�

Mitchell ��	� has studied containment�based type inference which has interesting con�
nections with our system� In particular� Mitchell gives containment rules and axioms for
second�order lambda�calculus which are valid in all simple inference models� The following
rules� using the notations of ��	��

�sub� � t� � � � r��	
t� � where r are not free in � t� �

�arrow � �� � �� 	 � 	� � � � 	 � �� � 	�

�ref � � � �

�trans� � � �� � � 	 � � � �

�congruence� � � 	 � �t� � � �t� 	

�	



are valid in ML� when restricted to types for which they make sense� Rule �sub� is an
instance of our subtyping rule� In particular� the restriction that r is not free in �t� �
corresponds to the use of a ��substitution in rule VIntro� where � are the universally
quanti�ed variables of the context�

Mitchell� Meldal� and Madhav ���� have proposed an extension of the Standard ML
module system identifying types with speci�cations �which are a generalization of signa�
tures with constraints� and objects with structures� Their system introduces two separate
mechanisms for subtyping and inheriting speci�cations� and allows polymorphic speci��
cations �i�e�� templates�� As for ML�� the main idea is to separate speci�cation from
implementation� and both systems allow programming using both objects and abstract
data types� As a whole� the system is more expressive than ours� since structures with
type components are �rst�class �whereas the module system we propose for ML� only
allows types to be de�ned at toplevel� as for Standard ML�� Moreover� the encapsulation
mechanism provided by structures is superior to that o
ered by ML�� and ML� only pro�
vides a weak form of implementation inheritance� The impredicative treatment of explicit
type parameters of speci�cations and methods is based on bounded polymorphism� This
has the advantage of allowing parametric methods like sort with the following speci�cation

sort �type � � ordered���� � list���� list���

which is possible in ML� in a restricted form �the most general form would require the
introduction of type classes as in section ����� On the other hand� explicit type parameters
can be a disturbance� and the ML� approach making use of implicit parameters with an
explicitly declared variance looks more pleasant� Moreover� turning structures into �rst�
class objects ��� complicates the de�nition of type equality somewhat and leads to an
operational de�nition which is not very intuitive� and ��� duplicates the functionality of
records� which can lead to further confusion� Finally� the approach advocated in ����
de�nes a single�dispatch language� so that the kind of precise typing of binary operators
allowed in ML� is not possible� and methods are not ordinary functions which can be
passed as parameter to other functions�

ML� also has strong links with all systems derived from the Hindley�Milner type
system� in particular� systems of overloaded functions built around the notion of type
class� �rst proposed by Kaes ����� and then by Wadler and Blott ��
� 		�� or constructor
class� proposed by Jones ����� In essence� these systems ���� �
� 		� allow the instantiation
of overloaded speci�cations which consist in type templates with a single type variable�
such as the instantiation of the template h�� �i � � for � � int and � � real� In the
absence of any subtyping relation between int and real� such simple speci�cations cannot
express complex types such as the type of the sub method and� in particular� do not allow
the typing of mixed operations like sub����� ��� Multi�parameter type classes� i�e�� type
templates with more than one variable� have thus been proposed to lift this constraint�
The idea is to use a template like h�� �i � � and instantiate it with all possible interesting
combinations of �� � and �� for example �int� int� int�� �int� real� real�� etc�� which� in fact�
is fairly similar to the signatures of ��	�� However� the problem with multi�parameter
type classes is that type�checking is undecidable in general� that it is possible to overload
functions with structurally di
erent signatures� e�g�� �bool� int� bool� unit�� and that the
overloading resolution algorithm can be quite tricky and unintuitive� a mixture which has
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already proven very dangerous in C��� In contrast� a type like

��� �� � � �int � � � � � � � � � ��� �� � � �

�which is equivalent to the type of the sub method� can be seen as a multi�parameter
constrained template with restricted instantiations�

Duggan ��
� ��� 	��� and then Odersky� Wadler� and Wehr ��
� have proposed the use
of �kinded types�� which are polymorphic constrained types with constraints on available
instances of the operations used by function bodies� This approach is also related to
the �methods as assertions� view developed by Abadi and Lamping �	�� For instance� the
insert function on sets requires that the equality operator be instantiated at the type of the
inserted element� This approach can be made to work under the �open world� assumption
��
� �
�� but types are rather hard to read� since they mention program functions� and
lead to method speci�cations which are dependent on the program�s text� which may be a
problem for modularity and scalability� On the other hand� type inference is made easier
by such an approach�

Another approach which is related to ML� is the addition of dynamics to polymorphic
languages� The theory of dynamics of Abadi� Cardelli� Pierce� Plotkin� and R%emy ��� ��
introduces a new type� Dynamic� which is the type of pairs of objects of any type together
with a type tag� Dynamics are built using �dynamic e � 	� expressions� where the type tag
is explicit� The requirement that type tags be explicit is necessary to have minimal typing�
Intuitively� Dynamic can be thought of as the existential type ��� �� or as the REFANY type
of Modula �� Dynamics allow the use of heterogeneous lists� the typing of I�O functions�
etc�� and dynamics are thus strictly more expressive than ML�� On the other hand� ML�
can have overloaded coercion functions like string� with type ��� � � string� dispatching
on the outermost type constructor of the run�time type of arbitrary objects� which covers
an important use of dynamics� The advantage of the ML� approach is its simplicity and
its uniformity� since no ad�hoc mechanism is needed to handle dynamics� One could argue�
though� that the drawback of this approach is that every object has to be tagged by its
minimal type at run�time� but� as noted in chapter �� this is only partly true since only
the outermost type constructor has to be maintained at run�time� and by a proper static
analysis of programs� or explicit user declarations� we are convinced that performances
similar to that of classical ML implementations can be achieved� Dispatching on dynamics
is performed via typecase expressions which match the run�time tag of dynamics against
patterns in sequence� These expressions have a mandatory �catch�all� clause which is
applied when pattern�matching fails� This approach is thus less �exible than the ML�
approach which requires completeness and non�ambiguity of methods� and has a notion
of �best�match�� which� we believe� is important for object�oriented programming� On
the other hand� patterns can be any monotype� including function types� and they can
have repeated and second�order variables �although the use of tuple�variables in the latter
case is rather complex�� Consequently� patterns do not have to be linear and allow the
inspection of functions� The price to pay for such features is that dynamic dispatch
requires an exact match of patterns� In the presence of primitive subtyping� this exact
match can be followed by a simple inequality constraint on the result of the match� which
o
ers some of the �exibility o
ered in ML�� In contrast� ML� does not �match� patterns�
Rather� a consistency check 	 	 � between the run�time type 	 of objects and patterns �
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is performed� and the possible �matches�� even when ambiguous� are left implicit through
the addition of a constraint to the run�time constraint context �� Also� we believe that
the explicit tagging of dynamics is potentially dangerous� since tags in�uence the behavior
of the program� and could be the source of malicious bugs in languages with primitive
subtyping� since programmers may tag values by strict supertypes of their minimal type�
Finally� the typing rule for typecase expressions of ��� has an in�nite number of premisses�
whereas our type�checking for methods is considerably simpler�

Leroy and Mauny ���� propose a system for adding dynamics to ML that uni�es
typecase statements with pattern�matching� Their �rst proposal� implemented in the
CAML compiler �	��� uses only universally quanti�ed patterns� Their second proposal in�
troduces existentially quanti�ed patterns� as in ML�� and mixed patterns with universally
and existentially quanti�ed variables� which are very powerful� Patterns can be non�linear�
and tagging of dynamics can sometimes be left implicit� However� patterns and polymor�
phic tags have to be closed� so that curried functions cannot share pattern variables� two
restrictions that ML� does not have� thanks to the notion of constraint context �cf� sec�
tion ��	�� Again� this can probably be attributed to the fact that ML� tags objects and
closes polymorphic types automatically� and also to the fact that ML� does not �match�
run�time types to patterns �cf� supra�� As for Abadi et al�� their system does not have
principal types without some explicit type annotations� which� as shown in section ���� is
also probably the case for ML� methods� although more work is required on that subject�

The �extensional polymorphism� approach advocated by Dubois� Rouaix� and Weis
���� is also related to ML�� For instance� in their system� the method of section ��� can
be given the same type scheme ��� � � � as in ML�� The patterns on which dynamic
dispatch is performed are more general than ours� and a type inference algorithm is pro�
posed� This algorithm is based on a global abstract interpretation of the program to check
consistency� since the implementations of methods are required to be non�ambiguous� but
are not required to be complete �cf� section ����� However� we believe that a generalization
of this approach to primitive subtyping is unlikely �cf� theorems 	� and ���� Moreover�
our approach does not rely on a global abstract interpretation� and is thus more modular�

Mitchell ���� ���� and Fuh and Mishra ���� ��� have studied the problem of type in�
ference in the presence of primitive subtyping� Their models are not quite comparable to
ours since primitive subtyping is not used to de�ne methods� and our primary goal is not
to perform type inference� Nonetheless� a comparison is interesting in that the instance
relation between typing judgements is an instance of our subtyping rule� Using our nota�
tions �the cited papers use C for constraints �� A for type assignments  � 	 for monotypes
�� and S for substitutions ��� a judgement of the form ��� � � e � �� is an instance of a
judgement of the form �� � e � � if there exists some substitution � such that  � �  ����
�� � ����� ���� �� j� ����� and ���� is ���closed �where � and �� are the sets of free variables
of � and ��� which we assume to be disjoint�� This way of proceeding is di
erent from ours
in that constraints are not part of polytypes� which seems perfectly natural in the context
of type inference� but much less so in the context of an explicitely typed language� or in the
simpler context of a modular language where the type of every function or method f has
to be matched against the speci�cation of f in the interface exporting f � Moreover� the
fact that �� and ���� are ���closed corresponds to the fact that the axiomatization of the
implication used above is essentially the re�exive and transitive closure of constraints� In

��



any case� our de�nition is more general in that it allows �� to be a supertype of ���� instead
of requiring equality� As a matter of fact� the instance relation de�ned above implies that

���� �� j� ����� ���� � ��

so that� � being a ���substitution�

���� �� j� ����� ���� � �����

and by rule VIntro
���� �� j� � � � � ��

which proves that �� � �� � is a subtype of ��� � ��� �� w�r�t� the trivial constraint context
True� Hence� principal typing up to equivalence w�r�t� the instance relation is somewhat
related to our notion of minimal typing� However� our de�nition is more general and is
extended to deal with existentially quanti�ed constraint contexts occurring in the typing
of explicitely typed functions and methods� Finally� the notion of �matching� and the
match algorithm of ���� is also present in our axiomatization of constraint implication�
as shown by rule �arrow�inverse�� which is an instance of our monotype elimination rule
MElim�

Based on the same ideas� Mitchell and Jategaonkar ���� have developed a model which
has interesting connections with ours� The idea is to extend ML pattern matching with
�exible records and primitive subtyping� in order to allow some form of object�oriented
programming� Their system can support built�in containment relations between base types
and built�in operations with constrained types like the type ��� � � � � real� �� �� � of
the addition operator� They do not clearly have a semantic notion of containment between
polymorphic constrained types� although they mention that the instance algorithm to
decide the instance relation is NP�hard� At the end of the paper� they brie�y and infor�
mally show how abstract types and subtypes can be de�ned� and show how �exible records
allow the de�nition of a move method like the one of �gure ���� with type

�t � point� t� t

so that color points are mapped to color points� However� methods cannot be overridden
�that is� they can only have one implementation�� the underlying model is inherently single�
dispatch� with all the problems associated to the typing of multi�methods� and there is no
provision for parameterized classes� Also� allowing multiple implementations of methods�
as the authors mention in the conclusion� would probably raise di�cult problems for
type inference� Nonetheless� we believe that adding �exible records to ML� may be an
interesting direction in order to treat implementation inheritance in a more primitive way�
The notion of �matching� developed in ���� ��� shows that rules VElim and MElim can
probably be generalized to �exible records�

Kaes ��
� has tackled the decidability of type inference in the context of overloading�
subtyping� and recursive types� using constrained types which are more expressive than
ours� and with a precise typing of arithmetic operators� Moreover� his notion of �structural
similarity� is fairly close to our notion of constructor class� However� his paper does not
address the problem of de�ning methods and performing dynamic dispatch� and does not
provide an operational semantics�

��



Eifrig� Smith� and Trifonov ���� have developed a polymorphic class�based object�
oriented system whose goals are fairly similar to ours� This system avoids the problems
associated with matching ���� allows multiple�inheritance� has a decidable mimimal typing
as well as a sound and complete inference algorithm based on recursive types� However�
there are no parameterized classes �i�e�� templates�� and the treatment of binary methods
is still not very satisfactory� which is inherent to all single�dispatch languages� and the
authors acknowledge in the conclusion that the design of a module system should be
di�cult� Moreover� it is worth mentioning that the subtyping rule between recursively
constrained types �de�nition ���� is sound w�r�t� ours� but less powerful in the sense that
this rule relates monomorphic types w�r�t� some existentially quanti�ed constraint� whereas
our subtyping rule relates polymorphic types� In particular� we have seen that our rule is
what is required to check that the speci�cation of a method in an interface is matched by
the implementation of the method� which gives modularity for free�

Aiken and Wimmers ��� have addressed the problem of performing type inference via
set constraints� Their constraints have union� intersection and recursive types� and data
constructors as nil and cons are part of their constraints� but they do not have primitive
subtyping� They have a semantic ideal model of polymorphic constrained types which
implicitly relates polytypes� However� this subtyping relation is not explicit� nor is it
axiomatized� and the authors do not consider methods� An interesting question is whether
set constraints could be used in ML�� We do not think so for two reasons� One is
that if the conditional �which is not part of the expression language of ���� had type
�X� bool � X � X � X � then the expression �cond true � ��� would be well�typed since
the set constraint fint � X� unit � Xg has a solution� which is rather annoying� The
second reason is that set constraints are interpreted w�r�t� sets of terms of a free algebra�
whereas ML� constraints are interpreted w�r�t� terms built from an arbitrary partial order
which is a given of the problem� This seems to make it very di�cult� with set constraints�
to reason about admissible extensions of the type hierarchy and axiomatize constraint
implication �and� hence� subtyping� with results similar to theorem ��� Further work is
required� however� to clarify the relationship between the two approaches�

��� Conclusion

We have presented a new object�oriented extension of a typed�version of ML� called ML��
based on a reinterpretation of datatype declarations as abstract and concrete class declara�
tions� and of pattern�matching as dynamic dispatch� We believe that this extension� with
a minimum number of concepts� is natural and powerful� and would be easy to learn for
ML programmers� but the model we have developed is also very close to models emerging
in the OO community� The static type system we propose for this language is a gener�
alization of the classical Hindley�Milner predicative type system at the crossroad of two
trends� namely type�constructor classes and primitive subtyping� Our typing of methods
is stronger and more semantic than that o
ered by type classes or constructor classes�
and provides for a precise typing of arithmetic operators� Moreover� we do not rely on
the kind of complex overloading resolution strategies that must be used in the context
of multi�parameter type classes and have proven harmful in languages like C��� Our
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methods are just ordinary functions which can be used as such� and in particular� can be
passed as arguments to other functions� a property that most single�dispatch languages
lack�

We believe that the universally quanti	ed implication of existentially quanti	ed con�
straints� which is at the heart of the system� is a unifying framework for many object�
oriented extensions of ML� since the entire construction� and in particular the language�
its typing rules� and its operational semantics� seems very robust with respect to the addi�
tion of new kinds of constraints and a modi�cation of the axiomatization of the implication�
In fact� only a few lemmas about this axiomatization� in particular theorems 	� and 	��
are actually used in the proofs of crucial theorems� Also� the notion of functional type
application� which turns functional types into monotonic type transformers� allows a more
semantic and systematic presentation of the system� and in particular� of the application
rule�

Finally� ML� may be seen as a reference� explicitely typed language for research on
type inference with subtypes� as well as a link between predicative and impredicative type
systems� since the subtyping rule of F� matches ours in an interesting way� It may also be
interesting to compare F� to the pure functional subset of ML� which does not contain
methods or constructor classes� Since monotypes can only be type variables in this system�
the axiomatization of the implication is that given �gure ���� which is simple enough for
theoretical investigations�

On the minus side� the language we propose looses some of the simplicity that has
made ML so popular� Universally quanti�ed constrained types can be hard to read and
understand� and type�checking errors can become hard to explain� Moreover� our language
is explicitly typed� and it is not completely clear which type annotations could be auto�
matically inferred by a compiler� We believe that the type of functions could be inferred�
As for methods� we believe that type inference may be possible over some class of ML�like
types� but more work is required on this topic� Finally� even though methods can be
given very precise constrained types� programmers may choose to use classical ML types
exclusively� unless precise types are not required� so that programmers can only pay for
what they actually use�

In order to allow the de�nition of new classes and new constructors� our system is
based on an implicit �open�world� assumption� However� it may be desirable to treat
some classes� for instance built�in classes� as �closed�� in order to allow more sophisticated
methods to type�check� This can be done easily by a stronger axiomatization of the
implication�

Many interesting extensions could be studied� the �rst one being type classes� even if
they are not as badly needed as they are in ML� since a generic string method with type
��� � � string can be implemented in ML�� However� this type does not provide the
compile�time safety o
ered by a type like �� � String���� �� string�

Adding the ability to de�ne a partial order between constructor classes with the same
arity and the same variance looks like another interesting extension� as are references
�most probably with the classical restriction on polymorphic references�� dynamic dispatch
inside covariant type constructors� and implementation inheritance� Adding recursive
types should be more problematic w�r�t� decidability� since rule VElim cannot be stated
with recursive types� Existential types may also be worth considering to handle I�O
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functions� We believe all the machinery is in place to integrate them easily� Finally� we
would like to give an ideal�based or a PER�based semantic model of ML��

In conclusion� we want to emphasize the fact that all the examples of this report have
been type�checked using a prototype implementation of ML� written in Caml Special Light
���� and implementing the greatest �xpoint algorithm of section ���� This implementation
is just a �proof of concept� implementation that will be used as a testbed for a more
e�cient implementation in the type�checker of the new hardware description language �z�
which originally motivated this work�
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Appendix A

Proofs

Proof of lemma �

The only rules in which variable sets appear are VIntro and VElim� Moreover� every
��� ����substitution is trivially a ��substitution� and any constructor variable v�C and C�
variable set ��C satisfying v�C ���� ��C ���� ��� ��� �� trivially satis�es v�C ���� ��C ���� ��� ���
Therefore� any derivation for ��� ��� � j� �� is a also derivation for ��� � j� ���

Proof of lemma �

Let us assume that the judgement �b�� � j� �� is derivable� and let �� be a variable set
such that �� ���� ��� Without loss of generality� we can assume that b� and �� are disjoint�
Let � be the set of free variables of � which do not belong to b�� � be a b��substitution
mapping every v� in �� to a fresh �that is� a variable which does not belong to �b�� �� ����
and unique variable of the same kind �and every other variable to itself�� and �� be the
�b�� ��� substitution mapping every ��v�� to v� �and every other variable to itself�� It is
easy to see that �� � � is the identity� Moreover� by rule VIntro� we have

�b�� ��� ���� � �� j� ����

that is�
�b�� ��� � j� ����

Now� by rule VIntro and the fact that � is a b��substitution� we also have that
�b�� ���� j� �

so that the judgement �b�� ���� j� �� is derivable� But since �� ���� b� and no variable
in �� occurs free in ���� or in ��� we can assume that there exists a derivation D for
this judgement which does not make use of any variable in ��� and in particular� we can
assume that every b��substitution used in D is a �b�� ����substitution so that D can be
readily translated into a derivation for the judgement �b�� ��� ���� j� ��� We thus conclude
by transitivity that the judgement �b�� ��� � j� �� is derivable�

Proof of lemma �

��



We �rst start to note that a derivation Dj � j 	 ��� ��� for the implication ��� �j j� ��j is

a sequence of constraints ��j � � � � � �
nj
j such that �j � ��j � �

�
j � �

nj
j � and for every i 	 ��� nj��

the implication
��� �i	�j j� �ij

is an instanciation of one of the rules and axioms of �gure ����
We �rst prove the theorem assuming that �� ���� �� ���� Since ��� ���� ��� ���� we can

assume without loss of generality that the only variables shared between D� and D� are
in �� To prove the implication

��� �� � �� j� ��� � �
�
�

we �rst prove that ��i� � ���i����n�� is a derivation for ��� �� � �� j� ��� � ��� This is
trivially true initially� since ��� � �� and thus ��� � �� � �� � ��� So let us assume that
�i	�� � ��� i 	 ��� n��� is implied by �� � �� for all �� and let us consider the rule R of
which the implication ��� �i	�� j� �i� in D� is an instance� If R is anything but VElim or
VIntro� it is easy to check that ��� �i	�� � �� j� �i� � �� is also an instance of R� which
proves that �i� � �� is implied by �� � �� for all �� If R is rule VElim� then obviously
the newly introduced variables v�C and ��C satisfy v�C ���� ��C ���� ��� �i	�� � and by hypothesis
on the variables of D� and D�� clearly satisfy v

�
C ���� ��C ���� ��� �i	�� � ���� which shows that

��� �i	�� ��� j� �i���� is also an instance of rule VElim� Now� since any ��substitution �
used in an instance of rule VIntro in derivation D� leaves �� invariant� we obviously have

��� �i	�� � �� ��i	�� � �i�����

j� �i���� � �� �Hypothesis�

j� ��i� � ������ �VIntro�

j� �i� � ��

which proves that �i� � �� is implied by �� � �� for all �� We have therefore proven that

��� �� � �� j� ��� � ��

and we conclude the proof by showing by the same technique that

��� ��� � �� j� ��� � �
�
�

We have thus proven the theorem assuming that �� ���� �� ���� If this condition does
not hold� let S be the set of variables which belong to both �� and �� but do not belong
to �� � be a ��substitution mapping every variable in S to a fresh and unique variable of
the same kind �and every other variable to itself�� and �� be the ��substitution mapping
every ��s� to s for every s 	 S �and every other variable to itself�� Then �� is the identity
over the free variables of �� and �� � � is the identity over the entire set of variables� By
rule VIntro� we thus have

��� ��� � ��������
�� j� �� � �����

that is
��� ����

�� � ����
� � �� j� �� � �����

��



or else�
��� �� � �� j� �� � �����

But since� by rule VIntro� ��� ����� j� ��� our hypothesis ��� �� j� ��� translates into
��� ����� j� ��� and since �� ���� ����� ���� we conclude by our initial proof of the theorem
that

��� �� � ����� j� ��� � �
�
�

and �nally
��� �� � �� j� ��� � �

�
�

Proof of corollary �

Since we treat constraints as sets of conjuncts� we have

��� � j� � � �

and this corollary is thus a trivial consequence of lemma ��

Proof of corollary �

Since ��� � j� �� and ��� ���� �� ���� this is also a trivial consequence of lemma ��

Proof of lemma 


For the axioms of �gure ���� one veri�es that the right�hand sides are well�kinded if
the left�hand sides are well�kinded� In particular� concerning VIntro� if � is a uni�er for
d����e� then � �d�e is a uni�er for d�e� where d�e�v� is de�ned as d��v�e for every variable
v� Regarding VElim� if d�fv � �C ��C �ge has uni�er �� then v��� must be of the form
C�d�e����� Hence� d��v � v�C ��

�
C �e is uni�able �using the fact that v

�
C and ��C were chosen

as fresh variables�� Finally� a straightforward inductive proof over the assumed derivation
of ��� �� j� �� completes the proof of the lemma�

Proof of corollary �

Immediate consequence of lemma �� since true �which is unit v unit� is obviously
well�kinded�

Proof of lemma ��

Let x  y denote either of x v y� y v x� x � y� or y � x� By induction on i� we prove
for every constraint ��� all expressions x and y� and every i 
 � that

��� �� � x  y � v � � j� �� � *x	i
  *y	i
 � v � �

and
��� �� � *x	i
  *y	i
 � v � � j� �� � x  y � v � �

hold� where *x	i
 denotes the expression that results from x by substituting � for all occur�
rences of v in x whose depth is at most i�

��



For occurrences of v in x of depth �� the assertion follows using either MTrans or
CTrans�

Otherwise� x or y �w�l�o�g� x� must be of the form �C ���� By the assumption that �
is well�kinded� y must either be of the form ��C ��

��� or it must be a type variable v�� If y
is ��C ��

��� we have

��� � � x  y � v � � j� � � �C v ��C �� �C �� � v � � �MElim�

j� � � f�C	i	�

v f��C	i	�


� e�	i	�
 �C
f��	i	�
 � v � � �ind� hyp��

j� � � *x	i
 � *y	i
 � v � � �MIntro�

and the converse direction follows similarly� Note that the induction hypothesis is applied
several times in the second step of the proof�

If y is v�� the proof is similar� but applies VElim before MElim�

Proof of lemma ��

We consider each of the rules �N��� �N��� and �N�� in turn� For �N��� the assertion
follows immediately� using rules MElim and MIntro� For �N��� we have

��� S � �fv � �C ���g j� S � � � v � vC ��C � �VElim�

j� S � v � vC ��C � � ��vC ��C �
v� �lemma ���

and the converse direction is immediate by lemma �� and rule Approx � The proof for �N��
is similar� once we observe that

��� S�vC��C �
v�� ��vC ��C �
v� j� S�vC ��C �
v�� ��vC ��C �
v�� v � vC ��C �

which follows using rules MRef and VIntro� since v 
	 ��
Finally� the well�kindedness of �� follows from the assumption that � is well�kinded�

using lemma ��

Proof of lemma ��

Assume that
�S�� ����� � � � �� �Si� �i��� � � � �� �Sn� �n�

where �S�� ��� � �True� �� and �Sn� �n� � �S�� ���� A straightforward inductive proof
shows that for every i 
 �� the constraint Si is of the form v�i � ��i � � � � � vki � �ki for
some k 
 � such that all vji are pairwise di
erent and no vji occurs in some �li or in �i�

and vji 	 � for all j 	 ��� k�� In particular� Sn � �n satis�es the variable condition required
of a constraint in prenormal form�

Since S� � �� is well�kinded� lemma �� implies that Si � �i is well�kinded for all i 
 ��
Therefore� if �n contained some atomic constraint which were not of the form �C v ��C or
v � v�� it would have to either �C ��� � ��C ��

�� or v � �C ���� both of which is impossible�
because Sn � �n was assumed to be irreducible�

��



Proof of lemma ��

For an expression or constraint x� we de�ne its size jxj inductively as follows�

jvj � j�C j � �� j�C ���� � � � � �n�j � � � j��j� � � �� j�nj

j�C v ��C� j � �� j� � ��j � j�j� j��j� j� � ��j � j�j� j��j

For expressions and equations over the algebra dT e� we de�ne the size similarly� It follows
that j�j � jd�ej� for any constraint �� Now assume to the contrary that there exists an
in�nite rewrite sequence� By lemma ��� we know that Si � �i is well�kinded for all i 
 ��
hence there exist most general uni�ers �i for dSi � �ie� Clearly� we have

j�ij � jd�iej � jd�ie��i�j

We show below that
jd�ie��i�j � jd�i��e��i���j

holds for all i 
 �� In particular� it follows that j�ij � jd��e����j holds for all i 
 �� On the
other hand� we have j�ij � j�i��j for all i 
 �� and in particular j�ij � j�i��j if either rule
�N�� or �N�� is applied to �Si� �i�� Therefore� rules �N�� and �N�� can be applied only
�nitely often� But rule �N�� strictly reduces the complexity of expressions that occur in
� and can therefore not be applied inde�nitely� which implies the assertion�

It remains to prove that jd�ie��i�j � jd�i��e��i���j holds for all i 
 �� If rule �N��
has been applied at step i� then it is easy to see that �i and �i�� are identical� and that
j�ij � j�i��j� For the rules �N�� and �N��� we remark that �i and �i�� agree on all variables
except v� vC and �C � and that v��i� � vC ��i�����C ��i����� which implies the assertion�

Proof of theorem ��

From lemmas ��� ��� and ��� it follows that rewriting with �� yields a constraint in
prenormal form for any well�kinded constraint �� By corollary 
� this holds a fortiori for
any well�formed constraint ��

Proof of lemma ��

Straightforward by simultaneous induction on �the length of� the derivations�

Proof of lemma ��

The proof is by induction on the length of the assumed derivation of ��� �� j� ���
Assume� therefore� that ��� �� j� �� has a shorter derivation �possibly of length �� if
�� ! ���� and that ��� �� j� �� is an instance of one of the axioms of �gure ���� By
the induction hypothesis �or trivially� if �� ! ���� there exists some substitution �� that
agrees with �� for the variables in � such that ������ is ground and satis�ed in T

��

Approx Then ��f��g� and the assertion follows immediately� choosing �� � ���

CRef Then �� ! �� � �C v �C � If �C ���� is ground� then we may choose �� � ���
and the assertion follows by the re�exivity of vC in T �� Otherwise� �C ! vC for
some constructor variable vC of type constructor class C that does not occur in ��

�




�otherwise ������ would not be ground� or � �otherwise� �C ���� and therefore �C ����
would be ground�� Let tC be some type constructor of class C �which is non�empty
by de�nition�� and let �� � �� �fvC �� tCg� Then �� agrees with �� for the variables
in �� ������ ! ������� and ������ is a ground constraint satis�ed in T

��

CTrans Immediate from the induction hypothesis and the transitivity of vC � choosing
�� � ���

CTriv Then �� ! �� � tC v t�C for some ground type constructors such that tC vC t�C
holds in T � By the de�nition of admissible extension� tC vC t�C holds in T �� too�
which implies the assertion� choosing �� � ���

CMin Then �� ! ���dC v �C � where ��f�C v dCg� Since ������ is ground and satis�ed
in T �� we have �C ���� vC dC in T �� The requirement that data type constructors
be minimal implies dC vC �C ���� and therefore the assertion� choosing �� � ���

VIntro Then �� ! ����� for some substitution � 	 S���� Let �� � �� � �� Then for all
v 	 � we have v���� � v���� � v���� and ������ ! ������� which proves the assertion�

VElim Then ��fv � �C ��C �g� w�l�o�g� we may assume ��fv � �C ��C �g� By the assump�
tion� �v � �C ��C ������ is ground and holds in T

�� Since �C ��C ����� is of the form
t��C ��

��
C � for some ground type constructor t

��
C and ground monotypes ���C � the de�ni�

tion of the standard order on T � implies that v���� is of the form t�C ��
�
C �� Further�

�� ! �� � v � v�C ��
�
C �� and the side condition of rule VElim implies that neither v�C

nor any of the ��C occur in � or ��� Let therefore �� � �� � fv
�
C �� t�C � �

�
C �� ��Cg�

then �� and �� �and therefore �� and ��� agree on all variables in �� ������ ! �������
and ������ is a ground constraint that is satis�ed in T

��

MRef Then �� ! �� � � � �� Let �� denote the set of variables that occur in ������ and
let the substitution �� di
er from �� in that it maps constructor variables vC in ��
to some type constructor tC of appropriate sort� and type variables v in �� to type
unit� Then ������ ! ������� and ������ is a ground constraint that is satis�ed in T

��

MTrans Immediate from the induction hypothesis and the transitivity of �� choosing
�� � ���

MIntro� MElim From the fact that ������ is satis�ed in T � and the de�nition of the
standard order in T �� choosing �� � ���

Proof of lemma �	

First� we have to show that T � is indeed a type structure� By de�nition� every set C�

and �if present� the set T� is non�empty� hence also C�

�
�C and T�


�
�T are non�empty

sets� Rule CTrans and the de�nition of
�
�C ensure that �C v�

C ��C whenever ���C v
�
C ��C

and �C
�
�C ���C � Therefore� the relations v

�
C are well�de�ned� A similar argument shows

that �� is well�de�ned� All relations v�
C and �� are re�exive and transitive by rules

��



CRef � CTrans� MRef � and MTrans� and antisymmetric by the de�nition of their domains
as equivalence classes�

We now show that data type constructors are minimal� This is trivial for the class T
whose set of data type constructors is empty� Assume that ��C v

�
C �C and �C

�
�C dC for

some dC 	 DC � Hence ��� �� j� ��C v dC � and rule CMin implies ��� �� j� dC v ��C �
Again using the de�nitions of v�

C and
�
�C � it follows that �C v

�
C ��C � which proves that

�C is minimal� Hence� T � is indeed a type structure�
To see that T � is an admissible extension of T � let tC and t�C be two type constructors

of class C contained in T � If tC vC t�C � rule CIntro implies tC v
�
C t�C � Conversely� let us

show that tC v�
C t�C implies tC vC t�C � We know that ��� �� j� tC v t�C by de�nition of

v�
C � and thus �
� �� j� tC v t�C by lemma �� On the other hand� we have �
� true j� �� by

the assumption that �� is well�formed� and therefore Trans implies �
� true j� tC v t�C �
By lemma ��� it follows that tC vC t�C holds in T � Hence� T � contains �an isomorphic
copy of� due to the quotient modulo

�
�C� a superset of every type constructor class of T

such that the orderings of type constructors of T are preserved�

Proof of lemma �


The �if� part follows because T � is an admissible extension of T �up to isomorphism��
and therefore lemma �� ensures that T � satis�es �� if ��� �� j� � holds� �Observe that we
choose �� as the obvious substitution that maps �C to ��C � and v to �v�� and that there
are no variables to substitute for in ����� due to the variable assumption�� For the proof
of the �only if� part we proceed by induction on the structure of ��

� ! �C v ��C In this case� the assertion follows immediately by the de�nition of v�
C �

�� ! � � �� We proceed by induction on the de�nition of ��� Assume that � �� ��� Since
� and �� are ground monotypes of type structure T �� it follows that � ! �C ��C �
and �� ! ��C ��

�
C � �where C might be T if �C and ��C are empty�� Then rule VElim

applied w�r�t� T � ensures �C v
�
C ��C and �C �

�
C ��C � By the de�nition of v�

C � it
follows that ��� �� j� �C v ��C � and the induction hypothesis and corollary 	 yield
��� �� j� �C �C ��C � Another application of corollary 	 gives us ��� �� j� �C v
��C � �C �C ��C � and �nally� ��� �� j� � � �� follows by rule MIntro�

�� ! ��� � �
�
� By induction hypothesis� we obtain ��� �� j� ��� and ��� �� j� ���� from

which corollary 	 yields the assertion�

Proof of lemma ��

By lemma ��� T � is an admissible extension of T � We interpret �� as a T
��ground

constraint �somewhat loosely identifying �C and ��C � and v and �v�� which we may do
by lemma ���� By the assumption� there exists some T ��ground substitution �� of the
variables of �� that are not in � such that ������ is a ground constraint �over T �� satis�ed
in T �� Therefore� by lemma ��� it follows that ��� �� j� ������� and by the variable
assumptions� we may apply VIntro to derive ��� �� j� ���

��



Proof of lemma ��

The �if� part is trivial� For the �only if� part� let �� be the set of variables in � which
are distinct from v� By rules MRef and VIntro� we can easily show that ���� �� j� v �
� � ��� and by hypothesis and lemma �� we conclude that ���� v � � � �� j� ��� so that by
transitivity� ���� �� j� ��� and by lemma �� we �nally have ��� �� j� ���

Proof of lemma ��

Assume that �� ! �s � �b� where �s ! v� � �� � � � �� vn � �n and �b is a constraint
in base form� Let � be the substitution that maps vi to �i for i � ��� n��

��� �s � �b j� ��

�� ��� �s � �b j� �� � �s �corollary 	� Approx �

�� ��� �s � �b j� ������ �s �lemma ���

�� ��� �s � �b j� ����� �corollary 	� Approx �

�� ��� �b j� ����� �lemma ���

where lemma �� is applied several times for the last step of the derivation� Finally� since
�b is a constraint in base form� lemma �
 implies the assertion for ��� �b j� ������

Proof of theorem ��

Direct consequence of theorem �	 and lemma ���

Proof of corollary ��

Trivial consequence of theorem ���

Proof of lemma ��

A somewhat tedious proof by induction on the derivation shows that whenever ����� j�
��� then there is a substitution � 	 S��� and a derivation of ��� �� j� ��������� for some
constraint ��� without applications of VIntro�

Proof of lemma ��

We only have to show the �only if� part�
Consider a normal derivation of ��� �� j� �� �which exists by lemma �	�� It ends in

an application of VIntro� followed by Approx � so there exists a substitution � 	 S��� such
that ��� �� j� ������ ��� But since �� is ��closed� � must be the identity substitution� so
we may construct a derivation that does not use VIntro at all�

Now� a straightforward inductive proof shows that all constraints � that appear in this
derivation are simple and that ��� �� j� atomize��� can be shown by a normal derivation
that does not use either VIntro� MIntro� or MElim �note that each � is well�kinded by
lemma ��� In particular� rule VElim is never applied� But since �� is in base form�
atomize���� ! ��� and we need never apply rules VIntro� VElim� MIntro� or MElim�
which completes the proof of the lemma� Further more� note that MRef is only applied
to monotypes � which are type variables�

��



Proof of lemma ��

By lemma ��� ��� �� j� �� can only hold if there is a derivation of ��� �� j� ��
that uses only the rules Approx � CRef � CTrans� CTriv� CMin� MRef � and MTrans� But
applications of these rules do not create new symbols except base type constructors of
classes in T and variables in � �note that MRef need only be applied to monotypes
� which are type variables�� Since the set of available symbols is thus �nite� we can
systematically apply these rules �deleting possible duplicates� until no application of any
rule results in a new constraint� Call the resulting constraint ���� By the de�nition of T

�

in lemma �� of section ��	 and lemma �� above� ��� is a �nite syntactic representation of
the type structure T �� From lemma ��� we know that ��� �� j� �� holds i
 the ��closed
base constraint �� is satis�ed in T

�� Therefore� ��� �� j� �� holds i
 �� is a subconstraint
of ���� which is e
ectively decidable�

Proof of lemma �	

Let us �rst prove that ��� �� j� �� holds i
 there exists a substitution � 	 S��� such
that ����� is ��closed and ��� �� j� ����� holds� The �if� direction is simply an instance
of VIntro� For the �only if� part� lemma �� implies that the type structure T � satis�es ��
�because �� is ��closed�� and by lemma ��� T

� is an admissible extension of T � Therefore�
the assumption ��� �� j� �� implies �by theorem ��� that there exists some substitution
� 	 S��� such that ����� is ��closed and satis�ed in T �� By lemma ��� this implies
��� �� j� ����� as required�

Even more� we can require � to be 
at� that is� v��� need never be of the form �C ��C �
for a non�empty C�monotype list �C of terms� as we show now� Denote by �� the set of
variables that occur in �� but not in �� and by ��� the �largest� set of variables in �� that
only occur in constraints of the form v � v� or vC v v�C where both v and v� �or vC and
v�C� are in ���� Clearly� all constraints involving variables from ��� are �useless� in that
they can be satis�ed by assigning unit �resp�� some consistently chosen type constructor
of class C� which is non�empty� to all these variables� For the remaining variables v 	 ���
there exist chains v�  v�� � � � � vn	�  vn such that v� ! v and vn 	 � �where  denotes
either v� w� �� or 
�� A simple inductive proof on the length of these chains shows that
v��� must be �at� for any substitution � such that ��� �� j� ����� holds �or� equivalently�
such that ����� holds in T ���

However� there are only �nitely many substitutions � 	 S��� that map all variables
of �� to �at ground terms in T �� and for any such substitution �� lemma �� tells us that
��� �� j� ����� is decidable� which completes the proof�

Proof of theorem �


Without loss of generality� we may assume that �� ���� �� ���� The assumption that
�� is well�formed and theorem �	 imply that there exists a constraint �� ! �s � �b in
��prenormal form which is ��equivalent to ��� Again w�l�o�g�� we may choose �� such that
�� ���� �� ���� Denoting the set of variables that appear in �� but not in � by ��� lemmas
� and � tell us that ��� �� j� �� holds i
 ��� ��� �� j� �� holds�

The constraint �s is of the form v� � �� � � � � � vn � �n� Let us denote by � the
substitution that maps vi to �i for i � ��� n�� Then the same chain of equivalences used in
the proof of lemma �� shows that ��� ��� �� j� �� holds i
 ��� ��� �b j� ����� holds�

��



If ����� is not well�kinded� ��� ��� �b j� ����� cannot hold� because ��� and therefore
�� and �b� are well�kinded �by corollary 
 and theorem �	�� and therefore ����� would
have to be well�kinded by lemma ��

Otherwise� by theorem �	 there exists some constraint �� ! ��s��
�
b in ��� ����prenormal

form that is ��� ����equivalent to ������ If �
�
s is non�trivial� it contains some constraint of

the form v � � for v 	 ��� ��� such that v does not occur in � nor in �b �because �� is in
��� ����prenormal form�� In this case� ��� ��� �b j� �� �and therefore ��� ��� �b j� ������
cannot hold� because for any substitution �� that satis�es �b � �� �over some admissible
extension T � of T � we may �nd a v�variant ��� of �� that satis�es �b� but falsi�es v � ��
and therefore ���

Otherwise� ��� ��� �b j� �� is equivalent to ��� ��� �b j� ��b� and by lemma ��� the
latter is decidable�

Finally� decidability of well�formedness is an immediate corollary� since a constraint �
is well�formed i
 �
� true j� �� which is decidable� as shown above�

Proof of lemma ��

Let � � �b� � b�� be an implicit well�formed context� 	i� i 	 ��� ��� be two well�formed
types ��i � �i� �i� and bv be a fresh type variable not in �b�� ��� ���� Let us �rst assume that
	� is a subtype of 	�� There must exist a renaming � 	 R�b�������� such that

�b�� ��� b� � �� j� ������ ����� � ��

but bv being fresh� we can assume without loss of generality that � is also a �b�� bv��
substitution� By rule Approx and lemma �� we deduce that

�b�� ��� bv� b� � �� � �� � bv j� ������ ����� � ��

and by corollary �� we deduce that

�b�� ��� bv� b� � �� � �� � bv j� ������ ����� � �� � �� � bv
which shows� by rule MTrans and lemma �� that

�b�� bv� b� � �� � �� � bv j� ������ ����� � bv
but � being a �b�� bv��substitution� we have

�b�� bv� b� � �� � �� � bv j� ��� � �� � bv����
and �nally� by rule VIntro�

�b�� bv� b� � �� � �� � bv j� �� � �� � bv
Let us now assume that

�b�� bv� b� � �� � �� � bv j� �� � �� � bv

�	



Since 	� and 	� are well�formed and bv is fresh� �� and �� are thus disjoint from �b�� bv�� so
that R�b�� bv������� is non�empty� Let � be any renaming in R�b�� bv�������� We know that
� is a bijection and that �	� is a �b�� bv��substitution� Now� by rule MRef

�b�� ��� b� � �� j� b� � �� � �� � �� � �� � ��

and by rule VIntro
�b�� ��� b� � �� j� b� � �� � �� � bv � bv � ��

But by hypothesis
�b�� bv� b� � �� � �� � bv j� �� � �� � bv

so that since �	� � � is the identity over variables

�b�� bv� b� � �� � �� � bv j� ��� � �� � bv���	� � ��
and by rule VIntro

�b�� bv� b� � �� � �� � bv j� ��� � �� � bv����
that is

�b�� bv� b� � �� � �� � bv j� ������ ����� � bv
so that by lemma �� noting that

������� ����� � bv� ���� ��

we deduce that
�b�� ��� bv� b� � �� � �� � bv j� ������ ����� � bv

which� by rule Approx � shows that

�b�� ��� bv� b� � �� � �� � bv � bv � �� j� ������ ����� � bv
and thus� by corollary ��

�b�� ��� bv� b� � �� � �� � bv � bv � �� j� ������ ����� � bv � bv � ��

that is� by rules MTrans and Approx and lemma ��

�b�� ��� b� � �� � �� � bv � bv � �� j� ������ ����� � ��

and �nally�
�b�� ��� b� � �� j� ������ ����� � ��

which proves that 	� is a subtype of 	��

Proof of lemma ��

Let � � �b� � b�� be an implicit well�formed context� 	 � �� � �� � be a well�formed type
w�r�t� �� �� be a variable set disjoint from b�� � 	 R�b�������� and bv be a fresh variable

��



such that � is also in R�b�� bv������� Then � is a bijection and �	� is a �b�� bv��substitution�
By rule Approx we have

�b�� bv� b� � � � � � bv j� �� � � � bv���	� � ��
and by rule VIntro

�b�� bv� b� � � � � � bv j� �� � � � bv����
that is

�b�� bv� b� � � � � � bv j� ����� ���� � bv
which shows that 	 � � ����� � ����� ���� is a subtype of 	 � Similarly� since by rule VIntro

�b�� bv� �b� � � � � � bv���� j� �b� � � � � � bv�
we deduce that

�b�� bv� b� � ����� ���� � bv j� �b� � � � � � bv�
which shows that 	 is a subtype of 	 ��

Proof of lemma ��

Trivial consequence of theorem ���

Proof of lemma ��

Let � � b� � b� be an implicit well�formed context� ��� �� be two ground monotypes andbv be a fresh type variable� If we assume that �� � �� for the standard ordering� then the
proof tree for this fact can be readily translated into a derivation for the judgement

�b�� bv� b� � �� � bv j� b� � �� � bv � �� � ��

since rules StdOrd and MIntro are essentially the same� Using Trans and Approx � we can
thus show that

�b�� bv� b� � �� � bv j� �� � bv
which proves that � 
� �� is a subtype of � 
� ���

Proof of theorem ��

Let � � b� � b� be an implicit well�formed context� 	 � �� � �� � and 	 � � ��� � ��� �� be
two well�formed types and � be a b��substitution such that �� � ���� and �� � ����� Let bv
be a fresh variable� Since � is also a �b�� bv��substitution� rule VIntro shows that

�b�� bv� �b� � � � � � bv���� j� b� � � � � � bv
but since � is a b��substitution and b� is b��closed� we have b���� � b�� and thus

�b�� bv� b� � ����� ���� � bv j� b� � � � � � bv
or else� by rule Approx

�b�� bv� b� � ����� ���� � bv j� � � � � bv
which proves that b� � b� � ��� � �� �� � ���� � ����� �����

��



Proof of theorem ��

This is trivial consequence of theorem �� and lemma �
�

Proof of theorem ��

Let � � b� � b� be an implicit well�formed context� 	i � ��i � �i� �i� i 	 ��� ��� be three
well�formed types� and v and bv be two distinct and fresh type variables� We �rst remark
that the subtyping relation is re�exive� since by rule Approx � we trivially have

�bv� b�� b� � �i � �i � bv j� �i � �i � bv
To show that it is also transitive� let us assume that 	� � 	� and 	� � 	�� For i 	 ��� ���

we have
�bv� b�� b� � �i � �i � bv j� �i�� � �i�� � bv

but since � is well�formed� we know that b� is �bv� b���closed� and by corollary �
�bv� b�� b� � �i � �i � bv j� b� � �i�� � �i�� � bv

and thus by rules Trans and Approx � we have 	� � 	��
The set of well�formed types modulo equivalence is thus a partial order� Let us now

show that it is also a sup�semi�lattice� So let us assume that 	� and 	� have a common
well�formed supertype 	 � �� � �� �� Without loss of generality� we assume that �� ���� ���
For i 	 ��� ��� we have

�bv� b�� b� � � � � � bv j� �i � �i � bv
but since by hypothesis

��� � �� � bv� ���� ��� � �� � bv� �bv� b��
we have by corollary 	

�bv� b�� b� � � � � � bv j� ��� � �� � bv� � ��� � �� � bv�
and therefore� by rule MRef

�bv� b�� b� � � � � � bv j� ��� � �� � bv � �� � �� � bv� � bv � bv
and by rule VIntro with � � fv �� bvg

�bv� b�� b� � � � � � bv j� ��� � �� � v � �� � �� � v�� v � bv
which proves that

�v� ��� �� � ��� � �� � �� � v � �� � v�� v

is a subtype of 	 provided that it is well�formed� But� by lemma � and rule Approx � the
above implication implies that

�b�� b� � � � � � bv j� �� � �� � v � �� � �� � v

and since

��



�b�� b� �	 well�formed�

j� b� � � �MRef �

j� b� � � � � � � �VIntro with � � fbv �� �g�

j� b� � � � � � bv
we thus have

�b�� b� j� �� � �� � v � �� � �� � v

which proves that
�v� ��� �� � ��� � �� � �� � v � �� � v�� v

is well�formed� Consequently� every upper bound of 	� and 	� is an upper bound of this
type� but conversely� by a trivial application of rules Approx and Trans� we have

�bv� b�� b� � ��� � �� � v � �� � �� � v�� v � bv j� �i � �i � bv
for i 	 ��� ��� and thus

�v� ��� �� � b� � ��� � �� � �� � v � �� � v�� v

is an upper bound of both 	� and 	�� which shows that it is the least upper bound�

Proof of theorem ��

Let � � b� � b� be an implicit well�formed context� 	 � �� � �� � and 	 � � ��� � ��� �� be
two well�formed types such that 	 � 	 � and � ���� ��� and v�� v� be two distinct and fresh
type variables� Let

b	 � �v�� v�� � � � � � � �v� � v��� �v� � v��

and b	 � � �v��� v
�
�� �

� � �� � �� � �v� � v��� �v� � v��

We assume that b	 � is well�formed and we want to show that b	 is well�formed and is a
subtype of b	 �� So let bv be a fresh type variable� We have

�bv� b�� b� � �� � �� � �v� � v�� � bv �MRef �

j� b� � �� � �� � �v� � v�� � �v� � v�� � bv �VIntro with � � fv �� �v� � v��g�

j� �b� � �� � �� � v�� �v � v� � v� � bv�
but since �

�v� bv� b�� b� � �� � �� � v j� � � � � v

�v� bv� b�� v � v� � v� � bv j� v � v� � v� � bv
and

�� � � � v� ���� �v � v� � v� � bv� �v� bv� b��
lemma � implies that

�v� bv� b�� �b� � �� � �� � v� � �v � v� � v� � bv� j� � � � � v � v� � v� � bv
��



and lemma � shows that

�bv� b�� �b� � �� � �� � v� � �v � v� � v� � bv� j� � � � � v� � v� � bv
which �nally shows that

�bv� b�� b� � �� � �� � v� � v� � bv j� � � � � v� � v� � bv
which proves that b	 is a subtype of 	 � provided that it is also well�formed� But lemma �
and rule Approx imply that

�b�� b� � �� � �� � v� � v� � bv j� � � � � v� � v�

and by rules MRef � VIntro and the fact that b	 � is well�formed� it is easy to show that

�b�� b� j� b� � �� � �� � v� � v� � bv
which �nally shows that

�b�� b� j� � � � � v� � v�

and thus that b	 is well�formed�
Proof of theorem ��

Let � � b� � b� be an implicit well�formed context and v�� v�� v
�
�� v

�
�� v and v� be six

distinct and fresh type variables� Let 	i � ��i � �i� �i �i 	 ��� ��� be two types such that
	� � 	� and 	� is prefunctional� that is� � � fun��	��� Then by theorem ��� 	� is also
prefunctional� Consequently the domains of 	� and 	� de�ned by

dom��	i� � �vi� v
�
i� �i � �i � �i � vi � v�i� vi

are well�formed� Now� since 	� is a subtype of 	� by hypothesis� we have

�b�� v�� b� � �� � �� � v� j� �� � �� � v�

but

�b�� v� b� � �� � �� � v� � v�� � v � v� �MRef �

j� b� � �� � �� � v� � v�� � v � v� � v�� � v�� �MIntro�

j� b� � �� � �� � v� � v�� � v� � v�� � v � v�� �Trans�

j� b� � �� � �� � v � v�� �MRef �

j� �b� � �� � �� � v � v��� � �v � v�� � v � v��� �VIntro with � � fv� �� �v � v���g�

j� �b� � �� � �� � v�� � �v� � v � v���

and thus� since
��� � �� � v�� ���� �v� � v � v��� �

b�� v� v�� v���
we conclude by lemma � and the fact that 	� � 	� that

�




�b�� v� v�� v��� �b� � �� � �� � v�� � �v� � v � v���

j� ��� � �� � v�� � �v� � v � v���

and by lemma �

�b�� v� �b� � �� � �� � v�� � �v� � v � v���

j� ��� � �� � v�� � �v� � v � v���

and �nally

�b�� v� b� � �� � �� � v� � v�� � v � v�

j� ��� � �� � v�� � �v� � v � v��� �Trans�

j� �� � �� � v � v�� �MRef �

j� �� � �� � v � v�� � v � v �VIntro with � � fv� �� v� v�� �� v��g�

j� �� � �� � v� � v�� � v � v�

which shows that dom��	�� is a subdomain of dom��	���

Proof of lemma �


Similar to the proof of lemma ���

Proof of theorem ��

Let � � b� � b� be an implicit well�formed context� and for any i in the range ��� ���
let 	i � ��i � �i� �i and 
i � ��i � �i� �i� Without loss of generality� we may assume that
�� ���� �� ���� ��� Let bv be a fresh type variable� Let us �rst assume that 	� � 	� and
	� 	 
�� We have

�b�� b� j� �� � �� � �� � ��

and thus� by corollary �

�b�� b�
j� b� � �� � �� � �� � �� �MRef �

j� �b� � �� � �� � ��� � ��� � �� � ��� �VIntro with � � fbv �� ��g�

j� �b� � �� � �� � bv� � ��� � bv � ���

but since by hypothesis

�bv� b�� b� � �� � �� � bv j� �� � �� � bv
and

��� � �� � bv� ���� ��� � bv � ��� �bv� b��
we have by lemma �

�bv� b�� �b� � �� � �� � bv�� ��� � bv � ��� j� ��� � �� � bv� � ��� � bv � ���

and by lemma �

�b�� �b� � �� � �� � bv� � ��� � bv � ��� j� ��� � �� � bv� � ��� � bv � ���

which shows that


�



�b�� b�
j� ��� � �� � bv�� ��� � bv � ��� �Trans�

j� �� � �� � �� � ��

and �nally 	� 	 
�� Let us now assume that 	� 	 
� and 
� � 
�� We have

�b�� b� j� �� � �� � �� � ��

and thus� by corollary �

�b�� b�
j� b� � �� � �� � �� � �� �MRef �

j� ��� � �� � ��� � �b� � �� � �� � ��� �VIntro with � � fbv �� ��g�

j� ��� � �� � bv�� �b� � �� � bv � ���

but since by hypothesis

�bv� b�� b� � �� � bv � �� j� �� � bv � ��

and
��� � �� � bv� ���� ��� � bv � ��� �bv� b��

we have by lemma �

�bv� b�� ��� � �� � bv� � �b� � �� � bv � ��� j� ��� � �� � bv� � ��� � bv � ���

and by lemma �

�b�� ��� � �� � bv� � �b� � �� � bv � ��� j� ��� � �� � bv� � ��� � bv � ���

which shows that

�b�� b�
j� ��� � �� � bv�� ��� � bv � ��� �Trans�

j� �� � �� � �� � ��

and �nally 	� 	 
��

Proof of lemma �	

Trivial consequence of theorem ���

Proof of theorem ��

Let � � b� � b� be an implicit well�formed context� and for + 	 ��� ��� 	i and 	 �i be well�
formed types� Assuming that 	� � 	�� 	 �� � 	 �� and 	 �� belongs to the domain of 	�� let us
show that

app��	�� 	
�
�� � app��	�� 	

�
��

We �rst remark that the hypothesis 	 �� 	 dom��	�� implies that dom��	�� is well�
formed� which implies that fun��	�� is well�formed� which� together with the hypothesis


�



and theorem 	�� implies that dom��	�� is a subdomain of dom��	��� Consequently� theo�
rem �
 implies that 	 �� 	 dom��	�� and app��	�� 	

�
�� and app��	�� 	

�
�� are thus well�formed�

So let us assume that fun��	i� is of the form

fun��	i� � ��i � �i� �i � ���i

and 	 �i is of the form
	 �i � ��

�
i � �

�
i� �

�
i

with �� ���� �� ���� ��� ���� ��� ����
b�� and v and v� be two distinct and fresh type variables�

Since fun� is covariant� we have fun��	�� � fun��	��� that is

�v�� b�� b� � �� � �� � ���� � v� j� �� � �� � ���� � v�

Now�

�b�� v� b� � �� � ��� � ��� � �� � �
��
� � v �MRef �

j� ��� � �� � �� � �
��
� � v�� �b� � ��� � ��� � ��� �VIntro with � � fv� �� ��g�

j� ��� � v� � �� � ���� � v� � �b� � ��� � ��� � v��

But by that fact that 	 �� � 	 ��� by corollary � and by the fact that v is fresh

�b�� v� v�� b� � ��� � ��� � v�

j� b� � ��� � ��� � v�

and thus� since

��� � v
� � �� � �

��
� � v� ���� �b� � ��� � ��� � v�� � b�� v� v��

we have� thanks to lemma �

�b�� v� v�� ��� � v
� � �� � �

��
� � v�� �b�� ��� � ��� � v��

j� ��� � v� � �� � ���� � v�� �b�� ��� � ��� � v�� �Trans�

j� b� � �� � ��� � ��� � �� � ���� � v

and by lemma �

�b�� v� b� � �� � ��� � ��� � �� � ���� � v

j� b� � �� � ��� � ��� � �� � ���� � v �MIntro�

j� b� � �� � ��� � �� � ���� � ��� � v �MRef �

j� ���� � �� � ���� � ��� � v� � �VIntro with

�b� � �� � �� � ���� � �� � ����� � � fv� �� ��� � �����g�

j� ���� � v
� � ��� � v�� �b� � �� � �� � ���� � v�� �fun��	�� � fun��	��� lemma ��

j� ���� � v
� � ��� � v�� ��� � �� � ���� � v�� �Trans�MElim�

j� �� � �
�
� � �

�
� � �� � �

��
� � v


�



which proves that
app��	�� 	

�
�� � app��	�� 	

�
��

Proof of theorem ��

Let � � �b� � b�� be a well�formed context� �C be a fresh C�variable set and ���i � �i� �i��
i 	 ��� n�� be n well�formed types such that �� ���� � � � ���� �n and app��dC � 	�� � � � � 	n� is well
formed� that is

���� � � � � �n� �C � �� � � � �� �n � �� � d�Ch�Ci � � � �� �n � dnCh�Ci� dC ��C �

is well�formed w�r�t� �� For any i 	 ��� n� and any fresh C�variable set ��C � the type
app��d

i
C � app��dC � 	�� � � � � 	n�� is de�ned by

� ���� � � � � �n� �C� �
�
C��

��� � � � �� �n��

��� � d�Ch�Ci�� � � �� ��n � dnCh�Ci��

dC ��C � � dC ��
�
C �

� diCh�
�
Ci

which is a supertype of

���� � � � � �n� �C� �
�
C � �i � �i � diCh�Ci � dC ��C � � dC ��

�
C �� d

i
Ch�

�
Ci

which� in turn� is a supertype of ���i � �i� �i� since� for any fresh variable bv�
� bv� �C� ��C � b��b� � �i � �i � diCh�Ci � dC ��C � � dC ���C � � d

i
Ch�

�
Ci � bv �MElim�

j� �i � �i � diCh�Ci � �C �C ��C � d
i
Ch�

�
Ci � bv �Hypothesis� lemma ��

j� �i � �i � diCh�Ci � d
i
Ch�Ci � diCh�

�
Ci � d

i
Ch�

�
Ci � bv �Trans�

j� �i � �i � bv
Proof of theorem ��

Let � � b� � b� be an implicit well�formed context� 	 � �� � �� �� � �� be a functional
type� 
 � �� � �� �� be the domain of 	 � �� � ���� �� be a pattern which is strongly
compatible with 
 and 	 �� � ���� � ���� d��C ��

��
C � be a run�time type both in 
 and ��� As

usual� we assume that � ���� �� ���� ��� ���� b�� We have�
app�res�	� ���� 	 ��� � ��� ��� ��� � � � ��� � ��� � �� � ��� � ��� ��

app�	� 	 ��� � ��� ��� � � � ��� � ��� � ��� ��

and it is thus easy to see using rule Approx that

app�	� 	 ��� � app�res�	� ���� 	 ���

so let us prove the other inequality� Let bv be a fresh type variable� There are two cases�
If �� is a simple variable v�� then obviously


�



�bv� b�� b� � � � ��� � ��� � �� � �� � bv �MRef �

j� � � ��� � ��� � �� � �
�� � ��� � �� � bv �VIntro with � � fv� �� ���g�

j� � � ��� � ��� � �� � �
�� � v� � �� � bv ��� � v��

j� � � ��� � ��� � �� � ��� � �� � �� � bv
which proves the theorem� Now� if �� is of the form t�C ��

�
C �� then since 	

�� belongs to �� by
hypothesis� it is easy to see that d��C vC t�C � Consequently

�bv� b�� b� � � � ��� � ��� � �� � �� � bv ���� � d��C ��
��
C ��MIntro�

j� � � ��� � ��� � �� � �
�� � t�C ��

��
C �� �� � bv �VIntro with � � f��C �� ���Cg�

j� � � ��� � ��� � �� � ��� � t�C ��
�
C � � �� � bv ��� � t�C ��

�
C ��

j� � � ��� � ��� � �� � ��� � �� � �� � bv
which proves that

app�res�	� ���� 	 ��� � app�	� 	 ���

since obviously

�b�� b� �	 �� 	 
�

j� b� � � � ��� � ��� � �� �MRef �VIntro�

j� b� � � � ��� � ��� � �� � �� � bv �Above proof �

j� � � ��� � ��� � �� � �
�� � ��

which shows that app�res�	� ���� 	 ��� is well�formed and that 	 �� belongs to 
 � ���

Proof of theorem ��

Let � be a well�formed context� 
� be a well�formed domain w�r�t� �� 	 be a closed
run�time type in 
����� and ��� � � � � �n� n 
 �� be a partition of 
� w�r�t� �� We assume
that � is of the form �b� � b��� 
� is of the form ��� � ��� ��� 	 is of the form �� � �� dC ��C ��
and �i is of the form ��i� �i� Without loss of generality� we assume that �� ��� ��� � � � � �n
are disjoint pairwise� From the fact that 	 belongs to 
����� we have

�
� true j� b� � � � �� � dC ��C � � ��

which shows� by rules MRef and VIntro� that

�
� true j� b� � �� � v � �� � v � dC ��C �

for some fresh type variable v� which shows that 
���� and 
�� � ��C � dC ��C � are compat�
ible� By condition ��� of de�nition 		� we deduce the existence of an index i 	 ��� n� such
that 
�� is a subdomain of �i� But ��� since 	 � trivially belongs to 
��� then 	 � also belongs
to �i� and ��� since 
�� is a subdomain of �i and 
���� are compatible� then 
���� and �i
are compatible� Consequently� theorem 	� shows that 	 � belongs to 
���� � �i� By the
same reasoning� we can show that for every j 	 ��� n� such that 	 belongs to 
����� �j � 


��

is compatible with 
���� � �j � so that 
�� is compatible with �j � Since �j is a pattern and
dC is minimal� it is easy to see that this compatibility implies that 
�� is a subdomain of
�j � which shows that �i is a subdomain of �j �


	



Proof of lemma ��

Let ���  � be a well�formed typing context� � � b� � b�� and �� � �� � �� be a context
such that �� is well�formed w�r�t� �� By rule Approx � we have

�b�� ��� b� � �� j� b�
So let �x � 	�� with 	 � �� � �� �� be a subterm of  � By de�nition� 	 is well�formed w�r�t�
�� Consequently

�b�� b� j� �

and since the variables in �� do not occur in b�� b� and �� we obviously have

���� b�� b� j� �

and by transitivity
�b�� ��� b� � �� j� �

which shows that 	 is well�formed w�r�t� ������ which is well�formed� Consequently�
������  is a well�formed typing context� So let ��� , � be a subcontext ���  �� Let
,	 � �,� � ,�� ,� denote the type of an expression variable x in , and 	 denote the type of x
in  � By de�nition� ,	 is a subtype of 	 w�r�t� �� that is�

�bv� b�� b� � � � � � bv j� ,� � ,� � bv
for any fresh type variable bv� and thus

�bv� b�� ��� b� � � � � � bv j� ,� � ,� � bv
and by rule Approx

�bv� b�� ��� �b� � ��� � � � � � bv j� ,� � ,� � bv
which shows that ,	 is a subtype of 	 w�r�t� ������ which �nally proves that ������  � is a
subcontext of ������  �

Proof of lemma �	

Let � b�� b �� b� � �b� � b��� be a well�formed typing context� e be a well�typed expression
with type 	 w�r�t� � b�� b �� and �� � ��� � ��� be a context �not necessarily well�formed�
such that �� is fresh and b���� is well�formed� Let D be a derivation for b�� b � e � 	 � We
�rst show that the derivation D� obtained by replacing each context � occurring in D by
���� is a derivation for b� ���� b � e � 	 � We reason by induction on the depth of D by
analyzing the last rule of D�

First of all� we remark that �� being fresh ��� if a context � is well�formed w�r�t� b��
then � is well�formed w�r�t� b����� ��� if 	 is well�formed w�r�t� b�� then 	 is well�formed
w�r�t� b����� ��� if 	 is a subtype of 	 � w�r�t� b�� then 	 is a subtype of 	 � w�r�t� b����� �	�
if 	 belongs to 
 w�r�t� b�� then 	 belongs to 
 w�r�t� b� ���� ��� app� and dom� depend
on � exclusively to avoid the lexical capture of variables� ��� if b�� b is well�formed� then
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b����� b is well�formed� and ��� if ��� � � � � �n is a partition of 
 w�r�t� �� then it is also a
partition of 
 w�r�t� b� ����

To see why remark ��� holds� note that condition ��� of de�nition 		 holds for b� �
�� whenever it holds for b�� that condition ��� is independent from b�� and that if
���C � dC ��C �� is compatible with 
� b� � ���� then it is obviously compatible with 
� b���
so that condition ��� holds for b� ��� whenever it holds for b��

Now� since rules Var � Rec and Prj do not depend on b� �except for the freshness of
�C� the theorem is trivially true if D has depth one� and by our preliminary remarks� all
the other rules prove the theorem by induction�

Proof of theorem �


Let ���  �� where � � b� � b�� be an implicit well�formed typing context and be be a
well�formed expression w�r�t� ���  �� We �rst remark that consecutive instances of the
subsumption rule Sub in typing derivations can always be replaced by a single instance
thanks to theorem ��� Consequently� it is easy to see that an expression is typable if and
only if there exists a typing derivation such that ��� the subsumption rule is never used
consecutively more than once and ��� the subsumption rule is neither the �rst nor the
last rule of this derivation� Moreover� since the subsumption rule can only increase the
type of a typable expression be when it is used as the last rule of a typing derivation forbe� we can restrict ourselves to such derivations for proving the minimal typing property�
Similarly� since the subtyping judgement of the subsumption rule does not depend on  �
we can also restrict ourselves to such derivations for proving the monotonicity of minimal
typing w�r�t� typing contexts� Finally� we remark that there are only two rules applicable
to any given expression� the subsumption rule and one of the rules Var � Rec� Fun� App�
Let and Meth � Consequently� we can prove typing decidability� minimal typing and the
monotonicity of minimal typing by induction on the syntax� showing that each �speci�c�
rule either ��� decidably proves that be is ill�typed or ��� decidably gives be a minimal typeb	 � in which case the same rule gives be a subtype of b	 in every subcontext of the current
typing context�

If be is an expression variable x� then rule Var and the well�formedness of ���  � prove
the existence of a well�formed minimal type b	 such that be is well�typed and has type b	 �
Finally� if ���  �� is a subcontext of ���  �� then by de�nition� the type b	 � of x in  � is a
subtype of b	 w�r�t� ��

If be is a data constructor expression ��dC��C � x�� � � � � xn�� then rule Rec proves thatbe is well�typed and has type b	 � � 
� dC ��C �� which is well�formed since be is well�formed
w�r�t� ���  �� Finally� since b	 is independent from  � be has type b	 w�r�t� any subcontext
of ���  ��

If be is a data extractor� then be is well�typed since its constant type is well�formed w�r�t�
� thanks to the hypothesis on the freshness of �C �

If be is a method expression meth f� j �g �x � �� � �� � ��� � e�� � � � � �n � en� where
�i � ��i� �i� Let 
 � �� � �� � and �i � �v� �� �i� � �� � �i � v � � � v � �i�� If ��� � � � � �n
is not a partition of 
 w�r�t� �� or if �i is not well�formed w�r�t� �� which is decidable for
a given type structure� then be is ill�typed� If not� then thanks to lemma 	�� the typing
context ���i��  �x � � 
� v� is well�formed� and the well�typedness of ei is decidable by
induction� If any of the ei is ill�typed� then so is the method� If every ei is well�typed
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and has minimal type b	i� then either every b	i is a subtype of � 
� ��� and the method has
minimal type �� � �� � � ��� or else the method is ill�typed� Assuming that the method is
well�typed� let ���  �� be a subcontext of ���  �� By lemma 	�� ���i��  

��x � � 
� v� is thus
a subcontext of ���i��  �x � � 
� v�� Therefore� we conclude by induction that the minimal
type of each ei w�r�t� this subcontext is a subtype of b	i� and thus a subtype of � 
� ��� which
proves that the method is well�typed w�r�t� the subcontext and has the same minimal type
�� � �� � � ���

Let us assume that be is a let expression �let x� � e� in e� end�� By induction� the well�
typedness of e� is decidable� If e� is ill�typed� then so is be� If e� is well�typed� then it has a
minimal type b	�� the typing context ��  �x� � b	�� is well�formed and the well�typedness of
e� in this context is decidable� If e� is ill�typed� which is decidable� then the monotonicity
of minimal typing shows that e� cannot be well�typed in any typing context ��  �x� � 	��
where 	� is a supertype of b	� w�r�t� �� which proves that be is ill�typed� If e� is well�typed
and has minimal type b	�� then the monotonicity of minimal typing shows that for any
supertype 	� of b	� such that e� is well�typed w�r�t�  �x� � 	�� and has type 	�� then b	� is
a subtype of 	�� which shows that b	� is a minimal type for the let expression� Finally�
assuming that the let�expression is well�typed� let ���  �� be a subcontext of ���  �� Then�
by induction� the monotonicity of minimal typing implies that the minimal type b	 �� of e�
w�r�t� this subcontext is a subtype of b	�� and the minimal type b	 �� of e� w�r�t� ��  ��x� � b	 ���
is a subtype of b	� w�r�t� ��

Let us assume that be is a recursive let�expression �letrec x� � 	� � e�� � � � � xn � 	n �
en in e� end�� If any type 	i is ill�formed w�r�t� �� which is decidable� then the typing
context ��  �x� � 	�� � � � � xn � 	n�� is ill�formed and be is ill�typed� If ��  �x� � 	�� � � � � xn � 	n�
is well�formed� then since each ei� i 	 ��� n�� is a strict subexpression of be� its well�typedness
w�r�t� ��  �x� � 	�� � � � � xn � 	n� is decidable� If any of the ei is ill typed� then so is be� If they
are all well�typed and have minimal type b	i� then either b	i is a subtype of 	i for every i 	
��� n� �which is decidable� and be has minimal type b	�� or else be is ill�typed� Finally� assuming
that be is well�typed� let ���  �� be a subcontext of ���  �� Then ��  ��x� � 	�� � � � � xn � 	n� is
obviously a subcontext of ��  �x� � 	�� � � � � xn � 	n� and by induction� each ei has a minimal
type b	 �i w�r�t� this subcontext� which is a subtype of b	i and thus a subtype of 	i w�r�t� ��
which proves that be has type b	 �� which is a subtype of b	� w�r�t� ��

If be is an application �e e��� then e� and e� being strict subexpressions of be� the well�
typedness of e� and e� is decidable� If e� or e� is ill�typed� then obviously be is also ill�typed�
So let us assume that both e� and e� are well�typed� and let b	� and b	� denote their minimal
types� the determination of which is decidable� If b	� belongs to dom��b	�� w�r�t� �� which
is decidable� then �e� e�� is well�typed and has type app��b	�� b	��� and theorem 	� proves
that this type is both well�formed and minimal� Now� suppose that b	� does not belong to
dom��b	�� w�r�t� �� and let 	� and 	� be two other possible types of e� and e� such that 	�
belongs to dom��	�� w�r�t� �� Theorem 	� shows that app��b	�� b	�� is well�formed� which
trivially implies that b	� belongs to the domain of b	�� which is absurd� Consequently� be
is either decidably ill�typed or has minimal type app��b	�� b	��� Finally� assuming that be
is well�typed� let ���  �� be a subcontext of ���  �� Then by induction� e and e� have
minimal types b	 �� and b	 �� which are subtypes of b	� and b	� and theorem 	� shows once again
that be has minimal type app��b	 ��� b	 ��� which is a subtype of app��b	�� b	���

Let us assume that be is a lambda�expression �fun f� j �g �x � �� � e�� If �� � �� is not
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well�formed w�r�t� �� which is decidable� then � � �� � �� is ill�formed� and so is be� So let
us assume the opposite� that is �� ���� b��� � and � are ��� b���closed� and b� implies � for allb�� which� together with lemma 	�� implies that the typing context ��� � ���  �x � � 
� ��
is well�formed� Since e is a strict subexpression of be� the well�typedness of e w�r�t�
��� � ���  �x � � 
� �� is decidable� If e is ill�typed� then obviously be is also ill�typed� So
let us assume that e is well�typed w�r�t� ��� � ���  �x � � 
� ��� and let 	 � � ��� � ��� �� de�
note its minimal type� the determination of which is decidable� Let b	 denote the type
���� �� � ����� � � ���� Since 	 � is well�formed w�r�t� ��� � ��� then ��� ���� �b�� ���� �� and ��
are �b�� �� ����closed� and b�� � implies �� for all �b�� ��� Thus� by corollary �� b� � � implies
� � �� for all �b�� ��� and by lemma �� b� � � implies � � �� for all b�� Now� since �� � �� is
well�formed w�r�t� �b� � b��� b� implies � for all b�� and by corollary �� b� implies b� � � for all
�� By rule Trans� we thus conclude that b� implies � � �� for all b�� which proves that b	
is well�formed� Now� let 	 �� � ���� � ���� ��� be any supertype of 	 � w�r�t� ��� � ��� and letbv� v and v� be three fresh and distinct type variables and v�� be a fresh Arrow�constructor
variable� By hypothesis� we have

��� b�� v�� b� � � � ��� � ��� � v� j� �� � �� � v�

therefore

�bv� b�� b� � � � ��� � �� � ���� � bv �VElim�

j� b� � � � ��� � �� � ���� � bv � bv � v���v� v�� �Trans�MElim�

j� �b� � � � ��� � ��� � v�� � �v � � � bv � v���v� v�� � ��� v v���

and since
��� � �� � v�� ���� �v � � � bv � v���v� v��� ��� v v��� �bv� v�� �� b��

lemma � implies that

�bv� v�� �� b�� �b� � � � ��� � ��� � v�� � �v � � � bv � v���v� v��� ��� v v���

j� ��� � �� � v�� � �v � � � bv � v���v� v�� � ��� v v��� �MIntro�Trans�

j� �� � � � �� � bv
and by lemma �

�bv� b�� �b� � � � ��� � ��� � v�� � �v � � � bv � v���v� v�� � ��� v v���

j� �� � � � �� � bv
and by transitivity

�bv� b�� b� � � � ��� � �� � ���� � bv
j� �� � � � �� � bv
which shows that b	 is a subtype of ���� ��� � � � ���� � � ���� and is thus minimal� Fi�
nally� assuming that be is well�typed� let ���  �� be a subcontext of ���  �� By lemma 	��
��� � ���  ��x � � 
� �� is thus a subcontext of ��� � ���  �x � � 
� ��� and by induction� the
minimal type of e� w�r�t� this subcontext is a subtype of 	 �� Using the same monotonicity
proof as above� we thus have that the minimal type of be w�r�t� the subcontext is a subtype
of b	 w�r�t� �� which ends the proof�
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Proof of lemma ��

Let � � b� � b� be a well�formed context� 	 � �� � �� � be a well�formed type w�r�t� the
trivial context such that �� ���� b��� and 	 � � ��� � ��� �� be a well�formed type w�r�t� ��

��� Type 	 ��� is obviously closed� and it is well�formed since if true implies � and true
implies b�� then corollary 	 shows that true implies b� � �� Now� if v be a fresh type
variable� then �v� � � � � v j� � � � � v and �v� true j� b�� Consequently� lemma �
shows that �v� ��� � v j� ��b��� � v� Since� trivially� �v� ��� � v j� ��b��� � v�
we conclude that 	 and 	 ��� are equivalent w�r�t� True� Without loss of generality�
we assume that �� ���� � ���� b��

��� Since ��� � ��� is well�formed w�r�t� �� 	 ���� is trivially closed and well�formed�

��� Let us now assume that 	 is a subtype of 	 � w�r�t� �� For any fresh type variable bv�
we have

�bv� b�� b� � �� � �� � bv j� � � � � bv
and by lemma �

�bv� b� � �� � �� � bv j� � � � � bv
which proves that 	 is a subtype of 	 ���� w�r�t� True� Now� assuming that

�bv� b� � �� � �� � bv j� � � � � bv
we remark that� since the right�hand side of the implication does not contain variables
in b�� the proof tree for this implication can be re�arranged so that every substitution
� used in rule VIntro is a �bv� b���substitution and every variable introduced in rule
VElim does not belong to b�� Consequently� we conclude that

�bv� b�� b� � �� � �� � bv j� � � � � bv
which proves that 	 is a subtype of 	 � w�r�t� ��

Proof of theorem ��

Let b" be a well�formed run�time environment� b� be a well�formed constraint context�
and be be a well�typed expression with type b	 w�r�t� � b�� b"�� We prove the theorem by cases
by showing that the abstract machine always remains well�formed while evaluating be and
that if the evaluation of be terminates� it returns a run�time value with a closed run�time
type which is a subtype of the closure of b	 w�r�t� b��

If be is an expression variable� then rule VarVal shows that the evaluation terminates
and returns a well�formed run�time value � with run�time type 	 such that � � 	 is a
subterm of b"� But since be is well�typed w�r�t� � b�� b"� by hypothesis� rule Var shows thatb	 � 	 � and 	 being a fresh closed run�time type and b� being a well�formed context� it is
easy to see that b	 � b�� is well�formed and is equivalent to 	 � and thus that 	 is a subtype
of b	 � b�� w�r�t� True�







If be is an abstraction� then rule ClsVal shows that the evaluation terminates and
returns run�time value cls� b�� be� with well�formed and closed type b	 � b��� Finally� rules Fun
and Meth show that b	 � and� hence� b	 � b��� are run�time types and rule ClsType shows that
cls� b�� be� is well�formed and has type b	 � b�� w�r�t� b"�

If be is a projection diC � then rules PrjVal and Prj show that b	 � ���C � diCh�Ci �
dC ��C ��� which is a well�formed and closed run�time type� Moreover� the assumption on
the freeness of �C shows that b	 � b�� is well�formed and is equivalent to b	 � Consequently� be
evaluates to prj�dC� i� with closed run�time type b	 � b�� and rule PrjType shows that prj�dC � i�
is well�formed w�r�t� b"�

If be is a record expression of the form ��dC � 
�� then rule Rec shows that b	 � � 
� dC � �
and rule RecVal shows that the evaluation of be terminates and returns run�time value
rec�dC� with closed and well�formed run�time type b	 � b��� Rule RecType shows that this
run�time value is well�formed w�r�t� b"�

If be is a record expression of the form ��dC��C � x�� � � � � xn�� n 
 �� then the hypothesis
on the possible occurrences of such terms shows that b" necessarily contains n bindings
x� � �� � ���� � ��� ���� � � � � xn � �n � ���n � �n� �n� and that b�� which results from n

applications of rule FunApp started in the trivial context� is of the form

��� � �� � d�Ch�Ci�� � � �� ��n � �n � dnCh�Ci�

Now� by rule Rec� the type 	 of the record expression w�r�t� b�� b" is equal to � 
� dC ��C ��
Consequently� 	 � b��� which is well�formed� is precisely �dC 	� � � � 	n�� which shows that the
evaluation of be terminates and returns run�time value rec�dC ��� � 	�� � � � � �n � 	n� which is
well�formed and has type 	 � b�� w�r�t� b"�

If be is a let�expression �let x� � e� in e� end�� let b be the typing context associated tob"� Rule Let shows that b�� b � e� � b	� and b�� b �x� � b	�� � e� � b	�� Let us assume that b	� andb	� are minimal� We thus have b�� b" � e� � b	�� so starting the evaluation of e� in context b�
yields a well�formed abstract machine� Let us assume that the evaluation terminates and
returns a run�time value �� with type 	� w�r�t� "�� By hypothesis� 	� is a subtype of b	�� b��
w�r�t� True� Since 	� is fresh� we deduce that 	� is a subtype of b	� w�r�t� b�� Consequently�
theorem 	� shows that e� is well�typed w�r�t� b �x� � 	�� and has minimal type b	 �� which
is a subtype of b	� w�r�t� b�� Therefore� since "� �extends� b"� starting the evaluation of
e� in context b� and run�time environment "��x� � �� � 	�� yields a well�formed abstract
machine� Let us assume that the evaluation terminates and returns a well�formed run�
time value �� with type 	�� By hypothesis� 	� is a subtype of b	 ��� b�� w�r�t� b�� Since 	� is a
fresh and closed run�time type� we deduce that 	� is a subtype of b	 �� w�r�t� b� and is thus a
subtype of b	� w�r�t� b�� Since b	 � b	�� we conclude that 	� is a subtype of b	 � b�� w�r�t� True�

If be is a recursive let�expression �letrec x� � 	� � f�� � � � � xn � 	n � fn in e� end�� let b 
be the typing context associated to b"� Rule LetRec shows that each fi is well�typed w�r�t�b� and that its minimal type b	i is a subtype of 	i w�r�t� b�� Moreover� e� has minimal
type b	� w�r�t� b�� b �x� � 	�� � � � � xn � 	n�� Consequently� b	i� b�� is a subtype of 	i� b�� w�r�t�
True� and rule ClsType shows that cls� b�� fi� is well�formed and has type 	i� b�� w�r�t� b"�
Run�time environment "�x� � cls� b�� f�� � 	�� b��� � � � � xn � cls� b�� fn� � 	n� b��� is thus well�
formed� Now� up to an ��substitution of its variables� each closed run�time type 	i� b��
is a subtype of 	i w�r�t� b�� Therefore� b�� b �x� � 	�� b��� � � � � xn � 	n� b��� is a subcontext ofb�� b �x� � 	�� � � � � xn � 	n�� and theorem 	� shows that e� is well�typed w�r�t� this subcontext

���



and has minimal type b	 �� which is a subtype of b	� � b	 w�r�t� b�� Consequently� starting
the evaluation of e� in environment b"�x� � cls� b�� f�� � 	�� b��� � � � � xn � cls� b�� fn� � 	n� b���
yields a well�formed abstract machine� Let us assume that this evaluation terminates and
returns a run�time value �� with closed run�time type 	�� By hypothesis� we deduce that
	� is a subtype of b	 ��� b�� and thus that 	� is a subtype of b	 � b�� w�r�t� b��

If be is an application �,e ,e ��� let b be the typing context associated to b"� Rule App
shows that �������������

b�� b � ,e � ,	b�� b � ,e � � ,	 �b� � ,	 � 	 dom b��,	�b	 � appb��,	� ,	 ��
and starting the evaluation of ,e in � b�� b"� yields a well�formed abstract machine� Let
us assume that ,	 and ,	 � are minimal and that this evaluation terminates and returns a
run�time value � with closed run�time type 	 w�r�t� "� Similarly� starting the evaluation
of ,e � in � b��"� yields a well�formed abstract machine� Let us assume that this evaluation
also terminates and returns a run�time value �� with closed run�time type 	 � w�r�t� "�� By
hypothesis� we deduce that 	 is a subtype of ,	 � b�� w�r�t� True and that 	 � is a subtype of
,	 �� b�� w�r�t� True� Since 	 and 	 � are fresh� we conclude that 	 is a subtype of ,	 w�r�t� b�
and that 	 � is a subtype of ,	 � w�r�t� b�� But ,	 being prefunctional� theorems 	� and �

show that 	 � belongs to the domain of 	 w�r�t� b�� However� since 	 and 	 � are closed� andb� is well�formed� we conclude that 	 � belongs to the domain of 	 w�r�t� True� which shows
that 	 is a well�formed functional type� Looking at the rules of �gure ���� it is clear that
� can only be of the form prj�dC � i� or cls��� f�� There are three subcases to consider�

If � is the i�th projection prj�dC� i�� then by rules Prj and PrjVal we deduce that 	 is
of the form ��C � dC ��C �� diCh�Ci� where �C is fresh� which is a well�formed and closed
run�time type� Therefore� 	 � belongs to ��C � dC ��C � w�r�t� True� Since C cannot be the
arrow class� for which no projection is de�ned� the rules of �gure ��� show ��� that ��

can only be a record rec�dC ��� � 	�� � � � � �n � 	n� with well�formed type 	 � � �dC 	� � � � 	n�
w�r�t� "�� and ��� that "� � �i � 	i for i 	 ��� n�� Rule PrjApp can thus be applied and the
evaluation of be returns run�time value �i with closed run�time type 	i w�r�t� "�� Moreover�
by theorem 	�� we know that app�	� 	 �� is a subtype of b	 � appb��,	� ,	 �� w�r�t� b�� and thus
that app�	� 	 �� is a subtype of b	 � b�� w�r�t� True� Consequently� theorem 	� shows that 	i
is a subtype of b	 � b�� w�r�t� True�

If � is a method cls���meth f� j �g �x � �� � ��� � ��� � e�� � � � � �n � en��� with � �
*� � *�� then rule ClsType shows that *	 � �*�� � � *�� �� � � ��� is a subtype of 	 w�r�t� True�
and also that ��� � � � � �n is a partition of 
 � �� � �� � w�r�t� �� Theorems 	� and �
 thus
prove that 	 � belongs to the domain *
 � 
��� of *	 w�r�t� True� so that by theorem 	�� we
know that i � disp��	

�� 
���� ��� � � � � �n� is well�de�ned and that 	 � belongs to 
��� � �i�
that is� assuming that �i is of the form ��i� �i� 	 � belongs to

�*�� v� �� �i � *� � � � v � �� �i� v

and by theorem 	�� we also know that

app�res�*	 � �i�� 	
��

�
� app�*	� 	 ��

���



So let v be a fresh type variable and let �i denote the context ��v� �� �i � � � v � �� �i�
and �� denote the context ��� � �� � �� � v�� Rule Meth shows that �i is well�formed and
that ei has type � 
� ��� in typing context �i�  �x � � 
� v�� Now� the fact that 	 � belongs to
*
 � �i implies that �i ��

� is well�formed� and by lemma 	�� we deduce that ei has type
� 
� ��� w�r�t� typing context �i����  �x � � 
� v�� Finally� it is easy to see that� up to an ��
substitution of its variables� 	 � is a subtype of �� 
� v� w�r�t� �i��

� and thus� by theorem 	��
we conclude that ei is well�typed and has type � 
� ��� w�r�t� typing context �i����  �x � 	 ���
Consequently� starting the evaluation of ei in environment �i � �

�� "��x � �� � 	 �� yields
a well�formed abstract machine� Assuming that this evaluation terminates and returns
a run�time value ��� with closed run�time type 	 ��� we know by hypothesis that 	 �� is
a subtype of the closure of � 
� ��� w�r�t� �i � ��� which happens to be equivalent to
app�res�*	 � �i�� 	

�� and is thus equivalent to app�*	 � 	 �� which� by theorem 	�� is a subtype
of app�	� 	 �� and is thus a subtype of app�,	 � b��� ,	 �� b���� which �nally shows that 	 �� is a
subtype of app�,	 � ,	 ��� b�� �� b	 � b�� w�r�t� True�

If � is a function cls��� fun f� j �g �x � ��� e� where the expression fun f� j �g �x � ���
e has minimal type ��� ��� � � � ���� � � ��� w�r�t� �� then rule ClsType shows that type
*	 � �*�� �� ��� � *� � � � ���� � � ��� is a subtype of 	 w�r�t� True� Theorems 	� and �
 thus
prove that 	 � belongs to the domain *
 of *	 w�r�t� True� So let v be a fresh type variable�
let �� denote the context ��v� � � � � v � �� and �� denote the context ��� � �� � �� � v��
Rule Fun and lemma 	� show that �� is well�formed and that e has type ��

�� � ���� ��� in
typing context ���  �x � � 
� ��� Now� the fact that 	 � belongs to *
 implies in particular
that ����

� is well�formed� and by lemma 	�� we deduce that e has type ���� � ���� ��� w�r�t�
typing context ������  �x � � 
� ��� Finally� it is easy to see that� up to an ��substitution of
its variables� 	 � is a subtype of � 
� � w�r�t� �� ��

� and thus� by theorem 	�� we conclude
that e is well�typed and has type ���� � ���� ��� w�r�t� typing context �� � ���  �x � 	 ���
Consequently� starting the evaluation of e in environment �� � �

�� "��x � �� � 	 �� yields
a well�formed abstract machine� Assuming that this evaluation terminates and returns
a run�time value ��� with closed run�time type 	 ��� we know by hypothesis that 	 �� is a
subtype of the closure of ���� � ���� ��� w�r�t� �� � ��� which happens to be equivalent to
app�*	� 	 �� which� by theorem 	�� is a subtype of app�	� 	 �� and is thus a subtype of b	 � b��
w�r�t� True�

Proof of theorem ��

Let � be a solution� and F be such that F �v� � f��v�g for every variable v 	 �� Then
since ��v�� � v� for every variable v� 	 ��� we have F �v�� � #�F ��v��� Now� let v� 	 ���
and v be any variable in � such that v � v�� We know that since � is a solution� ��v� �
��v��� so ��v�� belongs to

S
v� �F 	v
 � v�� and ��v�� belongs to �

T
v
 v�

S
v� �F 	v
 � v���

Similarly� we show that ��v�� belongs to �
T

v�
 v

S
v� �F 	v
 � v��� and� �nally� we conclude

that F ���� � #�F ������ which proves that F is a pre�solution�

Proof of theorem ��

Let us assume that G is a maximum pre�solution such that jG�v��j � � for every
v� 	 ��� Since the same property holds for v� 	 ��� we denote by ��v� the unique element
of G�v� for any v 	 �� We thus have ��v�� � v� for every v� 	 ��� and G�v� � f��v�g for

���



every v 	 �� Moreover� for every v� 	 ��� we have��� ��v�� 	
T

v
 v�
fv� 	 �� j ��v� � v�g ���

��v�� 	
T

v� 
 vfv� 	 �� j v� � ��v�g ���

So let v� 	 �� and v� 	 �� be two distinct variables such that v� � v�� By property
���� choosing v � v�� we deduce that ��v�� belongs to the set fv�� 	 �� j ��v�� � v��g�
or else� ��v�� � ��v��� Similarly� assuming that v� � v�� we deduce that ��v�� � ��v���
Now� let v� and v

�
� be two distinct variables in �� such that v� � v��� By rule ���� choosing

v � v��� we deduce that ��v�� belongs to the set fv
�
� 	 �� j v

�
� � ��v���g� from which we

conclude that ��v�� � ��v���� which �nally shows that � is a solution�

���


