On the integration of
functional programming,
class-based object-oriented
programming, and multi-methods

Francois Bourdoncle Stephan Merz
Centre de Mathématiques Appliquées, Institut fur Informatik,
Ecole des Mines de Paris, Technische Universitat Munchen,
60, boulevard Saint-Michel, Arcisstrafie 21,
F-75014 Paris, France D-80290 Munchen, Germany
bourdoncle@cma.ensmp.fr merz@informatik.tu-muenchen.de

Final draft — March 23, 1996

Abstract

We present a new predicative and decidable type system, called ML, suitable for object-oriented
languages with implicit polymorphism in the tradition of ML (cf. Hindley [25] and Milner [32]).
Instead of using extensible records as a foundation for object-oriented extensions of functional
languages, we propose to reinterpret classical datatype declarations as abstract and concrete class
declarations, and to replace pattern-matching on run-time values by dynamic dispatch on run-time
types. ML« is based on universally quantified polymorphic constrained types, where constraints
are conjunctions of structural inequalities between monotypes built from extensible and partially
ordered classes of type constructors. We show how this type system can be used to design program-
ming languages retaining much of the ML spirit while integrating in a seamless fashion higher-order
and class-based object-oriented programming, dynamic dispatch on several arguments, and para-
metric polymorphism. We give type-checking rules for a small, explicitly typed functional language
with methods, and show that the resulting system has decidable minimal typing. We discuss type
inference for this language. We then define a strict operational semantics, prove subject reduction,
and show how abstraction and encapsulation can be achieved by proper use of a module system.
We present a prototype implementation of this type system and discuss algorithmic and implemen-
tation issues. In particular, we give a type-checking algorithm which is exponential in the worst
case but i1s expected to be polynomial in practice. We conclude by a comparison with other similar
type systems in the literature, including ad-hoc polymorphism, dynamics, systems for performing
type inference in the presence of primitive subtyping, as well as impredicative systems like F<.

Contents

1 Introduction
2 Definitions and notations

3 Constraints

3.1 Informal introduction e
3.2 Constraint implication L 0 oL
3.3 Constraint normalization 0.

3.3.1 Well-kinded constraints

3.3.2 Normalization by rewriting
3.4 Interpretation of constraint implication L.
3.5 Decidability of constraint implication
3.6 Constraint contexts e e e

4 Type system

4.1 Types .« o o o e e e e e e e e e
4.2 Functional types and domains o L L.
4.3 Datatypes o e e e e

5 Type-checking

5.1 Programs
5.2 Minimal typing L
5.3 Exampleso e
5.4 Curried methods L o

6 Operational semantics

7 Algorithms
7.1 Constraint implication L o 0 o
7.2 Typeinference e

8 Extensions

8.1 Modules oL
8.2 Multi-methods L
8.3 Abstract, concrete, and template classeso o 0oL L

8.4 Side-effects and references e 59

8.5 Nonvirtual, virtual, and purely virtual methods 59
8.6 The dot notation e 60
8.7 Typeclasses o o L e e e 60
8.8 Implementation inheritance oo o Lo 62
9 Related work and conclusion 63
9.1 Related work e e 63
9.2 Conclusion e e e 69
A Proofs 75

List of Figures

1.1
1.2

2.1

3.1
3.2

4.1

5.1
5.2
5.3
5.4
5.5

6.1
6.2

7.1
7.2
7.3

8.1

Lists and sized lists L o 6
Points and colored points o o oo 8
Monotypes, constraints, types, and domains 11
Constraint implication 0 0 15
A rewrite system for prenormal formo oo 18
Type and domain orderings o o oo 24
Programs, type declarations, and expressions 33
Typing rules oL 38
Numerical operators e e 42
Curried methodso o 43
Concatenation of sized lists o o oL 44
Well-typedness of run-time values L oL, 47
Operational semantics o 0 o 48
Restricted implication o0 o o 51
Counter-example for the greatest fixpoint algorithm 52
Algorithm to decide restricted implication 53
Typeclasses e 61

Chapter 1

Introduction

Two of the most important programming paradigms today are functional programming,
putting the emphasis on higher-order functions, and object-oriented programming, empha-
sizing data encapsulation and dynamic dispatch. Whereas the first paradigm is extremely
well understood theoretically, and has led to the development of programming languages
with very clean semantics, the second paradigm seems to have gained much more accep-
tance among practitioners. Indeed, properly written object-oriented programs are usually
much easier to extend and maintain than their functional counterparts. However, the
expressive power of higher-order functions can lead to very concise and clear programs,
and object-oriented languages would clearly benefit from such a concept.

So far, most efforts to fill the gap between the two paradigms have been put into the
so-called “objects-as-records” model or into specific object calculi [2], leading to power-
ful systems exhibiting most of what are considered valuable object-oriented features, in
particular extensibility and data encapsulation. However, these systems often require a
second-order formalism [16] or recursive types, usually fail to consider methods as first-class
objects, thus preventing them to be passed as arguments to other methods or functions,
and cannot deal easily with binary methods [7] without resorting to the notion of matching
[6] in addition to the notion of subtyping, which can be somewhat confusing. On the other
hand, recent work on the alternative “methods-as-overloaded-functions” model [14, 17] has
exemplified the possibility of having powerful type systems for object-oriented languages
where methods are defined outside the scope of objects and are just sets of functions dis-
patching on the type of all their input arguments simultaneously. However, these systems
are either first-order and monomorphic [14], second-order impredicative systems dealing
with explicit polymorphism [10] or extend the classical higher-order predicative model of
implicit polymorphism [1, 3, 18, 19, 20, 26, 30, 39, 40], but resort to ad-hoc polymorphism
or dynamics to emulate methods.

This report is an attempt to show that it is possible to design a strongly typed, higher-
order object-oriented language with a polymorphic, predicative and decidable type system
by only slight modifications to languages in the tradition of ML, and without resorting to
“dirty” ad-hoc polymorphism (that is, overloading mechanisms allowing the same function
to work non-uniformly on totally unrelated types). Our key ideas are 1) to clearly separate
specification and implementation to allow extensibility and scalability, 2) to use a module
system to provide data encapsulation, 3) to add primitive subtyping to allow the definition

of class hierarchies, and 4) to replace pattern-matching on run-time values by dynamic
dispatch on run-time types. Basically, we argue that an ML declaration of the form

datatype list[a] = nil | cons of « x list[a/]

should be split into a specification part and an implementation part, as illustrated by figure
1.1. The specification part, which takes the form of an interface, declares the existence
of a type constructor list (i.e., an abstract parameterized class, in OO parlance), of a
data type constructor nil (i.e., a concrete parameterized class), which is a subconstructor
of list with an empty record implementation, as well as the existence of explicitly typed
methods attached to objects of this type. These type declarations specify both the run-
time behavior of methods and the existence of actual implementations [4].

The implementation part, which takes the form of a module, declares a data type
constructor cons as a subconstructor of list. Since we are in the presence of subtyping,
we must talk about the variance of type constructors explicitly. To this end, we define
the type constructor class List, in a way similar to that of Gofer and Haskell [24, 27],
as a set of covariant type constructors with arity one, and we explicitly declare that nil,
cons, and list are members of List. Of course, the fields of data types must comply with
the explicitly declared variance of their type parameters, which is the case for cons here,
since « is covariant both in 1: e and in 2: list[a]. Moreover, in order to avoid dealing with
implementation inheritance (which, we believe, is a syntactic notion), we impose that data
type constructors have no subconstructors. Therefore, data types represent sets of records
with the same “tag”. This approach differs from that of ML, where “tags” are run-time
values which are not reflected in the type system. For instance, a ML type like list[int]
denotes the set of empty and non-empty lists of integers, whereas a ML« type like cons]int]
denotes the set of non-empty lists of integers. We shall see that whereas ML-style pattern
matching is performed on run-time values, ML< performs dynamic dispatch on run-time
types, which express global properties of run-time values. As a consequence, dispatching
on the fact that a value has type list[int] v.s. the fact that the value has type list[real]
is something which can be imagined, even if the current axiomatization of the system
does not allow it. Moreover, having types like consint] allows data extractors to be total
functions over their domain. For instance, the extractor associated to the first field of a
cons has type

Va. cons[a] — list[a/]

in ML<, as opposed to
Va. listfa] — list[o]

in ML. Of course, it is always possible to hide type constructors nil and cons in the
implementation module and only export type constructor list and boolean-valued functions
like isNil and isCons.

Note that the implementation of method cons in module List is correct w.r.t. its
specification since it has type Va. (a, listfa]) — cons[a], which is a subtype of the type (or
specification) of cons. Also, note that since cons is not exported in the interface, inferring
the type of the method from the type of one if its implementations does not really make
sense. Finally, note that the list of methods declared in the interface is not exhaustive,
as opposed to the original presentation of type classes [44] (later relaxed in System O

interface List is meth tail(l: cons) = cons.2 [;

class List[&]; meth size(l: nil) = 0;
type list: List; meth size(l: cons) = 1 + (size (cons.2 [))
data nil: List; end List;

order nil C list;
data nil[a] is end; module SList is

meth cons: Vo (o, listja]) — listfa]; open List;

meth head : Yo listfa] — «; type slist: List;
meth tail: Ya. listfa] — list[a]; data scons: List;
meth size: Vau. listja] — int order slist [list;
end List; order nil C slist;
order scons [slist;
module List is data scons[a] is 1: a; 2: slist[a]; 3: int end;
data cons: List; meth cons(z: _ 1: slist) = scons & [(1 + (size [));
order cons [list; meth head(l: scons) = scons.1 [;
data cons[a] is 1: a; 2: list[a] end; meth tail(l: scons) = scons.2 [;
meth cons(z: _l: _) = cons z [; meth size(l: scons) = scons.3 [
meth head(l: cons) = cons.1 [; end SList;

Figure 1.1: Lists and sized lists

[39]). New methods, for instance “private” methods, can thus be defined as needed in
any interface or implementation module, and, as in ML, passed as arguments to other
functions.

Now, suppose that the problem at hand requires computing the size of lists very
frequently, so that we would rather use explicitly sized lists, and that in order to reuse
some library code, we want to consider a sized list as just another sort of list. Then
one possibility, implemented in module SList of figure 1.1, is to define a constructor slist
between nil and list, a data type constructor scons of List as a subconstructor of slist, and
to refine method cons so that it builds sized lists whenever its second argument is a sized
list (which can either be the empty list or a sized cons). This way, all lists built using
the cons method, and in particular, lists built by library functions, will be sized lists.
Of course, it is still possible to build regular conses, but this is now only possible in the
List module, or via a function exported by List. Note that had data type constructor
nil been abstracted in the interface, a new implementation for empty sized lists with no
relationship whatsoever with nil should have been defined in module SList.

Primitive subtyping provides great expressive power. Indeed, we only require that the
ordering between type constructors of a given class be a partial order, and we could imagine
having a numeric class Num with the following “mathematical” ordering neg, zero, pos C

int C real, dyadic, where neg, zero and pos denote the sets of negative, null and positive
integers, int denotes the set of all integers, real denotes the set of reals, and dyadic denotes
the set of 2-adic numbers, which have recently been advocated as a foundation for the
design of synchronous digital circuits [43]. However, this power ordinarily comes at a
price: the loss of principal typing. Indeed, suppose function twice has type Va. (o —
a) — (o — «a) and function f has type real — int. Then the expression (twice f) has
types real — real and int — int, none of which is better than the other.

To solve this problem, we propose to enrich the Hindley-Milner predicative type sys-
tem for implicit polymorphism with the notion of polymorphic constrained type of the form
V9: k. 8, where 9 is a set of variables, & is a constraint, and 8 is a monotype. Constrained
polymorphic types have been proposed by some authors, in particular to accommodate
overloading in various ways [19, 20, 29, 39] or to perform type inference for object-oriented
languages or languages with primitive subtyping [5, 21, 22, 23, 26, 29, 33, 34, 35, 41, 42].
Our system is original in that it merges the two approaches: methods are, in a sense,
“cleanly overloaded functions”, and their polymorphic constrained types have constraints
which are conjunctions of inequalities between monotypes. As we shall see, this modifica-
tion leads to a clean notion of functional type application and ensures decidable minimal
typing. For instance, the type of the above expression would be

Ya:int < a <real. a - «

that is, the expression has type o« — « for any « between int and real. As a matter of fact,
function twice can, as in [29], be given a better type

Va,f3: 8 < a. (o =) = (o =)

which gives (twice f) the same minimal type as f.

Another advantage of polymorphic constrained types is that they naturally allow a
precise typing of methods like the move method of figure 1.2. Intuitively, the move
method takes an object with dynamic type « below point as input and returns an object
of the same type o« as output. The type of this method is thus Ya: o < point. o — a.
Note that we have defined four type constructors: two type constructors point and cpoint,
which play the role of abstract classes (that is, classes which only provide interfaces),
and two data type constructors pt and cpt which play the role of concrete classes (that
is, classes which provide implementations and can be instanciated at run-time). It is
important to remark that data type constructors like cpt and pt have to be minimal (that
is, cannot have subconstructors) to ensure that the two implementations of the method
are well-typed. Indeed, if pt had a subconstructor ¢, then the first implementation of
the method may accept an argument with dynamic type o« = ¢ and return an object
with dynamic pt which is not below «. Also, remark that the absence of implementation
inheritance implies that the first two fields of the two data types are unrelated, so that
the code for methods operating on these two fields must be duplicated, as opposed to
some systems based on extensible records [26]. This is not too much of a problem in a
purely functional language, but can be problematic if data types have state. In chapter 8,
we show how duplication of code can be greatly reduced by adding appropriate syntactic
sugar. Note that the type of method move looks like a F< type, but this is only a

// Constructor class // Implementation of data types
class Point[]; data pt[] is

1: real; 2: real
// Type constructors d
end;
type point: Point; 7
ypep _ o data cpt[] is
type cpoint : Point; .
1: real; 2: real; 3: int

// Data type constructors end;

data pt: Point; . .
_ // Method to move points functionally
data cpt: Point; .
meth move: Ya: o < point. o« — o

/7 Subtyping meth move(z: pt) =

order cpoint [point; pt (inc (pt.1 z)) (inc (pt.2 z));

order pt C point; meth move(az: cpt) =

order cpt C cpoint; cpt (inc (cpt.l z)) (inc (cpt.2 z)) (cpt.3 z));

Figure 1.2: Points and colored points

formal similarity, since ML< is a decidable predicative type system dealing with class
hierarchies and implicit polymorphism, whereas F'< is an undecidable unpredicative type
system dealing with explicit polymorphism. Also, note that the type of move could be
compared to the specification that could be given in object-oriented languages allowing
the like self or self_type type specifiers, namely

abstract class point is
virtual method move(): like self;

end

However, as opposed to single-dispatch languages, polymorphic constrained types also
allow for a very precise and natural typing of methods dispatching on multiple arguments.
For instance, the subtraction operator! sub can be given the following type

Va:int < a. (o, 0) — «

denoting any operation such that if there exists a numeric type o above int which is also
above the dynamic types of the first two arguments of the operator, then the type of the
result is below «. Consequently, reals and 2-adic numbers cannot be subtracted from one
another (since there is no a above int, real, and dyadic), the subtraction of two integers is
an integer, and the subtraction of two positive integers is an integer. Indeed, the minimal
type of sub (+1,41) is precisely

Va:int < a A (pos, pos) < (a, a). o

'See figure 5.3 for details.

which, as we shall see, is equivalent to
Va:int < aApos < aApos <a.a
which, since the constraint pos < « is obviously redundant, is also equivalent to
Ya:int < o. @

which, in turn, is equivalent to int, since int is the minimal solution of the constraint. In a
way, sub is “constant” below (int,int) and “polymorphic” above (int, int). We can see that
the type given to sub is much more precise than the type that can be given in systems
without primitive subtyping where methods are just overloaded functions. Moreover, tricks
as the like self type specifier do not work for methods dispatching on multiple arguments,
precisely because there is no notion of self in such cases.

This report is organized as follows. In chapter 2, we fix some notations and definitions.
In chapter 3, we introduce the notion of type structure and the notion of type constraint,
and we prove decidability, soundness and completeness results about the universally quan-
tified implication of existentially quantified constraints. In particular, we show that our
axiomatization of constraint implication is invariant w.r.t. extensions of the type struc-
ture. In chapter 4, we introduce the syntactic notions of polymorphic constrained type
and polymorphic constrained domain, and give a semantic interpretation. We introduce
a decidable subtyping relation between universally quantified polymorphic constrained
types, and show that functional types denote monotonic type transformers. In chapter 5,
we introduce an explicitly typed applicative language with functions and methods, give
typing rules for this language, and show that the resulting system has decidable minimal
typing. In chapter 6, we give an operational semantics of the language and prove subject
reduction. In chapter 7, we give an algorithm for constraint implication which has an
exponential worst-case complexity, but is polynomial in practice. We also give indications
on how to implement type-checking, and study how type inference may be performed for
an untyped version of the language. In chapter 8, we show how standard object-oriented
concepts may be emulated in ML<, we show how to design a module system for ML< with
modular type-checking, and we study extensions like multi-methods and type classes. Fi-
nally, we conclude in chapter 9 by comparing ML< with other object-oriented type systems
in the literature, including ad-hoc polymorphism, dynamics, systems for performing type
inference in the presence of primitive subtyping, as well as impredicative systems like F'<.

Chapter 2

Definitions and notations

Let us fix some notation and definitions. We assume the existence of a possibly infinite
set of “names” such as Unit, Arrow, List, Bool, etc. A type constructor class C' is a tuple
(Nc,Tc, De,Ce, dc) where N is a name, called the name of the class, T¢ is a finite
and non-empty set of elements ¢, called type constructors, Do C T is a set of elements
dc, called data type constructors, C¢ is a partial order! on T such that every data type
constructor d¢ is minimal with respect to C¢. The variance d¢ of a class C is a tuple
of elements of {&, @, ®} denoting the variance of its type constructors in the context of
subtyping. A class with variance d¢ is said to be dg-variant. The element @ corresponds
to covariant arguments, whereas © and ® correspond to contravariant and non-variant
arguments respectively. The length of J¢ is called the arity of C', and by extension, the
arity of type constructors t¢ € To. Type constructors with arity 0 are called base type
constructors.

A type structure is a finite set T of type constructor classes such that any two distinct
elements Cy, Cy of T are such that N¢, and N, are distinct and T, and T, are disjoint.
Each type constructor is thus associated to a unique class in 7 and each class has a unique
name, so that we generally identify classes with their name. We assume that every type
structure contains a ()-variant class Unit with at least one data type constructor unit, and
a (5, @)-variant class Arrow with at least one data type constructor —. In examples,
we also assume a (@)-variant class List with data type constructors nil and cons below
type constructor list, and a ()-variant class Bool with data type constructors true and false
below type constructor bool.

For every type structure 7, the set Gy of T-ground monotypes 6 over T (or just
ground monotypes 6 in G, when T is implicit) is the least set such that when t¢ is a type
constructor of a class C' in T with arity n and 6y,...,6, are ground monotypes over T,
then tc[fy,...,0,] is a ground monotype.

A type structure can be seen as a collection of constructor classes and type constructors
accessible in a given scope (e.g., an interface or a module). Since our goal is to model
object-orientation, we must provide for the extension of type structures in new modules
and interfaces. A type structure can be extended in two ways: by adding new classes or

' A partial order C is a reflexive (x C), transitive (¢ C y and y C z implies « C 2) and antisymmetric
(z C y and y C = implies & = y) binary relation.

10

C-constructors ¢c = to | ve

Monotypes 6§ == ¢c[Oc]|v

Constraints K = ¢ocCoc|0<b|rAEK
Variable sets ¢ = Qoo |90

Types T = Vd: k.0

Domains § = Fd:k. 0

Figure 2.1: Monotypes, constraints, types, and domains

by adding new type constructors to existing classes and extending the partial orderings of
the extended classes. However, not all extensions are admissible. For instance, if two type
constructors t¢ and ¢}, of a class C' are not related by C¢ in some interface, it is incorrect
to add a type constructor tf. to C' such that t¢ C¢ ¢ and t}. C¢ t., since this would
relate t¢ and ¢}, and enforce a property which is not present in the interface. We thus say
that a type structure 7* is an admissible extension of a type structure 7 if for every class
C = (Nc,Tc,Dc,Ce,0c) in T, there exists a class C* = (Ngx, Tow, Dos, Cox, dox) in T
such that Nox = Ng, Tox O T and Dex O Do, dox = 0c, and for all type constructors
t1,t3 € To, we have t; Cox to if and only if ¢ty E¢ ty. The overall requirement that data
type constructors are minimal in any constructor clags implies that 7* cannot define a
subconstructor of any data type constructor defined in 7.

Assuming an implicit type structure T, we define monotypes, constraints, types and
domains by the grammar of figure 2.1. As usual, we write 6; — 6, to denote — [0y, 03] and
assume that the arrow is right-associative. We assume the existence of a collection of at
least countable and pairwise disjoint sets of variables: a set of type variables v (representing
ground monotypes) and, for each class C, a set of C'-constructor variables vc (representing
type constructors of class C'). However, in informal exposition, we use a universal set of
variables «, 3, v, etc., and use the notation o € C' to denote that « is a C-constructor
variable. Variables are bound by the universal and the existential quantifiers. We treat
variable sets 1 as sets of variables, and use the constant) to denote the empty set. A
C'-variable set ¥ is a variable set of the form vy, ..., v, where vy, ..., v, are distinct type
variables and n is the arity of C. A C'-monotype list O¢ is a list 01,...,60, where n is the
arity of C'. We denote by true the trivial constraint (unit C unit), and by V¥. 8 the fully
polymorphic type V9: true. 8. We treat constraints as sets of conjuncts. Given a variable
set ¥ and n syntactic terms Xy and X,,, n > 2, we write Xy # ... # X,, [¥] to denote
that for any distinct ¢ and j in [1, n], every variable which is free both in X; and in X;
belongs to ¥. We simply write X #£ --- # X,, when ¥ is the empty set. We say that a
syntactic term X is ¥-closed for some variable set ¥ if the free variables of X are all in
?. For any syntactic terms X and Y, the meta-notation X{Y} denotes the term X and
indicates that Y is a subterm of X. We use the notation (6 = ¢’) to denote the constraint
(0 < ¢ NO < 6). By abuse of notation, we frequently omit the brackets for base types of
the form to[].

We define the standard ordering < as the smallest relation over G such that to Cgo

11

tr, and O¢ <¢ OF implies t¢[Oc] < t[O], where the relation <z on C-monotype
lists is defined as the componentwise ordering induced by the variance of C'. In other
words, assuming d¢ = (9}, ...,0%), we define 61,...,6, <c 60},...,6, as the constraint
Niepn) 0: §8¢C g:, where 0 <g ¢ is defined as 0 < 0, 0 < ¢ is defined as 6’ < 6, and
§ <g ¢ is defined as § = #'. Note that § < t/,[0F] or t,[O] < 0 implies that § is of
the form t-[O¢], for some to and ©¢. Moreover, § < @' implies that the outermost type
constructors of # and ' are of the same type constructor class.

A ground substitution (or T-ground substitution, when 7 is explicit) is a total func-
tion mapping type variables to ground monotypes and C-constructor variables to type
constructors in T¢. For any variable set 9, a ¥-substitution o € S(9) is a total function
mapping type variables to monotypes and C'-constructor variables to C-constructors, such
that the domain {z | o(z) # 2} of o is finite and disjoint from ¥. In other words, o
maps variables to terms of the proper kind and is the identity for all variables in #. For
any variable sets ¥, ¥; and 93, a renaming o € R(J;91;93) is an injective J-substitution
mapping type variables to type variables and C-constructor variables to C-constructor
variables, such that {o(z) | « € 91} is disjoint from ¥;. In other words, o preserves
variables in ¥ and renames variables in ¥; with names which are not in ¥,. Note that
R (9; P15 ¥2) is non-empty if and only if ¥, ¥; and ¥, have an empty intersection, and that
every renaming o € R(¥;1;9;) is a bijection whose inverse is a ¥-substitution. For any
substitution ¢ and syntactic term X, we denote by X[o] the syntactic term obtained by
applying the substitution o to X.

12

Chapter 3

Constraints

3.1 Informal introduction

As indicated in the introduction, universally quantified polymorphic constrained types
(that we just call types, as opposed to monotypes) have a great expressive power. But
this power comes at a price: many syntactically different types can have the same intended
meaning. For instance, types like Va: int < a A @ < int. @ and V(). int are syntactically
different but semantically identical. It is thus important that types which are intended
to be the same be formally identified by the type system. We propose to perform this
identification by defining a subtyping relation between types and saying that two types
are semantically equivalent if they are subtypes of one another.

This approach of defining a subtyping relation between types is more in the tradition
of impredicative systems like F'< than in the tradition of ML. Indeed, in predicative type
systems, subtyping is generally implicitly defined in terms of instantiations, that is, a
polytype is “below” all its ground instances. For instance, Ya. o« — « is a subtype of
int — int and bool — bool. In other words, the intuitive denotation! of a polytype is its
set of ground instances, and a polytype 71 is a subtype of another polytype 7 if and only
if every ground instance of 75 is a ground instance of 7. As a consequence, ML types are
equivalent if and only if they can be a-substituted.

We may be tempted to generalize this idea here by saying that the denotation of a
type V¥ k. 8 is its set of ground instances, that is, monotypes of the form o] for ground
substitutions ¢ such that the constraint x[o] holds w.r.t the standard ordering. This is
indeed a good intuition, but it yields a definition of subtyping which is not compatible
with the standard ordering on ground monotypes. As a simple example, consider the type
T=VYa:int < aAa<int. a. The only ground instance that satisfies its constraint is int,
and we would therefore expect 7 to be equivalent to V. int or simply int. In particular,
we want 7 to be a subtype of real, although real does not satisfy 7’s constraint.

We argue that the intuitive denotation of a type should be defined as the upper-closure
of its set of ground instances. The rationale is that if a type is a subtype all its ground
instances, then by transitivity, it should also be a subtype all the supertypes of its ground

'Not to be confused with the classical ideal model of parametric polymorphism [32], where types are
lower ideals, even in the absence of primitive subtyping.

13

instances.

Without primitive subtyping, this definition is equivalent to the standard ML notion,
but in the presence of primitive subtyping, our definition ensures that types like Yar: int <
a. @ and V(. int are semantically equivalent, since they have the same denotation, namely
all the supertypes of int. Moreover, defining a subtyping relation between types this way
makes perfect sense in the context of object-orientation. For instance, if a function has
a formal parameter with type int — int, then actual parameters with type real — int or
Ya. a — « are legal since both types are subtypes of int — int. Indeed, if the formal
is a function with type real — int, then, in particular, it can be used as a function from
integers to integers. Similarly, if the formal is a polymorphic function with type Vo. o — o,
meaning that for any «, in particular o = int, this function returns an «, then it can also
be used as a function from integers to integers. Therefore, our subtyping relation matches
the notion of “substitutivity” in object-oriented frameworks.

On the other hand, we require all quantifiers to occur at the outermost level; this makes
polymorphic constrained types somewhat weaker than the types of an impredicative system
like F<. In particular, ML< does not provide a way to enforce that a formal parameter
be a polymorphic function.

Intuitively, the universal quantifier can be interpreted as the greatest lower bound, so
that, for instance, Va: int < . o can be read as “the (set of) smallest o above int”, which
is precisely int in this simple case.? With such an interpretation, it is natural to say that
a type 71 of the form V#: kq. 61 is a subtype of another type m of the form Vs : kq. 05 if
and only if every ground instance of 75 is above at least one of the ground instances of 7.
Formally, assuming an implicit type structure 7, and assuming that ¢y and ¥, are disjoint,
we may say that 7 is a subtype of 7 if and only if for every ground substitution o4 such
that ry[oo] is a true ground constraint, there exists a ground substitution oy that agrees
with o2 on the variables of 93 such that (k1 A 6y < 63)[01] is a true ground constraint. In
other words, we want the following first-order implication to hold

Vg kg = (3191./431 AN < 02)

However, this requirement is imprecise without stating the intended universe for the
bound variables. In the context of object-orientation, the “universe” of type constructors
is open by essence, in order to allow the addition of new type and data type constructors in
different modules. Nevertheless, a type-correct program should remain type-correct when
the type structure is extended. Consequently, the notions of subtyping and constraint
implication which are of interest to us must be invariant w.r.t. admissible extensions of
the implicit type structure 7 in which type-checking is performed. For example, let us
assume that 7 contains a ()-variant constructor class C' with type constructors ¢y, ¢z, and
c3 partially ordered by ¢y C¢ ¢3 and ¢ C¢o ¢3. The problem is then whether a type 7 like

VYa:cp <aAhe <oaw

2In general, types denote sets of ground monotypes, because we do not require type constructor classes
or the set of ground monotypes to be lattices. In effect, we use sets to obtain a sup-semi lattice structure
for types. This will be made more precise in chapter 4. As a matter of fact, we conjecture that the semantic
denotation of a type can still be defined as the intersection of the ideal denotation of the elements of its
intuitive, upper-closed denotation.

14

[Approz] V9. k{r'} E «

[CRef] V. kK E KA ¢c C oo

[CTrans] V9. k{¢c C ¢ C ot} E w A ¢ C o

[CTriv] Y9.kE kANt C i (tc Cc)
[CMin] V. k{oc Cde} ErAde C ¢

[VIntro] V9. klo] E & (0 € 8(9))
[VELm] V9. k{v~ ¢c[Oc]} E v A v =v,[0] (v # O # (0, K))
[MRef] VY9.xERAOLO

[MTrans] V9.x{0 <8 <"} Ern0<E’

[MIntro] V9. k{Oc <c O A¢c E ¢} = kA dc[Oc] < ¢[0¢]

[MEUim] V9. i{¢c[O0] < ¢p[06]} E £ A do E ¢ AOc <o O

Figure 3.1: Constraint implication

is equivalent to V(. ¢3 or is just a strict subtype (since the smallest o above ¢; and ¢; in
any admissible extension of 7 is necessarily below ¢z, which is an upper bound of ¢; and
¢32). So suppose that a new constructor ¢y is now added to C' with the ordering ¢; C¢ ¢y,
c2 Co ¢q and ¢4 Co 3. The addition of ¢4 is admissible since it does not change the
ordering between existing constructors. In this new context, the greatest lower bound of
c1 and ¢y is ¢4, not c3, hence 7 is not equivalent to V. c3. Formally, for 7 and V0. ¢35 to
be equivalent, both constraint implications

V0. true = Ja. (cp Lanes < aha<cs)

and
Va. (g <ahe<a) = (3 < a)

would have to hold in every admissible extension 7 of 7. This is indeed the case for the
former implication, but not for the latter, which does not hold for o« = ¢4. Consequently,
Va: e < aAcy < a.ais astrict subtype of V0. cs.

3.2 Constraint implication

We must therefore try to axiomatize this notion of constraint implication in a decidable
way. To this end, we introduce the judgement V. x |= &’ which reads “constraint &
implies x’ for all ¥ axiomatized by the rules of figure 3.1 plus the transitivity rule

Y. K1):I{Q Y. 2%):I{g
Y. K1): R3

[Trans]

15

In these rules, we write #; ~ 65 to denote either 81 < 6, or 65 < 6. If ¥ is the empty
set, we simply say that x implies x’. A constraint & is said to be well-formed if true
implies k. Two constraints are said to be ?-equivalent if they imply each other for all 4.
The following lemmas are used to modify the set ¥ of universally quantified variables of
an implication: it is always legal to reduce ¥, but only variables that do not occur on the

right-hand side can be added to 9.

Lemma 1 (Quantificationl)

Vo, .k E R
Vi, k E K

Lemma 2 (Quantification2)

Vo.k ER KAV
R

The following lemma and corollaries are used to derive conjunctions sy A k3 on the
right-hand side of implications. Basically, such derivations are legal only when every
variable which is free both in k; and ko belongs to the set ¥ of universally quantified
variables.

Lemma 3 (Conjunctionl)

V. ki E R Y.k ERY K] # KL [D]
V. k1 A Ko |E K A KD

Corollary 4 (Conjunction2)

V. klE R Vi KEK K1 # Ky [V]
V. Kk = Ky A Ko

Corollary 5 (Conjunction3)

Vi, k{r'} E K" K is P-closed
Vo k= K AR

3.3 Constraint normalization

In this section, we show that well-formed constraints can always be reduced, for any given
variable set 9, to a simple ¥-equivalent form, called a ¥-prenormal form, which is essentially
the conjunction of a “substitution” k, for some type variable in ¥, a constraint x; on the
type variables not substituted by ks, and a constraint ko on C-constructor variables for
every class C'. The k; and k¢ constraints do not contain complex monotypes of the form
¢c[©¢]. This prenormal form is used to decide implication separately on type variables
and on C-constructor variables.

16

Definition 6 (Base form) A constraint ky is said to be in base form if it is of the form
kit N N\ceT ko, where 5y and ko are of the following form
Kkt = v <uv|Ke ARy

ko = ¢c C oo | ko N ko

Definition 7 (Prenormal form) Let ¢ be any variable set. A constraint is said to be
in ¥-prenormal form if it is of the form kg A Ky, where (1) Ky is a constraint in base form,
(2) ks is of the following form

ks = true|v=20|Ks AKg

and (3) for every type variable v such that v = 6 is a conjunct of ks, v belongs to ¥ and
v does not occur in 0 or in any other conjunct of k.

3.3.1 Well-kinded constraints

In order to prove that every well-formed constraint has a ¥-prenormal form, we first show
that every well-formed constrained is well-kinded, that is, it is unifiable once C'-constructors
are identified with their class C'. As always, we assume an implicit type structure 7, which,
in particular, defines a language (constants and variables) to write constraints. We define
an auxiliary algebra [7] that contains a function symbol C' of arity n for every n-ary type
constructor class C' of 7. We inductively define a function [_] that takes monotypes to
terms over [7] as follows:

[v] = wv ifvisa type variable
[oc[01,...,0,]] = Cl[b1],...,[6.]]

We say that a constraint s is well-kinded if [x] is unifiable, where the set of equations
[k] over [T] is inductively defined as follows

[kAKT = [K]U[K]
[¢c C der] = {C=C"}
(60 < 6] = {[6:] =[62]}
For example, if # is the constraint
list[a] < nil[(int, real)]
then & is well-kinded, since
{ List[a] = List[Pair[Num[], Num[]]] }

is unifiable in [7]. Note, however, that x is not well-formed, because list C nil does not

hold.

Lemma 8 Assume that ky is a constraint such that [k1| is unifiable, and that k1 implies

ko for all 9. Then [kry] is unifiable.

Corollary 9 Fuvery well-formed constraint x is well-kinded.

17

(N1) S, (kAdc[O] < ¢p[O]) —s S, (kA¢c E ¢ ANO <¢ ©)

(N2) S, x{v =~ ¢c[O]} — (SAv=0vc[dc]), klvc[Pc]/v]
if v € 9, where v # V¢ # (v, 9,5, k)
(N3) S, k{v = ¢c[O]} — 9 Sluc[de]/v], wlve[do]/v]

if v ¢ 9, where ve # Vo # (9,5, K)

Figure 3.2: A rewrite system for prenormal form

3.3.2 Normalization by rewriting

Consider the rewriting system A that consists of the rewrite rules (Ny), (N3), and (Ns)
shown in figure 3.2, where ¥ is some variable set. Rewriting occurs on pairs of constraints
(S, k) where S consists of equations of the form v = 6. We denote by =4 the rewriting
relation induced by these rules, and by = the reflexive and transitive closure of =4. In
this section, we prove the following facts, assuming that x is well-kinded:

o if (S,K) =y (5',K'), then S Ak and S’ A k" are #-equivalent constraints;

o if (true,rx) =7 (S’, k'), and (5', k') cannot be rewritten via =4, then S Ak’ is a
constraint in ¥-prenormal form;

e if x is well-kinded, then (true, x) does not allow an infinite sequence of rewrite steps.

At first, we state an auxiliary lemma, which intuitively says that the constraints KA (v =
) and k[0/v] A (v = 8) are equivalent, where x[f/v] denotes the constraint obtained from
k by substituting @ for all occurrences of v.

Lemma 10 If S Ak is well-kinded, then both V9. SAkAv=0FE SAK[0/v]ANv=20 and
Vi. S Ak[f/vJ]Av=0FESAK&Av=E8 hold for any variable set 9.

Lemma 11 If S A k is well-kinded, and (S,k) =4 (S',k'), then S Ak and S" A k' are
P-equivalent, and ' is well-kinded.

The next lemma says that pairs (9, k) that are irreducible w.r.t. =4 represent con-
straints in ¥-prenormal form.

Lemma 12 If x is a well-kinded constraint, and (true, k) =7 (S', &') is such that (S', k')
cannot be rewritten via =g, then S A k' is a constraint in 9-prenormal form.

It remains to prove that no well-kinded constraint admits an infinite rewrite via =y.

Lemma 13 If x is well-kinded, then there is no infinite sequence (S;, K;) ;>0 such that
(So, ko) = (true, k) and for all i > 0, (S;, K;) =9 (Sig1, Kig1)-

Theorem 14 (Prenormal form) Let 9 be any variable set. Then every well-formed
constraint is ¥-equivalent to a constraint in ¥-prenormal form.

18

3.4 Interpretation of constraint implication

In this section, we show that for any two well-formed constraints k1 and ko, k1 implies ko
for all @ if and only if
Y 9. (El 9. I{l) — (El ?s. I{Q)

holds for every admissible extension of 7 (the formal interpretation of the above first-order
formula is stated in theorem 16 below), where ¥ (resp. ¥3) is the set of free variables of
(resp. r2) which are not in 9. For the completeness proof, we make use of the prenormal
form for constraints of theorem 14. We state a preliminary lemma for future reference.

Lemma 15 For any base type constructors tc and ty., and any ground monotypes 6 and

0 of T, if Y. true =to Tty or Y. true |= 6 < ¢, then tc Tty or 0 < 0" holds in T .

The soundness of the axiom system of figure 3.1 can be shown by an obvious inductive
proof along derivations, and is formalized by the following lemma.

Lemma 16 (Soundness of implication) Let k; and ko be constraints and ¥ be a vari-
able set such that ¥9. k1 = Ky is derivable. Then for every admissible extension T* of
T and every T*-ground substitution oy such that ki[c] is satisfied in T*, there exists a
T*-ground substitution oy that agrees with oy for the variables in 9 such that ky[o3] is a
ground constraint satisfied in T*.

The remainder of this section is devoted to proving the completeness of our axiom-
atization of the implication, that is, the “if” part of the above statement (formalized in
theorem 22). By theorem 14, we may assume that s; is a constraint in J-prenormal form.
Moreover, we may assume that the only variables that appear both in k1 and k9 are in .
With this assumption, lemma 1 and lemma 2 imply that V. k; | k2 holds if and only if
Vi, 9. k1 |E K2 holds where ¥ is the variable set that contains all variables that appear in
K1, but not in @ or ky. For notational simplicity, we therefore assume that x; is ¥-closed.

We first consider constraints x; in base form. We show that we can define an admissible
extension of 7 from ky in a “syntactic” fashion. To this end, we define the set C¥ as the
set that consists of all ground type constructors o of class €' in 7 and all constructor
variables vo of class C'in 9. We denote by TV the set of type variables in 9. We define
binary relations ¢ on CV (for every type constructor class C'in 7) and =7 on TV as
follows

bc =c ¢ iff V. k1 | do = d¢
v=p o iff VR =0

Rules CRef, CTrans, MRef, and MTrans ensure that all relations =¢ and =7 are equiv-
alence relations on their respective domains. We denote the equivalence class of ¢ with
respect to =¢ by [¢¢] (and similarly for type variables), and define relations C} and <!
on these equivalence classes by

[oc] Ce [¢e] iff V0. w1 k= éo E ¢
[v] <' 1] iff V. K Ev <o

19

The following lemma shows that these relations are well-defined partial orderings and that,
moreover, the collection 77 that contains the type constructor classes CV/ =, as well as
an additional type constructor class 7%/ = whose orderings are given by ClL and <!is
(an isomorphic copy of) an admissible extension of T if ky is well-formed.

Lemma 17 Let ¢ be a variable set, and k1 be a well-formed 9-closed constraint in base
form. Then TV is (up to isomorphism) an admissible extension of T, where T consists of
the type constructor classes (No,C?/ Z¢, Do/ Z¢,CL, 0c) for every class C of T, and
the additional type constructor class T = (Np,T?/ Z1,0,<',()), where Nt is different
from any N¢, if 9 contains some type variable.

The following lemma shows that any ground constraint x (over the alphabet of 77)

holds in 7V iff k is implied by ; for all 9.

Lemma 18 Let ¥ be a variable set, k1 be a well-formed ¥-closed constraint in base form,
and k be a 9-closed constraint. Then r holds in TY if and only if k1 implies k for all 9.

We can now assert theorem 22 for the case where kq is a constraint in base form.

Lemma 19 Let @ be a variable set, k1 be a well-formed ¥-closed constraint in base form,
and k9 be any constraint. If for every admissible extension T of T, and every T *-ground
substitution oy such that ky[oq] is satisfied in T*, there exists a T*-ground substitution o
that agrees with oy on the variables of ¥ such that rylos] is a ground constraint satisfied
in T*, then ry implies ko for all 9.

It now remains to generalize lemma 19 to constraints in ¥-prenormal form.

Lemma 20 Let ¢ be a variable set, 8 be a ¥-closed monotype, k1 be a 3-closed constraint,
Ko be an arbitrary constraint, and v be a variable in ¥ which does not occur in k1, ko, or

0. Then ¥9.v=0Aky |E ko if and only if ¥9. k1 = Ko.
Lemma 21 Lemma 19 remains valid if k1 is a constraint in 9-prenormal form.

Theorem 22 (Interpretation) Let? be a variable set, and ki and ky be two well-formed
constraints. Then V9. k1 = ko holds if and only if for every admissible extension T* of
T and every T*-ground substitution oy such that ky[o1] is satisfied in T*, there exists a
T*-ground substitution oy that agrees with oy on the variables of ¥ such that ke[os] is a
ground constraint satisfied in T*.

Corollary 23 (Satisfiability) A constraint k is well-formed if and only if it is has a
ground solution in T .

20

3.5 Decidability of constraint implication

In this section, we sketch an extremely inefficient algorithm to decide whether V9. k1 = ko
holds. We make use of the prenormal form for constraints established in theorem 14 and
of several lemmas proved for theorem 22.

Let us call a derivation for ¥&. k1 = k2 normal if it ends with an application of rule
Vintro followed by an application of rule Approz, but does not apply VIntro before.

Lemma 24 [fV9. ky |= ko, then there is a normal derivation of V9. k1 |E Ka.

We say that a constraint x is simple if it does not contain any subconstraint of the
form v ~ ¢¢[O¢], and if for every subconstraint ¢¢[0] < ¢ [0], Oc <¢ O is a simple
constraint. In particular, a constraint in base form is simple. For simple well-kinded
constraints, we define a syntactical operation atomize inductively as follows:

= ¢¢ C ¢¢
= v<v
= ¢c C ¢ A atomize(© < ©)

= atomize(ky) A atomize(kg)

atomize(dc C d¢

atomize(v < v

atomize(pc[0O] < ¢ (0]
atomize(K1 A Ka

)
')
)
)
Clearly, if is simple and well-kinded, then so is atomize (k).

Lemma 25 Assume that kq is a well-kinded and 9-closed constraint in base form. If ko is
a 9-closed constraint in base form, then V9. k1 = ko holds iff V9. k1 |= k2 can be derived
using only the rules Approz, CRef, C'Trans, C'Triv, CMin, MRef, and M Trans.

Lemma 26 Assume that k1 and ko are ¥-closed and in base form and that ki is well-

kinded. Then it is decidable whether Y. ky = ko holds.

Reusing lemmas from 3.4, we can lift lemma 26 to arbitrary constraints s, in base
form.

Lemma 27 Assume that k1 and ko are in base form, and that k1 is ¥-closed and well-

kinded. Then it is decidable whether Y. ky = ko holds.
Finally, we establish the decidability of constraint implication.

Theorem 28 (Decidability) If k; is a well-formed constraint, and ko is an arbitrary
constraint, then it is decidable whether V9. k1 = ko holds. In particular, well-formedness
of constraints is decidable.

3.6 Constraint contexts

In order to deal with nested polymorphic functions, we define the notion of constraint
context (or context, for short) as a pair A, written (9: k), where 9 is a variable set and
k is a constraint. We say that A is well-formed if k is both ¥-closed, and well-formed.

21

Intuitively, a constraint context is one of the components of typing contexts (cf. chapter
5) and denotes the assumption “there exists variables ¥ such that x holds”. Let A and A’
denote the two contexts (9: k) and (¥': x'). We define the conjunction A A A’ of A and
A"as (0,9 : k AK'). If Ais well-formed, we say that A" is well-formed w.r.t. A if ¢ and
¥ are disjoint, s’ is (¥, 9')-closed, and x implies &’ for all ¥, in which case we define the
update A[A'] of A by A’ as the conjunction of A and A’, and corollary 5 shows that A[A’]
is well-formed. We define the trivial context True as (0: true). An alternative definition
would have had A’ well-formed w.r.t. A iff A A A’ is well-formed. For instance, if A is
of the form (a: true) and A’ is of the form (5: 3 < o A a < int), then A’ is well-formed
w.r.t. A for the latter definition, but is not well-formed for the former definition, since it
is not true that there exists a 4 such that § < « and « < int for every « satisfying true.
Unfortunately, this weaker definition is not very useful for the intended use of constraint
contexts: if A is an existentially quantified constraint, and A’ is a “nested” constraint,
e.g., the constraint defining the domain of a nested function, then A’ should not enforce
properties on the variables in ¥ that are not already present in &, or else, there is a risk
of inconsistency between nested constraints.

22

Chapter 4

Type system

This chapter formally introduces the notion of universally quantified polymorphic con-
strained type V9: k. . We define a syntactic preorder on the set of types and show that
this set is a sup-semi-lattice modulo equivalence. We show that functional types of the
form Vd: k. 8 — 6" denote monotonic type transformers over their domain 39: k. §. We
define a syntactic preorder on the set of domains and show that this set is an inf-semi-
lattice modulo equivalence. We show that types and domains are related by a membership
relation such that if a type belongs to a domain, then so does all its subtypes, which shows
that a type 7 is a subtype of another type 7 if and only if every object with type 7 can
be safely used everywhere an object of type m can be safely used. Differently stated,
domains denote downward-closed sets of types. This property corresponds to the sub-
stitutivity property associated to the subclasses of a class in class-based object-oriented
languages.

In this chapter, we assume given an implicit type structure 7 and and implicit well-
formed context A of the form (J: &).

4.1 Types

In this section, we assume given two variable sets ¥; and ¥; and two monotypes ¢; and
5. For i € [1,2], we define the type 7; as V¥;: k;. 6;. We say that 7; is closed if k; and
6; are ¥;-closed. We define the closure 7;[A] of 7; w.r.t. A as V@, B KA kg 0;. We say
that 7, is well-formed w.r.t. A, written A & 7, if (9;: K;) is well-formed w.r.t. A and ; is
(5, ¥;)-closed. If 71 and 73 are both well-formed, we say that 71 is a subtype of 75 w.r.t.
Aif A F 1 <€ 75 can be derived from rule Type of figure 4.1. We say that 7y and 75 are
equivalent w.r.t. A, written A F 7 = 7o, if 77 is a subtype of 79 and 7 is a subtype of 7.
When A is trivial or implicit, we simply write 7 < 7 and 7 = 7. For instance, type

Va, B: (nilla] < g Acons[a] < 5). 3
is a subtype of V~. list[y] since

Vy. true = (nilla] < B Acons[a] < G A S < list[y])

23

O'ER(1971917192) v197192.li/\l<32):m[a]/\@l[a] SOQ

Type
?: kE (Vﬁll K. 01) S (Vﬁgl K. 02) []

O'ER(1971927191) v197191.l<3/\l<31):/{2[0]/\01 SOQ[U]
9w (31913 KR1. 01) S (31923 R9. 02)

[Domain]

o€ R(I;91;02) V. K |E ki[o] Arg A Bi[o] < 6,
Pk (V010 k. 61) € (FVz: Ka. b7)

[Member]

Figure 4.1: Type and domain orderings

holds (choose v = v and 8 = list[y]), but they are not equivalent since

Va, 8. (nilla] < B A cons[a] < BA) E (list]y] < 5)

does not hold. This is easy to understand in an “open world”, since it may be the case
that in some other module of the program, constructors nil and cons have an upper bound
which is a strict subconstructor of list (cf. figure 1.1). The following lemma gives an
equivalent definition of subtyping which is less intuitive but can be handy in some proofs,
since this definition does not impose the renaming of the universally quantified variables
of one of the types.

Lemma 29 (Type ordering) LetT;, i € [1,2], be two well-formed types ¥, : k;. 0; w.r.t.
A, and v be a fresh type variable not in (5, Y1,92). Then 11 is a subtype of 72 w.r.t. A if
and only if

V@,U.RA@/\OQ <vER A <v

The next lemma shows that the universally quantified variables of a well-formed type
can be freely renamed as needed without altering its semantics.

Lemma 30 (Type renaming) Let 7 =Vi: k. 0 be a well-formed type w.r.t. A, and ¥’
be a variable set disjoint from V. Then T is equivalent to Vi[o]: k[o]. 8[c] for any renaming

o€ R(0;9;).

The following lemmas shows that the ordering on types is a consistent and decidable
extension of the standard ordering on ground monotypes.

Lemma 31 The type ordering relation is decidable.

Lemma 32 (Type extension) Let 6y and 6 be two ground monotypes such that 6, < 6,.
Then V(. 6 is a subtype of V0. 0 w.r.t. A.

We say that a well-formed type 7/ of the form V&' : «'. 8’ is an instance of a well-formed
type 7 of the form V9: k. 6 if there exists a ¥-substitution o such that x’ = k[o] and

24

¢’ = 0[o]. For instance, type V{: int < real. real — int, which is equivalent to real — int,
is an instance of type Vo, 5: 3 < a. o — 8 but V0: real < int. int — real is not, since the
constraint real < int is ill-formed. As in ML, we can show that every polymorphic type is
a subtype of all its instances.

Theorem 33 (Type instances) A well-formed type is a subtype of all its instances.

In particular, a type is a subtype of all its ground instances. Consequently, the universal
quantifier can be intuitively interpreted as the greatest lower bound, so that, for instance,
Va:int < . a can be read as “the (set of) smallest o above int”, which is precisely int
in this simple case. However, note that this interpretation is rather informal in that,
assuming a ()-variant class C' with type constructors ¢y, ¢g, and ¢z partially ordered by
ci Co c3 and ¢3 Cg c3, it is not the case that Va:c¢; < aAcy < a. a and V(. c3 are
equivalent (cf. beginning of chapter 3). This greatest lower bound interpretation is thus
only valid only if the greatest lower bound is a solution of the constraint.

Formally, defining the denotation of a well-formed type w.r.t. the trivial context and
type structure 7 as the following upper-ideal (i.e., upward-closed set of ground monotypes
w.r.t. the standard ordering, sometimes called filter)

Vo: k5.0l = {0/ €Gr|Ird.nkNn0 <0}
we have the following theorem.

Theorem 34 (Type denotation) Let T and 7' be two well-formed types w.r.t. the trivial
context and type structure T. Then 7 is a subtype of 7" if and only if [7'] 7+ is a subset of
[7] 7+ for every admissible extension T* of T.

The following theorem shows that the set of types is a sup-semi-lattice, that is, two
types with an upper bound have a least upper bound. This result, which holds without
any hypothesis on the partial orderings between type constructors, is particularly impor-
tant since the existence of a least upper bound is essential to ensure minimal typing of
expressions like conditional expressions.

Theorem 35 (Sup-semi-lattice of types) Well-formed types modulo equivalence form
a sup-semi-lattice with least element V. ov. Two well-formed types 7y and 15 are said to
be compatible if they have a common supertype. If 71 of the form V9, : k1. 61 and 15 of the
form N9z ky. 83 are compatible, (91 # 93), and v is a fresh type variable, then the least
upper bound (11 V 12) of 71 and T2 is equivalent to

Vo, 91,02: (ki ARa Ay <vAbBy <)o

4.2 Functional types and domains

A well-formed type is said to be functional if its monotype is of the form 6 — 6. We
intend functional types to be the types of functions and methods, and to denote monotonic
type transformers, abstracting the input-output relation of the function. However, as in

25

ML, typing rules must be able to deal with cases where the function has the empty type
Ya. «, as in
letrec loop() = loop() in (loop()) 1 end

for instance, where (loop ()) has the empty type, so that ((loop()) 1) also has the empty
type. In order to turn empty types into functional types, we define the functional cast
operator fun, as follows

Juna(VO: k.8 = 8) = VYo,o',d: kA0 < (v—=0). (v—=)

where v and v’ are distinct type variables not in (5, ?), and we say that 7 is prefunctional
if funa (1) is well-formed w.r.t. A. For instance, the minimum type Va. a is prefunctional
and is mapped to Ya, 3. o — (3 by the functional cast operator. The following lemma
shows that fun, is covariant (that is, monotonic w.r.t. the subtyping relation, which is a
preorder). In particular, fun, preserves equivalence. Also, note that functional types are
mapped to themselves (up to equivalence) by the functional cast operator and that every
prefunctional type is a subtype of its functional cast, so that fun, is an upper-closure over
the set of prefunctional types modulo equivalence.

Theorem 36 (Fun covariance) The functional cast operator is an upper-closure over
the set of prefunctional types, and if Ty is a subtype of o w.r.t. A, and 15 is prefunctional,
then funa (1) is a subtype of funa (2) w.r.t. A.

As every functional type denotes a type transformer, we may like to define the domain
of a functional type as the set of types over which it is defined. To this end, we define the
domain operator as follows

dom(Vd: k.0 —60") = F9: k.0

and for any prefunctional type 7, we define doma(7) as dom(fun(7)). Intuitively, the
domain of a functional type is its set of valid input types, and if types denote the upper-
closure of their set of ground instances, domains denote the lower-closure of their set of
ground instances. The idea is that function domains must be downward closed for the
“substitutivity property” associated to subtyping in object-oriented programming to hold.
For instance, a functional type 7 like Yor: o < real. (o, &) — «, which may be the type
of the addition operator over reals, has domain Ja: o < real. (a, a), which, intuitively,
contains all the subtypes of (real,real), e.g. (int,real). Note that the domain operator is
not injective. For instance, a functional type 7 like V(. (real, real) — real, which is a strict
supertype of 7y, has the same domain as 7, namely 3 0. (real, real). In other words, 7, and
79 denote two distinct type transformers over the domain of all pairs of reals.

The theory of domains is very similar to that of types. For i € [1,2], we define the
domain §; as 3¥;: k;. 6;. We say that d; is closed of k; and 6; are ¥;-closed. We define the
closure §;[A] of &; w.r.t. A as 35, P KA k. 0;. We say that &; is well-formed w.r.t. A,
written A F §;, if (9;: k;) is well-formed w.r.t. A and 6, is (5, ¥;)-closed. If 6; and & are
both well-formed, we say that §; is a subdomain of §; w.r.t. A if A+ é; < é5 can be derived
from rule Domain of figure 4.1. We say that §; and & are equivalent w.r.t. A, written
A F & = &, if 67 is a subdomain of §; and &y is a subdomain of é;. When A is trivial

26

or implicit, we simply write § < ¢’ and § = §’. As for types, the universally quantified
variables of a domain can be freely renamed, the ordering on domains is a consistent and
decidable extension of the standard ordering on ground monotypes, and can be given an
equivalent definition, namely, §; is a subdomain of d, w.r.t. A if and only if

V@,v.%/\mAvﬁOl Ery Av <6y

holds for some fresh variable v.

Now, defining domain instances like type instances, it can be shown that every well-
formed domain is a superdomain of all its instances. In particular, a well-formed domain
is a superdomain of all its ground instances. Consequently, the existential quantifier can
be intuitively interpreted as the least upper bound, so that, for instance, da: o < int. «
can be read as “the (set of) largest o below int”, which is precisely int in this simple case.
As for types, though, note that this is just an intuitive interpretation. Finally, it can
be shown that the set of domains modulo equivalence is an inf-semi-lattice with greatest
element Ja. «, and that the greatest lower bound (&; A d2) of two compatible domains §;
and ¢ is equivalent to

v, P91, 020 (ki Ake Av <O Av<b;). v

where v is a fresh variable.

We said earlier that domains denote sets of valid input types of functional types seen
as type transformers, but so far, we’ve only interpreted domains as downward-closed sets
of monotypes. In order to interpret domains as sets of types, we define a membership
relation between types and domains and interpret every domain as the set of types which
belong to it. Formally, we say that a well-formed type 7 belongs to a well-formed domain
0 if A+ 7 € 6 can be derived from rule Member of figure 4.1. In other words, 7 belong
to ¢ if and only if there exists an instance of 7 which is below some instance of 6. For
example, the minimum type Va. a belong to every domain, e.g., 30. unit, since

Vi. % E o < unit

trivially holds (e.g., choose o = unit). Note that 7 belongs to ¢ if and only if any renaming
of 7 belongs to any renaming of §. The following lemma show that type membership is a
consistent and decidable extension of the standard ordering on ground monotypes.

Lemma 37 Type membership is decidable.

Lemma 38 (Membership extension) Let 6, and 6y be two ground monotypes such that

61 < 60,. Then V.6 belongs to 0. 0y w.r.t. A.

The following theorem shows that domains are downward closed w.r.t. type member-
ship, that is, if a type belongs to a domain, then so does all its subtypes. In particular,
if a type 7 belongs to a domain ¢, than any type in the equivalence class of 7 belongs to
§ and 7 belongs to any domain in the equivalence class of . This “transitivity” property
shows that, as expected, domains denote downward-closed sets of types, which is of course
essential from the perspective of object-oriented programming.

27

Theorem 39 (Membership transitivity) The type membership relation is transitive
in the following sense

AbFr <my Al 719 €63 A1 €6 Al §y < d5
A|—T1€53 A"Tle(Sg

Note that this theorem also suggests that domains may be considered as existential
types by considering type membership as the partial ordering between types and domains.
Also, note that it is not the case that the least upper bound of two types in the same
domain § belong to 6. For instance, let § be the domain

Ja:int<aAa<real. a — «

71 be the type V(. int — int, and 7 be the type V(. real — real. Then 7 and 7, obviously
belong to &, but 7 V 7, which is a well-formed typed defined as

VE:int — int < g Areal - real < 3.3
does not belong to §, since the constraint
int<aAa<realAint —wint < FGAreal 2 real < A< a— «

is not satisfiable. This unfortunate property of type membership comes from the fact that
the denotations of well-formed types and domains are not necessarily principal ideals. Note
that, symmetrically, a type which belongs to two domains does not necessarily belong to
the greatest lower bound of these domains.

The following lemma shows that doma is contravariant (that is, anti-monotonic) and
thus maps equivalent types to equivalent domains. This property corresponds to our
intuition that it is necessary that doma(72) be a subdomain of doma (71) for a function
with type 71 to be used safely where a function with type 7 is expected.

Theorem 40 (Dom contravariance) The domain operator domy is contravariant, that
is, if 71 is a subtype of 2 w.r.t. A, and T3 is prefunctional, then doma(73) is a subdomain
of doma (1) w.r.t. A.

Now that we’ve studied the domains of functional types, we are going to see how a
functional type 79 of the form Vdg: xg. g — 6, can be identified with a monotonic type
transformer. To this end, we define the application app(7o, 71) of 7o to a well-formed type
71 of the form Vi : k1. 87 as

app(ro,rl) = v1907191[0'1]3 RQ A 51[0'1] A 01[0’1] S 00. 06

where oy is any renaming in R(@, ¥1;90). Note that app(mo, 1) is well-formed whenever 7
belongs to the domain of 7. For any prefunctional type 79 and any type 7y in the domain
of 19, we define appa (10, 71) as app(funa (7o), 71). In order to deal with curried functions
with several arguments, we inductively define appa (70, 71, ..., Tn) as

appA(appA(T07 Ty« Tn—1)7 Tn)

28

for n > 2. The following theorem shows that app is covariant in both arguments. As a
consequence, app is a function on equivalence classes of types modulo equivalence, and
the function Ary. appa (70, 71) is a monotonic type transformer which is total over the
domain of my. Together with theorem 40, this property shows that prefunctional types can
be identified with monotonic type transformers which are total over their domain, even
though the arrow type constructor on monotypes is contravariant in its first argument,
which is yet another evidence that the never-ending covariance/contravariance controversy
is unfounded [13].

Theorem 41 (App covariance) The type application operator app, is covariant in both
arguments, that is

AF7r <m Ab7 <7, AbFT1)e doma(rs)
A appp(ri,) < appa(r2,)

4.3 Data types

As stated in the introduction, the only run-time entities in ML« are functions, methods
and tagged records. The dynamic type of each of these run-time entities is of the form
Vi: k. do[©¢]. Such types are called run-time types. In particular, there is no run-time
entity with the empty type Va. a. The declaration of a tagged record, which can only
occur at toplevel, is of the form

data do[0c]is 1: dg(9c); .. .5 n: dE{(9c) end

where the tag d¢ is a data type constructor of €', and for each field 1, dic<190> is a Y-
closed monotype. The only effect of this declaration is to define n 4+ 1 operators: the data
constructor' dg, used to build records tagged by dg, and the data extractors dg.1, ...,
dec.n, used to access the fields of such records. These toplevel operators have the following

types
dc = Vﬁc. d10<190> — = dg«<190> — dc[ﬁc]
dlc = Vﬁc. dc[ﬁc] — d10<190>

Ay, = Yo.do[dc] = di(9c)

except for n = 0, where the data constructor has type

de = Yi¢. unit = do[9¢]
For instance, in figure 1.1, cons-cells are declared as follows
data cons[a] is 1: a; 2: list[a] end;
so that the data constructor for cons-cells has type

Va. oo — list[a] — cons[a]

'We assume that type constructor names and function names belong to different name spaces.

29

and the extractors associated to the head and the tail of cons-cells have the following types

{ Va. cons[a] = o
Va. cons|a] — list[a]

We assume that data type constructors have no subconstructors, so that we can think
of data types as sets of records with the same tag. There are several advantages in
considering that nil, cons, and scons are type constructors, instead of tags ignored by the
type system. In particular, data extractors are total functions over their domain (whereas
they are partial functions in ML), and pattern matching can be replaced by dynamic
dispatch, since dispatching on cons is equivalent to doing pattern-matching in ML. For
instance, the extractor associated to the tail of a cons-cell has type

Va. cons[a] — list[o]

in ML<, as opposed to
Va. listfa] — list[o]

in ML, but a method with the latter type can of course be defined in ML<. However,
note that replacing pattern matching by dynamic dispatch cannot be done without the
notion of subconstructors, which are not present in ML and complicate the type system
somewhat, since polymorphic constrained types are needed in this context to maintain
minimal typing (cf. theorem 48). We shall see in section 5.3 that the restriction that data
type constructors have no subconstructors is also essential to ensure that a subtraction
operation with type
Yoa:a<int.a - a —

can actually be implemented as a method.

Note that records are not first-class citizens in ML<, that is, it is not possible to use
“untagged” or “anonymous” records with arbitrary fields, and the type system does not
depend on data types being implemented as records. For instance, data types like float
need not be implemented as records. However, arbitrary records can always be defined by
using dummy constructor classes with a unique data type constructor used as a dummy
tag.

In order to ensure that the variance do of a class €', which is part of the specification
of C', is an invariant of its implementations, we require that the following implication hold
for every data type constructor d¢ of C' defined as above and for any disjoint ¥¢ and ¢

Voo, 00 e <c ¥ B N\ di(We) < de(07)
1€[1,n]

This condition ensures that the variance of each of the fields of d¢ is compatible with
the variance of C', but is also rather liberal in that it allows, for instance, a (®)-variant
class C' to have an implementation like

data d¢fa]is 1: a end

with a covariant field. As shown by the following theorem, this condition also ensures
that, hopefully, the type of the field of a tagged record is a supertype of the type of the
data stored into this fiel.

30

Theorem 42 (Data types) Let A be an implicit well-formed context, and 7y, ..., 7, be
n > 1 well-formed types such that appA(dc, Ty .., Tn) 15 well-formed w.r.t. A. Then for
every i € [1,n] . .

AF 1 < appalde, appalde, Ty .., Th))

Note that the resulting type can be a strict subtype. For instance, if we implement
the data constructor d¢ of a (®)-variant class C' as follows

datadofa]isl: a — a; 2: aend

and suppose that e; has type 71 = V(. real — int and e has type 7, = V0. real, then, by
the typing rules of figure 5.2, d¢.1 (d¢ €1 e3) has type

app A (d, appa (do, 1, 7))

that is
Va,B:real > int < g — G Areal < gAde[f] < dela]. a = «

or else
Ya,B: =real Af=a. a0 > &

which is equivalent to V (). real — real, which, in turn, is a strict supertype of V 0. real — int.
In a way, we could say that this type system gives every record a type which is a predicative
approzimation of its impredicative type

{(de;1:Y 0. real — int, 2: V(. real))

as a record.

31

Chapter 5
Type-checking

We now define an explicitly typed higher-order functional language using the type system
of chapter 4, and define type-checking rules for this language. We start by considering the
problem of type-checking a simple expression w.r.t. a fixed type structure 7. We show
how methods can be defined and how to type-check them, and we show that this language
has decidable minimal typing.

Extensions of this simple language supporting modules as well as the implementation
of methods in several modules are studied in section 8.1. Type inference for an untyped
version of this language, which can be seen as an extension of ML, is studied in section
7.2.

5.1 Programs

A program consists in two parts. The first part is a possibly empty, semicolon-separated
list of mutually recursive declarations (figure 5.1) defining a type structure 7 together
with the implementation of each data type of 7 as a tagged record. The class declaration
declares a new Jdg-variant constructor class C'. We assume that class Arrow and class Unit
are predefined. Type constructors t¢ of a class C' (resp. data type constructors d¢) are
added to T¢ (resp. D¢) using the type declaration (resp. data declaration).

The partial ordering of T¢ is defined by declarations of the form order t¢ C t}, which
assert that ¢{¢ and t}, are two distinct type constructors of C' such that t¢ Co t,. We
assume that these declarations define a partial order (that is, we assume that there is no
sequence tk, ..., t%, n > 2, such that t}, = t% and ¢}, C ... C %), and that data type
constructors are minimal. As in section 4.3, data types are implemented as tagged records
using declarations of the form

data do[d¢c]is 1: di(9¢);. .5 n: d2{(9¢) end

where we impose that the type dic<19(;> of each field 7 be a ¥c-closed monotype compatible
with the variance dg of C.

The second part of a program is an expression e which must type-check w.r.t. 7. The
syntax of expressions is given figure 5.1. An expression variable x is a non-empty sequence

32

Declarations = class C[0¢] (CeT)

| typetc: C (tc € T¢)

| datadg: C (de € De)

| order t¢ C tf (tc Ce ty)

| datade[dc]isl:0;...;n:6end
Patterns 7 u= Jv.ov| e te[d]
Abstractions [u= fun {9|k}(z:0) = e (function)

| meth{V|k}(2:0):0=[r=¢€...;m = €] (method)
FExpressions e = x| f | ee

dc.i i-th extractor)

pldc;dcia, ... x) record)

let # = e in e end simple let)

(
(
(
letrecz: 7= f;...;2: 7= fineend (recursive let)

Figure 5.1: Programs, type declarations, and expressions

of alphanumeric characters starting by a letter, and is bound in lambda-expressions, let-
expressions and recursive let-expressions. The definition of mutually recursive abstractions
(that is, functions and methods) is achieved by recursive let-expressions, and explicit
typing is required. In order to increase the readability of programs, we often split letrec-
bindings of the form z: 7 = f into a type declaration z: 7 and a simple definition z = f.
Explicit typing is not required in let-expressions.

An expression of the form fun {9 |k} (z: 0) = e denotes a function taking a formal
argument z with dynamic type in the domain 39: k. 8 of the function and returning e.
Note that only the domain of functions is defined, not the type of their result, which is
derived from e. The type variables @ are bound exactly as x, and are accessible in the
body e of the function.

In what follows, we use the notation fun {9} (2:) = e to denote the fully polymorphic
function fun {9| true} (2 : §) = e (parametric polymorphism) and fun (z: §) = e to denote
the monomorphic function fun { @] true} (z: 0) = e.

As in section 4.3, we assume that the declaration of the implementation of dg as
a tagged record defines n built-in data extractors dg.1,..., do.n. However, we do not
assume that the data constructor is a primitive operator. Rather, we assume that the
data constructor is implemented in a global implicit recursive let-expression as follows

dc: Vﬁc. d10<190> — = dg«<190> — dc[ﬁc];
de =fun {d¢} (z1: d5(Ic)) = ... = fun (2, dE (D)) = p(de; I, ..oy 20);

when n > 0 and as

de: Voo . unit — dc[ﬁc];
de = fun {9¢c} (z: unit) = p(de; de);

33

when n = 0. In these expressions, p(dc;9¢;@1,...,2,) is a record expression. Record
expressions can only appear, as above, in the implementation of data constructors. The
only exception is p(unit; (), also written (), which implements the unit constant and can
appear anywhere. This definition of the data constructor in terms of an atomic record
constructor will simplify the operational semantics later on.

A method m is an expression of the form

meth {9 |k} (2:0): 0 = [r1 = e1;...;7, = €]

where each 7; is a special kind of domain, called a pattern, defined figure 5.1. A pattern
is well-formed if it is well-formed as a domain w.r.t. the trivial context. The existentially
quantified variables of the :-th pattern are bound by the existential quantifier and are
accessible in the scope ¢; of the alternative.

Note that ML< patterns do not coincide with ML patterns in that ML patterns are
used both for pattern-matching and to bind variables to record components. Moreover,
ML patterns can be nested, that is, the fields of tagged records can be recursively matched.
In contrast, ML< patterns are only used to perform dynamic dispatch on the outermost
type constructor of types, and access to the fields of tagged records is performed by means
of extractors. It is essential to understand that ML« dispatches on the run-time type of
values, whereas ML “dispatches” on values themselves. As a consequence, a ML pattern
can look like this

cons {1l = pair {1 = 2y, 2 = a3}, 2=nil{}}

whereas a generalization of ML< patterns allowing dynamic dispatch on nested type con-
structors will at best have the form Javy, ap. cons[pair[ay, az]] so that the fact that the tail
of the list is empty cannot be directly expressed as a pattern.

Method m takes a parameter & with dynamic type 7 in the domain § of the method,
defined as 39: k. 0, and returns e; for the most specific pattern w; such that 7 belongs
to m;. We call this mechanism dynamic dispatch. Note that ML< methods take a single
argument. Section 8.2 addresses the problem of multi-methods.

The type of method m is V¥: k. § — €, and this specification must be matched by
each alternative m; = e; of m. For instance, assuming the type structure of figure 1.1, we
could define a recursive method dup to duplicate lists as follows

dup: Va. listfa] — list[a];
dup = meth {a} (z: list[a]): listfa] = |
8.8 = z;
3. cons[3] = cons (cons.1 z)(dup (cons.2 z));
3 3. scons[3] = scons (scons.1 z)(dup (scons.2 z))(scons.3 z)

Note that we often use “_” to denote the pattern Jv. v for some fresh type variable
v, and “t¢” to denote the pattern 39¢. to[¥¢] for some fresh C-variable set ¥¢. These
abbreviations are very handy when the existentially quantified variables of the pattern =;

34

of the ¢-th alternative of m do not occur in the body e; of the alternative. For instance,
we generally write the declaration of method dup as follows

dup = meth {a} (z: list[a]): listfa] = |
_=
cons = cons (cons.1 z)(dup (cons.2 z));

scons = scons (scons.1) (dup (scons.2 z))(scons.3 z)

]

It is important to emphasize the fact that the order in which the alternatives of a
method are listed is not important. This is in contrast with ML, where patterns are
matched in sequence, starting from the first pattern. For instance, assuming a datatype
declaration of the form

datatype list[a] = nil | cons of « * list[a] | scons of « * list[a] * int

(where slist is not defined for obvious reasons) the above example could be written as
follows in ML
fun dup (cons (h,t)) = cons (h, dup t)
| dup (scons (h,t,s)) = scons (h, dup t,s)
| dup x =z

but swapping the first and the last alternatives would define dup as the identity function
on lists. It is easy to see that sequential matching is not appropriate for an object-oriented
language where methods can be implemented in several modules, and are thus naturally
unordered. For the sake of simplicity, we choose, in this chapter, to present type-checking
w.r.t. to a fixed type structure and to have “closed” methods, as in ML, but section
8.1 addresses the problem of defining a module system allowing “open” methods to be
implemented in different modules while retaining a modular type-checking.

A method m with type 7is “correct” if it satisfies two conditions. First, each alternative
of m must be type-correct, that is, the domain m; of each alternative must be compatible
with the domain § of the method w.r.t A, and each alternative must have a type 7; which,
as a type transformer, must be below the restriction of 7 to m;. Second, the set 7y,..., 7,
must be such that for every run-time type! 7 in §, there exists a minimum pattern x;,
i € [1,n], such that 7 belongs to & A ;. This condition ensures the absence of “method
not understood” or “match not exhaustive” run-time errors (completeness), as well as a
“best match” algorithm for dynamic dispatch (non-ambiguity). Note that in the presence
of modules, the second condition can only be checked at link-time, when all the modules
are known, whereas the first condition can be checked separately for each module once
and for all.

In order to formally state the first condition, we define the restriction res(r, ') of a
functional type 7 of the form Vd: k. § — 6" to a pattern 7’ of the form 3¢'. #’ compatible
with the domain of 7 as follows

res(t,7") = Yo, 0,9 :kAv<O0Av<0. v—=6"

LC.f. section 4.3.

35

where v is a fresh variable, and ¥ and ¥’ are assumed to be disjoint. It is obvious that the
domain of the restriction of 7 to 7’ is the greatest lower bound of 7’ and of the domain
of 7. Moreover, as shown by the following theorem, the restriction of a functional type 7,
viewed as a type transformer, has the same behavior as 7 on run-time types (but not on
arbitrary types). As a consequence, a method m satisfying the first condition can be seen
as a collection of functions f; defined as follows

fun {9, 9, vk AR Av<OAV<O}(z:v) =€ (v fresh)
such that the minimum type of each f; is below the restriction of the type of m to =;.

Theorem 43 (Restriction) Let A be an implicit well-formed context, T be a functional
type, & be the domain of 7, ©' be a paitern compatible with &, and 7" be a run-time type
both in & and ©'. Then 7" belongs to § A7’ and

app(res(t, @), 7"y = app(r,7")

Note that this theorem would not hold if 7/ was not a run-time type, or if arbitrary
domains were used as patterns. For instance, let 7 be the functional type Ya. listja] — a,
5 be the domain of 7, ¢’ be the domain 3 (. list[unit], which is compatible with §, and 7"
be the run-time type Vj. nil[3]. Then 7" belongs both to ¢ and &', app(r, 7") is equivalent
to Ya. «, but

app(res(t,7'), ") = Va,f:nil[F] < listla] A nil[5] < list[unit]. «
Va,58: 8 < aApf < unit. o

Va,58: 8 < aAunit < f. o

= V0. unit

so that allowing dynamic dispatch inside type constructors, as for the following method
meth {a} (z: listfa]): o = [30. list[unit] = ()]

would be unsafe in ML< without further hypotheses on the partial ordering of constructor
classes (e.g., lattice structure) and/or a stronger axiomatization of the implication. In
particular, we believe that it is necessary to introduce an empty type L or an empty
constructor Lo for each class C'. In doing so, the empty list would have type nil[_L], and
the above counter-example would fail.

In order to enforce the second condition of correctness, we define the notion of partition
as follows, and we impose that the set of patterns mq,..., 7, of a method be a partition
of the domain §. The next theorem shows that this restriction on methods is sufficient to
define a complete and non-ambiguous dynamic dispatch algorithm. Note that the notion
of partition is decidable for a given type structure T, but is not invariant w.r.t. admissible
extensions of 7, so that this notion only really makes sense w.r.t. the “closed” link-time
type structure.

Definition 44 (Partition) Let A be a well-formed context, § be a well-formed domain

w.ort. A, and wy, ..., T, n > 1, be n well-formed patterns w.r.t. A. We say that 71, ..., 7,
is a partition of 6 w.r.t. A, written A § <7y, ..., 7y, if (assuming we identify equivalent
patterns)

36

(1) for every i € [1,n], m; is compatible with & w.r.t. A;
(2) for every distinct i, j € [1,n], m; is distinct from w;;

(3) for every data type constructor dc in T such that §[A] and the pattern © defined
as I¢. de[dc] are compatible, the set {m; | 30 € [1,n]. # < m;} has a minimum
element.

This definition shows that da. « is a partition of every well-formed domain. Note
that the requirement that 6[A] and (F9¢. do[9¢]) be compatible in condition (3) is more
restrictive that the more intuitive requirement that § and (FJ¢. dc[Pc]) be compatible
w.r.t. A. For instance, assuming a constraint context A of the form (a: true) and a
domain of the form 3. «, there is no data type d¢ satisfying the latter condition, since

Va. true = true A true A def[de] < «
is not derivable, whereas every do satisfies the former condition, since
V0. true | true A true A de[9c] < «

is trivially derivable. However, it is easy to understand that the latter condition is desir-
able, since if § is the domain of a “nested method”, and « is the type of the formal of the
enclosing function, then the method can potentially be called with any «.

Theorem 45 (Dynamic dispatch) Let A be a well-formed context, § be a well-formed
domain w.r.t. A, 7 be a closed run-time type in §[A], and 7y, ..., 7y, n > 1, be a partition
of § w.r.t. A. Then there exists a unique index 1 € [1,n], written dispp(T;6;71, ...,),
such that (1) T belongs to S[A] A w;, and (2) 7; is a subdomain of w; for every j € [1,n]
such that T belongs to 6[A] A 7;.

5.2 Minimal typing

A typing context is a pair (A;I'), where I' is a possibly empty, comma-separated list of
bindings of the form z: 7. Typing contexts are the environments in which expressions are
type-checked. Intuitively, a typing context with a constraint context A of the form (9: k)
assumes the existence of type and constructor variables 9 such that x holds. A typing
context (A;I') is said to be well-formed if A is well-formed, every binding z: 7 of z to 7
in I' is such that 7 is well-formed w.r.t. A, and no expression variable z is bound more
than once in I'. The set of expression variables bound in I' is called the domain of I'.

For any well-formed typing context (A;['), distinct expression variables z1,..., 2,
and types 7q,..., 7, such that zq,..., z, are not bound in I' and 7, ..., 7, are well-
formed w.r.t. A, we denote by A;I'[xy:7,...,2,: 7,] the well-formed typing context
(AT 2p: 7, ..., 20 7). Finally, a subcontext of a well-formed typing context (A;I)
is a well-formed typing context (A;T”) such that 2 has type 7 in I' if and only if « has
type 7/ in IV and 7' is a subtype of 7 w.r.t. A.

An expression e is said to be well-formed w.r.t. a well-formed typing context (9: x; ")
if (1) its free type and constructor variables belong to 9, (2) its free expression variables

37

ANs{z:ryFarm [Var]
AT Epldes Vo xy, ..o x,): (V0. do[Pc]) [Rec]
A; '+ dc.i: (Vﬁc dc[ﬁc] — dlc«<190>) [Prj]

AiTkFe:r AbRT <7

ATke: 7 [Sub]

A;Ther:n A;T[zy: 7] Fep: 7o

[Let]
A;TF (let 1 = eq ineg end): 7

AND BRI S PO i o R (0 <i<n)

[LetRec]
AT F (letrec zy: 7 = €155, T, = €, inegend): 7y
ATherr ATRE: T AR € doma(r)
[App]
AT F (e €): appp (T, 7T')
. . . . /. ! /
Al K T[a: V0. 0] Fe: (V2 K. 0) (Fun]

AP (fun {9k} (z:0) = €): (VO,9:kAK. 0= 8)

6=30: k.6 m; = 3%;. 6; AFSximy, ..., m,
Alv,9,9;: kAo < 60,0,];T[x: V0. v]Fei: (V0. 0) (1 <i<mn, v fresh)
AT E (meth {9 |k} (2:0): 0" = [m1 = er;.. 7 = e,]): (VO k.0 = 8)

[Meth]

Figure 5.2: Typing rules

belong to the domain of I', and (3) none of its variables is bound more than once. A
well-formed expression e is said to be well-typed and to have type 7 w.r.t. typing context
(A;I) if A;T'F e: 7 can be derived from the rules of figure 5.2. Note that we assume that
each d¢ is associated to a fresh (-variable set ¥¢ so that the type associated to de.i by
rule Prj is always well-formed w.r.t. A. A well-formed expression e is said to be well-typed
and to have minimal type 7 in typing context (A;I') if e is well-typed, e has type 7, and
7 is a subtype of all the types of e.

Rule Sub is the subsumption rule, similar to the one found in F<. This rule is usually
not present in ML-like type systems, where typing judgements have the form I' - e: 6, and
subtyping is hidden is a non-deterministic instanciation rule of the form I'{z: 7} F z: 6
whenever 8 is an instance of 7. Similarly, the application rule App is closer in spirit from
F< than from ML-like type systems, since it makes use of the application of a polytype
to another, instead of making use of the application of a monotype to a monotype and
resorting to the non-deterministic instanciation of polytypes. Intuitively, this rule trivially
implies minimal typing for function application since doma is contravariant (theorem
40), and app, is covariant in both arguments (theorem 41). However, note that type

38

application is approximated in ML< (cf. theorem 42) whereas it is supposedly exact in
F«. The Let and LetRec rules are standard. Rule Fun is more interesting. Let f be the
abstraction fun {V|k} (2:60) = e. The body e of f is type-checked in a context where z is
known to have type V(). 6 for at least one instanciation of ¢ such that x holds. Expression e
is thus well-typed if it type-checks using the property enforced by x, but no more. Now, if
e has type Vd': k’. 6 in context A[¢: k];T[z: V. 4], then f has type V9, ¢': kAK'. 0 — ¢
in context (A;I'). Note that since V9': k’. 8’ is necessarily well-formed w.r.t. A[9:], the
domain of this type is (hopefully) equivalent to the explicitly declared domain 39: k. 6 of
f. As an example, let f be the following function, assumed to be type-checked w.r.t. the
trivial context
fun {a|a <real} (2: a) = fun (2’': o) = (z,2')

Then e has type ¥0. o — (o, &) w.r.t. to typing context (a: a < real;z: V(.), meaning
that given any « below real such that z is bound to an object with type «, e can be
regarded as a monomorphic function from « to (o,). Now, assuming f is called with
integer 7 as actual argument, the dynamic type of e, that is, the polymorphic type by
which its closure is tagged when created at run-time, is Vor: (int < a < real). o — (o, @)
w.r.t. the trivial context, so that this particular instance of e can be regarded as the
following toplevel-defined function

fun {a|int < a <real} (2': @) = (7,2')

which is obviously well-typed since if the body of e type-checks w.r.t. the static typing
context, it also type-checks w.r.t. the dynamic typing context (a: int < a <real;a: V. o)
which enforces stronger properties on « (cf. lemma 47). This fact will be at the heart of
the subject reduction theorem.

Note that, abstractly speaking, we could have done without functions, since a function
fun {#]k} (x:6) = e whose type is known to be Vi, 9" : k A k. § — @ can always be
replaced by the following method

meth {9, 9" |k A K’} (2:0): 0/ = [Fv.v = €]

which has both the same type and the same run-time behavior. However, the advantage
of functions is that their type does not need to be completely specified.

As mentioned in section 5.1, rule Meth imposes two conditions on well-typed methods.
First, the set of patterns must be a partition of the domain of the method, to ensure that
dynamic dispatch is both complete and non-ambiguous. Second, in order to ensure subject
reduction, the body e; of each alternative must have type V. 6’ in the context where the
formal z is known to have both type # and type 6#;, which is achieved by saying that z
has type V(). v and adding the conjuncts v < # and v < 6; to the constraint of the typing
context.

The following lemmas and theorem show that ML« has decidable minimal typing.

Lemma 46 (Typing context) Let (A;T) be a well-formed typing context and A’ be a

context such that A’ is well-formed w.r.t. A. Then A[A']; T is a well-formed typing context,
and for every subcontext (A;T') of (A;T), A[A'];T is a subcontext of A[A'];T.

39

Lemma 47 (Strengthening) Let (A;I') be a well-formed typing context, e be a well-
typed expression with type T w.r.t. (A;T), and A’ be a context of the form 9" : k' (not
necessarily well-formed) such that ¥ is fresh and A N A" is well-formed. Then e is well-
typed and has type 7 w.r.t. (AANAT).

Theorem 48 (Minimal typing) Let (A;I') be an implicit well-formed typing context
and e be a well-formed expression w.r.t. (A;I'). The existence of a type T such that e is
well-typed and has type 7 is decidable. Let e be well-typed and have type 7. Then T is
well-formed, e has a minimal type and the determination of this minimal type is decidable.
Moreover, e is well-typed w.r.t. any subcontext of (A;1') and its minimal type w.r.t. such
a context is a subtype of T w.r.t. A.

5.3 Examples

We now illustrate some of the subtleties involved in the type-checking of methods. First, we
remark that since the type structure of figure 1.1 only defines three data type constructors
nil, cons, and scons compatible with the domain Ja. list[a] of method dup defined in the
previous section, we may have chosen to implement the first alternative of dup as follows

nil = nil ()
which is well-typed since
(e, B, vy < list[a], nil[8]) F (Ve. nille]) < (V. list[a])

obviously holds. Similarly, since the type of dup only requires that its output be a list of
the same sort as its input, which is always the case of the empty list, we may have chosen
to implement the same alternative as follows

_=nil()

Also, the “natural” type of dup, namely Va. listfa] — list[a], is rather imprecise, since
it does not reflect the fact that the duplication of the empty list is the empty list, that the
duplication of a cons is a cons, and that the duplication of a sized cons is a sized cons. In
other words, it would be nice to be able to impose that (dup e) has type 3 whenever e has
type # and < list[a] for some a. This is possible in ML<, and dup can also be defined
as follows

dup: Vo, 3: 3 <listla]. p — 3

dup = meth {o, 3| 3 < list[e]} (x: B): = |
nil = nil ();
cons = cons (cons.1 z) (dup (cons.2 z));

scons = scons (scons.1) (dup (scons.2 z)) (scons.3 z)

]

with a very precise type which is in fact a strict subtype of the natural type of dup. This
new specification is also an example of why the minimality of data type constructors is

40

essential. Indeed, let us show that the first alternative of the new implementation of dup
is well-typed. This amounts to showing that

(a, B,7,e:2e < B Ae <nilly]A B < list[a]) F (Vp.nil[p]) < (V0. 5)

that is to say
Va,3,y,.6 < B Ae <nilly]A B <list[a] = nil[p] < 5

which is derivable, since by rules VElim and CMin, the left-hand side of the implication
implies the existence of 7 such that ¢ = nil[], and consequently, the existence of 1 such
that nil[] < #, which implies the right-hand side thanks to rule Vintro. In other words,
the first alternative of dup is well-typed only because we know that every input run-time
object in the domain 3v. nil[y] is necessarily the empty list, so that the new empty list
which is built in the body of the alternative is known to have the very same type as the
input object. On a similar track, note that this stronger specification does not allow the
first alternative to be written as follows

_=nil()

since it may be the case that the input is not the empty list (in some extension of the type
structure) whereas the output is the empty list. Formally, the following does not hold

(o, By, v,e:e < B Ae <yApB <listfa]) F (Vp.nil[p]) < (V0. 3)

Another interesting example is the method cone to concatenate two lists defined as follows
(assuming that the only data type constructors are nil and cons)

conc: Vo, f: a < list[]. « = o — a
conc = meth {o, f|a <list[f]} (z: a): 0« > a=|
nil = fun (2/: o) = 2/
cons = fun (2': a) = cons (cons.1 z) (conc (cons.2 z) ')

]

with a type showing, in particular, that the concatenation of two empty lists is an empty
list. Of course, conc could also be given its standard ML type Vau. list[a] — list[a] — list[a],
giving more freedom for its implementation, but also restricting the contexts in which it
can be used.

A more real-life example is given figure 5.3. The type structure of this example is a
numerical hierarchy with two uncomparable maximum types real and dyadic corresponding
to real and 2-adic numbers. The data types are floating points (e.g., IEEE floating point
numbers), binary numbers (e.g., periodic 2-adic numbers), zero, positive and negative
numbers. The signature of the subtraction operator is

Vo:mt< oo —a—a

that is, reals and 2-adics cannot be added together, and the type of a subtraction is always
at least an integer.

41

class Num[]; neg: Va: int < a. 0 =

neg = meth {a|int < a}(z:a): a=|

type int: Num; bin = bin (---);

type real: Num; float = float (- - -);

type dyadic: Num; neg = pos (- --);
pos = neg (-);

data neg: Num; zero = zero (- -+

data pos: Num; I;

data zero: Num;

data float: Num; toFloat: Yo: float < a. v — float;

data bin: Num; toFloat = meth {a|float < a} (z:) float = |
float = z;

order neg C int; int = float (---)

order zero [int; I;

order zero [dyadic;

order pos [int; toBin: Ya: bin < . e« — bin;
order int [real; toBin = meth {a|bin < a} (2: a): bin = |
order int C dyadic; bin = z;
order float [real; int = bin (---)
order bin C dyadic; I;
data neg[]is - - - end; sub: Varint <o = a0 — o
data pos|] is --- end; sub=meth {a|int <a}(z:a)ia—a=]
data zero[]is - - - end; float = fun (2': a) = subFloat x (toFloat a');
data float[]is - -- end; bin = fun (2': @) = subBin x (toBin 2');
data bin[]is - - - end; int = meth (2': a): a =
_ = sub (neg z') (neg z);

letrec int = sublnt v '

// Extern functions]

subInt: int — int — int; I;

subFloat : float — float — float; in

subBin: bin — bin — bin; sub (neg(---)) (float(--))

Figure 5.3: Numerical operators

42

// Constructor class letrec
class C[]; m:Va:ra<coo—a—a;
// Type constructor m=meth{a|a<c}(z:a):a—=a=]
c1 = meth (2": a): a =
aa=cal); / Ok
ca=c1 () // Wrong

type ¢: C

// Data type constructors

data ¢;: C I
data ¢y : C 7
ezt ca > meth{d/ | <cha<a}(@:d):a =]
// Implementations o= e (); /) Ok
data ¢y is end; ca=c() Ok
data c9 is end;]
// Subtyping]
order ¢; C ¢; in
order ¢ C ¢; m (c1 () (e2 ()

Figure 5.4: Curried methods

5.4 Curried methods

It is important to point out that a type like Yoo o < point. & — o« — bool, which is in fact
equivalent to point — point — bool, is definitely not the type of functions which first take
a point as argument, and then take a second argument whose dynamic type is below the
dynamic type of the first argument! As a matter of fact, this remark is strongly related
to the form of curried methods. We argue that the “most general” implementation of a
curried method m with a type 7 of the form

Vﬁ:m.01—>02—>03
is of the following form
meth {0 |k} (21: 61): 03 = b5 = [-- = meth {¢ | ' A0, <O} (22:05): 60, =1]-]]

where 7/ = V. k'. 0] — 05 — 6% is a fresh renaming of 7. To understand why, note that
the context in which the inner method is type-checked assumes the existence of variables
9 such that x holds and z; has type V. #;. In other words, the inner method is in some
sense equivalent to the closure of the application of m to an argument with type V0. 6;
(cf. section 5.2), so that its type should intuitively be the application of 7’ to V. 6, that

is to say
V' kA6 < 6.6, — 6

which is obviously a subtype of V(). 83 — 63 w.r.t. context A = (J: k). Note that the
domain of the inner method w.r.t. A is thus 39': &’ A6y < 6. 0, which is a superdomain

43

conc: Vo, 3: a < list[f]. « = o — a;
conc = meth {aq, f1 | oq < list[1]} (z1: 1) o = o = |
nil = fun (22: ay) = a9;
cons = meth {ag, B2 | a2 < list[Fz] Ao < g} (221 ag): g = |
nil = x1;
_ = cons (cons.1 z1) (conc (cons.2 1) x3)
I;
scons = meth {ay, O2 | @z <list[Fz]) Aag < ag) (22: ag): o = |
nil = x1;
cons = cons (scons.l z1) (conc (scons.2 z1) x3);

scons = let 23 = conc (scons.2 21) x4 in scons (scons.1 1) x5 (inc (size x3))

Figure 5.5: Concatenation of sized lists

of 3. 6,, so that the most general form of m makes as few assumptions as possible on the
arguments of the inner method. Of course, in some cases, it is possible to write m using
the following form, which is less general, but is also simpler and more intuitive

meth {0 |k} (21:61): 62 — 03 = [--- = meth (z2:03): 03 = [--]]
This is the case, in particular, for method sub of figure 5.3 which is of the form
meth {a|int < o} (2: a@): @ = o= [int = meth (2: a): a = [int = sublnt x 2']]
instead of the more systematic form

meth {a|int < a}(z:a): a0 = a=]
int = meth {o/|int <o/ A <o’} (2: d): o = [int = sublnt x 2']

]

However, this simple form could not have been used had the inner method dispatched on
two different patterns, instead of dispatching on int twice. As a counter-example, consider
the first alternative of method m of figure 5.4. The body e of this alternative, which is
itself a method, type-checks w.r.t. the following typing environment (A;I")

(a,fra<cAf<anp<e); (2:V0.06)

such that A is well-formed w.r.t. the trivial context True. However, the second alternative
of e is ill-typed, since the context (4': 5’ < aAp’ < ¢3) in which it would be type-checked
is not well-formed w.r.t. A, as shown by the following implication, which is not derivable

Vo,B.a<cAfB<arnf<akEF <anf <e

44

(remember that # < ¢; implies 8 = ¢4, since ¢; is a data type constructor, and is thus
minimal). Intuitively, the outer method assumes the existence of some o between ¢; and
¢, whereas the inner method assumes that « is above cq, a property which is not true for
every a between ¢; and ¢ (e.g., for & = ¢1). In contrast, the second alternative of the
body of the second alternative of m is well-typed since the context in which the body of
this alternative is type-checked, namely

o i <ena<d A <anp <c

is well-formed w.r.t. A. Intuitively, the inner method now assumes the existence of some
o’ such that o' is above both @ and ¢y, and is also below ¢, which trivially holds for every
« between ¢y and ¢ (e.g., for o/ = ¢).

As a last example, figure 5.5 shows how the conc method of section 5.3 can be imple-
mented in the presence of sized lists while maintaining a very precise specification (i.e.,
type) enforcing that the concatenation of two empty lists be an empty list, that the con-
catenation of two sized lists be a sized list, and that the concatenation of two regular lists
be a regular list.

Finally, note that in the absence of constraints and primitive subtyping (as in ML), the
most general implementation of a curried method m with a type 7 of the form V9: k. 6; —
f3 — 653 has the following form

meth {0} (21:61): 03 = 03 = [--- = meth {¢¥' |0, = 0]} (22: 65): 65 =[-]]

where 7/ = V. 6] — 6, — 65 is a fresh renaming of 7. That is to say, m can be
implemented as follows

meth {9} (21: 601): 02 — 03 = [--- = meth (22: 63): 05 = [--]]

in pretty much the same way curried methods are implemented in explicitly typed versions
of ML. Unfortunately, this simple and intuitive form does not carry over to languages with
primitive subtyping.

45

Chapter 6

Operational semantics

We now define the operational semantics of the language. For the sake of simplicity,
we choose a strict semantics instead of a lazy semantics. This is because strictness is
more natural in a language with dynamic dispatch where arguments have to be evaluated
before dynamic dispatch can be performed on their dynamic type. Of course, a mixture of
strictness and laziness could also be used. In particular, we assume the existence of a lazy
conditional with type Va. bool — « — o — . The operational semantics of ML« departs
from the standard approach in that it uses the static type system to tag run-time values by
their minimal type. Some rules thus “call” the type-checker to determine this minimal type
w.r.t. to the run-time environment. The decidability of minimal typing is thus essential
for the operational semantics to make sense. However, the semantics does not actually
use minimal types, since dynamic dispatch is performed via the tag d¢ of records, which
can be seen as an abstraction of their minimal type Vd: k. do[@¢]. Consequently, actual
implementations can do without run-time types. Note that this would not be the case
if dispatching was allowed inside type constructors, which is a natural extension of the
system.

The key point of the operational semantics is that every expression e is evaluated both
in a run-time environment €2, giving both the value and the minimal type of variables, and
in a constraint context A, so that when e evaluates to a run-time value, this value is tagged
by the closure 7[A] of the minimal type 7 of e w.r.t. (A;§2). The crucial observation to
establish subject reduction is that A is always a “strengthening” of the constraint context
in which e has been type-checked statically. The following lemma relates well-formed types
to their closure.

Lemma 49 (Closure) Let A = J: % be a well-formed context, 7 = VU: k. 0 be a well-
formed type w.r.t. the trivial context such that ¥ and 9 are disjoint, and 7' be a well-formed
type w.r.t. A. Then (1) T[A] is closed, well-formed, and is equivalent to 7, (2) T'[A] is
closed and well-formed, and (3) T is a subtype of 7" w.r.t. A if and only if T is a subtype
of T'[A] w.r.t. the trivial context.

A run-time environment) is a possibly empty, comma-separated list of bindings of

the form 2 = w: 7 denoting that the expression variable z has run-time value w and
closed run-time type 7. We assume that expression variables are bound at most once

46

A;QFdoa: T
QFprj(de,i): T

[PrjType]

AQF foT True = 7[A] < 7/

QFcs(A, f): 7/ [ClsTupe]

A=True Abappplde,1,...,7) QlFwitw (1§i§n)[ReCTyp€]

QFrec(do;wi: Ty oo oywn: Tn)t appa(de, T1y ooy Tn)

Figure 6.1: Well-typedness of run-time values

in run-time environments. Possible run-time values are closures cls(A, f), tagged records
rec(dc;wy: T1,...,wy: Ty), and the projection prj(dc,i) on the i-th component of tagged
records. The free expression variables in closures are interpreted w.r.t. a run-time envi-
ronment. Consequently, the evaluation process not only returns a run-time value and its
type, but also the run-time environment in which to interpreted it!. More formally, figure
6.2 defines the judgement A;QFe — w: 7, ', which reads: in constraint context A and
run-time environment €2, expression e evaluates to run-time value w with run-time type 7
in environment €. Note that we sometimes omit 7 when we have no use for it. In order
to avoid the capture of variable names, we assume that retrieving a typed run-time value
w: 7 from a run-time environment €2 always creates fresh copies of w and 7, that is, copies
of w and 7 where all the type, constructor and expression variables which are not in the
domain of €2 are renamed to fresh variables. For any run-time environment €2, distinct

expression variables zy,..., z,, run-time values wy,..., w, and types 7q,..., 7, such that
Z1,..., &, are not bound in Q, we denote by Q[zy = wy: 7q,...,2, = w,: 7,] the run-time
environment (Q, 21 =wy: Ty, ..., &, =Wy Tp).

We say that an expression e is well-typed and has type 7 w.r.t. (A;), written A; Q F
e: 7, if e has minimal type 7 w.r.t. (A;I'), where I' is obtained by replacing every binding
x =w: Tin Q by the binding z: 7. We say that a run-time value w has type 7 w.r.t. Q2 if
QF w: 7 can be derived from the rules of figure 6.1. We say that a run-time environment
Q is well-formed, written F €, if every binding z = w: 7 in € is such that w has type 7
w.r.t. Q.

It is easy to see that the rules of figure 6.2 define an abstract machine with a global run-
time environment © and a stack of pending evaluations (A;, ¢;) 0<i<n- Most of the rules
are straightforward. The only remark is that rule MethApp performs dynamic dispatch
by selecting the most specific alternative 7 such that the run-time type 7’ of the actual
parameter belongs both to the closure §[A] of the domain ¢ of the method w.r.t. the
context A in its closure, and to the domain 7; of the alternative.

An abstract machine is said to be well-formed if its global run-time environment £2
is well-formed and every pending evaluation (A, e;) is such that e; is well-typed w.r.t.

'Doing so is admittedly not very elegant, and leads to the use of ever growing run-time environments.
Nonetheless, we do not put 2 in closures to avoid the use of infinite, recursively defined syntactic run-time
environments in the treatment of recursive let-expressions.

47

AMHr=w:TtFae o w:T, Q [VarVal

ANz =wii T, @y =we Tat Eplde; oy a1, xn) i T

[Rec Val]
N;QF plde; Py 1,0 xn) = rec(doywr: T1y oo wi s Tyt T[A]
A;QbFdoa: T [PriVal]
AN;QFded— prj(de,i): T, Q
AQF for [ClsVal]

A;QF f—cls(A, f): T[A], Q

A;QbF e = w2

A; ey = w1 Feg = wor o, Qo (Let Vall

A;QF (let 1 = eq ineg end) — wy: o, Qo

A; Q[=cls(A, f1): 1[A], .. x, =cls(A, fo): TW[A]] F eo = wo: 70, Qo

[LetRec Val]
A;QF (letreczy: 1 = f1,..., 20 T = frineg end) — wo: T, Qo
A;QF e — pri(de, i), Q
A - o g . '
A QF eA—>Arec(cj(i,/w1. Tl ey Wit Tp)y [(PriApp]
AQF(ee) s wiim, @
A;Q e cs(A, fun {0 |k} (2: 0) =€), Q
AQFE =o' (V' k.0,
/: ! /< . ! — /: /: /‘ / //: " "
ANV kAR /\OA_A0)7Q[$ W (VRO Fe—= W " Q [FunApp]
A;QF (ee’)y 5w 7 QF
A;QF e cls(A, meth {0 |k} (2:0): 0" = [r1 = e1;...:70 = €,]), Q
§=39: k.60 m=I,.0, AQreé w7
=V RO = dispa (T 0[A] T,)
! - / /< N.O! :/:/ . //: " "
AN 0 kARANO <0,0;);Q[z=u":7TFe =" 7" Q [MethApp]

A;QF (ee’)y 5w 7 QF

Figure 6.2: Operational semantics

48

(A;;). An evaluation is said to fail when the machine becomes ill-formed as the result of
applying a rule, or when no rule can be applied. The result of an evaluation is a run-time
value w together with its closed run-time type 7. The following theorem shows that the
evaluation of well-typed expressions never fails.

Theorem 50 (Subject reduction) Let 2 be a well-formed run-time environment, A be
a well-formed constraint context, and e be a well-typed expression with minimal type T
w.r.t. (A;Q). Then the evaluation of e w.r.t. A either loops forever without failure or
returns a run-time value W' with closed and well-formed run-time type 7' such that ' is a
subtype of the closure of T w.r.t. A.

49

Chapter 7

Algorithms

7.1 Constraint implication

We have seen in chapter 3 that constraint implication can be reduced to a series of in-
dependent implications: an implication over type variables v, and an implication over
C-constructors ¢¢ for each constructor class C' in the type structure 7 (cf. theorem 14).
This reduction phase uses standard unification techniques to extract the “shape” of vari-
ables, so there is no need to discuss it here'. Instead, we focus on a simpler problem
which is common to each implication, namely, implications of the form V. k1 E ko
where 1 and ko are conjunctions of inequalities between variables, 1 is a non-empty set
of variables, and x; is ¥1-closed. The axiomatization of interest for this restricted form of
implication uses the rules of figure 7.1 plus the transitivity rule. We assume that the sub-
stitution o of rule ViIntrog maps variables to variables. Obviously, a constraint is always
well-formed w.r.t. this new axiomatization. Moreover, implications over C-constructors
can be reduced to this problem as follows?. First, each type constructor t¢ € T can
be considered as a “variable” in the variable set 9¢ = Tg. Second, the partial ordering
over ¢ can be represented by a constraint k¢ containing all the conjuncts of the form
tc <ty such that t¢ C¢ ty, holds in C'. Third, C-constructor variables can be identified
to regular variables. The well-formedness of a constraint x over C-constructors is thus
equivalent to V9¢. k¢ = k, whereas the implication of ky by &y for all ¥ is equivalent
to v1907 191. I{O A K1):0 Kg.

For the sake of simplicity, we assume that the left-hand side k¢ of the implication defines
a partial order <y on ;. In other words, for v; and v] in 91, we say that v; <; v]{ when
v; <3 v is implied by ; for all 91, and we assume that one cannot have both v; <y v}
and vj =<1 vy for distinct variables vy and v in ¥;. Let 93 be the set of variables of sy
which do not occur in ¥;. The implication problem can be understood as the satisfaction
of constraint kg w.r.t. the partially ordered universe (¥1,=<1). This is because the only

' As a matter of fact, this first phase is very similar to the MATCH algorithm of [35].
2For the sake of simplicity, we ignore the minimality of data type constructors. Taking minimality into
account can be done easily by adding min(v) conjuncts axiomatized by the following axiom, which is the
analogous of rule CMin
V9. k{min(v) Av' < v}l ErAV <Y

50

[Approxzg] V9. k{Kr'} Eo K’

[ViIntrog] V9. k[o] o K (0 € S(9))
[MRefo] Vid.kEorAv<vw

[MTransg] V9. k{v <o <v"}EorAv <0’

Figure 7.1: Restricted implication

way to introduce variables is by abstracting a “solution” deduced from the left-hand side
k1 using rule Vintrog. Moreover, by corollary 5 (or its equivalent for j=¢), we know that
this implication is equivalent to V. k1 o K1 A k2. Now, if vy and v] are two variables in
@1 such that vy <; v] does not hold, but vy < o] is implied by r1 A ko for all 9y, it is easy
to see that x; does not imply k9 for all ¥. We thus assume that no absurdities between
variables of the universe (91, <) can be derived from k1 A k3.

Consequently, the key problem to solve in order to decide implication can be abstracted
as follows: given a finite partial order (¥, <) and a partition {9, ¥z} of ¥ such that ¥, is
non-empty, is it possible to find a total map o from ¢ to ¥, called a solution, such that

Vv1 6191. U(vl):vl
Voed Vo' ed. v<v = o(v) <oV

For instance, the problem of deciding the following implication

Vo, f.a<anB<BlEoa<yAf<y

amounts to trying to find a valuation o(y) € {«a, 3} for v such that o < o(vy) and 8 < o(7v)
where < is the partial order defined by o < v, f < 3, v <7, @« < v, and 3 < v, which is
clearly impossible.

The most obvious solution to this problem, which is called Po-saT and is (implicitly)
shown to be NP-complete in [45], is of course to try all possible maps o from 9 to ¥y,
but this algorithm is far from efficient, and we would rather find an algorithm which is
polynomial “most of the time”. To this end, we define the functional ® from the finite
complete lattice® ¥ — P (1) into itself as follows

Vo € 91, @(F)(v1) = {v1}
VU2€1927 q)(F)(UQ) = (mijQleeF(u)Tvl)m(mwijuleF(u)\Lvl)

where we define T vy (resp. | vy) as the set of all v{ € ¥ such that vy < v] (resp. v] < vy).

We say that F'is a pre-solution if F'is a pre-fixpoint of ¢ (that is, F' C ®(F")) and
F(v) is non-empty for every v € . Since, ® is monotonic, ® always has a greatest
fixpoint which is above all its pre-fixpoints, and this greatest fixpoint can be computed
in polynomial type, since ®(F') can be computed in polynomial type for every F, and the

®The ordering C on maps is defined by F C F' if and only if F(v) C F'(v) for every v € 9.

51

Figure 7.2: Counter-example for the greatest fixpoint algorithm

height of the lattice ¥ — P(¥;) is quadratic in the number of variables. The existence of
a pre-solution is thus a polynomial problem, and the set of pre-solutions is either empty
or has a maximum solution, called the maximum pre-solution.

Theorem 51 For every solution o, the function F' defined by F(v) = {o(v)} for every
variable v € 9 is a pre-solution.

Consequently, the existence of a pre-solution is a prerequisite to the existence of a
solution, and if G is the maximum pre-solution, then every solution ¢ of the problem is
such that o(v) € G/(v) for every v € 9. Unfortunately, as implied by the complexity result
of [45], the existence of a pre-solution is not sufficient to prove the existence of a solution.
The simplest counter-example that we have found is given figure 7.2, with ¢y = {a, b, ¢, d}
and 9, = {ac,ad,be,bd, cd,ab}. This problem (which is built by simplifying the set of
convex subsets of {a, b, ¢, d} partially ordered by the Plotkin ordering on powerdomains)
does not have a solution, but it can be shown that

Glac) = {a,c} G(be) = {b,c} Glad) = {a,d}
G(bd) = {b,d} G(ab) = {a,b} Ged) {e,d}

However, even if the existence of a pre-solution is not enough to decide the existence
of a solution, the fact that G'(v) contains o(v) for every solution o is a step in the right
direction. As a matter of fact, if |G'(ve)| = 1 for every vy € W3, then the following theorem
shows that GG defines a solution.

Theorem 52 [f the mazimum pre-solution G is such that |G(ve)| = 1 for every vy € 03,
then the problem has a unique solution o.

Now, if |G(v3)] > 1 for some vy € 93, then a possible algorithm is to try to arbitrarily
fix G'(vg) = {v1} for some vy € G(vg), to reapply the greatest fixpoint algorithm starting
from G instead of the maximum element of the lattice, backtracking if necessary. This
intuition is formalized by the algorithm of figure 7.3, where function Solve is initially
called with the maximum element of the lattice, that is to say, the function F' such that
F(v) = 9 for every v € ¥. We expect this algorithm, which is potentially exponential, to

52

procedure Solve(F) is
G = ixo O (F);
if vy € ¥q. |G(v2)| = 0 then fail;
if Yoy € 9. |G/(v2)| = 1 then succeed;
for vy € ¥y such that |G(vz)| > 1 do
for vy € G(v2) do
Solve(Glvg — {v1}])
end Solve

Figure 7.3: Algorithm to decide restricted implication

be polynomial in practice. Note that efficient chaotic iteration strategies [9] can be used
to compute greatest fixpoints efficiently. Our current implementation uses this algorithm,
and we have never encountered an exponential blow-up on the examples we have tried,
but remark that the same problem is true for ML type inference algorithm (it can be
exponential, but is polynomial in practice).

7.2 Type inference

We believe that all the techniques developed for type inference with subtypes [5, 21, 22,
23, 26, 29, 33, 34, 35, 41, 42] can be used to perform the type inference of untyped ML«
programs which do not contain methods. In particular, the UNIFY and MATCH algorithm_s
of [23, 26, 35] can be used, as well as various constraint simplification algorithms.
Consequently, we do not give a formal specification of the type inference algorithm.

Rather, we give a few examples showing that type inference for methods is somewhat more
subtle. For example, assume a ()-variant class C' with data type constructors a and b, and
type constructor ¢ such that ¢ Co ¢ and b C¢ ¢, and assume that method m is defined as
follows

m(z:a)=let---ina();

m(z:b) =let --- inb();
as a private method of some module of the program (inferring the type of a method
implemented in several modules does not make sense). The problem is to find a minimum
type 7 for m such that (1) (30. a,30. b) is a partition of the domain ¢ of 7, and (2) the

bodies of the two alternatives of m type-check. At first glance, one may think of giving m
one of the two following types

T = Yarae(C.a— «

T = Yoa:ra<ca—a

Note that the domain &y of 75 is a strict subdomain of the domain §; of 71, even
though these two domains are intuitively equivalent in a “closed world”. Also, remark

53

that 7; denotes the identity over ¢;, since the two alternatives of m return the same data
type that the data type they take as argument. Now, an important subproblem of our
original problem is to find a mazimum domain § such that (30. a,30. b) is a partition
of 4 and the body of the alternatives type-check w.r.t. §. This is the hard part, since
each alternative is type-checked w.r.t. a different constraint context (cf. rule Meth), so
that the “constraints” on § inferred during the type-checking of each alternative are hard
to “merge” automatically in a systematic and optimal way, and one has to “guess” this
domain. Intuitively, if é; is the domain inferred for the i-th alternative, then 4 should be
the greatest lower bound of all the 4/, where 4! is just ¢; with the additional constraints
imposed by rule Meth “removed”, which is hard to define formally. The two domains
41 and d, are both reasonable candidates for &, and it is not clear which one to choose.
Remark that this ambiguity does not occur in ML, since the unification algorithm would
identify &; and 0, to 30. ¢, assuming ¢ is declared as follows

datatype ¢ = a of unit | b of unit
Worse, if m has a third “catch-all” alternative defined as follows
m(z:) = a;

then the minimum type of m is Ya. &« — «, which is much more general than the ML type
¢ — ¢ inferred by the unification algorithm. Note that this type would also have been
inferred by an ML compiler without the third “catch-all” alternative, in which case ML
compilers normally print a “match not exhaustive” warning.

Now, the rationale of choosing 4y is that it is the largest domain which contains @ and
b, and nothing else (w.r.t. to the current type structure). However, this domain may be
too large to type-check the bodies of the alternatives of m, so we may want to choose
8, which is the smallest? domain containing a and b. Doing so guarantees that if one of
the alternatives of m fails to type-check, and m is not recursive, then the method cannot
type-check. However, doing so also restricts the possible uses of m elsewhere, e.g., if m is
let-bound. In a sense, 4; and &y are the upper and lower bounds for the choice of §. In
terms of abstract interpretation, the only solution to this problem is probably to design a
widening operator [8, 15] on domains (or the dual of a widening operator, to be precise),
and use efficient chaotic iteration strategies [9] to compute fixpoints. As a matter of fact,
the unification algorithm of ML can be seen as a widening operator [37, 38]. We leave
open the design of this widening operator for ML<. One possible track may be to use 6,
and allow non-exhaustive matches, as in ML, but more sophisticated widening operators
can certainly be designed.

*Informally speaking, of course, since domains do not form a sup-semi-lattice without disjunctive con-
straints. That is to say, the smallest domain containing a and b is (Ja: a < a V a < b. a), which cannot
be expressed in ML<. The domain d; is thus the most natural approximation of the least upper bound of
a and b in a closed world.

54

Chapter 8

Extensions

8.1 Modules

In this section, we show how to define a module system for ML< preserving some modu-
larity in type-checking. Our goal is not to give a formal definition of the module system.
Rather, we define the system informally and give hints on some key points of the design.

We propose to partition the program into modules and interfaces. Modules and in-
terfaces are named, and we assume that each module/interface has a unique name in the
same namespace, so that we confuse modules and interfaces with their name. We assume
the existence of a module, called Main, defining a function main with type unit — unit.
As opposed to chapter 5, where the name of functions, methods, and variables consisted
in strings of alphanumeric characters, we assume that the name of every global object in
the program is explicitly qualified by the name of a module or the name of an interface,
except for the declarations of classes, types, data types, and the specification of functions
and methods, which use unqualified names for the object they define, this name being im-
plicitly qualified by the module or the interface in which the declaration occurs. Note that
the examples of chapter 1 used a more liberal convention with an implicit qualification of
the names in scope.

Interfaces are sequences of import statements, class, type, and data declarations and
implementations in the style of figure 5.1, as well as specifications for methods and func-
tions'. Import statement have the form import I, where I is the name of an interface, and
specify the list of interfaces that the interface can use. The specification of a function f
in interface I is of the form fun f: 7. The specification of a method m in interface [is
of the form meth m: 7, where 7 is of the form V¥: . 8; — 6,. The class, type, and data
declarations of an interface I are valid if, as a whole, they form an admissible extension
of the type structure imported by I. Every data type constructor dg, declared in some
interface I, must have exactly one implementation of the following form (in I or in some
other interface importing I)

data I.dc[d¢]is -+ end

'Note that values that are not abstractions cannot be defined at toplevel in modules or exported in
interfaces. This restriction could be lifted with a lazy language allowing the recursive definition of arbitrary
values.

55

Modules are sequences of import statements and letrec-bindings for methods and func-
tions?. Import statements specify the list of interfaces that the module can use. A function
f defined in interface I must have exactly one definition of the form

fun I.f{9 |k} (z:0)=¢e¢

in some module M importing I. A method m defined in interface I can be implemented
in several modules M;, ¢ € [1,n], importing I. The i-th implementation of method m in
module M; is of the form

meth I.m(z: m;) = ¢

where the type variables ¥ of the specification of the method are accessible in the scope
of the body e;.

The meaning of a collection of modules and interfaces is a program (in the sense of
section 5.1) with a type structure built by gathering all the declarations in the interfaces
of the program, together with a recursive let-expression® whose body is the expression
Main.main(), and whose bindings are the specifications of all the interfaces and the letrec-
bindings of all the modules of the program. The definition of function f is transformed
into the following letrec-binding

If:r=fun{¥ |k} (2:0)=¢
whereas the n implementations of method m are gathered as follows

Iom:1m=meth {9 |k} (z:01): 02 = [71 = €1;...;7, = €,]

In order to have a modular type-checking, we must first define the meaning of a module
M independently of the rest of the program. We propose to consider that a module denotes
the “partial” program formed by the interfaces it imports, together with its own body?.
Note that the body of each alternative of a method can be type-checked independently
from its other alternatives, so that it makes sense to type-check a partial method, provided
of course that we relax the condition imposed by rule Meth that the patterns of a method
form a partition of its domain, and report this check to link-time when all the modules
are known. The key point of the system is that the global link-time type structure is an
admissible extension of the imported type structure in which the type-checking of M is
performed. Moreover, the minimal type of each expression in M is also the minimum type
w.r.t. the link-time type structure, since the minimal derivation w.r.t. the type type struc-
ture of M is also the minimal derivation w.r.t. the link-time type structure. Consequently,
modules can be type-checked in a modular fashion with the provision that methods must
be checked for completeness and non-ambiguity at link-time.

2Tt would be easy to add class, type and data type definitions too, as in chapter 1.

S A hierarchy could also be defined on modules and interfaces to avoid the recursive definition of every
toplevel object and allow values to be exported in interfaces.

“Note that in order to do so, we need to allow functions and methods to be declared, but not im-
plemented, since a function declared in an interface I imported by M is not necessarily implemented in

M.

56

Note that, as always, the use of multi-methods (see below) or the use of complex
hierarchies of type constructors can lead to link-time failures. There as several ways to
minimize the problem. For instance, we could restrict ourselves to tree hierarchies (that
is, forbid multiple-inheritance). Or, as advocated in [14], we could impose that interfaces
which extend the classes defined in some interface I explicitly say that they extend I,
and use the notion of resolving module to resolve ambiguities raised by the use of multi-
methods. In any case, these language design issues must be solved in a satisfactory way
before multi-methods and multiple-inheritance can be accepted as a viable alternative to
single-dispatch languages, and we shall discuss this problem at length in another report.

8.2 Multi-methods

Section 5.4 showed that defining curried methods with constrained types can be somewhat
subtle and counter-intuitive. We thus need a direct way to define methods with several
arguments. We are immediately confronted with a choice. We can either extend the theory
to account for multi-methods, or take the view that multi-methods are just syntactic sugar
for curried methods. We study the two views in sequence, and see that built-in multi-
methods are more expressive than curried methods. For the sake of simplicity, we restrict
ourselves to methods with two arguments, and we assume the existence of a (§, &)-variant
class Pair with a single data type constructor pair implemented as follows

data pair[a, 3] is 1: «; 2: 3 end

where, as usual, the monotype pair[fy, 6] is written (61,63). So let m be the following
multi-method

m = meth {V |k} (z:(01,02)): 0 = [m1 = €15...7, = €,]

where for each ¢ € [1,n], m; is a multi-pattern of the form 39;1,9; 2. (0;1,0;2) such that
¥;1 is disjoint from ¥; 2 and 7; ; = 39, ;. 6; ; is a well-formed pattern for j € [1,2]. The
restriction that ¥; ; and 9; 2 be disjoint corresponds to the fact that the two components of
a multi-pattern must be independent, so that we can confuse 7; with (m; 1, 7; 2). In other
words, multi-patterns must be linear. For instance, Ja. (o, @) is not a multi-pattern.
Extending the theory to allow multi-methods like m simply consists in adding multi-
patterns and replacing condition (3) of definition 44 by the following condition

(3) for every data type constructors dc, and dc, in T such that §[A] and the multi-
pattern © defined as 30¢,, V¢,. (de, [V,], dey[Vc,]) are compatible, the set {m; | Ji €
[1,n]. 7 <} has a minimum element

which generalizes easily to multi-patterns with more than two components. The key point
of this generalization is that theorems 43 and 45 remain valid®, provided we define run-
time types as closed types of the form V9: k. do[O¢] when d¢ is not the pair constructor,
and closed types of the form V9: k. (d¢,[©¢,], dc,[Oc,]). 1t is then easy to check that

5Note that the fact that these theorems remain valid relies heavily on the hypothesis that every multi-
pattern 391, 92. (91,92> is such that 6; is ¥;-closed, 82 is ¥2-closed, and ¥; is disjoint from ;.

57

the rest of the theory is unchanged, and that, in particular, minimal typing and subject
reduction remain valid.

Another approach to the introduction of multi-methods like m is to find a way to write
a curried version of m while preserving the “most specific” semantics for dynamic dispatch.
Let 7y, ..., Ty, denote the elements of the set {m; ; | 7 € [1,n]} (where, as usual, we identify
equivalent patterns). To the light of section 5.4, we propose to write the curried form m’
of m as follows

m' = meth {0|x} (21:60): 0, —=0=1]---
7i = meth {¥ |k’ AN <O} (22:65):0 =]
T2 = let © = (21, 23) in ¢; end;

where V9': k. (0], 8,) — 0" is a fresh renaming of the type of m, and for every ¢ € [1,m],
every j is the index of a pattern 7; whose first projection is equivalent to 7;. We say that m
is well-typed w.r.t. A if this rewriting is well-typed w.r.t. A (giving a direct reformulation
is too complex and not very intuitive). The problem with this implementation of multi-
methods as curried methods is that some well-typed multi-methods do not have well-typed
translations. To see why, just assume the existence of a ()-variant class A with type
constructors aq, ag, and as, and data type constructor a4 such that a4 C4 as E4 aq and
as T4 as T4 aq, as well as the existence of a ()-variant class B with type constructor by
and data type constructors by and bs such that b, Cg by and b3 Ep by. Then the following
multi-method (left) is well-typed, whereas its translation (right) is ill-typed

my1 = meth (z: (a;,b1)): a1 = [m) = meth (21: a1): by — a1 = |
(az, by) = pair.1 z; az = meth (22:01): aq = [by = 24];
(as, bs) = pair.1 z; as = meth (22:01): aqy = [by = 4]

]]

since data type a4 matches both ay and as, which are not comparable, so that as, asz is
not a partition of ay. Another interesting counter-example is the following polymorphic
multi-method (left) and its translation (right)

mg = meth {a} (z: (a,a)): a = | mb = meth {a1} (z1: aq): ap = ay = |
(_,_) = pair.l ; _= meth {ay|a; < ag} (228 az): ag = |
(_,int) = pair.1 z; _= xq; int = z1; bool = a3
(_, bool) = pair.1 z]

It is easy to see that my is well-typed and that m) is ill-typed, since the two inner
alternatives have patterns which are incompatible with the domain Jag: oy < @g. @y w.r.t
the context (ay: true). This is because the inner method has no information whatsoever
about the type «y of the first argument, so that they cannot dispatch on the second

58

argument which supposedly has the same type. In contrast, my dispatches on both ar-
guments simultaneously. These examples thus show that built-in multi-methods are more
expressive than curried multi-methods. However, we believe that both schemes should be
equivalent in practice, since counter-examples are rather ad-hoc.

8.3 Abstract, concrete, and template classes

As we have already noted in the introduction, base types, that is, types built from type
constructors with arity 0, are the equivalent of abstract classes in that no instance of such
types can be instanciated at run-time. On the other hand, base data types correspond to
concrete classes since they have implementations which can be instanciated at run-time.
For classes with arity greater than 0, type constructors correspond to abstract template
classes and data type constructors correspond to concrete template classes.

Note that template classes, as in C++ for instance, are usually non-variant, that is,
a C++ class C'(T) is a subclass of C' (T") if T'=T" and C'is a subclass of C’. This is
because C'++4 is an imperative language with side-effects, so that T can be used as the
type of a mutable field, which makes in non-variant. Indeed, assume that a function f
expects an argument r which is a reference to a real (that is, a pointer to a real). This
means that this function assumes that the contents of r is at most a real, but also that
any real can be stored into r. Now, if the type “reference to integer” was a subtype of
“reference to real”, then a reference r’ to an integer could be safely passed as argument
to f, so that f could store a real into r’, which is unsound.

8.4 Side-effects and references

As in ML, state can be added to ML< by adding a (®)-variant type constructor ref,
together with two functions set and get to set the value and retrieve the value of references.
However, it is very well-known that when used in conjunction with predicative type systems
like ML or ML«, references cannot be polymorphic. Consequently, if we were to add
monomorphic references to ML«, we should add a new variance specifier) denoting both
non-variance and monomorphism, and declare the ref constructor as a member of the
(®)-variant class Ref. For example, the class IList of imperative lists, that is, lists with
mutable elements, could be declared as a (®)-variant class and the imperative cons would
be implemented as follows, in pretty much the same way as it would be implemented in
C++

data icons[a] is 1: ref[a]; 2: ilist[a] end

8.5 Nonvirtual, virtual, and purely virtual methods

ML« functions are similar to the nonvirtual member functions of C++, or to the frozen
routines of Eiffel, that is, operations with a default behavior that cannot be overridden.
ML< methods are similar to the virtual member functions of C'++, or to the effective
routines of Eiffel, that is, operations with a default behavior that can be overridden.

59

Finally, ML< methods with no default behavior (that is, methods with no “catch-all”
alternative with pattern Ja. «) are similar to the purely virtual member functions of
C'++, to the deferred routines of Eiffel, and to the abstract methods of Smalltalk.

We could imagine requiring the explicit declaration of purely virtual methods in in-
terfaces to impose the implementation of these methods over every type in their domain.
Other annotations could also be created to give better hints to the programmer about how
exported methods should be refined when new types are created.

8.6 The dot notation

The dot notation used in single-dispatch languages to invoke methods can also be adapted
to ML<. Indeed, a natural use of the module system of section 8.1 is to associate every
constructor class C' to an interface I exporting the public interface of C' and a module M
implementing the public interface of C', as well as the private functions and methods of
C'. In general, C' and I will have the same name, as for the example of figure 1.1.

To recover the kind of encapsulation enjoyed by class-based languages such as C'++,
one possibility is to define the notation @.b as syntactic sugar for (I.b a), where [is the
interface in which the class of « is defined, where the class of a is the unique class C' such
that the minimal type of a is of the following form V9: k. t¢[O¢] (if the type of a is not
of this form, e.g., if a has type VYa. «, then it is a compile-time error).

This scheme will work very well if all the methods of the class are defined in the
same interface. If not, this scheme can be refined to match the convention of standard
single-dispatch languages. Note that our scheme is very flexible and avoids the need for a
separate mechanism to manage name spaces, as in C++ for instance.

8.7 Type classes

Our notion of type constructor class is quite unusual in object-oriented languages. How-
ever, this notion is important in ML«, since ML« supports multiple-inheritance and does
not have a notion of maximum typ(; or root class. However, if hierarchies of type con-
structors were restricted to trees, the root of every tree could be identified with the class
associated to it, and constructor classes could be eliminated. Nonetheless, note that con-
structor classes can be useful to allow multiple-inheritance in a much broader sense than
what was used in this report. Indeed, we have always defined classes like Unit, Num,
Bool with the same variance and different “meanings”, but we could just as well have
defined one single ()-variant class Base with type and data type constructors unit, real,
true, etc. Doing so would allow the definition of “overloaded” functions with types like
Va: o € Base. o« — . A straightforward generalization of ML« would thus be to define
a partial order between constructor classes, and to add constructor class variables. How-
ever, a more interesting generalization might be to add type classes [28, 39, 44], that is,
user-defined predicates P> on monotypes. Since ML« is based on constraint implication,
adding type classes simply amounts to defining new conjuncts of the form P(6) and giving
a stronger, but still decidable, axiomatization of the implication while maintaining the
good properties of the system, namely, minimal typing and subject reduction.

60

// Predicates meth string: Vo String(a). ov — string;
pred String; meth string(xz: _) = "*";
pred Print; meth string(z: nil) = "";

) Aviomatizati meth string(x: cons) =
viomatization

rule String(Num);
rule Print(Bool);

concat (string (cons.1 z)) (string (cons.2 z));
meth print: Va: Print(a). o — unit;
meth print(z: String) = write (string x);
rule String(a) = Print(«a); meth print(z: true) = write "true";
rule String(«) <= String(List[a]); meth print(z: false) = write "false";

Figure 8.1: Type classes

For instance, assume that Print is a predicate denoting the set of monotypes corre-
sponding to printable objects, and String is the set of monotypes denoting objects which
can be converted to strings (and thus be printed). We may want to define this predicate
inductively as in figure 8.1. The first two rules assert that every number can be converted
to a string and that booleans can be printed. This user-defined rules are taken into account
by the type system through the addition of the following axioms to figure 3.1

V9. k = k A String(tnum) V. k |E K A Print(tgool)

The third rule, which states that every monotype convertible to a string can also be
printed, translates to the following axiom

V9. k{String(8)} = k A Print(9)

The last rule states that a list can be converted to a string if and only if its elements
are convertible to strings, which is reflected by the following axioms

V. k{String(8)} = x A String(List[6])
V. k{String(6)} E kA0 = vList[v'] A String(v') (viist and v fresh)

used both the “construct” monotypes and to “destruct” them, in pretty much the same
way as rules MIntro and VElim do. Obviously, these rules forbid any other rule of the
form

rule String(List[Bool]);

asserting that lists of booleans can be converted to strings without asserting that booleans
can be converted to strings. This example shows that proper restrictions must be put on
user-defined rules for the system to be sound and tractable. Finally, assuming that every
type class is non-variant®, the following rule holds for every type class P

¥, k{P(8) A8 =0} = kA P(8)

5This is simpler, but not necessary. Type classes could have explicitely declared variance as for con-
structor classes.

61

With these definitions, one may for instance define the following program (provided,
of course, that a meaning can be assigned to it and that subject reduction holds, which
we do not claim here).

8.8 Implementation inheritance

Finally, we want to mention how implementation inheritance could be added to ML« by
sugaring the syntax of the language. As noted by many authors, the best way to define
implementation inheritance is to define an inheritance hierarchy which is distinct from the
subtyping hierarchy. However, for the sake of simplicity, we assume a one-to-one mapping
between the subtype relation and the inheritance relation, which is what is done in a lot of
object-oriented languages, e.g. C'++. The idea is then to take the convention that every
data type declaration of the form

data do[d¢c]is --- f: 6 --- end

declares both a type constructor $d¢ and a data type constructor de with the fields listed
in its declaration plus the fields of all its superconstructors (assuming, of course, that the
fields are named instead of being numbered). For every field f, this declaration would
automatically declare a virtual extractor f implemented as a method dispatching on all
the data type constructors df., d., etc., below $d¢, that is to say

meth f:Vic. $dc[9c] — 6;
meth f(2: do) = do.f a;
meth f(z: di.) = dj..f ;
meth f(z: df.) = d..f ;

Note that our model of implementation inheritance is not based on extensible records,
since the field f of two distinct data type constructors below d¢ are semantically unrelated.

62

Chapter 9

Related work and conclusion

9.1 Related work

The object-oriented model developed in this report is very similar to that of the pro-
gramming languages CLOS [17] and Cecil [14], in particular by its distinction between
concrete and abstract classes, the distinction between subtyping and implementation in-
heritance, the use of method specifications, and the use of modules to provide encapsu-
lation. However, the type system proposed by Chambers and Leavens is only first-order
and monomorphic, and the specification of methods by means of sets of monomorphic
signatures is less expressive and more “ad-hoc” than ours. Nonetheless, many of the tech-
niques developed in [14] could be adapted to our system, in particular techniques for true
separate compilation of multi-methods and compilation of dynamic dispatch.

Another system which has interesting links with ML« is of course F< [16]. Both sys-
tems have a subsumption rule, a notion of type application, and above all, minimal typing.
However, F< deals with explicit polymorphism (that is, types are passed as arguments to
functions but do not otherwise interfere with the execution of the program), whereas ML<
deals with implicit polymorphism (that is, types are not passed as arguments to functions),
and the dynamic type of objects is used to perform dynamic dispatch. Moreover, F< al-
lows polymorphic formal arguments, whereas ML<, as every predicative type system, does
not. These differences make the two systems rather hard to compare. However, one major
difference between the two systems is that F'< is undecidable, whereas ML« is decidable,
and we have seen in section 3.2 that subtyping can probably be decided in polynomial
time in practice. Castagna and Pierce have tried in [11] to design a decidable variant of
F<, but they have acknowledged in [12] that this variant does not have minimal typing.
Nonetheless, the comparison of our subtyping rule to the three variants V-orig, V-top and
V-Fun of the subtyping rule for universally quantified types given in [12] is interesting. Let
Uy and U, be two F-bounded types of the form V(X < 7T;)5; such that 7; and S; are
monomorphic (i.e., do not contain quantifiers). We naturally identify U; with the poly-
morphic constrained type 7; = VX : X < T;. ;. The original subtyping rule of [16] states
that Uy is a subtype of U; w.r.t. some environment I" if and only if

T, <T) [X<ThF S <58,

63

that it to say, identifying [' with a context A of the form (9: k),
V. k=T, <T VI X.k AX <Ty =S <5,

or, by the fact that X does not occur free in 77 and T3 and corollary 4

VI X. kAX <To =Ty <T) NSy <59
and by corollary 5

VX kANX STy EX<ToAT; <Ti NS <5

so that by transitivity

VI X. kANX <To EX<TI NS <5

which, by rule VIntro, implies that 7 is a subtype of 7 w.r.t. A. The original subtyping
rule of F< is thus sound w.r.t. ours, and so are the two others. Moreover, our type
application operator app, is monotonic, whereas this is not so at the term level for F<,
where type application is just syntactic substitution.

Another difference between < and ML« is that F< lacks both least upper bounds and
greatest lower bounds, whereas any two types with an upper bound have a least upper
bound in ML<. Finally, another important difference between F< and ML« is that F<
is not based on a user-defined type hierarchy. This makes the system simpler and more
self-contained, but we think that it looses the fact that class hierarchies are at the heart of
object-orientation, since they somehow specify the objects manipulated by the program.
Moreover, the openness of these hierarchies is at the heart of ML« thanks to theorem
22 which shows that our axiomatization of the implication, in a sense, captures all true
properties w.r.t. an open world.

Castagna [10] has defined an extension of F< allowing function overloading in a higher-
order setting with explicit polymorphism and primitive subtyping. His model is quite pow-
erful but technically rather tricky, as all impredicative models. Moreover, type-checking is
undecidable and methods lack specifications, which can be a problem for modularity and
scalability. Nonetheless, an extension of ML« where types are collections of compatible
polytypes may be worth considering to have a better typing of methods, and, maybe, to
allow a precise type inference for methods. It is not clear that such an extension would
remain decidable, though.

Mitchell [34] has studied containment-based type inference which has interesting con-
nections with our system. In particular, Mitchell gives containment rules and axioms for
second-order lambda-calculus which are valid in all simple inference models. The following
rules, using the notations of [34],

(sub) Vt.o CVr.[r/t]o where r are not free in Vt.o
(arrow) c1CorCnkFo—=717Co1—mn

(ref) cCo

(trans) pCoocCThkpCo

(congruence) cCTkEVt.oCVt.7T

64

are valid in ML< when restricted to types for which they make sense. Rule (sub) is an
instance of our subtyping rule. In particular, the restriction that r is not free in Vt.o
corresponds to the use of a ¥-substitution in rule VIntro, where 9 are the universally
quantified variables of the context.

Mitchell, Meldal, and Madhav [36] have proposed an extension of the Standard ML
module system identifying types with specifications (which are a generalization of signa-
tures with constraints) and objects with structures. Their system introduces two separate
mechanisms for subtyping and inheriting specifications, and allows polymorphic specifi-
cations (i.e., templates). As for ML<, the main idea is to separate specification from
implementation, and both systems allow programming using both objects and abstract
data types. As a whole, the system is more expressive than ours, since structures with
type components are first-class (whereas the module system we propose for ML< only
allows types to be defined at toplevel, as for Standard ML). Moreover, the encapsulation
mechanism provided by structures is superior to that offered by ML<, and ML« only pro-
vides a weak form of implementation inheritance. The impredicative treatment of explicit
type parameters of specifications and methods is based on bounded polymorphism. This
has the advantage of allowing parametric methods like sort with the following specification

sort [type a < ordered[a]]: list[ar] — list[a]

which is possible in ML< in a restricted form (the most general form would require the
introduction of type classes as in section 8.7). On the other hand, explicit type parameters
can be a disturbance, and the ML< approach making use of implicit parameters with an
explicitly declared variance looks more pleasant. Moreover, turning structures into first-
class objects (1) complicates the definition of type equality somewhat and leads to an
operational definition which is not very intuitive, and (2) duplicates the functionality of
records, which can lead to further confusion. Finally, the approach advocated in [36]
defines a single-dispatch language, so that the kind of precise typing of binary operators
allowed in ML« is not possible, and methods are not ordinary functions which can be
passed as parameter to other functions.

ML< also has strong links with all systems derived from the Hindley-Milner type
system, in particular, systems of overloaded functions built around the notion of type
class, first proposed by Kaes [28], and then by Wadler and Blott [39, 44], or constructor
class, proposed by Jones [27]. In essence, these systems [27, 39, 44] allow the instantiation
of overloaded specifications which consist in type templates with a single type variable,
such as the instantiation of the template (a, o) — « for a = int and o = real. In the
absence of any subtyping relation between int and real, such simple specifications cannot
express complex types such as the type of the sub method and, in particular, do not allow
the typing of mixed operations like sub(1.2,3). Multi-parameter type classes, i.e., type
templates with more than one variable, have thus been proposed to lift this constraint.
The idea is to use a template like (o, 3) — 7 and instantiate it with all possible interesting
combinations of «, # and v, for example (int,int,int), (int, real, real), etc., which, in fact,
is fairly similar to the signatures of [14]. However, the problem with multi-parameter
type classes is that type-checking is undecidable in general, that it is possible to overload
functions with structurally different signatures, e.g., (bool,int — bool, unit), and that the
overloading resolution algorithm can be quite tricky and unintuitive, a mixture which has

65

already proven very dangerous in C'++. In contrast, a type like
vo‘7ﬁ77: (IntSPY/\OéS’y/\ﬁSPy)O(_}ﬁ_},y

(which is equivalent to the type of the sub method) can be seen as a multi-parameter
constrained template with restricted instantiations.

Duggan [19, 20, 40], and then Odersky, Wadler, and Wehr [39] have proposed the use
of “kinded types”, which are polymorphic constrained types with constraints on available
instances of the operations used by function bodies. This approach is also related to
the “methods as assertions” view developed by Abadi and Lamping [4]. For instance, the
insert function on sets requires that the equality operator be instantiated at the type of the
inserted element. This approach can be made to work under the “open world” assumption
[19, 39], but types are rather hard to read, since they mention program functions, and
lead to method specifications which are dependent on the program’s text, which may be a
problem for modularity and scalability. On the other hand, type inference is made easier
by such an approach.

Another approach which is related to ML« is the addition of dynamics to polymorphic
languages. The theory of dynamics of Abadi, Cardelli, Pierce, Plotkin, and Rémy [1, 3]
introduces a new type, Dynamic, which is the type of pairs of objects of any type together
with a type tag. Dynamics are built using (dynamic e: 7) expressions, where the type tag
is explicit. The requirement that type tags be explicit is necessary to have minimal typing.
Intuitively, Dynamic can be thought of as the existential type da. o, or as the REFANY type
of Modula 3. Dynamics allow the use of heterogeneous lists, the typing of /O functions,
etc., and dynamics are thus strictly more expressive than ML<. On the other hand, ML«
can have overloaded coercion functions like string, with type Ya. o« — string, dispatching
on the outermost type constructor of the run-time type of arbitrary objects, which covers
an important use of dynamics. The advantage of the ML« approach is its simplicity and
its uniformity, since no ad-hoc mechanism is needed to handle dynamics. One could argue,
though, that the drawback of this approach is that every object has to be tagged by its
minimal type at run-time, but, as noted in chapter 6, this is only partly true since only
the outermost type constructor has to be maintained at run-time, and by a proper static
analysis of programs, or explicit user declarations, we are convinced that performances
similar to that of classical ML implementations can be achieved. Dispatching on dynamics
is performed via typecase expressions which match the run-time tag of dynamics against
patterns in sequence. These expressions have a mandatory “catch-all” clause which is
applied when pattern-matching fails. This approach is thus less flexible than the ML«
approach which requires completeness and non-ambiguity of methods, and has a notion
of “best-match”, which, we believe, is important for object-oriented programming. On
the other hand, patterns can be any monotype, including function types, and they can
have repeated and second-order variables (although the use of tuple-variables in the latter
case is rather complex). Consequently, patterns do not have to be linear and allow the
inspection of functions. The price to pay for such features is that dynamic dispatch
requires an exact match of patterns. In the presence of primitive subtyping, this exact
match can be followed by a simple inequality constraint on the result of the match, which
offers some of the flexibility offered in ML<. In contrast, ML< does not “match” patterns.
Rather, a consistency check 7 € 7 between the run-time type 7 of objects and patterns =

66

is performed, and the possible “matches”, even when ambiguous, are left implicit through
the addition of a constraint to the run-time constraint context A. Also, we believe that
the explicit tagging of dynamics is potentially dangerous, since tags influence the behavior
of the program, and could be the source of malicious bugs in languages with primitive
subtyping, since programmers may tag values by strict supertypes of their minimal type.
Finally, the typing rule for typecase expressions of [1] has an infinite number of premisses,
whereas our type-checking for methods is considerably simpler.

Leroy and Mauny [30] propose a system for adding dynamics to ML that unifies
typecase statements with pattern-matching. Their first proposal, implemented in the
CAML compiler [46], uses only universally quantified patterns. Their second proposal in-
troduces existentially quantified patterns, as in ML<, and mixed patterns with universally
and existentially quantified variables, which are very powerful. Patterns can be non-linear,
and tagging of dynamics can sometimes be left implicit. However, patterns and polymor-
phic tags have to be closed, so that curried functions cannot share pattern variables, two
restrictions that ML< does not have, thanks to the notion of constraint context (cf. sec-
tion 5.4). Again, this can probably be attributed to the fact that ML< tags objects and
closes polymorphic types automatically, and also to the fact that ML< does not “match”
run-time types to patterns (cf. supra). As for Abadi et al., their system does not have
principal types without some explicit type annotations, which, as shown in section 7.2, is
also probably the case for ML< methods, although more work is required on that subject.

The “extensional polymorphism” approach advocated by Dubois, Rouaix, and Weis
[18] is also related to ML<. For instance, in their system, the method of section 7.2 can
be given the same type scheme Va. o — « as in ML<. The patterns on which dynamic
dispatch is performed are more general than ours, and a type inference algorithm is pro-
posed. This algorithm is based on a global abstract interpretation of the program to check
consistency, since the implementations of methods are required to be non-ambiguous, but
are not required to be complete (cf. section 5.1). However, we believe that a generalization
of this approach to primitive subtyping is unlikely (cf. theorems 43 and 50). Moreover,
our approach does not rely on a global abstract interpretation, and is thus more modular.

Mitchell [33, 35], and Fuh and Mishra [22, 23] have studied the problem of type in-
ference in the presence of primitive subtyping. Their models are not quite comparable to
ours since primitive subtyping is not used to define methods, and our primary goal is not
to perform type inference. Nonetheless, a comparison is interesting in that the instance
relation between typing judgements is an instance of our subtyping rule. Using our nota-
tions (the cited papers use C for constraints x, A for type assignments I', 7 for monotypes
8, and S for substitutions o), a judgement of the form &', " - e: ¢ is an instance of a
judgement of the form k,T" I e: @ if there exists some substitution o such that IV = T'[o],
¢’ = 0lo], V. k' = k[o], and k[o] is ¥'-closed (where ¥ and ¥’ are the sets of free variables
of k and ', which we assume to be disjoint). This way of proceeding is different from ours
in that constraints are not part of polytypes, which seems perfectly natural in the context
of type inference, but much less so in the context of an explicitely typed language, or in the
simpler context of a modular language where the type of every function or method f has
to be matched against the specification of f in the interface exporting f. Moreover, the
fact that x" and k[o] are ¥'-closed corresponds to the fact that the axiomatization of the
implication used above is essentially the reflexive and transitive closure of constraints. In

67

any case, our definition is more general in that it allows €’ to be a supertype of f[c] instead
of requiring equality. As a matter of fact, the instance relation defined above implies that

Vo' K | k[o]) A blc] = ¢
so that, o being a ¥'-substitution,
Vo' k' = k[o] A b[o] < 0'[0]

and by rule Vintro
V. kK ERrAE L

which proves that Vi: k. 6 is a subtype of V9': x’. 8 w.r.t. the trivial constraint context
True. Hence, principal typing up to equivalence w.r.t. the instance relation is somewhat
related to our notion of minimal typing. However, our definition is more general and is
extended to deal with existentially quantified constraint contexts occurring in the typing
of explicitely typed functions and methods. Finally, the notion of “matching” and the
MATCH algorithm of [35] is also present in our axiomatization of constraint implication,
as shown by rule (arrow-inverse), which is an instance of our monotype elimination rule
MFElim.

Based on the same ideas, Mitchell and Jategaonkar [26] have developed a model which
has interesting connections with ours. The idea is to extend ML pattern matching with
flexible records and primitive subtyping, in order to allow some form of object-oriented
programming. Their system can support built-in containment relations between base types
and built-in operations with constrained types like the type Vo, 3: o < real. @ = o — a of
the addition operator. They do not clearly have a semantic notion of containment between
polymorphic constrained types, although they mention that the INSTANCE algorithm to
decide the instance relation is NP-hard. At the end of the paper, they briefly and infor-
mally show how abstract types and subtypes can be defined, and show how flexible records
allow the definition of a move method like the one of figure 1.2, with type

Yt C point. t — ¢t

so that color points are mapped to color points. However, methods cannot be overridden
(that is, they can only have one implementation), the underlying model is inherently single-
dispatch, with all the problems associated to the typing of multi-methods, and there is no
provision for parameterized classes. Also, allowing multiple implementations of methods,
as the authors mention in the conclusion, would probably raise difficult problems for
type inference. Nonetheless, we believe that adding flexible records to ML< may be an
interesting direction in order to treat implementation inheritance in a more primitive way.
The notion of “matching” developed in [35, 26] shows that rules VElim and MElim can
probably be generalized to flexible records.

Kaes [29] has tackled the decidability of type inference in the context of overloading,
subtyping, and recursive types, using constrained types which are more expressive than
ours, and with a precise typing of arithmetic operators. Moreover, his notion of “structural
similarity” is fairly close to our notion of constructor class. However, his paper does not
address the problem of defining methods and performing dynamic dispatch, and does not
provide an operational semantics.

68

Eifrig, Smith, and Trifonov [21] have developed a polymorphic class-based object-
oriented system whose goals are fairly similar to ours. This system avoids the problems
associated with matching [6], allows multiple-inheritance, has a decidable mimimal typing
as well as a sound and complete inference algorithm based on recursive types. However,
there are no parameterized classes (i.e., templates), and the treatment of binary methods
is still not very satisfactory, which is inherent to all single-dispatch languages, and the
authors acknowledge in the conclusion that the design of a module system should be
difficult. Moreover, it is worth mentioning that the subtyping rule between recursively
constrained types (definition 2.2) is sound w.r.t. ours, but less powerful in the sense that
this rule relates monomorphic types w.r.t. some existentially quantified constraint, whereas
our subtyping rule relates polymorphic types. In particular, we have seen that our rule is
what is required to check that the specification of a method in an interface is matched by
the implementation of the method, which gives modularity for free.

Aiken and Wimmers [5] have addressed the problem of performing type inference via
set constraints. Their constraints have union, intersection and recursive types, and data
constructors as nil and cons are part of their constraints, but they do not have primitive
subtyping. They have a semantic ideal model of polymorphic constrained types which
implicitly relates polytypes. However, this subtyping relation is not explicit, nor is it
axiomatized, and the authors do not consider methods. An interesting question is whether
set constraints could be used in ML<. We do not think so for two reasons. One is
that if the conditional (which is not part of the expression language of [5]) had type
VX.bool = X — X — X, then the expression (cond true 1 ()) would be well-typed since
the set constraint {int C X,unit C X} has a solution, which is rather annoying. The
second reason is that set constraints are interpreted w.r.t. sets of terms of a free algebra,
whereas ML« constraints are interpreted w.r.t. terms built from an arbitrary partial order
which is a given of the problem. This seems to make it very difficult, with set constraints,
to reason about admissible extensions of the type hierarchy and axiomatize constraint
implication (and, hence, subtyping) with results similar to theorem 22. Further work is
required, however, to clarify the relationship between the two approaches.

9.2 Conclusion

We have presented a new object-oriented extension of a typed-version of ML, called ML,
based on a reinterpretation of datatype declarations as abstract and concrete class declara-
tions, and of pattern-matching as dynamic dispatch. We believe that this extension, with
a minimum number of concepts, is natural and powerful, and would be easy to learn for
ML programmers, but the model we have developed is also very close to models emerging
in the OO community. The static type system we propose for this language is a gener-
alization of the classical Hindley-Milner predicative type system at the crossroad of two
trends, namely type/constructor classes and primitive subtyping. Our typing of methods
is stronger and more semantic than that offered by type classes or constructor classes,
and provides for a precise typing of arithmetic operators. Moreover, we do not rely on
the kind of complex overloading resolution strategies that must be used in the context
of multi-parameter type classes and have proven harmful in languages like C+4. Our

69

methods are just ordinary functions which can be used as such, and in particular, can be
passed as arguments to other functions, a property that most single-dispatch languages
lack.

We believe that the universally quantified implication of existentially quantified con-
straints, which is at the heart of the system, is a unifying framework for many object-
oriented extensions of ML, since the entire construction, and in particular the language,
its typing rules, and its operational semantics, seems very robust with respect to the addi-
tion of new kinds of constraints and a modification of the axiomatization of the implication.
In fact, only a few lemmas about this axiomatization, in particular theorems 43 and 45,
are actually used in the proofs of crucial theorems. Also, the notion of functional type
application, which turns functional types into monotonic type transformers, allows a more
semantic and systematic presentation of the system, and in particular, of the application
rule.

Finally, ML< may be seen as a reference, explicitely typed language for research on
type inference with subtypes, as well as a link between predicative and impredicative type
systems, since the subtyping rule of < matches ours in an interesting way. It may also be
interesting to compare F< to the pure functional subset of ML< which does not contain
methods or constructor classes. Since monotypes can only be type variables in this system,
the axiomatization of the implication is that given figure 7.1, which is simple enough for
theoretical investigations.

On the minus side, the language we propose looses some of the simplicity that has
made ML so popular. Universally quantified constrained types can be hard to read and
understand, and type-checking errors can become hard to explain. Moreover, our language
is explicitly typed, and it is not completely clear which type annotations could be auto-
matically inferred by a compiler. We believe that the type of functions could be inferred.
As for methods, we believe that type inference may be possible over some class of ML-like
types, but more work is required on this topic. Finally, even though methods can be
given very precise constrained types, programmers may choose to use classical ML types
exclusively, unless precise types are not required, so that programmers can only pay for
what they actually use.

In order to allow the definition of new classes and new constructors, our system is
based on an implicit “open-world” assumption. However, it may be desirable to treat
some classes, for instance built-in classes, as “closed”, in order to allow more sophisticated
methods to type-check. This can be done easily by a stronger axiomatization of the
implication.

Many interesting extensions could be studied, the first one being type classes, even if
they are not as badly needed as they are in ML, since a generic string method with type
Va. a — string can be implemented in ML<. However, this type does not provide the
compile-time safety offered by a type like Var: String(a). o — string.

Adding the ability to define a partial order between constructor classes with the same
arity and the same variance looks like another interesting extension, as are references
(most probably with the classical restriction on polymorphic references), dynamic dispatch
inside covariant type constructors, and implementation inheritance. Adding recursive
types should be more problematic w.r.t. decidability, since rule VFElim cannot be stated
with recursive types. FExistential types may also be worth considering to handle 1/0

70

functions. We believe all the machinery is in place to integrate them easily. Finally, we
would like to give an ideal-based or a PER-based semantic model of ML«.

In conclusion, we want to emphasize the fact that all the examples of this report have
been type-checked using a prototype implementation of ML« written in Caml Special Light
[31] and implementing the greatest fixpoint algorithm of section 7.1. This implementation
is just a “proof of concept” implementation that will be used as a testbed for a more
efficient implementation in the type-checker of the new hardware description language 2z,
which originally motivated this work.

71

Bibliography

[1] M. Abadi, L. Cardelli, B. Pierce, G. Plotkin. Dynamic Typing in a Statically-Typed
Language. ACM Transactions on Programming Languages and Systems, 13(2) (1991)
237-268

[2] M. Abadi, L. Cardelli. A Theory of Primitive Objects: Second-Order Systems. Proc.
of the European Symposium on Programming, Springer-Verlag (1994) 1-25

[3] M. Abadi, L. Cardelli, B. Pierce, D. Rémy. Dynamic Typing in a Dynamic Typing in
Polymorphic Languages. Journal of Functional Programming, 5(1) () 111-130

[4] M. Abadi, J. Lamping. Methods as Assertions. Theory and Practice of Object Systems
1, 1 (1995) 5-18

[6] A. Aiken, E. Wimmers. Type Inclusion Constraints and Type Inference. FPCA’93
(1993) 31-41

[6] K. B. Bruce. A paradigmatic object-oriented programming language: design, static
typing and semantics. Journal of Functional Programming 4(2) (1994) 127-206

[7] K. B. Bruce, L. Cardelli, G. Castagna, The Hopkins Object Group, G. T. Leavens,
B. C. Pierce. On binary methods. Technical report, LIENS-95-14 (1995)

[8] Francois Bourdoncle. Abstract Interpretation By Dynamic Partitioning. Journal of
Functional Programming, 2(4) (1992) 407-435

[9] Francois Bourdoncle. Efficient Chaotic Iteration Strategies with Widenings. Proc. of
the Int. Conf. on Formal Methods in Programming and their Applications, LNCS
735, Springer-Verlag (1993) 128-141

[10] G. Castagna. F‘§<‘: integrating parametric and ad-hoc second order polymorphism.
Proc. of the 4th International Workshop on Database Programming Languages, Work-
shops in Computing, Springer-Verlag, (1993) 335-355

[11] G. Castagna, B. C. Pierce. Decidable Bounded Quantification. Proc. of the 21st Symp.
on Principles of Programming Languages (1994) 151162

[12] G. Castagna, B. C. Pierce. Corrigendum: Decidable Bounded Quantification. Proc.
of the 21nd Symp. on Principles of Programming Languages (1995) 408-408

72

[13] G. Castagna. Covariance and contravariance: conflict without a cause. ACM Trans-
actions on Programming Languages and Systems 17(3) (1995) 431-447

[14] C. Chambers, G. Leavens. Typechecking and Modules for Multi-Methods. Technical
Report UW-CS TR 95-08-05, University of Washington (1995)

[15] P. Cousot, R. Cousot. Abstract Interpretation: a unified lattice model for static
analysis of programs by construction of approximation of fixpoints. Proc. of the 4th
ACM Symp. on POPL (1977) 238-252

[16] P. L. Curien, G. Ghelli. Coherence of subsumption, minimum typing and the type
checking of F<. Mathematical Structures in Computer Science 2(1) (1992)

[17] L. G. DeMichiel, R. P. Gabriel. Common lisp object system overview. ECOOP’87,
LNCS 276 (1987) 151-170

[18] C. Dubois, F. Rouaix, P. Weis. Extensional Polymorphism. Proc. of the 22nd Symp.
on Principles of Programming Languages (1995)

[19] D. Duggan, J. Ophel. Kinded Parametric Overloading. Technical Report CS-94-35,
University of Waterloo (1994)

[20] D. Duggan. Polymorphic Methods With Self Types for ML-like Languages. Technical
Report CS-95-03, University of Waterloo (1995)

[21] J. Eifrig, S. Smith, V. Trifonov. Sound Polymorphic Type Inference for Objects. Proc.
of OOPSLA’95 (1995) 169-184

[22] Y.-C. Fuh, P. Mishra. Type inference with Subtypes. 2nd European Symp. on Pro-
gramming, LNCS 300 (1988) 94-114

[23] Y.-C. Fuh, P. Mishra. Polymorphic Subtype Inference: Closing the Theory-Practice
Gap. TAPSOFT’89, LNCS 352 (1988) 167183

[24] K. Hammond, editor. Report on the Programming Language Haskell, version 1.3
(1995)

[25] R. Hindley. The principal type-scheme of an object in combinatory logic. Trans. Amer.
Math. Soc., 146 (1969) 29-60

[26] L. Jategaonkar, J. C. Mitchell. Type Inference with extended pattern matching and
subtypes. Fundamenta Informaticae. 19 (1, 2) (1993) 127-166

27] M. P. Jones. A system of constructor classes: overloading and implicit higher-order
g g
polymorphism. FPCA’93 (1993)

[28] S. Kaes. Parametric Polymorphism. Proc. of 2nd European Symp. on Programming,

LNCS 300 (1988)

[29] S. Kaes. Type inference in the presence of overloading, subtyping and recursive types.
Proc. of Conf. on Lisp and Functional Programming (1992) 193-204

73

[30] X. Leroy, M. Mauny. Dynamics in ML. Journal of Functional Programming, 3(4)
(1993) 109-122

[31] X. Leroy, Le systeme Caml Special Light: modules et compilation efficace en Caml.
Research Report 2721, INRIA (1995)

[32] R. Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, vol. 17 (1978) 348-375

[33] J. C. Mitchell. Coercion and Type Inference (Summary). Proc. of the 11th ACM
Symp. on Principles of Programming Languages (1984) 175-185

[34] J. C. Mitchell. Polymorphic Type Inference and Containment. Information and Com-
putation 76 (1988) 211-249

[35] J. C. Mitchell. Type inference with simple subtypes. Journal of Functional Program-
ming, 1(3) (1991) 245-285

[36] J. C. Mitchell, S. Meldal, N. Madhav. An extension of Standard ML modules with
subtyping and inheritance. Proc. of the 18th ACM Symp. on Principles of Program-
ming Languages (1991) 270-278

[37] B. Monsuez. Polymorphic Typing by Abstract Interpretation. Proc. of the 12th Conf.
FST&TCS, LNCS Vol. 652, Springer Verlag (1992)

[38] B. Monsuez. Polymorphic Types and Widening Operators. Proc. of the Workshop on
Static Analysis, LNCS Vol. 724, Springer Verlag (1993)

[39] M. Odersky, P. Wadler, M. Wehr. A second look at overloading. Proc. of the 7th conf.
on Functional Programming and Computer Architecture (1995) 135-146

[40] J. Ophel, D. Duggan. Multi-Parameter Parametric Overloading. Technical report,
University of Waterloo (1995) (submitted to publication)

[41] J. Palsberg. Efficient inference of object types. Proc. LICS’94 (1994) 186-195

[42] F. Pottier. Simplifying subtyping constraints. Proc. of 1996 ACM SIGPLAN Int.
Conf. on Functional Programming (1996) (to appear)

[43] J. Vuillemin. On circuits and numbers. IEEE Transactions on Computers, 43(8)
(1994) 868-879

[44] P. Wadler, S. Blott. How to make ad-hoc polymorphism less ad-hoc. Proc. of the 16th
ACM Symp. on Principles of Programming Languages (1989) 60-76

[45] M. Wand, P. O’Keefe. On the complexity of type inference with coercion. Proc. of
FPCA’89 (1989) 293-298

[46] P. Weis et al. The CAML reference manual, version 2.6.1. Technical Report 121,
INRIA (1990)

74

Appendix A

Proofs

Proof of lemma 1

The only rules in which variable sets appear are VIntro and VFElim. Moreover, every
(¥, 9')-substitution is trivially a ¥-substitution, and any constructor variable v, and C-
variable set 0, satisfying vy, # 9 # (9,¢, k) trivially satisfies vy, # 9, # (9, k).

Therefore, any derivation for Vi, ?'. k = &’ is a also derivation for Vd. k = x’. &

Proof of lemma 2

Let us assume that the judgement Vo). k E k' is derivable, and let ¥ be a variable set
such that " # 9'. Without loss of generality, we can assume that # and ¢ are disjoint.
Let ¥ be the set of free variables of x which do not belong to 5, o be a U-substitution
mapping every v’ in 9 to a fresh (that is, a variable which does not belong to (5, 9, 9))
and unique variable of the same kind (and every other variable to itself), and o’ be the
(9, 9') substitution mapping every o(v') to v’ (and every other variable to itself). It is
easy to see that ¢’ o ¢ is the identity. Moreover, by rule VIniro, we have

v, 9. k[’ 0 o] £ K[o]

that is, R
v, 9. k | Klo]

Now, by rule VIntro and the fact that o is a 1§—substitution7 we also have that
Vi k[o] = &

so that the judgement V. ko] = &' is derivable. But since # # 9 and no variable
in 9 occurs free in ko] or in k', we can assume that there exists a derivation D for
this judgement which does not make use of any variable in ¢, and in particular, we can
assume that every ¥-substitution used in D is a (5, ¥#)-substitution so that D can be
readily translated into a derivation for the judgement V4, 9. k[o] = x/. We thus conclude
by transitivity that the judgement V4, ¢'. x E k' is derivable. ®

Proof of lemma 3

75

We first start to note that a derivation Dj, j € [1, 2], for the implication V9. r; = &/ is

such that x; = H?, Kl = H?J, and for every 7 € [1,n,],

. n
a sequence of constraints H?, N

the implication
V. /@;_1 = /@;
is an instanciation of one of the rules and axioms of figure 3.1.
We first prove the theorem assuming that sy # kg [¥]. Since k] # k5 [9], we can
assume without loss of generality that the only variables shared between Dy and Dy are
in ¢#. To prove the implication

V. K1 A Ka B R A KL

we first prove that (ki A K2)ig[o.n,] is a derivation for Vd. k1 A ky | k| A kg. This is
trivially true initially, since H? = k1 and thus H? A Ko = K1 A K. So let us assume that
mi_l A Ko, 1 € [1,nq], is implied by ky A kg for all ¥, and let us consider the rule R of
which the implication V4. mi_l = k% in Dy is an instance. If R is anything but VElim or
Vintro, it is easy to check that V. mi_l A kg |= K] A Ky is also an instance of R, which
proves that x| A ky is implied by #; A ko for all 9. If R is rule VElim, then obviously
the newly introduced variables vy, and 9, satisfy ve, # 9 # (9, #i71) and by hypothesis
on the variables of D; and Dy, clearly satisfy vl # 9% # (9, k"', ky), which shows that
V. mi_l A kg = K A kg is also an instance of rule VElim. Now, since any d-substitution o
used in an instance of rule VIntro in derivation D; leaves xo invariant, we obviously have

V. KTV A Ry (k171 = Ki[o])

E kilo]Aky (Hypothesis)

= (k) Ara)[o] (Vintro)

E KD ARy

which proves that k% A ko is implied by k1 A kg for all 9. We have therefore proven that
V9. ki A kg = KL A Ry

and we conclude the proof by showing by the same technique that
VI, k] A Ko |E KL A K

We have thus proven the theorem assuming that k1 # kg [?]. If this condition does
not hold, let S be the set of variables which belong to both x; and sy but do not belong
to ¥, o be a ¥-substitution mapping every variable in 5 to a fresh and unique variable of
the same kind (and every other variable to itself), and ¢’ be the ¥-substitution mapping
every o(s) to s for every s € S (and every other variable to itself). Then ¢’ is the identity
over the free variables of k1 and ¢’ o ¢ is the identity over the entire set of variables. By
rule VIntro, we thus have

Vd. (k1 A ka[o])[0’] E k1 A kao]

that is
V. k1[0'] A koo’ o o] = K1 A Kalo]

76

or else,
V. k1 A R |E K1 A Ke[o]

But since, by rule Vintro, V. ky[o] |E kg, our hypothesis Vd. k2 | k) translates into
V. kalo]| = kY and since k1 # kg[o] [¥], we conclude by our initial proof of the theorem
that

V. k1 A kelo] E Ky A KL

and finally
VI, k1 A Ko |E KA RS

Proof of corollary 4

Since we treat constraints as sets of conjuncts, we have
V. ki ERAK
and this corollary is thus a trivial consequence of lemma 3. ®

Proof of corollary 5

Since V¥. k |= k' and k" # &' [9], this is also a trivial consequence of lemma 3. ®

Proof of lemma 8

For the axioms of figure 3.1, one verifies that the right-hand sides are well-kinded if
the left-hand sides are well-kinded. In particular, concerning ViIntro, if v is a unifier for
[k[o]], then yo[o] is a unifier for [k], where [o](v) is defined as [o(v)] for every variable
v. Regarding VFElim, if [k{v ~ ¢¢[O¢]}] has unifier v, then v[y] must be of the form
C[[O][y]]- Hence, [k Av = v} [0]] is unifiable (using the fact that v{. and ¥}, were chosen
as fresh variables). Finally, a straightforward inductive proof over the assumed derivation
of V9. k1 = ko completes the proof of the lemma. m

Proof of corollary 9

Immediate consequence of lemma 8, since true (which is unit T unit) is obviously
well-kinded. =
Proof of lemma 10

Let # ~ y denote either of s Cy, y C z, z < gy, or y < z. By induction on 7, we prove
for every constraint «’, all expressions = and y, and every i > 0 that

Vﬁ.m’/\x%y/\v:@):H’Ai(i)zg(i)/\v:H

and ' '
Vﬁ./@’/\i(z)%g(Z)Av:0):m’szyAv:0

hold, where #(9) denotes the expression that results from z by substituting @ for all occur-
rences of v in # whose depth is at most 7.

77

For occurrences of v in « of depth 0, the assertion follows using either MTrans or
CTrans.

Otherwise, z or y (w.l.o.g.) must be of the form ¢¢-[O]. By the assumption that &
is well-kinded, y must either be of the form ¢¢.[0’], or it must be a type variable v'. If y
is ¢(-[©’], we have

V. kA= yAv=0FErANoc Cop NO <O Av=20 (MElim)
E kA (132(2_1) C %(2—1) ABUE-D < @(2—1) Av=46 (ind. hyp.)
Erni® =g Av=129 (MlIntro)

and the converse direction follows similarly. Note that the induction hypothesis is applied
several times in the second step of the proof.
If y is v/, the proof is similar, but applies VElim before MElim. m

Proof of lemma 11

We consider each of the rules (Ny), (N2), and (N3) in turn. For (Np), the assertion
follows immediately, using rules MElim and MIntro. For (N3), we have

V. SAk{v~oc[O]} ESAKAV=ve[0c] (VElim)
E S Av=uvc[dc] Ak[ve[Pc]/v] (lemma 10)

and the converse direction is immediate by lemma 10 and rule Approz. The proof for (Ns)
is similar, once we observe that

V. S[vc[dc]/v] A klve[Pe]/v] E Slvc[dc]/v] A klve[Pe]/v] A v = ve[d¢]

which follows using rules MRef and Vintro, since v ¢ 9.
Finally, the well-kindedness of &’ follows from the assumption that x is well-kinded,
using lemma 8. W

Proof of lemma 12

Assume that
(So,k0) =9 =9 (Siy ki) =9 - =9 (Sns kn)

where (So, ko) = (True,r) and (S,,k,) = (S’,x"). A straightforward inductive proof
shows that for every i > 0, the constraint S; is of the form v} = 6} A ... A vF = 6F for
some k > 0 such that all v} are pairwise different and no v} occurs in some 6! or in xy,
and vg € 9 for all j € [1, k]. In particular, S, A k,, satisfies the variable condition required
of a constraint in prenormal form.

Since Sy A kg is well-kinded, lemma 11 implies that .5; A k; is well-kinded for all ¢ > 0.
Therefore, if k,, contained some atomic constraint which were not of the form ¢¢ C ¢, or
v < v/, it would have to either ¢¢[O] < ¢[0'] or v =~ ¢¢[0O], both of which is impossible,

because S, A k,, was assumed to be irreducible. ®

78

Proof of lemma 13

For an expression or constraint z, we define its size |2| inductively as follows:

vl =lgol =1, [¢c(br,.... 0] =1+ 01] + - -+ 0]
|00 E bl =2, [0 <0 =10]+10'], [rAK|=]6]+]~]

For expressions and equations over the algebra [7], we define the size similarly. It follows
that |k| = |[x]|, for any constraint x. Now assume to the contrary that there exists an
infinite rewrite sequence. By lemma 11, we know that S; A k; is well-kinded for all 7 > 0,
hence there exist most general unifiers v; for [S; A k;]. Clearly, we have

kil = [[&:]] < [[5:0%]]

We show below that
(51 [vill = [Kiea 1 [vigall

holds for all 7 > 0. In particular, it follows that |x;| < |[ko|[70]| holds for all ¢ > 0. On the
other hand, we have |k;| < |k;41| for all 7 > 0, and in particular |k;| < |ki41| if either rule
(N32) or (N3) is applied to (S;,x;). Therefore, rules (N2) and (N3) can be applied only
finitely often. But rule (Ny) strictly reduces the complexity of expressions that occur in
% and can therefore not be applied indefinitely, which implies the assertion.

It remains to prove that |[k;]|[vi]| = |[Fig1|[Vi+1]] holds for all ¢ > 0. If rule (Ny)
has been applied at step ¢, then it is easy to see that v; and ~;41 are identical, and that
|ki| = |Kit1|. For the rules (N3) and (V3), we remark that 4; and v;41 agree on all variables
except v, ve and J¢, and that v[y;] = ve[vie1][Pc[Vix1]], which implies the assertion. m

Proof of theorem 14

From lemmas 11, 12, and 13, it follows that rewriting with =4 yields a constraint in
prenormal form for any well-kinded constraint k. By corollary 9, this holds «a fortiori for
any well-formed constraint x.

Proof of lemma 15

Straightforward by simultaneous induction on (the length of) the derivations. m

Proof of lemma 16

The proof is by induction on the length of the assumed derivation of V. k1 | ks.
Assume, therefore, that V9. k1 = k3 has a shorter derivation (possibly of length 0, if
k1 = k3), and that VJ. k3 |= k2 is an instance of one of the axioms of figure 3.1. By
the induction hypothesis (or trivially, if K1 = k3), there exists some substitution o5 that
agrees with oy for the variables in ¥ such that x3[o3] is ground and satisfied in 7.

Approx Then k3{r3}, and the assertion follows immediately, choosing o3 = 3.

CRef Then Ky = k3 A ¢c C ¢¢. If ¢clos] is ground, then we may choose oy = o3,
and the assertion follows by the reflexivity of Co in T*. Otherwise, ¢ = v for
some constructor variable ve of type constructor class €' that does not occur in k3

79

(otherwise rs[os] would not be ground) or 9 (otherwise, ¢c[o1] and therefore ¢¢[os]
would be ground). Let ¢t be some type constructor of class C' (which is non-empty
by definition), and let o3 = o30{vc — tc}. Then oy agrees with oy for the variables
in 9, k3log] = Ks[os], and Kylog] is a ground constraint satisfied in 7.

CTrans Immediate from the induction hypothesis and the transitivity of Cg, choosing
09 = 03.

CTriv Then k3 = k3 Ate C), for some ground type constructors such that tc Ce t),
holds in 7. By the definition of admissible extension, tc C¢ ¢}, holds in 7%, too,
which implies the assertion, choosing o5 = o3.

CMin Then kg = k3 Ade C é¢, where k3{¢pc C de}. Since r3los] is ground and satisfied
in 7%, we have ¢¢[o3] Cc de in T*. The requirement that data type constructors
be minimal implies d¢ C¢ ¢c[os] and therefore the assertion, choosing oy = 03.

ViIntro Then k3 = kg[r] for some substitution # € S(¥). Let 03 = 03 0 7. Then for all
v € ¥ we have v[oy] = v[os] = v[oy] and ky[o3] = K3[o3], which proves the assertion.

VElim Then r3{v >~ ¢c[O¢c]}, w.l.o.g. we may assume r3{v < ¢¢[O¢]}. By the assump-
tion, (v < ¢c[O¢])[os] is ground and holds in T*. Since ¢c[O¢][o3] is of the form
tA[O7] for some ground type constructor t{t and ground monotypes O, the defini-
tion of the standard order on 7* implies that v[os] is of the form t{.[0f]. Further,
Ky = k3 A v = vj[0], and the side condition of rule VElim implies that neither v},
nor any of the 9%, occur in ¥ or k3. Let therefore o3 = 030 {vj, — 1,9 — O},
then o3 and o3 (and therefore o3 and oy) agree on all variables in 9, k2[03] = K3]os],
and kq[og] is a ground constraint that is satisfied in 7.

MRef Then k3 = k3 A8 < 6. Let 9 denote the set of variables that occur in 6[os], and
let the substitution oy differ from o3 in that it maps constructor variables ve in ¥y
to some type constructor to of appropriate sort, and type variables v in ¥4 to type
unit. Then rs[o9] = ka[o3], and ky[o9] is a ground constraint that is satisfied in 77*.

MTrans Immediate from the induction hypothesis and the transitivity of <, choosing
09 = 03.

MIntro, MElim From the fact that ks[os] is satisfied in 7" and the definition of the
standard order in 7, choosing oy = 03.

Proof of lemma 17

First, we have to show that 77 is indeed a type structure. By definition, every set C'?
and (if present) the set T? is non-empty, hence also C?/ Z¢ and T?/ =1 are non-empty
sets. Ru}ve CTrans and the definition of =¢ ensure that ¢c C}L ¢ whenever ¢f CL ¢},
and ¢¢ =c¢ ¢f.. Therefore, the relations T/}, are well-defined. A similar argument shows

that <! is well-defined. All relations E}; and <! are reflexive and transitive by rules

80

CRef, C'Trans, MRef, and MTrans, and antisymmetric by the definition of their domains
as equivalence classes.

We now show that data type constructors are minimal. This is trivial for the class T
whose set of data type constructors is empty. Assume that ¢, C}. ¢¢ and ¢¢ =¢ d¢ for
some do € Dg. Hence V9. k1 |E ¢ C de, and rule CMin implies V9. k1 = do T ¢f.
Again using the definitions of C}. and =, it follows that ¢¢ Tt ¢, which proves that
¢c is minimal. Hence, 77 is indeed a type structure.

To see that 77 is an admissible extension of T, let t¢ and t7: be two type constructors
of class C' contained in 7. If tc C¢ tf,, rule Clntro implies t¢ E}; tr,. Conversely, let us
show that t¢ CL ¢}, implies tc C¢ tl,. We know that V9. k1 = te C t}, by definition of
Cf, and thus V0. k1 | tc C t, by lemma 1. On the other hand, we have V0. true |= k1 by
the assumption that xy is well-formed, and therefore Trans implies V0. true = t¢ C ..
By lemma 15, it follows that tc C¢ t, holds in 7. Hence, T? contains (an isomorphic
copy of, due to the quotient modulo Z¢) a superset of every type constructor class of T°
such that the orderings of type constructors of 7 are preserved. m

Proof of lemma 18

The “if” part follows because 77 is an admissible extension of 7 (up to isomorphism),
and therefore lemma 16 ensures that 77 satisfies 1 if V9. Ky = & holds. (Observe that we
choose oy as the obvious substitution that maps ¢¢ to [¢¢] and v to [v], and that there
are no variables to substitute for in x[o1] due to the variable assumption.) For the proof
of the “only if” part we proceed by induction on the structure of .

Kk = ¢c C ¢} In this case, the assertion follows immediately by the definition of C}..

k' =60 ~ @ We proceed by induction on the definition of <'. Assume that § <' #’. Since
f and @' are ground monotypes of type structure 77, it follows that § = ¢¢[O¢]
and §' = ¢.[O] (where C' might be T if O¢ and Of are empty). Then rule VElim
applied w.r.t. 79 ensures ¢c CL ¢ and O¢ <L O. By the definition of T}, it
follows that V9. k1 = ¢c C ¢f, and the induction hypothesis and corollary 4 yield
V9. k1 |E O¢ <¢ O. Another application of corollary 4 gives us V9. k1 = ¢c C
O N Oc <¢ O, and finally, V9. k1 = 0 < ¢ follows by rule MIntro.

k' = k| A K, By induction hypothesis, we obtain V9. k; E k] and V9. k1 E kb, from
which corollary 4 yields the assertion.

Proof of lemma 19

By lemma 17, 77 is an admissible extension of 7. We interpret sy as a 77-ground
constraint (somewhat loosely identifying ¢¢ and [¢¢] and v and [v], which we may do
by lemma 17). By the assumption, there exists some T?-ground substitution oy of the
variables of ko that are not in ¥ such that xy[o9] is a ground constraint (over 77) satisfied
in 7Y. Therefore, by lemma 18, it follows that Vd. ki |= ka[os], and by the variable
assumptions, we may apply VIntro to derive V9. k1 = ko, ®

81

Proof of lemma 20

The “if” part is trivial. For the “only if” part, let ¥’ be the set of variables in ¢ which
are distinct from v. By rules MRef and VIntro, we can easily show that V¢¥'. ky | v =
6 A k1, and by hypothesis and lemma 1, we conclude that V¢'. v = 0 A Ky |= K2, so that by
transitivity, V¢'. k1 | k2, and by lemma 2, we finally have V9. k1 = ko. B

Proof of lemma 21

Assume that k1 = ks A Ky, Where kK, = vy = 01 A ... ANv, = 60, and k; is a constraint
in base form. Let o be the substitution that maps v; to 6; for ¢ = [1, n].

V. ks A Ky = Ko

V. ks A Ky = Ko A Ks
V. ks A Ky = Ro[o] A ks
V. kg A Ky |E Kalo]

VY. Ky | Kalo]

corollary 4, Approz)
lemma 10)

corollary 4, Approz)

11y

o~

lemma 20)

where lemma 20 is applied several times for the last step of the derivation. Finally, since
Kp is a constraint in base form, lemma 19 implies the assertion for V9. ry = ko). ®

Proof of theorem 22

Direct consequence of theorem 14 and lemma 21. ®

Proof of corollary 23

Trivial consequence of theorem 22. W

Proof of lemma 24

A somewhat tedious proof by induction on the derivation shows that whenever V9. |=
K2, then there is a substitution ¢ € §(¥) and a derivation of V9. k1 = k3[0] A k3, for some
constraint k3, without applications of Vintro. m

Proof of lemma 25

We only have to show the “only if” part.

Consider a normal derivation of V9. k1 = kg (which exists by lemma 24). It ends in
an application of Vintro, followed by Approz, so there exists a substitution ¢ € §(¥) such
that V. k1 |E k2[o] A k3. But since kg is ¥-closed, o must be the identity substitution, so
we may construct a derivation that does not use Vintro at all.

Now, a straightforward inductive proof shows that all constraints x that appear in this
derivation are simple and that V9. k1 |= atomize(r) can be shown by a normal derivation
that does not use either Vintro, MIntro, or MElim (note that each x is well-kinded by
lemma 8). In particular, rule VElim is never applied. But since kg is in base form,
atomize(kz) = kg, and we need never apply rules Vintro, VElim, MlIntro, or MFElim,
which completes the proof of the lemma. Further more, note that MRef is only applied
to monotypes € which are type variables. H

82

Proof of lemma 26

By lemma 25, V9. k1 | k2 can only hold if there is a derivation of Vd. k; | ko
that uses only the rules Approz, CRef, C'Trans, C'T'riv, CMin, MRef, and MTrans. But
applications of these rules do not create new symbols except base type constructors of
classes in T and variables in ¥ (note that MRef need only be applied to monotypes
¢ which are type variables). Since the set of available symbols is thus finite, we can
systematically apply these rules (deleting possible duplicates) until no application of any
rule results in a new constraint. Call the resulting constraint x7. By the definition of 77
in lemma 17 of section 3.4 and lemma 25 above, k7 is a finite syntactic representation of
the type structure 7. From lemma 18, we know that V¥. x; = ko holds iff the ¥-closed
base constraint ko is satisfied in 77. Therefore, V4. k1 |= ko holds iff k5 is a subconstraint
of k], which is effectively decidable. m

Proof of lemma 27

Let us first prove that V. k1 = kg holds iff there exists a substitution o € S(¥) such
that kq[o] is ¥-closed and V9. k1 [kz[o] holds. The “if” direction is simply an instance
of VIntro. For the “only if” part, lemma 18 implies that the type structure 77 satisfies
(because k; is ¥-closed), and by lemma 17, 77 is an admissible extension of 7. Therefore,
the assumption V9. k1 = k2 implies (by theorem 22) that there exists some substitution
o € S(9) such that wy[o] is ¥-closed and satisfied in 77. By lemma 18, this implies
V. k1 = ka[o] as required.

Even more, we can require o to be flat, that is, v[o] need never be of the form ¢¢[0O¢]
for a non-empty C-monotype list O¢ of terms, as we show now. Denote by ¥, the set of
variables that occur in k3 but not in ¥, and by ¥, the (largest) set of variables in ¥, that
only occur in constraints of the form v < v' or v¢ C v, where both v and v" (or ve and
viy) are in ¥,. Clearly, all constraints involving variables from 9 are “useless” in that
they can be satisfied by assigning unit (resp., some consistently chosen type constructor
of class C', which is non-empty) to all these variables. For the remaining variables v € 95,
there exist chains vy = vy, ..., v,—1 & v, such that vg = v and v, € ¥ (where = denotes
either C, 1, <, or >). A simple inductive proof on the length of these chains shows that
v[o] must be flat, for any substitution o such that V9. k1 = k2[o] holds (or, equivalently,
such that xy[o] holds in 77).

However, there are only finitely many substitutions o € §(¥) that map all variables
of ky to flat ground terms in 77, and for any such substitution o, lemma 26 tells us that
V. k1 = ka[o] is decidable, which completes the proof. m

Proof of theorem 28

Without loss of generality, we may assume that ky # k3 [¢]. The assumption that
k1 is well-formed and theorem 14 imply that there exists a constraint F{ = ks A K in
¥-prenormal form which is ¥-equivalent to k. Again w.l.o.g., we may choose Ky such that
R1 7 ko [V]. Denoting the set of variables that appear in Ky but not in ¢ by ¥, lemmas
1 and 2 tell us that ¥9. &y = ko holds iff V9, 94. Ry |= k2 holds.

The constraint s, is of the form vy = 4 A ... A v, = 8,. Let us denote by o the
substitution that maps v; to 6; for i = [1, n]. Then the same chain of equivalences used in

the proof of lemma 21 shows that V¢, ¥,. Ry |E k2 holds iff V¥, 9. ki | K2]o] holds.

83

If k3[o] is not well-kinded, V9, 91. Ky = K2]o] cannot hold, because k1, and therefore
71 and ry, are well-kinded (by corollary 9 and theorem 14), and therefore r3[o] would
have to be well-kinded by lemma 8.

Otherwise, by theorem 14 there exists some constraint k' = kA in (9, ¥;)-prenormal
form that is (¥, ¥1)-equivalent to ry[o]. If k. is non-trivial, it contains some constraint of
the form v = @ for v € (9, ¥;) such that v does not occur in @ nor in sy (because %y is in
(9, 91)-prenormal form). In this case, V9, 1. ky = ' (and therefore V9, 9,. rky = kolo])
cannot hold, because for any substitution o’ that satisfies ks A k' (over some admissible
extension 7* of T) we may find a v-variant ¢” of o’ that satisfies s, but falsifies v = 6,
and therefore x'.

Otherwise, ¥9,9;. k; = K is equivalent to ¥9,94. K, = K}, and by lemma 27, the
latter is decidable.

Finally, decidability of well-formedness is an immediate corollary, since a constraint x
is well-formed iff V(. true = x, which is decidable, as shown above. m

Proof of lemma 29

Let A = (5 #) be an implicit well-formed context, 7;, ¢ € [1,2], be two well-formed
types V;: k;. 8;, and v be a fresh type variable not in (9,9, 93). Let us first assume that
7y is a subtype of 5. There must exist a renaming o € R(9;91; ;) such that

V@, 192. g/\lig): I{l[O'] /\01[0’] S 02

~

but v being fresh, we can assume without loss of generality that o is also a (¥,0)-
substitution. By rule Approz and lemma 2, we deduce that

V0, 05,0. % A kg A by < T = ke[o] A 61]0] < 6,
and by corollary 5, we deduce that
V0, 05,0. B A kg Ay < T ky[o] Abi[o] < By ABy <D

which shows, by rule MTrans and lemma 1, that

V0,0. R ARy Ay <0 k= ky[o] Abi[o] <D
but o being a (1, 7)-substitution, we have

VO,0. R ARy Ay <0 = (k1 A8y < 0)[o]
and finally, by rule Vintro,

VO,0. R ARy AOy < TR A <D
Let us now assume that

V@,@.R/\Hz/\%

IN

ﬁ):m/\@lgﬁ

84

Since T and 75 are well-formed and v is fresh, ¥, and ¥, are thus disjoint from (19 v), so
that R(ﬁ U;91; ¥2) is non- empty Let o be any renaming in R(ﬁ, U; 915 92). We know that
o is a bijection and that o= is a (19, v)-substitution. Now, by rule MRef

V@,ﬁg.%/\mg):R/\HQ/\OQSGQ/\OQSOQ

and by rule Vintro
v197192.g/\l<32)://%/\52/\02 S@/\@S 02

But by hypothesis
v197@.g/\52/\02 S ﬁ):m/\@l S@

1

so that since 0~" o ¢ is the identity over variables

V0,0. R A Ky Ay <T = (k1 Ay <0)[ooo]

and by rule Vintro
Vﬁ,@ E/\KJQ/\OQ S v): (m/\@l S ﬁ)[O’]

that is R
v197@.g/\52/\02§6)251[]/\01[] <v

so that by lemma 2, noting that
(ralo] A b1[o] < ©) 7 Dy

we deduce that R
v1971927ﬁ. 2/\ 2% /\02 S v): I{l[O'] /\01[0’] S v

which, by rule Approz, shows that
V0, 02,0. BN Ky Ay <TAD < 0y = ky[o] Abyfo] <O
and thus, by corollary 5,
VO, 02,0. Ak Ay <TAD < 0 = ky[o] AOy[o] < TAD < 6,
that is, by rules MTrans and Approz and lemma 1,
VO, 05. B A kg Ay < TAD < 0y = kafo] ABy[o] < 65

and finally, R
v197192. K A 2%): I{l[O'] A 01[0’] S 02

which proves that 7 is a subtype of 5. W

Proof of lemma 30

Let A = (5 K) be an implicit well-formed context, 7 = V9: k. ¢ be a well-formed type
w.r.t. A, ¢ be a variable set disjoint from ¥, o € R(¥;9;1'), and ¥ be a fresh variable

85

such that o is also in R(@, 0;9;9'). Then o is a bijection and ¢~ ! is a (5, v)-substitution.
By rule Approx we have
VO,0.RAKRAI <D E (kA< D)o oo]
and by rule Vintro R
V9, 0.k AN <D E (kA < D)[o]
that is

~

V9, 0.EAKAO <V EK[o]AOo] <V
which shows that 7/ = Vi[o]: Kk
V0,0 (RAKAG<D)o] = (BAKAO<TD)

[0]. O[c] is a subtype of 7. Similarly, since by rule Vintro

we deduce that R
Vi, . K AK[o]AOlo] <V E(RAKAOLD)

which shows that 7 is a subtype of 7. m
Proof of lemma 31

Trivial consequence of theorem 28. W
Proof of lemma 32

Let A = 9: & be an implicit well-formed context, 81, 2 be two ground monotypes and
v be a fresh type variable. If we assume that 8; < 5 for the standard ordering, then the
proof tree for this fact can be readily translated into a derivation for the judgement

VO,0.RAO, <TERAG, <TAG <6,

since rules StdOrd and MIntro are essentially the same. Using Trans and Approz, we can
thus show that R
V3o RAO;<0DE=6 <D

which proves that V(. 6 is a subtype of V(. 6. m
Proof of theorem 33

Let A = #: % be an implicit well-formed context, 7 = V9: k. § and 7/ = V9': k. 6’ be
two well-formed types and o be a ¥-substitution such that x' = x[o] and 6’ = 6[o]. Let ©
be a fresh variable. Since o is also a (¢, v)-substitution, rule VIntro shows that

V0,0 (BARAI<D)o]ERARABLT
but since o is a U-substitution and & is J-closed, we have &[] = &, and thus
V0,0, RAK[O)AB[0] <TERAKAD <D
or else, by rule Approx
V0,0. EAK[o)AB[0] <D ERAOLTD

which proves that R
V: R E(VO: k. 0) < (V1 k[o]. O[0])

86

Proof of theorem 34

This is trivial consequence of theorem 22 and lemma 29. &

Proof of theorem 35

Let A = 9: % be an implicit well-formed context, 7; = Vd;: ;. 0;, ¢ € [1,3], be three
well-formed types, and v and ¥ be two distinct and fresh type variables. We first remark
that the subtyping relation is reflexive, since by rule Approz, we trivially have

Vﬁ,@.ﬁ/\lﬁ/\@igﬁ):l{i/\eigﬁ

To show that it is also transitive, let us assume that 7y < 7 and 7 < 75. For 7 € [1, 2],
we have
VO, 0. KA K ANB; < ﬁ):’{i-l—l/\ei-l—l <v

but since A is well-formed, we know that & is (7, 5)—Closed7 and by corollary 5
VO,0. RARi AO; <D= RAKigr Abiyy <0

and thus by rules Trans and Approz, we have 1y < 73.

The set of well-formed types modulo equivalence is thus a partial order. Let us now
show that it is also a sup-semi-lattice. So let us assume that 7y and 79 have a common
well-formed supertype 7 = Vi: k. 8. Without loss of generality, we assume that 9, # 9,.
For 7 € [1,2], we have

VO,0. EARAO <D=k AO; <D

but since by hypothesis
(k1 A By <) # (kg A By <) [5,7]
we have by corollary 4
Vo,0. EAKRAO <D= (ki Al < D) A (kg A by < D)

and therefore, by rule MRef

<)

Vo, 0. RARAO <Dl (ki Ay <TARy Ay <T)AD <

and by rule VIntro with ¢ = {v — v}

<)

Vﬁ,@.%/\m/\@ﬁﬁ):(m/\@l§v/\/£2/\02§v)/\v§

which proves that
Vo, 91,02: (ki ARa Ay <vAbBy <)o

is a subtype of 7 provided that it is well-formed. But, by lemma 1 and rule Approz, the
above implication implies that

V@.R/\H/\Hﬁﬁ):mAOl§UA52A02§U

and since

87

(1 well-formed)

<C
=)
Y ™

E EAEK (MRef)
E RARAOLO (Vintro with o ={v — 0})
E RKAKAOLD

we thus have
Vﬁ.%):m/\@lgv/\mg/\%gv

which proves that
Vo, 91,02: (ki ARa Ay <vAbBy <)o

is well-formed. Consequently, every upper bound of 7y and 75 is an upper bound of this
type, but conversely, by a trivial application of rules Approz and Trans, we have

Vﬁ,@.%/\(m/\@l SUVARIAG <vV)ANV<VERrRNI <D
for ¢ € [1,2], and thus
Vo, 91,92: KA (K1 Ara Al <vAby <wv)o
is an upper bound of both 7y and 79, which shows that it is the least upper bound. ®

Proof of theorem 36

Let A = 9: 7 be an implicit well-formed context, 7 = V#: k. 8 and 7/ = V&' : x’. 8’ be
two well-formed types such that 7 < 7" and ¢ # ¢, and vy, vy be two distinct and fresh
type variables. Let

~

T = Yu,vg,9: kA0 < (v = v2). (v; = vg)

and
o= Vo, vy, 9 kA < (v = vg). (v = vg)

We assume that 7 is well-formed and we want to show that 7 is well-formed and is a
subtype of 7/. So let ¥ be a fresh type variable. We have

VG,0. RAK AG < (v —vy) <D (MRef)
= RAK NG < (v1 = v2) < (v = vy) <O (Vintro with o = {v+ (v — v2)})
= (RAR AN <0)A (v < v = vy <0)
but since R
Vo, 0, 0. RAK' A <vlERAOI<w
Vv,ﬁ,g.vgvl—mjggﬁ):vgvl—mjg§@
and

(kANO<v)# (v<v = vy <) [Uﬁ,@]

lemma 3 implies that

Vv,ﬁ,g. EAK AN <o)AN(v<v =50 <0 ErAI<v<o 50 <D

88

and lemma 1 shows that
Vo, 9. RAKAY <o)A(v<vy 50 <0)ERrAI<v 5 vy <D
which finally shows that
Vﬁ,@.%/\m’/\@’ﬁvl—>v2§ﬁ):/£/\0§v1—>v2§ﬁ

which proves that 7 is a subtype of 7’ provided that it is also well-formed. But lemma 1
and rule Approz imply that

VO.EAK NG < v — vy <UTEEAD < v — vy
and by rules MRef, ViIntro and the fact that 7/ is well-formed, it is easy to show that
V. R ERAKAG <v — vy <D

which finally shows that R
VI RERAD < v — vy

and thus that 7 is well-formed. ®

Proof of theorem 40

Let A = 9: & be an implicit well-formed context and vy, v, vy, vh, v and v’ be six
distinct and fresh type variables. Let 7, = V¥;: k;. 6; (¢ € [1,2]) be two types such that
71 < 72 and 7y is prefunctional, that is, A F fun,(m2). Then by theorem 36, 7 is also
prefunctional. Consequently the domains of 7 and 75 defined by

doma (7)) = Yo, vl 9 5 A0 < vp — vl vy
are well-formed. Now, since 7y is a subtype of 7 by hypothesis, we have

V1§7U/.R/\I{2/\02§U/):.‘61/\01Svl

but

V@,v.%/\mg/\02§v2—>v§/\v§v2 (MRef)

= RAKRaANbOy <vg = vhANv< vy Avh <l (MIntro)

= RAKRaANbOy <vg = vl ANvg — vl <v—v) (Trans)

E REARAO; <v—0) (MRef)

= (RARa Ay <v—=vh) A(v— vy <v—vh) (Vintro with o = {v/ — (v — v))})
= (RN R NOy < V')A (v <v— 0v)h)

and thus, since R
(k1 A Oy <) # (V< v— o)) [9, 0,0, 0)]

we conclude by lemma 3 and the fact that 71 < 7 that

89

VO, 0,0, 0. (RA Ry Ay <) A (0 < v— vh)

= (ki A0 < VYA (U <v— vh)

and by lemma 1

V0. (RA Ry Al <V)A W < v—0))

= (ki AOp <V)A (U <v—vh)

and finally

V@,v. RARaANOy <vg = vh Ao <y

(ki A0 <V)A (W <v—vhy) (Trans)

k1A B <v— v (MRef)

AN <v—=viAv<w (VIntro with o = {vy + v, v} — v}})

m T

kiAO <vp = v Av <
which shows that doma(72) is a subdomain of doma(m). ®

Proof of lemma 38

Similar to the proof of lemma 32. ®

Proof of theorem 39

Let A = J: % be an implicit well-formed context, and for any ¢ in the range [1, 3],
let 7; = V¥, k. 0; and &; = FY;: k4. 0;. Without loss of generality, we may assume that
U1 # Uy #£ ¥s. Let ¥ be a fresh type variable. Let us first assume that 7 < 75 and
79 € 3. We have

V@.R):Hg/\mg/\% §03

and thus, by corollary 5
V.
): I{/\Hg/\:‘{g/\ezgeg (MR@f)

): (E/\KJQ/\OQ < 02)/\(,‘{3/\02 < 03) (VIntro wztha:{ﬁ»ﬁ@z})
): (E/\HQ/\OQS@)/\(Hg/\@SOg)

>y ;™

but since by hypothesis
Vﬁ71§.g/\52/\02 S ﬁ):m/\@l S@

and

we have by lemma 3

V0,0, (RA Ky Ay < D) A (ks AT < 0s) |= (k1 A By <T)A (k3 AD < 6s)
and by lemma 1

V. (RA Ky Ay < D) A (ks AT < Bs) |= (k1 A By <T)A (k3 AD < 6s)

which shows that

90

~

Vi, R
E (kA0 <U)A (k3 AU < 83) (Trans)
): K1 A R3 A 01 S 03

and finally 7y € d3. Let us now assume that 71 € d9 and §, < §3. We have
V0. % b= kg Ay A By < By

and thus, by corollary 5

0.

<C

3
): 2/\/@1/\/@2A01§02 (MR@f)

): (mAHl < 01)/\(%/\/@2/\01 < 02) (VIntro wztha:{ﬁ»ﬁ@z})
): (/@1/\01§ﬁ)/\(2/\52/\@§02)

but since by hypothesis

Vﬁ71§.g/\52/\@§02):53/\@§03

and R
(m/\@l S @) # (53/\@§ 03) [@719]

we have by lemma 3

V5,0. (ki AL < T)YA(RAKa AT <) |= (ki Ay <T)A (k3 AT < 63)
and by lemma 1

V. (ki A O <D)YA(RARI AT < By) = (ki ABL < T)A (ks AT < 63)

which shows that
Vo, R
E (kA0 <U)A (k3 AU < 83) (Trans)
): K1 A R3 A 01 S 03

and finally 7 € é3. =

Proof of lemma 37

Trivial consequence of theorem 28. W

Proof of theorem 41

Let A = 9: % be an implicit well-formed context, and for 1 € [1,2], ; and 7/ be well-
formed types. Assuming that 7y < 72, 7{ < 74 and 75 belongs to the domain of 7, let us

show that
appa(T1,71) < appa(Ta, m5)

We first remark that the hypothesis 75 € doma(72) implies that doma(7) is well-
formed, which implies that funa (72) is well-formed, which, together with the hypothesis

91

and theorem 40, implies that doma(72) is a subdomain of doma (7). Consequently, theo-
rem 39 implies that 7{ € doma (71) and app A (71, 71) and app a (72, 75) are thus well-formed.
So let us assume that fun, (7;) is of the form

Juna(m) =V9;: ki 6; — 67

and 7/ is of the form

Tl =V KL 6
with 0y # 0y # 0 # 0, # 7, and v and v be two distinct and fresh type variables.

Since fun, is covariant, we have funa (1) < funa(72), that is

VU/75.E/\/432/\02—>0/2/SU’):Hl/\Ol—>0/1/§U/

Now,
V@,v. RANRa ANEGNG, <O N0 <w (MRef)
= (ke Ay <O ANOY <) AN (RARLAG, < 8y) (Vintro with o = {v' — 63})
= (kg AU <O ANOY <o) A(RAKLAB, <o)

But by that fact that 7{ < 75, by corollary 5 and by the fact that v is fresh

Vi, v, 0. RAKLAB, <o
= RARL NG <O

and thus, since
(ko AV <O N0 <) # (RAKLAO <) (9,0, 0']
we have, thanks to lemma 3

V@,v,v’. (e AV <O NOY <O)YA(RA KL AG, <o)
= (e AU <O NOY <OYA(RAK NG <) (Trans)
= RAR ARYANG <0310 <

and by lemma 1

V@,v. RARa ANELNG, <O N0 <w
= RARaANEY NG <O N0 <w (MIntro)
= RARIARI NGy — 0] <8 = (MRef)
= () ANy — 05 < 0] — v) A (VIntro with
(R A Ky ANy — 0 < 6y — 0Y) o={vw— (0 = 6))})
= (Ky ANV <O = 0) A (EAKe ANl — 05 <) (funps(m1) < funa(72), lemma 3)
= (K AV < 0] = 0) A (k1 Ay — 0] <) (Trans, MElim)
= RIARLANO <O N0 <w

92

which proves that
appa(ri,71) < appa(re,73)
|

Proof of theorem 42

Let A = (9: %) be a well-formed context, 9¢ be a fresh C-variable set and (Y0, : &;. 6;),
i € [1,n], be n well-formed types such that ¥; # ... # 9, and appa(dc, 11, ..., Ts) is well
formed, that is

Y,...,0,%c: ki A ... AR, ANb < d10<190> A NB, < dg«<190> dc[ﬁc]
is well-formed w.r.t. A. For any ¢ € [1,n] and any fresh C-variable set 9f., the type
appa(ds, appa(de, Ti, ..., 7,)) is defined by
Vo (01,...,9,,0¢,9%).
(K1 Ao A Rp)A
(01 < dLWDe)) Ao A (6, < dE{De))A
deldc] < deldg]
de (V)
which is a supertype of
VO, oD, Do, Ot ki A8 < de(De) Ade[Pc] < de[0]. da(9g)

which, in turn, is a supertype of (V9;: k;. 6;) since, for any fresh variable v,

~

Vo, d¢, 95, 0.
RA K AO; < d(9c) Nde[9c] < de[9p] A di(95) <T (MElim)
E kNG < dic<19(;> NPo <¢ 9p A d20<19’0> <v (Hypothesis, lemma 3)
ok A < dL(90) AdL (D) < dL(IL) AdL(0) < B (Trans)
E kA0 <D
|

Proof of theorem 43

Let A = 9: & be an implicit well-formed context, T = V¥: k. #; — 65 be a functional
type, 6 = 3: k. 61 be the domain of 7, 7’ = 3¥'. ¢ be a pattern which is strongly
compatible with § and 7" = V9" k”. dL[O}] be a run-time type both in § and #’. As
usual, we assume that o # o # 9 # 9. We have

app(res(t, 7'}, ") = VO, 9, 9"k AN <O N0 < G0,
{ app(r,7") = V9,9 s AR"NG < 0.0,
and it is thus easy to see using rule Approz that
app(t,7") < app(res(t, 7'}, ")

s0 let us prove the other inequality. Let U be a fresh type variable. There are two cases.
If ¢ is a simple variable v’, then obviously

93

<
<
)

EARAKE'ANG <O N0, <T (MRef)

KAR'ANG" <O, N0 <0"Nb, <T (VIntro with o = {v' — 0"})
RARTANGT <O N0 <V ANB, <T (0 =)

KARI NG <O NO" <O Nby <T

m

which proves the theorem. Now, if 8’ is of the form t{.,[0}.], then since 7 belongs to 7’ by
hypothesis, it is easy to see that djt C¢ t.. Consequently

0,0. RARAR'AG <0 Aby <D (6" = d/.[O/], MIntro)
RAE'ANO" <0 NO" <tH[OL]A 0 <T (Vintro with o = {9 — O%})
KAKI NG <O N0 <[] A0, <D (6 =t [0

KARI NG <O NO" <O Nby <T

<C

m

which proves that
app(res(t, 7", 7"y < app(r,7")

since obviously

0.

<C

(r" € ¢)
RARARE"ANEG <6 (MRef, Vintro)
RARANR'"NG" <0, N0 <D (Above proof)
EANETANGT <O N0 <G

)

m

which shows that app(res(r, '), 7") is well-formed and that 7" belongs to § A7". m

Proof of theorem 45

Let A be a well-formed context, §' be a well-formed domain w.r.t. A, 7 be a closed
run-time type in §'[A], and 7y, ...,7,, n > 1, be a partition of § w.r.t. A. We assume
that A is of the form (5 R), 0" is of the form 39': x'. ', 7 is of the form V¥: k. dc[O¢],
and 7; is of the form 3¢;. 6;. Without loss of generality, we assume that 9, ¢, 9¢,...,9,
are disjoint pairwise. From the fact that 7 belongs to §'[A], we have

V0. true ERAKAK ANdo[Oc] < 6
which shows, by rules MRef and VIntro, that
V0. true ERA K Av <8 Av < deldd]

for some fresh type variable v, which shows that §'[A] and 6" = FV¢. do[dc] are compat-
ible. By condition (3) of definition 44, we deduce the existence of an index ¢ € [1,n] such
that §” is a subdomain of 7;. But (1) since 7’ trivially belongs to §”, then 7" also belongs
to m;, and (2) since ¢” is a subdomain of 7; and §'[A] are compatible, then §'[A] and 7;
are compatible. Consequently, theorem 43 shows that 7’ belongs to §'[A] A 7;. By the
same reasoning, we can show that for every j € [1, n] such that 7 belongs to 6'[A] A 7;, 6"
is compatible with 6'[A] A 7;, so that 6" is compatible with 7;. Since 7; is a pattern and
d¢ is minimal, it is easy to see that this compatibility implies that 6" is a subdomain of
7;, which shows that 7; is a subdomain of ;.

94

Proof of lemma 46

Let (A;I') be a well-formed typing context, A = 9: %, and A’ = 1 k' be a context
such that A’ is well-formed w.r.t. A. By rule Approz, we have

Vo, 0. EAK ER

So let (z: 7), with 7 = V9d: k. 8, be a subterm of I'. By definition, 7 is well-formed w.r.t.
A. Consequently

Vi. R E K
and since the variables in 9’ do not occur in 9, ¥ and s, we obviously have

Vo' 0. R E K

and by transitivity R
Vo, 9. RAK Ek

which shows that 7 is well-formed w.r.t. A[A’], which is well-formed. Consequently,
A[A’);T is a well-formed typing context. So let (A;T) be a subcontext (A;I). Let
7 = V10: K. 8 denote the type of an expression variable z in ' and 7 denote the type of
in I'. By definition, 7 is a subtype of 7 w.r.t. A, that is,

Vo,0. RARAO<DERAD <D
for any fresh type variable v, and thus
V0,0, 9. EAKAO<TERANG<D
and by rule Approx
Vo,0,0. RAK)ARAO<DERAI<D

which shows that 7 is a subtype of 7 w.r.t. A[A’], which finally proves that A[A];T" is a
subcontext of A[A'];T. =

Proof of lemma 47

Let (A, f), A= (5 R), be a well-formed typing context, e be a well-typed expression
with type 7 w.r.t. (A; f) and A" = (9': ') be a context (not necessarily well-formed)
such that ¢ is fresh and A A A’ is well-formed. Let D be a derivation for A I'e:r. We
first show that the derivation D’ obtained by replacing each context A occurring in D by
A A A is a derivation for A A A ['Fe: . We reason by induction on the depth of D by
analyzing the last rule of D.

First of all, we remark that ¢’ being fresh (1) if a context A is well-formed w.r.t. A,
then A is well-formed w.r.t. A A A, (2) if 7 is well-formed w.r.t. A, then 7 is well-formed
wart. AAA, (3)1lesasubtypeofT w.rt. A, then 7 is a subtype of 7/ w.r.t. ANN, (4)
if 7 belongs to § w.r.t. A then 7 belongs to § w.r.t. AAA , (5) app and domp depend
on A exclusively to aV01d the lexical capture of variables, (6) if A [is well- formed, then

95

A A AT is well-formed, and (7) if m1,..., 7, is a partition of § w.r.t. A, then it is also a
partition of § w.r.t. A A A/,

To see why remark (7) holds, note that condition (1) of definition 44 holds for A A
A’ whenever it holds for A, that condition (2) is independent from A, and that if
(3¢ de[9c]) is compatible with §[A A A’], then it is obviously compatible with §[A],
so that condition (3) holds for A A A’ whenever it holds for A.

Now, since rules Var, Rec and Prj do not depend on A (except for the freshness of
?d¢) the theorem is trivially true if D has depth one, and by our preliminary remarks, all
the other rules prove the theorem by induction. |

Proof of theorem 48

Let (A;I'), where A = 9 K, be an implicit well-formed typing context and € be a
well-formed expression w.r.t. (A;I'). We first remark that consecutive instances of the
subsumption rule Sub in typing derivations can always be replaced by a single instance
thanks to theorem 35. Consequently, it is easy to see that an expression is typable if and
only if there exists a typing derivation such that (1) the subsumption rule is never used
consecutively more than once and (2) the subsumption rule is neither the first nor the
last rule of this derivation. Moreover, since the subsumption rule can only increase the
type of a typable expression € when it is used as the last rule of a typing derivation for
€, we can restrict ourselves to such derivations for proving the minimal typing property.
Similarly, since the subtyping judgement of the subsumption rule does not depend on I,
we can also restrict ourselves to such derivations for proving the monotonicity of minimal
typing w.r.t. typing contexts. Finally, we remark that there are only two rules applicable
to any given expression: the subsumption rule and one of the rules Var, Rec, Fun, App,
Let and Meth. Consequently, we can prove typing decidability, minimal typing and the
monotonicity of minimal typing by induction on the syntax, showing that each “specific”
rule either (1) decidably proves that € is ill-typed or (2) decidably gives € a minimal type
7, in which case the same rule gives € a subtype of 7 in every subcontext of the current
typing context.

If € is an expression variable z, then rule Var and the well-formedness of (A;I') prove
the existence of a well-formed minimal type 7 such that € is well-typed and has type 7.
Finally, if (A;I") is a subcontext of (A;I'), then by definition, the type 7/ of z in I is a
subtype of T w.r.t. A.

If € is a data constructor expression p(dc;¥c;21,...,2,), then rule Rec proves that
¢ is well-typed and has type 7 = V0. d¢[9¢], which is well-formed since € is well-formed
w.r.t. (A;1'). Finally, since 7 is independent from I', € has type 7 w.r.t. any subcontext
of (A;T).

If €is a data extractor, then € is well-typed since its constant type is well-formed w.r.t.
A thanks to the hypothesis on the freshness of 9.

If € is a method expression meth {J|x} (2:6): 6 = [= e1;...;7, = €,] where
mp=30;.0;. Let § =39: k.0 and A; = (v,9,9): (kAR AV<OAv<O). Ifry,...,7,
is not a partition of 6 w.r.t. A, or if A; is not well-formed w.r.t. A, which is decidable for
a given type structure, then € is ill-typed. If not, then thanks to lemma 46, the typing
context A[A;];T[z: V(. v] is well-formed, and the well-typedness of e; is decidable by
induction. If any of the e; is ill-typed, then so is the method. If every e; is well-typed

96

and has minimal type 7;, then either every 7; is a subtype of V(. #’, and the method has
minimal type V9: k. 8 — ¢, or else the method is ill-typed. Assuming that the method is
well-typed, let (A;T’) be a subcontext of (A;T'). By lemma 46, A[A;]; T'[z: V0. v] is thus
a subcontext of A[A;];T'[z: V0. v]. Therefore, we conclude by induction that the minimal
type of each e; w.r.t. this subcontext is a subtype of 7;, and thus a subtype of V(. §’, which
proves that the method is well-typed w.r.t. the subcontext and has the same minimal type
Vd: k.0 — 6.

Let us assume that € is a let expression (let 1 = €1 in €9 end). By induction, the well-
typedness of e; is decidable. If e; is ill-typed, then sois €. If e; is well-typed, then it has a
minimal type 71, the typing context A;I'[z: 7] is well-formed and the well-typedness of
€p in this context is decidable. If eq is ill-typed, which is decidable, then the monotonicity
of minimal typing shows that ey cannot be well-typed in any typing context A;'[ay: 7]
where 7 is a supertype of 7 w.r.t. A, which proves that € is ill-typed. If eq is well-typed
and has minimal type 7y, then the monotonicity of minimal typing shows that for any
supertype 71 of 7y such that ey is well-typed w.r.t. I'[zy: 7] and has type 79, then 7y is
a subtype of 79, which shows that 7 is a minimal type for the let expression. Finally,
assuming that the let-expression is well-typed, let (A;T”) be a subcontext of (A;T'). Then,
by induction, the monotonicity of minimal typing implies that the minimal type 7| of e;
w.r.t. this subcontext is a subtype of 7, and the minimal type 7 of eg w.r.t. A;T[zq: 7]
is a subtype of T w.r.t. A.

Let us assume that € is a recursive let-expression (letrec z1: 7 = e1;...;2,: 7, =
e, in eg end). If any type 7; is ill-formed w.r.t. A, which is decidable, then the typing
context A;l[xy: 71, ..., 2,: 7], is ill-formed and € is ill-typed. If A;TU[xy: 7, ... 2, 7
is well-formed, then since each ¢;, i € [1,n], is a strict subexpression of €, its well-typedness
w.r.t. A U[@y: 7y, ..., 2,0 7] is decidable. If any of the e; is ill typed, then so is €. If they
are all well-typed and have minimal type 7;, then either 7; is a subtype of 7; for every i €
[1, n] (which is decidable) and € has minimal type 7o, or else € is ill-typed. Finally, assuming
that € is well-typed, let (A;T") be a subcontext of (A;T). Then A;T/[@y: 71, ..., &, Ty] is
obviously a subcontext of A;'[zy: 7y,...,2,: 7,] and by induction, each ¢; has a minimal
type 7/ w.r.t. this subcontext, which is a subtype of 7; and thus a subtype of 7; w.r.t. A,
which proves that € has type 7/ which is a subtype of 7o w.r.t. A.

If € is an application (e ez), then e; and e being strict subexpressions of €, the well-
typedness of e; and e5 is decidable. If e; or e5 is ill-typed, then obviously € is also ill-typed.
So let us assume that both e; and ey are well-typed, and let 77 and 75 denote their minimal
types, the determination of which is decidable. If 7, belongs to doma(71) w.r.t. A, which
is decidable, then (e; e3) is well-typed and has type appa (71, 72), and theorem 41 proves
that this type is both well-formed and minimal. Now, suppose that 7> does not belong to
doma (T1) w.r.t. A, and let 7, and 73 be two other possible types of e; and ez such that 7
belongs to doma () w.r.t. A. Theorem 41 shows that appa (71, 72) is well-formed, which
trivially implies that 7; belongs to the domain of 7, which is absurd. Consequently, €
is either decidably ill-typed or has minimal type appa (71,72). Finally, assuming that €
is well-typed, let (A;T') be a subcontext of (A;T'). Then by induction, e and ey have
minimal types 7] and 75 which are subtypes of 7y and 7, and theorem 41 shows once again
that € has minimal type appa (77,7%) which is a subtype of app (71, 72).

Let us assume that € is a lambda-expression (fun {? |k} (z:6) = €e). If (¥: k) is not

97

well-formed w.r.t. A, which is decidable, then A A (9: k) is ill-formed, and so is €. So let
us assume the opposite, that is (9 # 5), k and @ are (9, 5)—Closed7 and K implies x for all
9, which, together with lemma 46, implies that the typing context A[9: s]; T[z: V(. 6]
is well-formed. Since e is a strict subexpression of €, the well-typedness of e w.r.t.
A[d: k];T[x: V(. 6] is decidable. If e is ill-typed, then obviously € is also ill-typed. So
let us assume that e is well-typed w.r.t. A[@: g];T[x: V0. 6], and let 7/ = ¥&': k', 6’ de-
note its minimal type, the determination of which is decidable. Let 7 denote the type
(V0,9 kAR 8 — @), Since 7/ is well-formed w.r.t. A[9: &), then (¢ # (9, 9)), &’ and ¢’
are (5, ¥, 9)-closed, and R A k implies £’ for all (5 #). Thus, by corollary 5, K A & implies
K A ' for all (1, #), and by lemma 1, & A s implies x A &' for all . Now, since (9: &) is
well-formed w.r.t. (19 k), k implies & for all 19 and by Corollary 5, K implies K A k for all
¢. By rule Trans, we thus conclude that & implies s A ' for all 19 which proves that 7
is well-formed. Now, let 7" = V9”: ”. 8" be any supertype of 7/ w.r.t. A[d: k], and let
0, v and v’ be three fresh and distinct type variables and v be a fresh Arrow-constructor
variable. By hypothesis, we have

Vﬁ,@,v’.%/\m/\m"/\@"ﬁv'):m’/\@’ﬁv’

therefore

V6,0. RAKAK'AB—0")<T (VELim)

= RANRAE"AN(O—8") <OAT=0"[v,v] (Trans, MElim)
= (ERARAR'ANG <VYA(v<OANT=0"[v, 0] A (=) C)

and since

(K'AB <v) # (v <OAD=0"[o, 0] A (=) E ") [0,0,9,7]
lemma 3 implies that

Vo,0, 0,0, (RAKRAK'AG <O)A (0 <OAT=0"[o, '] A (=) C o)
= (KA < V)N (v <OAD=0"o,v]A (=)) (MlIntro, Trans)
- WD 0 <D

and by lemma 1

Vo,0. (RAKAK'AG" <V)A (< OAT=0"[o, 0] A (=) C ")
= KNG =0 <o

and by transitivity

~

V6,0. RARAK'AB—0") <D
= KA =0 <7D

which shows that 7 is a subtype of (VJ,9”: k A k”. 8§ — 0") and is thus minimal. Fi-
nally, assuming that € is well-typed, let (A;I”) be a subcontext of (A;I'). By lemma 46,
A[9: k]; T[22 V0. 6] is thus a subcontext of A[¢:];T[x: V. 6], and by induction, the
minimal type of €/ w.r.t. this subcontext is a subtype of 7. Using the same monotonicity
proof as above, we thus have that the minimal type of € w.r.t. the subcontext is a subtype
of 7 w.r.t. A, which ends the proof. m

98

Proof of lemma 49

Let A =9: % be a well-formed context, 7 = V¢: k. 6 be a well-formed type w.r.t. the
trivial context such that (¢ # 9), and 7 = V&' : £’. 6 be a well-formed type w.r.t. A.

(1) Type 7[A] is obviously closed, and it is well-formed since if true implies x and true
implies K, then corollary 4 shows that true implies & A k. Now, if v be a fresh type
variable, then Yv. k A0 < v = k A8 < v and Yu. true = K. Consequently, lemma 3
shows that Vv. kA0 < v |E kKARAE < v. Since, trivially, Yv. kA0 < v = KARAD < v,
we conclude that 7 and 7[A] are equivalent w.r.t. True. Without loss of generality,

we assume that o/ # 9 # 1.
(2) Since (9': &) is well-formed w.r.t. A, 7/[A] is trivially closed and well-formed.

(3) Let us now assume that 7 is a subtype of 7/ w.r.t. A. For any fresh type variable v,
we have

Vo, 0. RAK AN <TERAOLT

and by lemma 1
Vo.RAK AN <ODERKAILD

which proves that 7 is a subtype of 7/[A] w.r.t. True. Now, assuming that
VO.RAK' N <OERKANILTD

we remark that, since the right-hand side of the implication does not contain variables
in 5, the proof tree for this implication can be re-arranged so that every substitution
o used in rule Vintro is a (7, 5)—substitution and every variable introduced in rule
VElim does not belong to d. Consequently, we conclude that

Vo, 0. RAK AN <TERAOLT
which proves that 7 is a subtype of 7 w.r.t. A.
|

Proof of theorem 50

Let © be a well-formed run-time environment, A be a well-formed constraint context,
and € be a well-typed expression with type 7 w.r.t. (A, Q) We prove the theorem by cases
by showing that the abstract machine always remains well-formed while evaluating € and
that if the evaluation of € terminates, it returns a run-time value with a closed run-time
type which is a subtype of the closure of 7 w.r.t. A.

If € is an expression variable, then rule VarVal shows that the evaluation terminates
and returns a well-formed run-time value w with run-time type 7 such that w: 7 is a
subterm of €. But since € is well-typed w.r.t. (A, Q) by hypothesis, rule Var shows that
T=7,and 7 beingAa fresh closed run-time type and A being a well-formed context, it is

easy to see that 7[A] is well-formed and is equivalent to 7, and thus that 7 is a subtype
of 7[A] w.r.t. True.

99

If € is an abstraction, then rule ClsVal shows that the evaluation terminates and
returns run-time value cls(ﬁ7 €) with well-formed and closed type ?[A] Finally, rules Fun
and Meth show that 7, and, hence, ?[A], are run-time types and rule ClsType shows that
cls(ﬁ7 €) is well-formed and has type ?[A] w.r.t. Q.

If € is a projection di,, then rules PrjVal and Prj show that 7 = (Vd¢. di(dc) —
dc[9¢]), which is a well-formed and closed run-time type. Moreover, the assumption on
the freeness of ¥ shows that ?[A] is well-formed and is equivalent to 7. Consequently, €
evaluates to prj(dc, 1) with closed run-time type T[A] and rule PrjType shows that prj(dc, @)
is well-formed w.r.t. Q.

If € is a record expression of the form p(d¢; (), then rule Rec shows that 7 = V0. d¢|]
and rule RecVal shows that the evaluation of € terminates and returns run-time value
rec(dc) with closed and well-formed run-time type ?[A] Rule RecType shows that this
run-time value is well-formed w.r.t. €.

If € is a record expression of the form p(dc;d¢; @1, ..., 2,), n > 1, then the hypothesis
on the possible occurrences of such terms shows that O necessarily contains n bindings
r1 = wi: (V01 K. 01), ooo, @p = wyt (V9,1 Ky 6,) and that &, which results from n
applications of rule FunApp started in the trivial context, is of the form

(ki AL < dEWE)) AL A (i A, < dE(D))

Now, by rule Rec, the type 7 of the record expression w.r.t. &; Q is equal to V0. da[d¢].
Consequently, T[A], which is well-formed, is precisely (d¢ 71 ...7,), which shows that the
evaluation of € terminates and returns run-time value rec(d¢;wy: T1,...,wy,: T,) wWhich is
well-formed and has type 7[A] w.r.t. Q.

If €is a let- expression (Iet T1 = €1 1N € end) let T' be the typing context associated to
Q. Rule Let shows that A = er: 7'1 and A; F[acl T1] F ep: To. Let us assume that 7 and
7o are minimal. We thus have A QF e1: 71, so starting the evaluation of ey in context A
vields a well-formed abstract machine. Let us assume that the evaluation terminates and
returns a run-time value wy with type 4 w.r.t. ;. By hypothesis, 71 is a subtype of 7y [A]
w.r.t. True. Since 7y is fresh, we deduce that 7 is a subtype of 7| w.r.t. A. Consequently,
theorem 48 shows that ey is well-typed w.r.t. f[aclz 7] and has minimal type 7 which
is a subtype of 7o w.r.t. A. Therefore, since €2y “extends” Q, starting the evaluation of
eg In context A and run-time environment Qq[zy = wy: 7] yields a well-formed abstract
machine. Let us assume that the evaluation terminates and returns a well-formed run-
time value wg with type 79. By hypothesis, 79 is a subtype of ?O[A] w.r.t. A. Since 7y is a
fresh and closed run-time type, we deduce that g is a subtype of 7 w.r.t. A and is thus a
subtype of 7o w.r.t. A. Since 7 = 7o, we conclude that 75 is a subtype of T[A] w.r.t. True.

If € is a recursive let-expression (letrec z1: 71 = fi1;...;2,: 7 = fn in € end), let r
be the typing context associated to Q. Rule LetRec shows that each fi is well-typed w.r.t.
A and that its minimal type 7; is a subtype of 7, w.r.t. A. Moreover, ey has minimal
type 7o w.r.t. A F[acl iy @nt Tp]. Consequently, TZ[A] is a subtype of TZ[A] w.r.t.
True, and rule ClsType shows that cls(A fi) is well-formed and has type TZ[A] w.r.t. Q.
Run-time environment Q[z; = cls(A fi): T ALz, = cls(A fn): To[A]] is thus well-
formed. Now, up to an a-substitution of its V:&Lrl:&Lbles7 each closed run-time type TZ[A]
is a subtype of 7; w.r.t. A. Therefore, A;L[xy: 7[A],..., 2n: To[A]] is a subcontext of
A; f[wlz Tlyeeoy &yt Tnl, and theorem 48 shows that eg is well-typed w.r.t. this subcontext

100

and has minimal type 7 which is a subtype of 7o = 7 w.r.t. A. Consequently, starting
the evaluation of ey in environment Q[xl = cls(ﬁ7 fi):m [A], ey Ty = cls(ﬁ7 fa): Tn[ﬁ]]
vields a well-formed abstract machine. Let us assume that this evaluation terminates and
returns a run-time value wg with closed run-time type 75. By hypothesis, we deduce that
7o is a subtype of 7[A] and thus that 7 is a subtype of 7[A] w.r.t. A.

If € is an application (€ €'), let [be the typing context associated to Q. Rule App

shows that

Dy By B
T =

[l
D
=
<
>
Rl
\]

and starting the evaluation of € in (A,Q) yields a well-formed abstract machine. Let
us assume that 7 and 7’ are minimal and that this evaluation terminates and returns a
run-time value w with closed run-time type 7 w.r.t. . Similarly, starting the evaluation
of €’ in (A, Q) yields a well-formed abstract machine. Let us assume that this evaluation
also terminates and returns a run-time value w’ with closed run-time type 7’ w.r.t. Q’. By
hypothesis, we deduce that 7 is a subtype of 7"[&] w.r.t. True and that 7’ is a subtype of
7"’[&] w.r.t. True. Since 7 and 7’ are fresh, we conclude that 7 is a subtype of 7 w.r.t. A
and that 7/ is a subtype of 7/ w.r.t. A. But 7 being prefunctional, theorems 40 and 39
show that 7/ belongs to the domain of 7 w.r.t. A. However, since 7 and 7 are closed, and
Ais well-formed, we conclude that 7/ belongs to the domain of 7 w.r.t. True, which shows
that 7 is a well-formed functional type. Looking at the rules of figure 6.1, it is clear that
w can only be of the form prj(dc, i) or cls(A, f). There are three subcases to consider.

If w is the i-th projection prj(d¢, ¢), then by rules Prj and PrjVal we deduce that 7 is
of the form Vd¢. de[dc] — dic<19(;>, where ?¢ is fresh, which is a well-formed and closed
run-time type. Therefore, 7/ belongs to 39¢. do[d¢] w.r.t. True. Since C' cannot be the
arrow class, for which no projection is defined, the rules of figure 6.1 show (1) that o’
can only be a record rec(dc;wy: 7y, ...,w,: 7,) with well-formed type 7/ = (d¢ 71 ...7)
w.r.t. Q' and (2) that Q' F w;: 7 for i € [1,n]. Rule PrjApp can thus be applied and the
evaluation of € returns run-time value w; with closed run-time type =; w.r.t. Q'. Moreover,
by theorem 41, we know that app(7,7’) is a subtype of 7 = app (7, ') w.r.t. A, and thus

~

that app(r,7') is a subtype of T[A] w.r.t. True. Consequently, theorem 42 shows that 7;
is a subtype of 7[A] w.r.t. True.

If wis a method cls(A, meth {9 |k} (2:0): 0" = [r1 = e1;...;7, = e,]), with A =
9: &, then rule ClsType shows that 7 = V9, 9: Z A k. 0 — 8" is a subtype of 7 w.r.t. True,
and also that 7y,..., 7, is a partition of 6 = 39: k. § w.r.t. A. Theorems 40 and 39 thus
prove that 7/ belongs to the domain & = §[A] of 7 w.r.t. True, so that by theorem 45, we
know that i = dispa (7; 6[A]; 71, ..., 7,) is well-defined and that 7/ belongs to §[A] A 7;,
that is, assuming that 7; is of the form 3¢,. 6;, 7’ belongs to

30, 0,9,9: EAEAv <0, 6;. v
and by theorem 43, we also know that

app(res(7,m), ") = app(7,7)

101

So let v be a fresh type variable and let A; denote the context Afv, ¥, 9;: k Av < 6,6,]
and A’ denote the context (9': k' A 0" < wv). Rule Meth shows that A; is well-formed and
that e; has type V. 8" in typing context A;; T'[z: V. v]. Now, the fact that 7" belongs to
6 A m; implies that A; A A’ is well-formed, and by lemma 47, we deduce that e; has type
V0. 8" w.r.t. typing context A; AA; T'[z: V0. v]. Finally, it is easy to see that, up to an a-
substitution of its variables, 7" is a subtype of (V0. v) w.r.t. A;AA’ and thus, by theorem 48,
we conclude that e; is well-typed and has type V0. 8” w.r.t. typing context A; AA"; T'[x: 77].
Consequently, starting the evaluation of e; in environment A; A A'; Q[z = w': 7] yields
a well-formed abstract machine. Assuming that this evaluation terminates and returns
a run-time value w” with closed run-time type 7”7, we know by hypothesis that 7" is
a subtype of the closure of V. 6" w.r.t. A; A A’, which happens to be equivalent to
app(res(7,m;), 7') and is thus equivalent to app(7, ') which, by theorem 41, is a subtype
of app(7,7’) and is thus a subtype of app(i’[ﬁ], 7"’[&]), which finally shows that 7" is a
subtype of app(7,7’) [A] = ?[A] w.r.t. True.

If wis a function cls(A, fun {9 |k} (2 : §) = €) where the expression fun {9 |k} (z: 0) =
e has minimal type V¢, ¢": kK Ak". 8 — 6" w.rt. A, then rule ClsType shows that type
F=V9,0,9": KA AK". 0 — 0" is asubtype of 7 w.r.t. True. Theorems 40 and 39 thus
prove that 7/ belongs to the domain 6 of 7 w.r.t. True. So let v be a fresh type variable,
let Ag denote the context Alv,9: k Av < 6] and A’ denote the context (9': k' A0 < v).
Rule Fun and lemma 47 show that Ag is well-formed and that e has type V¢ : ”. 6" in
typing context Ag;['[z: V(. f]. Now, the fact that 7/ belongs to ¢ implies in particular
that AgAA’ is well-formed, and by lemma 47, we deduce that e has type V¢": x”. 8" w.r.t.
typing context AgAA’; T'[z: V(. 4]. Finally, it is easy to see that, up to an a-substitution of
its variables, 7" is a subtype of V0. 6 w.r.t. Ag A A" and thus, by theorem 48, we conclude
that e is well-typed and has type V9”: k”. 8" w.r.t. typing context Ag A A’;['[x: 7'].
Consequently, starting the evaluation of e in environment Ag A A’; Q'[z = &': 7] yields
a well-formed abstract machine. Assuming that this evaluation terminates and returns
a run-time value w” with closed run-time type 7"/, we know by hypothesis that 7”7 is a
subtype of the closure of V9": k”. " w.r.t. Ag A A’, which happens to be equivalent to
app(7,7') which, by theorem 41, is a subtype of app(7,7’) and is thus a subtype of ?[A]
w.r.t. True. W

Proof of theorem 51

Let o be a solution, and F’ be such that F(v) = {o(v)} for every variable v € 9. Then
since o(vy) = vy for every variable vy € ¥, we have F(v1) C ®(F)(v1). Now, let vy € 93,
and v be any variable in ¥ such that v < vy. We know that since o is a solution, o(v) <
o(vz), so o(vz) belongs to U, ¢ pyy T v1, and o(vz) belongs to (N, <., Uy, e rwy T 01)-
Similarly, we show that o(vz) belongs to (N, <, U4, ¢ p(v) 4 v1), and, finally, we conclude
that F'(o2) C ®(F)(032), which proves that F'is a pre-solution. m

Proof of theorem 52

Let us assume that G is a maximum pre-solution such that |G(vg)| = 1 for every
vy € 3. Since the same property holds for v; € ¥;, we denote by o(v) the unique element
of G/(v) for any v € 9. We thus have o(vy) = v1 for every vy € 91, and G(v) = {o(v)} for

102

every v € . Moreover, for every vy € ¥, we have

{ o(v2) € Ny, {01 €91 [o(v) <01} (1)
o(v2) € Ny, <ofvr €01 v Z0(v)} (2)

So let vy € ¥4 and vy € ¥5 be two distinct variables such that vy < vy. By property
(1), choosing v = vy, we deduce that o(vz) belongs to the set {v] € ¥y | o(v1) < vi},
or else, o(v1) < o(vg). Similarly, assuming that vy < vy, we deduce that o(vy) < o(v1).
Now, let vy and v} be two distinct variables in 92 such that vy < v}. By rule (2), choosing
v = v}, we deduce that o(vy) belongs to the set {v] € ¥y | v] < o(v})}, from which we
conclude that o(vy) < o(v}), which finally shows that ¢ is a solution. m

103

